Transformers in medical image segmentation: A review

Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are beginning to focus on the transformer in medical images due to the past few years having seen the rapid development of transformer in many vis...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 84; p. 104791
Main Authors Xiao, Hanguang, Li, Li, Liu, Qiyuan, Zhu, Xiuhong, Zhang, Qihang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2023.104791

Cover

Loading…
Abstract Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are beginning to focus on the transformer in medical images due to the past few years having seen the rapid development of transformer in many vision fields such as vision transformer (ViT) and Swin transformer. In the last year, moreover, many scholars have applied transformer to medical image segmentation and have achieved good segmentation results. Transformer-based medical image segmentation has become one of the hot spots in this field. The purpose of this work is to categorize and review the segmentation methods of Unet-based transformer and other model based transformer in medical images. This paper summarizes the transformer-based segmentation models in the abdominal organs, heart, brain, and lung based on the relevant studies in the last two years. We described and analyzed the model structure including the position of the transformer in the model, the changes made by scholars to transformer and the combination with the model. In this work, the segmentation performance results based on Dice evaluation metrics are compared. Through the help of 93 references, we find that researchers prefer to use Unet-based transformer models than others and place the transformer structure in the encoder. These new models improve the segmentation performance compared with U-Net and other segmentation models. However, there are not many related studies on lungs, which points to a new way for future research. We found that the combination of U-Net and transformer is more suitable for segmentation. In future research on medical image segmentation, researchers can use a suitable transformer-based segmentation method or modify the transformer structure according to the segmentation requirements. We hope that this work will be helpful for improvements of the transformer to solve clinical problems in medicine.
AbstractList Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are beginning to focus on the transformer in medical images due to the past few years having seen the rapid development of transformer in many vision fields such as vision transformer (ViT) and Swin transformer. In the last year, moreover, many scholars have applied transformer to medical image segmentation and have achieved good segmentation results. Transformer-based medical image segmentation has become one of the hot spots in this field. The purpose of this work is to categorize and review the segmentation methods of Unet-based transformer and other model based transformer in medical images. This paper summarizes the transformer-based segmentation models in the abdominal organs, heart, brain, and lung based on the relevant studies in the last two years. We described and analyzed the model structure including the position of the transformer in the model, the changes made by scholars to transformer and the combination with the model. In this work, the segmentation performance results based on Dice evaluation metrics are compared. Through the help of 93 references, we find that researchers prefer to use Unet-based transformer models than others and place the transformer structure in the encoder. These new models improve the segmentation performance compared with U-Net and other segmentation models. However, there are not many related studies on lungs, which points to a new way for future research. We found that the combination of U-Net and transformer is more suitable for segmentation. In future research on medical image segmentation, researchers can use a suitable transformer-based segmentation method or modify the transformer structure according to the segmentation requirements. We hope that this work will be helpful for improvements of the transformer to solve clinical problems in medicine.
ArticleNumber 104791
Author Zhu, Xiuhong
Li, Li
Liu, Qiyuan
Xiao, Hanguang
Zhang, Qihang
Author_xml – sequence: 1
  givenname: Hanguang
  orcidid: 0000-0002-4359-7455
  surname: Xiao
  fullname: Xiao, Hanguang
  email: simenxiao1211@163.com
– sequence: 2
  givenname: Li
  orcidid: 0000-0002-3848-3621
  surname: Li
  fullname: Li, Li
  email: lily@stu.cqut.edu.cn
– sequence: 3
  givenname: Qiyuan
  surname: Liu
  fullname: Liu, Qiyuan
– sequence: 4
  givenname: Xiuhong
  surname: Zhu
  fullname: Zhu, Xiuhong
– sequence: 5
  givenname: Qihang
  surname: Zhang
  fullname: Zhang, Qihang
BookMark eNp9kM9qwzAMh83oYG23F9gpL5BOSpzGGbuUsn9Q2KU7G0eVi0vjFDts7O3nku2yw0Ag8YNP6NNMTHzvWYhbhAUCLu8OizaeaFFAUaZA1g1eiCnWcpkrBDX5naGRV2IW4wFAqhrlVMhtMD7aPnQcYuZ81vHOkTlmrjN7ziLvO_aDGVzv77NVFvjD8ee1uLTmGPnmp8_F-9Pjdv2Sb96eX9erTU4lwJAzGqUULVvFJSG0aGoiuyubxqYYSklKtcBUNQYrW1c1tIVBK2XVUJuqnAs17qXQxxjYanLjLUMw7qgR9NleH_TZXp_t9Wif0OIPegpJKXz9Dz2MECepJBp0JMee0ksC06B3vfsP_wbRW3W1
CitedBy_id crossref_primary_10_1093_bib_bbae485
crossref_primary_10_1109_ACCESS_2024_3456674
crossref_primary_10_1093_bioinformatics_btad584
crossref_primary_10_1007_s44267_024_00071_w
crossref_primary_10_1038_s41598_024_53528_9
crossref_primary_10_1016_j_bspc_2024_106731
crossref_primary_10_3390_biomedicines12061198
crossref_primary_10_1007_s10278_024_01373_7
crossref_primary_10_1038_s41598_025_93875_9
crossref_primary_10_1007_s00521_024_09545_w
crossref_primary_10_1016_j_eswa_2023_121717
crossref_primary_10_1002_brx2_29
crossref_primary_10_1016_j_isprsjprs_2024_03_012
crossref_primary_10_1109_ACCESS_2023_3330493
crossref_primary_10_1049_cit2_12356
crossref_primary_10_1371_journal_pone_0312105
crossref_primary_10_3390_jimaging11010002
crossref_primary_10_1007_s10278_024_01237_0
crossref_primary_10_1088_1361_6560_ad14c6
crossref_primary_10_1080_15481603_2024_2325720
crossref_primary_10_1002_mp_17751
crossref_primary_10_1016_j_bspc_2024_106464
crossref_primary_10_3390_app132212397
crossref_primary_10_1016_j_bspc_2024_106619
crossref_primary_10_1016_j_neucom_2024_129009
crossref_primary_10_1016_j_engappai_2024_108541
crossref_primary_10_1016_j_knosys_2024_112170
crossref_primary_10_7717_peerj_cs_2238
crossref_primary_10_3390_s24041110
crossref_primary_10_1007_s11227_024_06770_x
crossref_primary_10_1109_ACCESS_2024_3392595
crossref_primary_10_3390_bioengineering11121255
crossref_primary_10_1016_j_eswa_2024_125414
crossref_primary_10_3390_electronics13040746
crossref_primary_10_3390_app142310960
crossref_primary_10_3390_bioengineering11100958
crossref_primary_10_2196_57723
crossref_primary_10_32604_cmc_2023_042069
crossref_primary_10_1016_j_compbiomed_2023_107624
crossref_primary_10_1109_ACCESS_2024_3466013
crossref_primary_10_3934_mbe_2024253
crossref_primary_10_1007_s42452_024_06127_2
crossref_primary_10_3390_app132413117
crossref_primary_10_3390_pr12030529
crossref_primary_10_1016_j_eswa_2024_125009
crossref_primary_10_1016_j_bspc_2024_106447
crossref_primary_10_1186_s40494_024_01231_3
crossref_primary_10_1016_j_inffus_2023_102161
crossref_primary_10_1002_ima_22987
crossref_primary_10_1016_j_bspc_2023_105608
crossref_primary_10_1016_j_neucom_2025_129447
crossref_primary_10_1016_j_bspc_2023_105605
crossref_primary_10_1007_s10489_024_06085_7
crossref_primary_10_3390_info15040198
crossref_primary_10_1016_j_imavis_2025_105463
crossref_primary_10_54097_1mw0pm54
crossref_primary_10_1016_j_dsp_2024_104885
crossref_primary_10_1016_j_bspc_2024_107341
crossref_primary_10_1016_j_bspc_2024_106138
crossref_primary_10_1016_j_bspc_2025_107746
crossref_primary_10_3389_fnins_2024_1376570
crossref_primary_10_3390_electronics13101880
crossref_primary_10_1016_j_bspc_2023_105561
crossref_primary_10_1038_s41598_024_66873_6
crossref_primary_10_1007_s40846_024_00873_9
crossref_primary_10_1016_j_euros_2024_02_005
crossref_primary_10_1007_s00521_024_09757_0
crossref_primary_10_1007_s13369_024_09845_2
crossref_primary_10_1016_j_neucom_2024_127379
crossref_primary_10_3390_bioengineering11030210
crossref_primary_10_1007_s11517_024_03086_z
crossref_primary_10_1016_j_eswa_2024_124179
crossref_primary_10_61186_shefa_13_1_63
crossref_primary_10_1007_s13534_025_00469_5
crossref_primary_10_1109_ACCESS_2024_3505616
crossref_primary_10_1016_j_compbiomed_2024_108639
crossref_primary_10_1186_s42492_024_00159_6
crossref_primary_10_1016_j_patrec_2024_11_008
crossref_primary_10_4111_icu_20240159
crossref_primary_10_3389_fenrg_2023_1301828
crossref_primary_10_1109_TGRS_2024_3509478
crossref_primary_10_3390_vehicles6010006
crossref_primary_10_1109_TIM_2025_3527526
crossref_primary_10_1007_s10836_024_06142_6
crossref_primary_10_3390_e26121059
crossref_primary_10_3390_diagnostics14010069
crossref_primary_10_3390_electronics13234594
crossref_primary_10_1016_j_bspc_2024_106237
crossref_primary_10_1016_j_bspc_2024_106633
crossref_primary_10_1007_s44163_024_00180_x
crossref_primary_10_7717_peerj_cs_1615
crossref_primary_10_1016_j_bspc_2023_105657
crossref_primary_10_1002_acm2_14297
crossref_primary_10_1117_1_JMI_11_4_044503
crossref_primary_10_1016_j_compmedimag_2024_102459
crossref_primary_10_1109_TIM_2025_3545864
crossref_primary_10_1016_j_eswa_2024_124113
crossref_primary_10_1016_j_infrared_2024_105246
crossref_primary_10_1016_j_neunet_2025_107396
crossref_primary_10_1167_iovs_65_8_42
crossref_primary_10_1016_j_compbiomed_2024_109103
crossref_primary_10_1016_j_mlwa_2025_100635
crossref_primary_10_1016_j_bspc_2024_106487
crossref_primary_10_1007_s12672_024_01177_9
crossref_primary_10_3390_app13106125
crossref_primary_10_1016_j_joen_2024_07_012
crossref_primary_10_1016_j_aej_2024_01_018
crossref_primary_10_1007_s11042_024_18544_x
crossref_primary_10_1016_j_bspc_2023_105528
crossref_primary_10_1371_journal_pone_0311080
crossref_primary_10_1007_s10346_024_02274_0
crossref_primary_10_1016_j_knosys_2024_111664
crossref_primary_10_1186_s12938_024_01212_4
Cites_doi 10.1007/978-3-030-01234-2_1
10.1155/2021/6207964
10.1186/s12889-020-09838-4
10.1016/j.compbiomed.2022.105954
10.1016/j.cmpb.2018.01.014
10.1109/TMI.2019.2897538
10.1155/2021/7467261
10.1109/ICCV48922.2021.01204
10.1002/int.22956
10.1109/TMI.2018.2837502
10.1016/j.neuroimage.2018.05.064
10.1109/CVPR.2018.00675
10.1109/TMI.2021.3090082
10.1016/j.compbiomed.2022.106207
10.1109/ISBI52829.2022.9761448
10.1016/j.radonc.2021.04.019
10.1109/WACV51458.2022.00181
10.1109/CVPR.2017.549
10.1007/s11060-017-2420-1
10.1016/j.cmpb.2021.105998
10.1109/ICCV48922.2021.00951
10.1016/j.compbiomed.2019.05.002
10.1109/ICCV48922.2021.00393
10.1038/s41586-020-2145-8
10.1109/CVPR.2018.00745
10.1155/2015/813696
10.1148/radiol.2020200642
10.1109/ICCV48922.2021.00986
10.1109/CVPR.2015.7298965
10.1109/ICCV48922.2021.00061
10.1109/TPAMI.2016.2644615
10.1109/WACV51458.2022.00333
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.104791
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_104791
S1746809423002240
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-e1a888c6b8e3c10b1a7ccfd399f88c034c88b0ec59a15f7570b2a1f4459cb9cb3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 22:55:58 EDT 2025
Tue Jul 01 01:34:17 EDT 2025
Fri Feb 23 02:37:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Medical image
3D segmentation
Transformer
Segmentation analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-e1a888c6b8e3c10b1a7ccfd399f88c034c88b0ec59a15f7570b2a1f4459cb9cb3
ORCID 0000-0002-4359-7455
0000-0002-3848-3621
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_104791
crossref_primary_10_1016_j_bspc_2023_104791
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Feng, Guo, Ren (b57) 2022
J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
Petit, Thome, Rambour, Themyr, Collins, Soler (b50) 2021
X. Yan, H. Tang, S. Sun, H. Ma, D. Kong, X. Xie, After-unet: Axial fusion transformer unet for medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 3971–3981.
D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, M. Paluri, A closer look at spatiotemporal convolutions for action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6450–6459.
Chang, Menghan, Guangtao, Xiao-Ping (b17) 2021
Guo, Liu, Mu, Hu (b51) 2021
Chen, Sun, Bai, Han, Liu, Yao, Tang, Zhang, Lu, Huang (b85) 2021; 160
Guo, Terzopoulos (b36) 2021
Ouyang, He, Ghorbani, Yuan, Ebinger, Langlotz, Heidenreich, Harrington, Liang, Ashley (b60) 2020; 580
Chen, Liu, Zhang, Lu, Zhang (b34) 2021
Deng, Meng, Gao, Bridge, Shen, Lip, Zhao, Zheng (b64) 2021
Xu, Wu, Zhang, He (b48) 2021
Sui, Zhang, Liu, Chen, Ma, Tian (b53) 2021; 2021
Ma, Xia, Tan, Li, Song (b35) 2022
Bernard, Lalande, Zotti, Cervenansky, Yang, Heng, Cetin, Lekadir, Camara, Gonzalez Ballester, Sanroma, Napel, Petersen, Tziritas, Grinias, Khened, Kollerathu, Krishnamurthi, Rohe, Pennec, Sermesant, Isensee, Jaeger, Maier-Hein, Full, Wolf, Engelhardt, Baumgartner, Koch, Wolterink, Isgum, Jang, Hong, Patravali, Jain, Humbert, Jodoin (b59) 2018; 37
Xu, Quan (b67) 2021
Gao, Zhou, Liu, Metaxas (b22) 2022
Li, Chen, Peng, Li (b38) 2022
G. Lin, A. Milan, C. Shen, I. Reid, Refinenet: Multi-path refinement networks for high-resolution semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1925–1934.
Zhou, Rahman Siddiquee, Tajbakhsh, Liang (b2) 2018
Li, Cai, Gao, Hu (b79) 2021
Ronneberger, Fischer, Brox (b1) 2015
Hatamizadeh, Nath, Tang, Yang, Roth, Xu (b29) 2022
Jia, Shu (b30) 2021
Sun, Fang, Liu, Zhao, Wen, Lin (b32) 2021; 2021
Liu, Xiao, Jiang, He (b87) 2022
Yao, Tang, Hu, Wu, Guo, Li, Zhang (b4) 2020
Xie, Zhang, Shen, Xia (b21) 2021
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b16) 2020
Natarajan, Priester, Margolis, Huang, Marks (b45) 2020; 10
Wu, Niu, He (b65) 2021
Zhang, Liu, Wu, Wang, Liu, Xu, Song (b12) 2022; 150
Cao, Wang, Chen, Jiang, Zhang, Tian, Wang (b15) 2021
Milletari, Navab, Ahmadi (b5) 2016
Sun, Chen, Yan, Lin, Pang, Zhang (b83) 2022
Xie, Zhang, Xia, Wu (b39) 2021
Zhou, Guo, Zhang, Yu, Wang, Yu (b24) 2021
B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, M. Douze, Levit: a vision transformer in convnet’s clothing for faster inference, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 12259–12269.
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
Mazurowski, Clark, Czarnek, Shamsesfandabadi, Peters, Saha (b76) 2017; 133
Peiris, Hayat, Chen, Egan, Harandi (b31) 2021
Ta, Ahn, Stendahl, Sinusas, Duncan (b72) 2021
F. Pollastri, M. Cipriano, F. Bolelli, C. Grana, Long-Range 3D Self-Attention for MRI Prostate Segmentation, in: IEEE International Symposium on Biomedical Imaging, ISBI, 2022.
Khazaei, Goodarzi, Borhaninejad, Iranmanesh, Mirshekarpour, Mirzaei, Naemi, Bechashk, Darvishi, Ershad Sarabi (b74) 2020; 20
Zhang, Du, Wang (b7) 2016
Xu, Quan (b66) 2021
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (b71) 2019; 38
Huang, Deng, Li, Yuan (b52) 2021
Liu, Gao, Zhangli, Yan, Zhou, Metaxas (b68) 2022
Qiu, Liu, Li, Xu (b82) 2021
Wang, Chen, Ding, Yu, Zha, Li (b27) 2021
Ai, Yang, Hou, Zhan, Chen, Lv, Tao, Sun, Xia (b84) 2020
Li, Ma, Tang, Guo (b81) 2022
Galazis, Wu, Li, Petri, Bharath, Varela (b70) 2021
Yang, Tian (b23) 2022
Isensee, Petersen, Klein, Zimmerer, Jaeger, Kohl, Wasserthal, Koehler, Norajitra, Wirkert (b6) 2018
Campello, Gkontra, Izquierdo, Martin-Isla, Sojoudi, Full, Maier-Hein, Zhang, He, Ma (b61) 2021; 40
(b91) 2020
Simpson, Antonelli, Bakas, Bilello, Farahani, Van Ginneken, Kopp-Schneider, Landman, Litjens, Menze (b46) 2019
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b41) 2017; 30
Karimi, Vasylechko, Gholipour (b42) 2021
Jiang, Li (b11) 2022; 150
Li, Ni, Elazab, Wu (b33) 2021
A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H.R. Roth, D. Xu, Unetr: Transformers for 3d medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 574–584.
Badrinarayanan, Kendall, Cipolla (b8) 2017; 39
Li, Zhang, Liu, Wang, Zhang, Zhang, Liao, Yang (b14) 2022
D. Yang, A. Myronenko, X. Wang, Z. Xu, H.R. Roth, D. Xu, T-AutoML: Automated Machine Learning for Lesion Segmentation using Transformers in 3D Medical Imaging, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 3962–3974.
Torres, Queiros, Morais, Oliveira, Fonseca, Vilaca (b93) 2018; 157
(b58) 2017
Wang, Cao, Wang, Zaiane (b19) 2021
Gao, Zhou, Metaxas (b63) 2021
Xiao, Ran, Mabu, Li, Li (b3) 2022
Mendrik, Vincken, Kuijf, Breeuwer, Bouvy, De Bresser, Alansary, De Bruijne, Carass, El-Baz (b77) 2015; 2015
Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (b13) 2021
Bastiani, Andersson, Cordero-Grande, Murgasova, Hutter, Price, Makropoulos, Fitzgibbon, Hughes, Rueckert (b78) 2019; 185
Wang, Xie, Lin, Iwamoto, Han, Chen, Tong (b18) 2021
(b43) 2015
Wang, Lin, Li, Li, Shen, Gao, Ma (b80) 2022
Zhang, Liu, Hu (b20) 2021
M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, A. Joulin, Emerging properties in self-supervised vision transformers, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 9650–9660.
(b90) 2022
Li, Liu, Wu, Li, Zhong, Guan (b10) 2022; 37
S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
Guo, Xiao, Lu, Chen, Yan, Zhou, He, Wang (b92) 2021; 202
Ji, Zhang, Wang, Li, Wu, Zhang, Luo (b69) 2021
Zoph, Le (b86) 2016
J. Zhang, Y. Liu, Q. Wu, Y. Liu, Y. Wang, X. Xu, B. Song, S2wintounet: Star-Shaped Window Transformer Onion U-Net for Medical Image Segmentation, Available At SSRN 3992963.
W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 568–578.
Buda, Saha, Mazurowski (b75) 2019; 109
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (b73) 2021; 71
Wu, Liao, Chen, Chen, Wang, Gao, Wu (b25) 2022
Badrinarayanan (10.1016/j.bspc.2023.104791_b8) 2017; 39
Gao (10.1016/j.bspc.2023.104791_b22) 2022
Guo (10.1016/j.bspc.2023.104791_b36) 2021
10.1016/j.bspc.2023.104791_b62
Li (10.1016/j.bspc.2023.104791_b14) 2022
Bastiani (10.1016/j.bspc.2023.104791_b78) 2019; 185
Li (10.1016/j.bspc.2023.104791_b10) 2022; 37
Liu (10.1016/j.bspc.2023.104791_b68) 2022
Wang (10.1016/j.bspc.2023.104791_b80) 2022
10.1016/j.bspc.2023.104791_b9
Bernard (10.1016/j.bspc.2023.104791_b59) 2018; 37
Zhou (10.1016/j.bspc.2023.104791_b24) 2021
Balakrishnan (10.1016/j.bspc.2023.104791_b71) 2019; 38
Li (10.1016/j.bspc.2023.104791_b38) 2022
Campello (10.1016/j.bspc.2023.104791_b61) 2021; 40
Mazurowski (10.1016/j.bspc.2023.104791_b76) 2017; 133
Cao (10.1016/j.bspc.2023.104791_b15) 2021
(10.1016/j.bspc.2023.104791_b43) 2015
10.1016/j.bspc.2023.104791_b55
10.1016/j.bspc.2023.104791_b56
Xu (10.1016/j.bspc.2023.104791_b67) 2021
10.1016/j.bspc.2023.104791_b54
Isensee (10.1016/j.bspc.2023.104791_b6) 2018
Khazaei (10.1016/j.bspc.2023.104791_b74) 2020; 20
Wu (10.1016/j.bspc.2023.104791_b65) 2021
Sung (10.1016/j.bspc.2023.104791_b73) 2021; 71
Xie (10.1016/j.bspc.2023.104791_b21) 2021
Liu (10.1016/j.bspc.2023.104791_b87) 2022
Wang (10.1016/j.bspc.2023.104791_b18) 2021
Torres (10.1016/j.bspc.2023.104791_b93) 2018; 157
Yang (10.1016/j.bspc.2023.104791_b23) 2022
Li (10.1016/j.bspc.2023.104791_b33) 2021
Vaswani (10.1016/j.bspc.2023.104791_b41) 2017; 30
10.1016/j.bspc.2023.104791_b28
Xie (10.1016/j.bspc.2023.104791_b39) 2021
Natarajan (10.1016/j.bspc.2023.104791_b45) 2020; 10
Guo (10.1016/j.bspc.2023.104791_b51) 2021
Xu (10.1016/j.bspc.2023.104791_b48) 2021
Buda (10.1016/j.bspc.2023.104791_b75) 2019; 109
Li (10.1016/j.bspc.2023.104791_b81) 2022
Peiris (10.1016/j.bspc.2023.104791_b31) 2021
10.1016/j.bspc.2023.104791_b26
Wang (10.1016/j.bspc.2023.104791_b27) 2021
Li (10.1016/j.bspc.2023.104791_b79) 2021
Milletari (10.1016/j.bspc.2023.104791_b5) 2016
Zhang (10.1016/j.bspc.2023.104791_b20) 2021
(10.1016/j.bspc.2023.104791_b91) 2020
Ji (10.1016/j.bspc.2023.104791_b69) 2021
10.1016/j.bspc.2023.104791_b40
Xu (10.1016/j.bspc.2023.104791_b66) 2021
Zoph (10.1016/j.bspc.2023.104791_b86) 2016
Qiu (10.1016/j.bspc.2023.104791_b82) 2021
Sui (10.1016/j.bspc.2023.104791_b53) 2021; 2021
Chang (10.1016/j.bspc.2023.104791_b17) 2021
Petit (10.1016/j.bspc.2023.104791_b50) 2021
Hatamizadeh (10.1016/j.bspc.2023.104791_b29) 2022
Wang (10.1016/j.bspc.2023.104791_b19) 2021
Gao (10.1016/j.bspc.2023.104791_b63) 2021
Jiang (10.1016/j.bspc.2023.104791_b11) 2022; 150
Xiao (10.1016/j.bspc.2023.104791_b3) 2022
Yao (10.1016/j.bspc.2023.104791_b4) 2020
(10.1016/j.bspc.2023.104791_b58) 2017
Zhang (10.1016/j.bspc.2023.104791_b57) 2022
Wu (10.1016/j.bspc.2023.104791_b25) 2022
Ai (10.1016/j.bspc.2023.104791_b84) 2020
Zhang (10.1016/j.bspc.2023.104791_b12) 2022; 150
Mendrik (10.1016/j.bspc.2023.104791_b77) 2015; 2015
Guo (10.1016/j.bspc.2023.104791_b92) 2021; 202
Dosovitskiy (10.1016/j.bspc.2023.104791_b16) 2020
10.1016/j.bspc.2023.104791_b37
Sun (10.1016/j.bspc.2023.104791_b83) 2022
Chen (10.1016/j.bspc.2023.104791_b13) 2021
Zhang (10.1016/j.bspc.2023.104791_b7) 2016
Ouyang (10.1016/j.bspc.2023.104791_b60) 2020; 580
Galazis (10.1016/j.bspc.2023.104791_b70) 2021
Ronneberger (10.1016/j.bspc.2023.104791_b1) 2015
Huang (10.1016/j.bspc.2023.104791_b52) 2021
Ma (10.1016/j.bspc.2023.104791_b35) 2022
Jia (10.1016/j.bspc.2023.104791_b30) 2021
Simpson (10.1016/j.bspc.2023.104791_b46) 2019
Zhou (10.1016/j.bspc.2023.104791_b2) 2018
Chen (10.1016/j.bspc.2023.104791_b34) 2021
10.1016/j.bspc.2023.104791_b44
10.1016/j.bspc.2023.104791_b88
10.1016/j.bspc.2023.104791_b89
Sun (10.1016/j.bspc.2023.104791_b32) 2021; 2021
Ta (10.1016/j.bspc.2023.104791_b72) 2021
Chen (10.1016/j.bspc.2023.104791_b85) 2021; 160
Karimi (10.1016/j.bspc.2023.104791_b42) 2021
(10.1016/j.bspc.2023.104791_b90) 2022
Deng (10.1016/j.bspc.2023.104791_b64) 2021
10.1016/j.bspc.2023.104791_b49
10.1016/j.bspc.2023.104791_b47
References_xml – start-page: 61
  year: 2021
  end-page: 71
  ident: b63
  article-title: Utnet: a hybrid transformer architecture for medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 3
  year: 2018
  end-page: 11
  ident: b2
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b8
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2021
  ident: b18
  article-title: Mixed transformer U-net for medical image segmentation
– start-page: 171
  year: 2021
  end-page: 180
  ident: b21
  article-title: Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1
  year: 2022
  end-page: 5
  ident: b87
  article-title: CCAT-NET: A novel transformer based semi-supervised framework for Covid-19 lung lesion segmentation
  publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging
– volume: 2015
  year: 2015
  ident: b77
  article-title: Mrbrains challenge: online evaluation framework for brain image segmentation in 3T MRI scans
  publication-title: Comput. Intell. Neurosci.
– reference: G. Lin, A. Milan, C. Shen, I. Reid, Refinenet: Multi-path refinement networks for high-resolution semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1925–1934.
– reference: A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H.R. Roth, D. Xu, Unetr: Transformers for 3d medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 574–584.
– year: 2022
  ident: b57
  article-title: Comparative analysis of U-net and TLMDB GAN for the cardiovascular segmentation of the ventricles in the heart
  publication-title: Comput. Methods Programs Biomed.
– reference: F. Pollastri, M. Cipriano, F. Bolelli, C. Grana, Long-Range 3D Self-Attention for MRI Prostate Segmentation, in: IEEE International Symposium on Biomedical Imaging, ISBI, 2022.
– start-page: 565
  year: 2016
  end-page: 571
  ident: b5
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
– start-page: 109
  year: 2021
  end-page: 119
  ident: b27
  article-title: Transbts: Multimodal brain tumor segmentation using transformer
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 267
  year: 2021
  end-page: 276
  ident: b50
  article-title: U-net transformer: Self and cross attention for medical image segmentation
  publication-title: International Workshop on Machine Learning in Medical Imaging
– year: 2021
  ident: b51
  article-title: Beyond self-attention: External attention using two linear layers for visual tasks
– year: 2022
  ident: b90
  article-title: MSD pancreas segmentation dataset
– reference: M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, A. Joulin, Emerging properties in self-supervised vision transformers, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 9650–9660.
– volume: 40
  start-page: 3543
  year: 2021
  end-page: 3554
  ident: b61
  article-title: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m&ms challenge
  publication-title: IEEE Trans. Med. Imaging
– volume: 2021
  year: 2021
  ident: b53
  article-title: CST: A multitask learning framework for Colorectal Cancer Region mining based on transformer
  publication-title: Biomed. Res. Int.
– reference: J. Zhang, Y. Liu, Q. Wu, Y. Liu, Y. Wang, X. Xu, B. Song, S2wintounet: Star-Shaped Window Transformer Onion U-Net for Medical Image Segmentation, Available At SSRN 3992963.
– reference: D. Yang, A. Myronenko, X. Wang, Z. Xu, H.R. Roth, D. Xu, T-AutoML: Automated Machine Learning for Lesion Segmentation using Transformers in 3D Medical Imaging, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 3962–3974.
– year: 2021
  ident: b13
  article-title: Transunet: Transformers make strong encoders for medical image segmentation
– year: 2021
  ident: b19
  article-title: UCTransNet: Rethinking the skip connections in U-net from a channel-wise perspective with transformer
– start-page: 553
  year: 2022
  end-page: 556
  ident: b23
  article-title: TransNUNet: Using attention mechanism for whole heart segmentation
  publication-title: 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications
– year: 2019
  ident: b46
  article-title: A large annotated medical image dataset for the development and evaluation of segmentation algorithms
– volume: 185
  start-page: 750
  year: 2019
  end-page: 763
  ident: b78
  article-title: Automated processing pipeline for neonatal diffusion MRI in the developing human connectome project
  publication-title: Neuroimage
– start-page: 1
  year: 2022
  end-page: 7
  ident: b38
  article-title: Multimodal lung mass segmentation network based on cross modal space matching
  publication-title: J. Electron. Inf.
– year: 2021
  ident: b30
  article-title: Bitr-unet: a CNN-transformer combined network for MRI brain tumor segmentation
– start-page: 1
  year: 2022
  end-page: 14
  ident: b35
  article-title: HT-Net: hierarchical context-attention transformer network for medical ct image segmentation
  publication-title: Appl. Intell.
– start-page: 326
  year: 2021
  end-page: 336
  ident: b69
  article-title: Multi-compound transformer for accurate biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2021
  ident: b79
  article-title: More than encoder: Introducing transformer decoder to upsample
– start-page: 234
  year: 2015
  end-page: 241
  ident: b1
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 78
  year: 2021
  end-page: 88
  ident: b42
  article-title: Convolution-free medical image segmentation using transformers
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 63
  year: 2021
  end-page: 72
  ident: b64
  article-title: TransBridge: A lightweight transformer for left ventricle segmentation in echocardiography
  publication-title: International Workshop on Advances in Simplifying Medical Ultrasound
– year: 2022
  ident: b81
  article-title: TranSiam: Fusing multimodal visual features using transformer for medical image segmentation
– year: 2022
  ident: b14
  article-title: Global transformer and dual local attention network via deep-shallow hierarchical feature fusion for retinal vessel segmentation
  publication-title: IEEE Trans. Cybern.
– volume: 109
  start-page: 218
  year: 2019
  end-page: 225
  ident: b75
  article-title: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm
  publication-title: Comput. Biol. Med.
– year: 2015
  ident: b43
  article-title: Synapse multi-organ segmentation dataset
– volume: 150
  year: 2022
  ident: b12
  article-title: SWTRU: Star-shaped window transformer reinforced U-net for medical image segmentation
  publication-title: Comput. Biol. Med.
– volume: 38
  start-page: 1788
  year: 2019
  end-page: 1800
  ident: b71
  article-title: VoxelMorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2022
  end-page: 14
  ident: b3
  article-title: SAUNet++: An automatic segmentation model of COVID-19 lesion from CT slices
  publication-title: Vis. Comput.
– year: 2021
  ident: b24
  article-title: Nnformer: Interleaved transformer for volumetric segmentation
– start-page: 536
  year: 2021
  end-page: 540
  ident: b72
  article-title: Shape-regularized unsupervised left ventricular motion network with segmentation capability in 3d+ time echocardiography
  publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging
– volume: 202
  year: 2021
  ident: b92
  article-title: Cerebrovascular segmentation from TOF-MRA based on multiple-U-net with focal loss function
  publication-title: Comput. Methods Programs Biomed.
– volume: 37
  start-page: 2514
  year: 2018
  end-page: 2525
  ident: b59
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
– volume: 580
  start-page: 252
  year: 2020
  end-page: 256
  ident: b60
  article-title: Video-based AI for beat-to-beat assessment of cardiac function
  publication-title: Nature
– year: 2022
  ident: b22
  article-title: A multi-scale transformer for medical image segmentation: Architectures, model efficiency, and benchmarks
– reference: D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, M. Paluri, A closer look at spatiotemporal convolutions for action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6450–6459.
– year: 2016
  ident: b86
  article-title: Neural architecture search with reinforcement learning
– year: 2018
  ident: b6
  article-title: Nnu-net: Self-adapting framework for u-net-based medical image segmentation
– start-page: 300
  year: 2021
  end-page: 313
  ident: b67
  article-title: LiteTrans: Reconstruct transformer with convolution for medical image segmentation
  publication-title: International Symposium on Bioinformatics Research and Applications
– start-page: 8857
  year: 2021
  end-page: 8861
  ident: b36
  article-title: A transformer-based network for anisotropic 3d medical image segmentation
  publication-title: 2020 25th International Conference on Pattern Recognition
– volume: 133
  start-page: 27
  year: 2017
  end-page: 35
  ident: b76
  article-title: Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with the cancer genome atlas data
  publication-title: J. Neuro-Oncology
– year: 2020
  ident: b84
  article-title: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases
  publication-title: Radiology
– start-page: 4846
  year: 2021
  end-page: 4854
  ident: b82
  article-title: Miniseg: An extremely minimum network for efficient covid-19 segmentation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 6
– year: 2021
  ident: b31
  article-title: A volumetric transformer for accurate 3D tumor segmentation
– year: 2017
  ident: b58
  article-title: 2017 Multi-modality whole heart segmentation challenge
– start-page: 268
  year: 2021
  end-page: 276
  ident: b70
  article-title: Tempera: Spatial transformer feature pyramid network for cardiac MRI segmentation
  publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart
– volume: 157
  start-page: 49
  year: 2018
  end-page: 67
  ident: b93
  article-title: Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review
  publication-title: Comput. Methods Programs Biomed.
– start-page: 14
  year: 2021
  end-page: 24
  ident: b20
  article-title: Transfuse: Fusing transformers and cnns for medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2022
  ident: b25
  article-title: D-former: A U-shaped dilated transformer for 3D medical image segmentation
– year: 2022
  ident: b80
  article-title: MISSU: 3D medical image segmentation via self-distilling TransUNet
– reference: W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 568–578.
– start-page: 1601
  year: 2021
  end-page: 1604
  ident: b66
  article-title: ECT-nas: Searching efficient CNN-transformers architecture for medical image segmentation
  publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine
– year: 2020
  ident: b91
  article-title: Non-small cell lung cancer (NSCLC) segmentation dataset
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– start-page: 45
  year: 2016
  end-page: 57
  ident: b7
  article-title: Deep learning over multi-field categorical data
  publication-title: European Conference on Information Retrieval
– year: 2022
  ident: b29
  article-title: Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images
– volume: 10
  start-page: 7937
  year: 2020
  ident: b45
  article-title: Prostate MRI and ultrasound with pathology and coordinates of tracked biopsy (prostate-MRI-US-biopsy)
  publication-title: Cancer Imaging Arch
– year: 2021
  ident: b52
  article-title: MISSFormer: An effective medical image segmentation transformer
– year: 2022
  ident: b68
  article-title: TransFusion: Multi-view divergent fusion for medical image segmentation with transformers
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: b73
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA: Cancer J. Clin.
– reference: S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
– volume: 150
  year: 2022
  ident: b11
  article-title: TransCUNet: Unet cross fused transformer for medical image segmentation
  publication-title: Comput. Biol. Med.
– volume: 160
  start-page: 175
  year: 2021
  end-page: 184
  ident: b85
  article-title: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy
  publication-title: Radiother. Oncol.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 7
  ident: b74
  article-title: The association between incidence and mortality of brain cancer and human development index (HDI): an ecological study
  publication-title: BMC Public Health
– year: 2021
  ident: b17
  article-title: Transclaw u-net: Claw u-net with transformers for medical image segmentation
– start-page: 3927
  year: 2021
  end-page: 3935
  ident: b65
  article-title: R2net: Recurrent recalibration network for medical image segmentation
  publication-title: 2021 IEEE International Conference on Big Data (Big Data)
– year: 2020
  ident: b4
  article-title: Claw u-net: A unet-based network with deep feature concatenation for scleral blood vessel segmentation
– year: 2021
  ident: b48
  article-title: Levit-unet: Make faster encoders with transformer for medical image segmentation
– start-page: 1
  year: 2021
  end-page: 8
  ident: b33
  article-title: Multiple self-attention network for intracranial vessel segmentation
  publication-title: 2021 International Joint Conference on Neural Networks
– year: 2021
  ident: b39
  article-title: Unified 2D and 3D pre-training for medical image classification and segmentation
– start-page: 1579
  year: 2022
  ident: b83
  article-title: COVID-19 CT image segmentation method based on swin transformer
  publication-title: Front. Physiol.
– volume: 37
  start-page: 8565
  year: 2022
  end-page: 8582
  ident: b10
  article-title: RT-Unet: An advanced network based on residual network and transformer for medical image segmentation
  publication-title: Int. J. Intell. Syst.
– reference: B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, M. Douze, Levit: a vision transformer in convnet’s clothing for faster inference, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 12259–12269.
– year: 2021
  ident: b15
  article-title: Swin-unet: Unet-like pure transformer for medical image segmentation
– volume: 2021
  year: 2021
  ident: b32
  article-title: HybridCTrm: Bridging CNN and transformer for multimodal brain image segmentation
  publication-title: J. Healthc. Eng.
– reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
– year: 2020
  ident: b16
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– volume: 30
  year: 2017
  ident: b41
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: b34
  article-title: Transattunet: Multi-level attention-guided u-net with transformer for medical image segmentation
– reference: X. Yan, H. Tang, S. Sun, H. Ma, D. Kong, X. Xie, After-unet: Axial fusion transformer unet for medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 3971–3981.
– reference: J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
– volume: 30
  year: 2017
  ident: 10.1016/j.bspc.2023.104791_b41
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.bspc.2023.104791_b62
  doi: 10.1007/978-3-030-01234-2_1
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b19
– volume: 2021
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b53
  article-title: CST: A multitask learning framework for Colorectal Cancer Region mining based on transformer
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2021/6207964
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.104791_b74
  article-title: The association between incidence and mortality of brain cancer and human development index (HDI): an ecological study
  publication-title: BMC Public Health
  doi: 10.1186/s12889-020-09838-4
– volume: 150
  year: 2022
  ident: 10.1016/j.bspc.2023.104791_b12
  article-title: SWTRU: Star-shaped window transformer reinforced U-net for medical image segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105954
– start-page: 536
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b72
  article-title: Shape-regularized unsupervised left ventricular motion network with segmentation capability in 3d+ time echocardiography
– volume: 157
  start-page: 49
  year: 2018
  ident: 10.1016/j.bspc.2023.104791_b93
  article-title: Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.01.014
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b52
– start-page: 8857
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b36
  article-title: A transformer-based network for anisotropic 3d medical image segmentation
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b30
– year: 2022
  ident: 10.1016/j.bspc.2023.104791_b81
– start-page: 565
  year: 2016
  ident: 10.1016/j.bspc.2023.104791_b5
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b13
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b48
– volume: 38
  start-page: 1788
  issue: 8
  year: 2019
  ident: 10.1016/j.bspc.2023.104791_b71
  article-title: VoxelMorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2897538
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.104791_b38
  article-title: Multimodal lung mass segmentation network based on cross modal space matching
  publication-title: J. Electron. Inf.
– volume: 2021
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b32
  article-title: HybridCTrm: Bridging CNN and transformer for multimodal brain image segmentation
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2021/7467261
– ident: 10.1016/j.bspc.2023.104791_b49
  doi: 10.1109/ICCV48922.2021.01204
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b39
– year: 2022
  ident: 10.1016/j.bspc.2023.104791_b29
– start-page: 4846
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b82
  article-title: Miniseg: An extremely minimum network for efficient covid-19 segmentation
– start-page: 171
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b21
  article-title: Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation
– volume: 37
  start-page: 8565
  issue: 11
  year: 2022
  ident: 10.1016/j.bspc.2023.104791_b10
  article-title: RT-Unet: An advanced network based on residual network and transformer for medical image segmentation
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22956
– year: 2022
  ident: 10.1016/j.bspc.2023.104791_b14
  article-title: Global transformer and dual local attention network via deep-shallow hierarchical feature fusion for retinal vessel segmentation
  publication-title: IEEE Trans. Cybern.
– start-page: 234
  year: 2015
  ident: 10.1016/j.bspc.2023.104791_b1
  article-title: U-net: Convolutional networks for biomedical image segmentation
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b31
– start-page: 1579
  year: 2022
  ident: 10.1016/j.bspc.2023.104791_b83
  article-title: COVID-19 CT image segmentation method based on swin transformer
  publication-title: Front. Physiol.
– volume: 37
  start-page: 2514
  issue: 11
  year: 2018
  ident: 10.1016/j.bspc.2023.104791_b59
  article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2837502
– year: 2022
  ident: 10.1016/j.bspc.2023.104791_b68
– year: 2022
  ident: 10.1016/j.bspc.2023.104791_b25
– start-page: 267
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b50
  article-title: U-net transformer: Self and cross attention for medical image segmentation
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b18
– volume: 185
  start-page: 750
  year: 2019
  ident: 10.1016/j.bspc.2023.104791_b78
  article-title: Automated processing pipeline for neonatal diffusion MRI in the developing human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.05.064
– year: 2016
  ident: 10.1016/j.bspc.2023.104791_b86
– ident: 10.1016/j.bspc.2023.104791_b55
  doi: 10.1109/CVPR.2018.00675
– volume: 40
  start-page: 3543
  issue: 12
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b61
  article-title: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m&ms challenge
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3090082
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b33
  article-title: Multiple self-attention network for intracranial vessel segmentation
– volume: 10
  start-page: 7937
  year: 2020
  ident: 10.1016/j.bspc.2023.104791_b45
  article-title: Prostate MRI and ultrasound with pathology and coordinates of tracked biopsy (prostate-MRI-US-biopsy)
  publication-title: Cancer Imaging Arch
– year: 2022
  ident: 10.1016/j.bspc.2023.104791_b57
  article-title: Comparative analysis of U-net and TLMDB GAN for the cardiovascular segmentation of the ventricles in the heart
  publication-title: Comput. Methods Programs Biomed.
– volume: 150
  year: 2022
  ident: 10.1016/j.bspc.2023.104791_b11
  article-title: TransCUNet: Unet cross fused transformer for medical image segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106207
– start-page: 78
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b42
  article-title: Convolution-free medical image segmentation using transformers
– ident: 10.1016/j.bspc.2023.104791_b44
  doi: 10.1109/ISBI52829.2022.9761448
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b51
– start-page: 1601
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b66
  article-title: ECT-nas: Searching efficient CNN-transformers architecture for medical image segmentation
– year: 2022
  ident: 10.1016/j.bspc.2023.104791_b80
– year: 2018
  ident: 10.1016/j.bspc.2023.104791_b6
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b79
– volume: 160
  start-page: 175
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b85
  article-title: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2021.04.019
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.104791_b3
  article-title: SAUNet++: An automatic segmentation model of COVID-19 lesion from CT slices
  publication-title: Vis. Comput.
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b34
– year: 2022
  ident: 10.1016/j.bspc.2023.104791_b22
– ident: 10.1016/j.bspc.2023.104791_b28
  doi: 10.1109/WACV51458.2022.00181
– ident: 10.1016/j.bspc.2023.104791_b9
  doi: 10.1109/CVPR.2017.549
– volume: 133
  start-page: 27
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2023.104791_b76
  article-title: Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with the cancer genome atlas data
  publication-title: J. Neuro-Oncology
  doi: 10.1007/s11060-017-2420-1
– volume: 202
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b92
  article-title: Cerebrovascular segmentation from TOF-MRA based on multiple-U-net with focal loss function
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.105998
– start-page: 14
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b20
  article-title: Transfuse: Fusing transformers and cnns for medical image segmentation
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.104791_b35
  article-title: HT-Net: hierarchical context-attention transformer network for medical ct image segmentation
  publication-title: Appl. Intell.
– ident: 10.1016/j.bspc.2023.104791_b47
  doi: 10.1109/ICCV48922.2021.00951
– start-page: 326
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b69
  article-title: Multi-compound transformer for accurate biomedical image segmentation
– year: 2022
  ident: 10.1016/j.bspc.2023.104791_b90
– volume: 109
  start-page: 218
  year: 2019
  ident: 10.1016/j.bspc.2023.104791_b75
  article-title: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.05.002
– ident: 10.1016/j.bspc.2023.104791_b89
  doi: 10.1109/ICCV48922.2021.00393
– ident: 10.1016/j.bspc.2023.104791_b26
– year: 2017
  ident: 10.1016/j.bspc.2023.104791_b58
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b15
– start-page: 45
  year: 2016
  ident: 10.1016/j.bspc.2023.104791_b7
  article-title: Deep learning over multi-field categorical data
– volume: 580
  start-page: 252
  issue: 7802
  year: 2020
  ident: 10.1016/j.bspc.2023.104791_b60
  article-title: Video-based AI for beat-to-beat assessment of cardiac function
  publication-title: Nature
  doi: 10.1038/s41586-020-2145-8
– year: 2020
  ident: 10.1016/j.bspc.2023.104791_b16
– ident: 10.1016/j.bspc.2023.104791_b88
  doi: 10.1109/CVPR.2018.00745
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.104791_b87
  article-title: CCAT-NET: A novel transformer based semi-supervised framework for Covid-19 lung lesion segmentation
– year: 2020
  ident: 10.1016/j.bspc.2023.104791_b91
– volume: 2015
  year: 2015
  ident: 10.1016/j.bspc.2023.104791_b77
  article-title: Mrbrains challenge: online evaluation framework for brain image segmentation in 3T MRI scans
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2015/813696
– start-page: 3927
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b65
  article-title: R2net: Recurrent recalibration network for medical image segmentation
– year: 2020
  ident: 10.1016/j.bspc.2023.104791_b84
  article-title: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b17
– ident: 10.1016/j.bspc.2023.104791_b40
  doi: 10.1109/ICCV48922.2021.00986
– ident: 10.1016/j.bspc.2023.104791_b54
  doi: 10.1109/CVPR.2015.7298965
– start-page: 300
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b67
  article-title: LiteTrans: Reconstruct transformer with convolution for medical image segmentation
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b73
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA: Cancer J. Clin.
– start-page: 109
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b27
  article-title: Transbts: Multimodal brain tumor segmentation using transformer
– year: 2020
  ident: 10.1016/j.bspc.2023.104791_b4
– start-page: 553
  year: 2022
  ident: 10.1016/j.bspc.2023.104791_b23
  article-title: TransNUNet: Using attention mechanism for whole heart segmentation
– ident: 10.1016/j.bspc.2023.104791_b56
  doi: 10.1109/ICCV48922.2021.00061
– year: 2021
  ident: 10.1016/j.bspc.2023.104791_b24
– start-page: 61
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b63
  article-title: Utnet: a hybrid transformer architecture for medical image segmentation
– start-page: 63
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b64
  article-title: TransBridge: A lightweight transformer for left ventricle segmentation in echocardiography
– year: 2015
  ident: 10.1016/j.bspc.2023.104791_b43
– start-page: 3
  year: 2018
  ident: 10.1016/j.bspc.2023.104791_b2
  article-title: Unet++: A nested u-net architecture for medical image segmentation
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2023.104791_b8
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: 10.1016/j.bspc.2023.104791_b37
  doi: 10.1109/WACV51458.2022.00333
– start-page: 268
  year: 2021
  ident: 10.1016/j.bspc.2023.104791_b70
  article-title: Tempera: Spatial transformer feature pyramid network for cardiac MRI segmentation
– year: 2019
  ident: 10.1016/j.bspc.2023.104791_b46
SSID ssj0048714
Score 2.6353292
SecondaryResourceType review_article
Snippet Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104791
SubjectTerms 3D segmentation
Medical image
Segmentation analysis
Transformer
Title Transformers in medical image segmentation: A review
URI https://dx.doi.org/10.1016/j.bspc.2023.104791
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lD14k9ik2d0k3kqxVMVebKG3kN3sSsTGYuPV3-5sdlMqSA9CLllmIDtZZr5hZ74BuJY6MyQl1Is05iboJamXaOZ7IslZiAhZ8Xp82_OEj2f0cc7mLRg2vTCmrNL5fuvTa2_tVnrOmr1lUfReEEvzGLMTBNF1YDId7DQyp_z2e13mgXi85vc2wp6Rdo0ztsZLrJaGxrAfmqvOmqfzr-C0EXBGB7DvkCIZ2I85hJYqj2Bvgz_wGOi0gZ0I4khRkoW9diHFAt0EWanXhWstKu_IgNg2lROYje6nw7HnxiB4EndWeSrIME2VXMQqlIEvgiySUueILDQu-yGVcSx8JVmSBUxHLPJFPws0pSyRAp_wFNrlR6nOgFCeM4lAlecGB_k6EyHlNFcJ1xkmQn4Hgmb_qXQc4WZUxXvaFIO9pcZmqbFZam3WgZu1ztIyZGyVZo1Z01__OUUXvkXv_J96F7Br3myB7SW0q88vdYUwohLd-px0YWfw8DSe_ABRvcTW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUZwY2FDVpbCdhqyqqlD4WWqmbFTs2CqKhouX_c04cVCTEgJTJ8UnxOfruO_nuM8Cd1KkRKSFuqDE3QZQkbqyp54o4owEyZMXK69smU5bMydOCLhrQr3thTFmlxf4K00u0tiMd683OKs87z8ilWYTZCZLoMjDtQMuoU9EmtHrDUTKtARkpeSnxbea7xsD2zlRlXmK9MkqG3cCcdpZSnb_Fp62YMziEA0sWnV71PUfQUMUx7G9JCJ4AmdXME3mckxfOsjp5cfIlIoWzVi9L211UPDg9p-pUOYX54HHWT1x7E4IrcXEbV_kpZqqSiUgF0veEn4ZS6gzJhcZhLyAyioSnJI1Tn-qQhp7opr4mhMZS4BOcQbN4L9Q5OIRlVCJXZZmhQp5ORUAYyVTMdIq5kNcGv14_l1Ym3NxW8cbrerBXbnzGjc945bM23H_brCqRjD9n09qt_MdWc0TxP-wu_ml3C7vJbDLm4-F0dAl75k1Vb3sFzc3Hp7pGVrERN_av-QIp2seH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformers+in+medical+image+segmentation%3A+A+review&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Xiao%2C+Hanguang&rft.au=Li%2C+Li&rft.au=Liu%2C+Qiyuan&rft.au=Zhu%2C+Xiuhong&rft.date=2023-07-01&rft.issn=1746-8094&rft.volume=84&rft.spage=104791&rft_id=info:doi/10.1016%2Fj.bspc.2023.104791&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_104791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon