Transformers in medical image segmentation: A review
Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are beginning to focus on the transformer in medical images due to the past few years having seen the rapid development of transformer in many vis...
Saved in:
Published in | Biomedical signal processing and control Vol. 84; p. 104791 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2023.104791 |
Cover
Loading…
Abstract | Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are beginning to focus on the transformer in medical images due to the past few years having seen the rapid development of transformer in many vision fields such as vision transformer (ViT) and Swin transformer. In the last year, moreover, many scholars have applied transformer to medical image segmentation and have achieved good segmentation results. Transformer-based medical image segmentation has become one of the hot spots in this field. The purpose of this work is to categorize and review the segmentation methods of Unet-based transformer and other model based transformer in medical images.
This paper summarizes the transformer-based segmentation models in the abdominal organs, heart, brain, and lung based on the relevant studies in the last two years. We described and analyzed the model structure including the position of the transformer in the model, the changes made by scholars to transformer and the combination with the model. In this work, the segmentation performance results based on Dice evaluation metrics are compared.
Through the help of 93 references, we find that researchers prefer to use Unet-based transformer models than others and place the transformer structure in the encoder. These new models improve the segmentation performance compared with U-Net and other segmentation models. However, there are not many related studies on lungs, which points to a new way for future research.
We found that the combination of U-Net and transformer is more suitable for segmentation. In future research on medical image segmentation, researchers can use a suitable transformer-based segmentation method or modify the transformer structure according to the segmentation requirements. We hope that this work will be helpful for improvements of the transformer to solve clinical problems in medicine. |
---|---|
AbstractList | Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are beginning to focus on the transformer in medical images due to the past few years having seen the rapid development of transformer in many vision fields such as vision transformer (ViT) and Swin transformer. In the last year, moreover, many scholars have applied transformer to medical image segmentation and have achieved good segmentation results. Transformer-based medical image segmentation has become one of the hot spots in this field. The purpose of this work is to categorize and review the segmentation methods of Unet-based transformer and other model based transformer in medical images.
This paper summarizes the transformer-based segmentation models in the abdominal organs, heart, brain, and lung based on the relevant studies in the last two years. We described and analyzed the model structure including the position of the transformer in the model, the changes made by scholars to transformer and the combination with the model. In this work, the segmentation performance results based on Dice evaluation metrics are compared.
Through the help of 93 references, we find that researchers prefer to use Unet-based transformer models than others and place the transformer structure in the encoder. These new models improve the segmentation performance compared with U-Net and other segmentation models. However, there are not many related studies on lungs, which points to a new way for future research.
We found that the combination of U-Net and transformer is more suitable for segmentation. In future research on medical image segmentation, researchers can use a suitable transformer-based segmentation method or modify the transformer structure according to the segmentation requirements. We hope that this work will be helpful for improvements of the transformer to solve clinical problems in medicine. |
ArticleNumber | 104791 |
Author | Zhu, Xiuhong Li, Li Liu, Qiyuan Xiao, Hanguang Zhang, Qihang |
Author_xml | – sequence: 1 givenname: Hanguang orcidid: 0000-0002-4359-7455 surname: Xiao fullname: Xiao, Hanguang email: simenxiao1211@163.com – sequence: 2 givenname: Li orcidid: 0000-0002-3848-3621 surname: Li fullname: Li, Li email: lily@stu.cqut.edu.cn – sequence: 3 givenname: Qiyuan surname: Liu fullname: Liu, Qiyuan – sequence: 4 givenname: Xiuhong surname: Zhu fullname: Zhu, Xiuhong – sequence: 5 givenname: Qihang surname: Zhang fullname: Zhang, Qihang |
BookMark | eNp9kM9qwzAMh83oYG23F9gpL5BOSpzGGbuUsn9Q2KU7G0eVi0vjFDts7O3nku2yw0Ag8YNP6NNMTHzvWYhbhAUCLu8OizaeaFFAUaZA1g1eiCnWcpkrBDX5naGRV2IW4wFAqhrlVMhtMD7aPnQcYuZ81vHOkTlmrjN7ziLvO_aDGVzv77NVFvjD8ee1uLTmGPnmp8_F-9Pjdv2Sb96eX9erTU4lwJAzGqUULVvFJSG0aGoiuyubxqYYSklKtcBUNQYrW1c1tIVBK2XVUJuqnAs17qXQxxjYanLjLUMw7qgR9NleH_TZXp_t9Wif0OIPegpJKXz9Dz2MECepJBp0JMee0ksC06B3vfsP_wbRW3W1 |
CitedBy_id | crossref_primary_10_1093_bib_bbae485 crossref_primary_10_1109_ACCESS_2024_3456674 crossref_primary_10_1093_bioinformatics_btad584 crossref_primary_10_1007_s44267_024_00071_w crossref_primary_10_1038_s41598_024_53528_9 crossref_primary_10_1016_j_bspc_2024_106731 crossref_primary_10_3390_biomedicines12061198 crossref_primary_10_1007_s10278_024_01373_7 crossref_primary_10_1038_s41598_025_93875_9 crossref_primary_10_1007_s00521_024_09545_w crossref_primary_10_1016_j_eswa_2023_121717 crossref_primary_10_1002_brx2_29 crossref_primary_10_1016_j_isprsjprs_2024_03_012 crossref_primary_10_1109_ACCESS_2023_3330493 crossref_primary_10_1049_cit2_12356 crossref_primary_10_1371_journal_pone_0312105 crossref_primary_10_3390_jimaging11010002 crossref_primary_10_1007_s10278_024_01237_0 crossref_primary_10_1088_1361_6560_ad14c6 crossref_primary_10_1080_15481603_2024_2325720 crossref_primary_10_1002_mp_17751 crossref_primary_10_1016_j_bspc_2024_106464 crossref_primary_10_3390_app132212397 crossref_primary_10_1016_j_bspc_2024_106619 crossref_primary_10_1016_j_neucom_2024_129009 crossref_primary_10_1016_j_engappai_2024_108541 crossref_primary_10_1016_j_knosys_2024_112170 crossref_primary_10_7717_peerj_cs_2238 crossref_primary_10_3390_s24041110 crossref_primary_10_1007_s11227_024_06770_x crossref_primary_10_1109_ACCESS_2024_3392595 crossref_primary_10_3390_bioengineering11121255 crossref_primary_10_1016_j_eswa_2024_125414 crossref_primary_10_3390_electronics13040746 crossref_primary_10_3390_app142310960 crossref_primary_10_3390_bioengineering11100958 crossref_primary_10_2196_57723 crossref_primary_10_32604_cmc_2023_042069 crossref_primary_10_1016_j_compbiomed_2023_107624 crossref_primary_10_1109_ACCESS_2024_3466013 crossref_primary_10_3934_mbe_2024253 crossref_primary_10_1007_s42452_024_06127_2 crossref_primary_10_3390_app132413117 crossref_primary_10_3390_pr12030529 crossref_primary_10_1016_j_eswa_2024_125009 crossref_primary_10_1016_j_bspc_2024_106447 crossref_primary_10_1186_s40494_024_01231_3 crossref_primary_10_1016_j_inffus_2023_102161 crossref_primary_10_1002_ima_22987 crossref_primary_10_1016_j_bspc_2023_105608 crossref_primary_10_1016_j_neucom_2025_129447 crossref_primary_10_1016_j_bspc_2023_105605 crossref_primary_10_1007_s10489_024_06085_7 crossref_primary_10_3390_info15040198 crossref_primary_10_1016_j_imavis_2025_105463 crossref_primary_10_54097_1mw0pm54 crossref_primary_10_1016_j_dsp_2024_104885 crossref_primary_10_1016_j_bspc_2024_107341 crossref_primary_10_1016_j_bspc_2024_106138 crossref_primary_10_1016_j_bspc_2025_107746 crossref_primary_10_3389_fnins_2024_1376570 crossref_primary_10_3390_electronics13101880 crossref_primary_10_1016_j_bspc_2023_105561 crossref_primary_10_1038_s41598_024_66873_6 crossref_primary_10_1007_s40846_024_00873_9 crossref_primary_10_1016_j_euros_2024_02_005 crossref_primary_10_1007_s00521_024_09757_0 crossref_primary_10_1007_s13369_024_09845_2 crossref_primary_10_1016_j_neucom_2024_127379 crossref_primary_10_3390_bioengineering11030210 crossref_primary_10_1007_s11517_024_03086_z crossref_primary_10_1016_j_eswa_2024_124179 crossref_primary_10_61186_shefa_13_1_63 crossref_primary_10_1007_s13534_025_00469_5 crossref_primary_10_1109_ACCESS_2024_3505616 crossref_primary_10_1016_j_compbiomed_2024_108639 crossref_primary_10_1186_s42492_024_00159_6 crossref_primary_10_1016_j_patrec_2024_11_008 crossref_primary_10_4111_icu_20240159 crossref_primary_10_3389_fenrg_2023_1301828 crossref_primary_10_1109_TGRS_2024_3509478 crossref_primary_10_3390_vehicles6010006 crossref_primary_10_1109_TIM_2025_3527526 crossref_primary_10_1007_s10836_024_06142_6 crossref_primary_10_3390_e26121059 crossref_primary_10_3390_diagnostics14010069 crossref_primary_10_3390_electronics13234594 crossref_primary_10_1016_j_bspc_2024_106237 crossref_primary_10_1016_j_bspc_2024_106633 crossref_primary_10_1007_s44163_024_00180_x crossref_primary_10_7717_peerj_cs_1615 crossref_primary_10_1016_j_bspc_2023_105657 crossref_primary_10_1002_acm2_14297 crossref_primary_10_1117_1_JMI_11_4_044503 crossref_primary_10_1016_j_compmedimag_2024_102459 crossref_primary_10_1109_TIM_2025_3545864 crossref_primary_10_1016_j_eswa_2024_124113 crossref_primary_10_1016_j_infrared_2024_105246 crossref_primary_10_1016_j_neunet_2025_107396 crossref_primary_10_1167_iovs_65_8_42 crossref_primary_10_1016_j_compbiomed_2024_109103 crossref_primary_10_1016_j_mlwa_2025_100635 crossref_primary_10_1016_j_bspc_2024_106487 crossref_primary_10_1007_s12672_024_01177_9 crossref_primary_10_3390_app13106125 crossref_primary_10_1016_j_joen_2024_07_012 crossref_primary_10_1016_j_aej_2024_01_018 crossref_primary_10_1007_s11042_024_18544_x crossref_primary_10_1016_j_bspc_2023_105528 crossref_primary_10_1371_journal_pone_0311080 crossref_primary_10_1007_s10346_024_02274_0 crossref_primary_10_1016_j_knosys_2024_111664 crossref_primary_10_1186_s12938_024_01212_4 |
Cites_doi | 10.1007/978-3-030-01234-2_1 10.1155/2021/6207964 10.1186/s12889-020-09838-4 10.1016/j.compbiomed.2022.105954 10.1016/j.cmpb.2018.01.014 10.1109/TMI.2019.2897538 10.1155/2021/7467261 10.1109/ICCV48922.2021.01204 10.1002/int.22956 10.1109/TMI.2018.2837502 10.1016/j.neuroimage.2018.05.064 10.1109/CVPR.2018.00675 10.1109/TMI.2021.3090082 10.1016/j.compbiomed.2022.106207 10.1109/ISBI52829.2022.9761448 10.1016/j.radonc.2021.04.019 10.1109/WACV51458.2022.00181 10.1109/CVPR.2017.549 10.1007/s11060-017-2420-1 10.1016/j.cmpb.2021.105998 10.1109/ICCV48922.2021.00951 10.1016/j.compbiomed.2019.05.002 10.1109/ICCV48922.2021.00393 10.1038/s41586-020-2145-8 10.1109/CVPR.2018.00745 10.1155/2015/813696 10.1148/radiol.2020200642 10.1109/ICCV48922.2021.00986 10.1109/CVPR.2015.7298965 10.1109/ICCV48922.2021.00061 10.1109/TPAMI.2016.2644615 10.1109/WACV51458.2022.00333 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2023.104791 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2023_104791 S1746809423002240 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-e1a888c6b8e3c10b1a7ccfd399f88c034c88b0ec59a15f7570b2a1f4459cb9cb3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 22:55:58 EDT 2025 Tue Jul 01 01:34:17 EDT 2025 Fri Feb 23 02:37:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Medical image 3D segmentation Transformer Segmentation analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-e1a888c6b8e3c10b1a7ccfd399f88c034c88b0ec59a15f7570b2a1f4459cb9cb3 |
ORCID | 0000-0002-4359-7455 0000-0002-3848-3621 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2023_104791 crossref_primary_10_1016_j_bspc_2023_104791 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104791 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Feng, Guo, Ren (b57) 2022 J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440. Petit, Thome, Rambour, Themyr, Collins, Soler (b50) 2021 X. Yan, H. Tang, S. Sun, H. Ma, D. Kong, X. Xie, After-unet: Axial fusion transformer unet for medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 3971–3981. D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, M. Paluri, A closer look at spatiotemporal convolutions for action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6450–6459. Chang, Menghan, Guangtao, Xiao-Ping (b17) 2021 Guo, Liu, Mu, Hu (b51) 2021 Chen, Sun, Bai, Han, Liu, Yao, Tang, Zhang, Lu, Huang (b85) 2021; 160 Guo, Terzopoulos (b36) 2021 Ouyang, He, Ghorbani, Yuan, Ebinger, Langlotz, Heidenreich, Harrington, Liang, Ashley (b60) 2020; 580 Chen, Liu, Zhang, Lu, Zhang (b34) 2021 Deng, Meng, Gao, Bridge, Shen, Lip, Zhao, Zheng (b64) 2021 Xu, Wu, Zhang, He (b48) 2021 Sui, Zhang, Liu, Chen, Ma, Tian (b53) 2021; 2021 Ma, Xia, Tan, Li, Song (b35) 2022 Bernard, Lalande, Zotti, Cervenansky, Yang, Heng, Cetin, Lekadir, Camara, Gonzalez Ballester, Sanroma, Napel, Petersen, Tziritas, Grinias, Khened, Kollerathu, Krishnamurthi, Rohe, Pennec, Sermesant, Isensee, Jaeger, Maier-Hein, Full, Wolf, Engelhardt, Baumgartner, Koch, Wolterink, Isgum, Jang, Hong, Patravali, Jain, Humbert, Jodoin (b59) 2018; 37 Xu, Quan (b67) 2021 Gao, Zhou, Liu, Metaxas (b22) 2022 Li, Chen, Peng, Li (b38) 2022 G. Lin, A. Milan, C. Shen, I. Reid, Refinenet: Multi-path refinement networks for high-resolution semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1925–1934. Zhou, Rahman Siddiquee, Tajbakhsh, Liang (b2) 2018 Li, Cai, Gao, Hu (b79) 2021 Ronneberger, Fischer, Brox (b1) 2015 Hatamizadeh, Nath, Tang, Yang, Roth, Xu (b29) 2022 Jia, Shu (b30) 2021 Sun, Fang, Liu, Zhao, Wen, Lin (b32) 2021; 2021 Liu, Xiao, Jiang, He (b87) 2022 Yao, Tang, Hu, Wu, Guo, Li, Zhang (b4) 2020 Xie, Zhang, Shen, Xia (b21) 2021 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b16) 2020 Natarajan, Priester, Margolis, Huang, Marks (b45) 2020; 10 Wu, Niu, He (b65) 2021 Zhang, Liu, Wu, Wang, Liu, Xu, Song (b12) 2022; 150 Cao, Wang, Chen, Jiang, Zhang, Tian, Wang (b15) 2021 Milletari, Navab, Ahmadi (b5) 2016 Sun, Chen, Yan, Lin, Pang, Zhang (b83) 2022 Xie, Zhang, Xia, Wu (b39) 2021 Zhou, Guo, Zhang, Yu, Wang, Yu (b24) 2021 B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, M. Douze, Levit: a vision transformer in convnet’s clothing for faster inference, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 12259–12269. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022. Mazurowski, Clark, Czarnek, Shamsesfandabadi, Peters, Saha (b76) 2017; 133 Peiris, Hayat, Chen, Egan, Harandi (b31) 2021 Ta, Ahn, Stendahl, Sinusas, Duncan (b72) 2021 F. Pollastri, M. Cipriano, F. Bolelli, C. Grana, Long-Range 3D Self-Attention for MRI Prostate Segmentation, in: IEEE International Symposium on Biomedical Imaging, ISBI, 2022. Khazaei, Goodarzi, Borhaninejad, Iranmanesh, Mirshekarpour, Mirzaei, Naemi, Bechashk, Darvishi, Ershad Sarabi (b74) 2020; 20 Zhang, Du, Wang (b7) 2016 Xu, Quan (b66) 2021 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (b71) 2019; 38 Huang, Deng, Li, Yuan (b52) 2021 Liu, Gao, Zhangli, Yan, Zhou, Metaxas (b68) 2022 Qiu, Liu, Li, Xu (b82) 2021 Wang, Chen, Ding, Yu, Zha, Li (b27) 2021 Ai, Yang, Hou, Zhan, Chen, Lv, Tao, Sun, Xia (b84) 2020 Li, Ma, Tang, Guo (b81) 2022 Galazis, Wu, Li, Petri, Bharath, Varela (b70) 2021 Yang, Tian (b23) 2022 Isensee, Petersen, Klein, Zimmerer, Jaeger, Kohl, Wasserthal, Koehler, Norajitra, Wirkert (b6) 2018 Campello, Gkontra, Izquierdo, Martin-Isla, Sojoudi, Full, Maier-Hein, Zhang, He, Ma (b61) 2021; 40 (b91) 2020 Simpson, Antonelli, Bakas, Bilello, Farahani, Van Ginneken, Kopp-Schneider, Landman, Litjens, Menze (b46) 2019 J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141. Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b41) 2017; 30 Karimi, Vasylechko, Gholipour (b42) 2021 Jiang, Li (b11) 2022; 150 Li, Ni, Elazab, Wu (b33) 2021 A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H.R. Roth, D. Xu, Unetr: Transformers for 3d medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 574–584. Badrinarayanan, Kendall, Cipolla (b8) 2017; 39 Li, Zhang, Liu, Wang, Zhang, Zhang, Liao, Yang (b14) 2022 D. Yang, A. Myronenko, X. Wang, Z. Xu, H.R. Roth, D. Xu, T-AutoML: Automated Machine Learning for Lesion Segmentation using Transformers in 3D Medical Imaging, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 3962–3974. Torres, Queiros, Morais, Oliveira, Fonseca, Vilaca (b93) 2018; 157 (b58) 2017 Wang, Cao, Wang, Zaiane (b19) 2021 Gao, Zhou, Metaxas (b63) 2021 Xiao, Ran, Mabu, Li, Li (b3) 2022 Mendrik, Vincken, Kuijf, Breeuwer, Bouvy, De Bresser, Alansary, De Bruijne, Carass, El-Baz (b77) 2015; 2015 Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (b13) 2021 Bastiani, Andersson, Cordero-Grande, Murgasova, Hutter, Price, Makropoulos, Fitzgibbon, Hughes, Rueckert (b78) 2019; 185 Wang, Xie, Lin, Iwamoto, Han, Chen, Tong (b18) 2021 (b43) 2015 Wang, Lin, Li, Li, Shen, Gao, Ma (b80) 2022 Zhang, Liu, Hu (b20) 2021 M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, A. Joulin, Emerging properties in self-supervised vision transformers, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 9650–9660. (b90) 2022 Li, Liu, Wu, Li, Zhong, Guan (b10) 2022; 37 S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19. Guo, Xiao, Lu, Chen, Yan, Zhou, He, Wang (b92) 2021; 202 Ji, Zhang, Wang, Li, Wu, Zhang, Luo (b69) 2021 Zoph, Le (b86) 2016 J. Zhang, Y. Liu, Q. Wu, Y. Liu, Y. Wang, X. Xu, B. Song, S2wintounet: Star-Shaped Window Transformer Onion U-Net for Medical Image Segmentation, Available At SSRN 3992963. W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 568–578. Buda, Saha, Mazurowski (b75) 2019; 109 Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (b73) 2021; 71 Wu, Liao, Chen, Chen, Wang, Gao, Wu (b25) 2022 Badrinarayanan (10.1016/j.bspc.2023.104791_b8) 2017; 39 Gao (10.1016/j.bspc.2023.104791_b22) 2022 Guo (10.1016/j.bspc.2023.104791_b36) 2021 10.1016/j.bspc.2023.104791_b62 Li (10.1016/j.bspc.2023.104791_b14) 2022 Bastiani (10.1016/j.bspc.2023.104791_b78) 2019; 185 Li (10.1016/j.bspc.2023.104791_b10) 2022; 37 Liu (10.1016/j.bspc.2023.104791_b68) 2022 Wang (10.1016/j.bspc.2023.104791_b80) 2022 10.1016/j.bspc.2023.104791_b9 Bernard (10.1016/j.bspc.2023.104791_b59) 2018; 37 Zhou (10.1016/j.bspc.2023.104791_b24) 2021 Balakrishnan (10.1016/j.bspc.2023.104791_b71) 2019; 38 Li (10.1016/j.bspc.2023.104791_b38) 2022 Campello (10.1016/j.bspc.2023.104791_b61) 2021; 40 Mazurowski (10.1016/j.bspc.2023.104791_b76) 2017; 133 Cao (10.1016/j.bspc.2023.104791_b15) 2021 (10.1016/j.bspc.2023.104791_b43) 2015 10.1016/j.bspc.2023.104791_b55 10.1016/j.bspc.2023.104791_b56 Xu (10.1016/j.bspc.2023.104791_b67) 2021 10.1016/j.bspc.2023.104791_b54 Isensee (10.1016/j.bspc.2023.104791_b6) 2018 Khazaei (10.1016/j.bspc.2023.104791_b74) 2020; 20 Wu (10.1016/j.bspc.2023.104791_b65) 2021 Sung (10.1016/j.bspc.2023.104791_b73) 2021; 71 Xie (10.1016/j.bspc.2023.104791_b21) 2021 Liu (10.1016/j.bspc.2023.104791_b87) 2022 Wang (10.1016/j.bspc.2023.104791_b18) 2021 Torres (10.1016/j.bspc.2023.104791_b93) 2018; 157 Yang (10.1016/j.bspc.2023.104791_b23) 2022 Li (10.1016/j.bspc.2023.104791_b33) 2021 Vaswani (10.1016/j.bspc.2023.104791_b41) 2017; 30 10.1016/j.bspc.2023.104791_b28 Xie (10.1016/j.bspc.2023.104791_b39) 2021 Natarajan (10.1016/j.bspc.2023.104791_b45) 2020; 10 Guo (10.1016/j.bspc.2023.104791_b51) 2021 Xu (10.1016/j.bspc.2023.104791_b48) 2021 Buda (10.1016/j.bspc.2023.104791_b75) 2019; 109 Li (10.1016/j.bspc.2023.104791_b81) 2022 Peiris (10.1016/j.bspc.2023.104791_b31) 2021 10.1016/j.bspc.2023.104791_b26 Wang (10.1016/j.bspc.2023.104791_b27) 2021 Li (10.1016/j.bspc.2023.104791_b79) 2021 Milletari (10.1016/j.bspc.2023.104791_b5) 2016 Zhang (10.1016/j.bspc.2023.104791_b20) 2021 (10.1016/j.bspc.2023.104791_b91) 2020 Ji (10.1016/j.bspc.2023.104791_b69) 2021 10.1016/j.bspc.2023.104791_b40 Xu (10.1016/j.bspc.2023.104791_b66) 2021 Zoph (10.1016/j.bspc.2023.104791_b86) 2016 Qiu (10.1016/j.bspc.2023.104791_b82) 2021 Sui (10.1016/j.bspc.2023.104791_b53) 2021; 2021 Chang (10.1016/j.bspc.2023.104791_b17) 2021 Petit (10.1016/j.bspc.2023.104791_b50) 2021 Hatamizadeh (10.1016/j.bspc.2023.104791_b29) 2022 Wang (10.1016/j.bspc.2023.104791_b19) 2021 Gao (10.1016/j.bspc.2023.104791_b63) 2021 Jiang (10.1016/j.bspc.2023.104791_b11) 2022; 150 Xiao (10.1016/j.bspc.2023.104791_b3) 2022 Yao (10.1016/j.bspc.2023.104791_b4) 2020 (10.1016/j.bspc.2023.104791_b58) 2017 Zhang (10.1016/j.bspc.2023.104791_b57) 2022 Wu (10.1016/j.bspc.2023.104791_b25) 2022 Ai (10.1016/j.bspc.2023.104791_b84) 2020 Zhang (10.1016/j.bspc.2023.104791_b12) 2022; 150 Mendrik (10.1016/j.bspc.2023.104791_b77) 2015; 2015 Guo (10.1016/j.bspc.2023.104791_b92) 2021; 202 Dosovitskiy (10.1016/j.bspc.2023.104791_b16) 2020 10.1016/j.bspc.2023.104791_b37 Sun (10.1016/j.bspc.2023.104791_b83) 2022 Chen (10.1016/j.bspc.2023.104791_b13) 2021 Zhang (10.1016/j.bspc.2023.104791_b7) 2016 Ouyang (10.1016/j.bspc.2023.104791_b60) 2020; 580 Galazis (10.1016/j.bspc.2023.104791_b70) 2021 Ronneberger (10.1016/j.bspc.2023.104791_b1) 2015 Huang (10.1016/j.bspc.2023.104791_b52) 2021 Ma (10.1016/j.bspc.2023.104791_b35) 2022 Jia (10.1016/j.bspc.2023.104791_b30) 2021 Simpson (10.1016/j.bspc.2023.104791_b46) 2019 Zhou (10.1016/j.bspc.2023.104791_b2) 2018 Chen (10.1016/j.bspc.2023.104791_b34) 2021 10.1016/j.bspc.2023.104791_b44 10.1016/j.bspc.2023.104791_b88 10.1016/j.bspc.2023.104791_b89 Sun (10.1016/j.bspc.2023.104791_b32) 2021; 2021 Ta (10.1016/j.bspc.2023.104791_b72) 2021 Chen (10.1016/j.bspc.2023.104791_b85) 2021; 160 Karimi (10.1016/j.bspc.2023.104791_b42) 2021 (10.1016/j.bspc.2023.104791_b90) 2022 Deng (10.1016/j.bspc.2023.104791_b64) 2021 10.1016/j.bspc.2023.104791_b49 10.1016/j.bspc.2023.104791_b47 |
References_xml | – start-page: 61 year: 2021 end-page: 71 ident: b63 article-title: Utnet: a hybrid transformer architecture for medical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 3 year: 2018 end-page: 11 ident: b2 article-title: Unet++: A nested u-net architecture for medical image segmentation publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b8 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2021 ident: b18 article-title: Mixed transformer U-net for medical image segmentation – start-page: 171 year: 2021 end-page: 180 ident: b21 article-title: Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1 year: 2022 end-page: 5 ident: b87 article-title: CCAT-NET: A novel transformer based semi-supervised framework for Covid-19 lung lesion segmentation publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging – volume: 2015 year: 2015 ident: b77 article-title: Mrbrains challenge: online evaluation framework for brain image segmentation in 3T MRI scans publication-title: Comput. Intell. Neurosci. – reference: G. Lin, A. Milan, C. Shen, I. Reid, Refinenet: Multi-path refinement networks for high-resolution semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1925–1934. – reference: A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H.R. Roth, D. Xu, Unetr: Transformers for 3d medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 574–584. – year: 2022 ident: b57 article-title: Comparative analysis of U-net and TLMDB GAN for the cardiovascular segmentation of the ventricles in the heart publication-title: Comput. Methods Programs Biomed. – reference: F. Pollastri, M. Cipriano, F. Bolelli, C. Grana, Long-Range 3D Self-Attention for MRI Prostate Segmentation, in: IEEE International Symposium on Biomedical Imaging, ISBI, 2022. – start-page: 565 year: 2016 end-page: 571 ident: b5 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 Fourth International Conference on 3D Vision (3DV) – start-page: 109 year: 2021 end-page: 119 ident: b27 article-title: Transbts: Multimodal brain tumor segmentation using transformer publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 267 year: 2021 end-page: 276 ident: b50 article-title: U-net transformer: Self and cross attention for medical image segmentation publication-title: International Workshop on Machine Learning in Medical Imaging – year: 2021 ident: b51 article-title: Beyond self-attention: External attention using two linear layers for visual tasks – year: 2022 ident: b90 article-title: MSD pancreas segmentation dataset – reference: M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, A. Joulin, Emerging properties in self-supervised vision transformers, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 9650–9660. – volume: 40 start-page: 3543 year: 2021 end-page: 3554 ident: b61 article-title: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m&ms challenge publication-title: IEEE Trans. Med. Imaging – volume: 2021 year: 2021 ident: b53 article-title: CST: A multitask learning framework for Colorectal Cancer Region mining based on transformer publication-title: Biomed. Res. Int. – reference: J. Zhang, Y. Liu, Q. Wu, Y. Liu, Y. Wang, X. Xu, B. Song, S2wintounet: Star-Shaped Window Transformer Onion U-Net for Medical Image Segmentation, Available At SSRN 3992963. – reference: D. Yang, A. Myronenko, X. Wang, Z. Xu, H.R. Roth, D. Xu, T-AutoML: Automated Machine Learning for Lesion Segmentation using Transformers in 3D Medical Imaging, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 3962–3974. – year: 2021 ident: b13 article-title: Transunet: Transformers make strong encoders for medical image segmentation – year: 2021 ident: b19 article-title: UCTransNet: Rethinking the skip connections in U-net from a channel-wise perspective with transformer – start-page: 553 year: 2022 end-page: 556 ident: b23 article-title: TransNUNet: Using attention mechanism for whole heart segmentation publication-title: 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications – year: 2019 ident: b46 article-title: A large annotated medical image dataset for the development and evaluation of segmentation algorithms – volume: 185 start-page: 750 year: 2019 end-page: 763 ident: b78 article-title: Automated processing pipeline for neonatal diffusion MRI in the developing human connectome project publication-title: Neuroimage – start-page: 1 year: 2022 end-page: 7 ident: b38 article-title: Multimodal lung mass segmentation network based on cross modal space matching publication-title: J. Electron. Inf. – year: 2021 ident: b30 article-title: Bitr-unet: a CNN-transformer combined network for MRI brain tumor segmentation – start-page: 1 year: 2022 end-page: 14 ident: b35 article-title: HT-Net: hierarchical context-attention transformer network for medical ct image segmentation publication-title: Appl. Intell. – start-page: 326 year: 2021 end-page: 336 ident: b69 article-title: Multi-compound transformer for accurate biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2021 ident: b79 article-title: More than encoder: Introducing transformer decoder to upsample – start-page: 234 year: 2015 end-page: 241 ident: b1 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 78 year: 2021 end-page: 88 ident: b42 article-title: Convolution-free medical image segmentation using transformers publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 63 year: 2021 end-page: 72 ident: b64 article-title: TransBridge: A lightweight transformer for left ventricle segmentation in echocardiography publication-title: International Workshop on Advances in Simplifying Medical Ultrasound – year: 2022 ident: b81 article-title: TranSiam: Fusing multimodal visual features using transformer for medical image segmentation – year: 2022 ident: b14 article-title: Global transformer and dual local attention network via deep-shallow hierarchical feature fusion for retinal vessel segmentation publication-title: IEEE Trans. Cybern. – volume: 109 start-page: 218 year: 2019 end-page: 225 ident: b75 article-title: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm publication-title: Comput. Biol. Med. – year: 2015 ident: b43 article-title: Synapse multi-organ segmentation dataset – volume: 150 year: 2022 ident: b12 article-title: SWTRU: Star-shaped window transformer reinforced U-net for medical image segmentation publication-title: Comput. Biol. Med. – volume: 38 start-page: 1788 year: 2019 end-page: 1800 ident: b71 article-title: VoxelMorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging – start-page: 1 year: 2022 end-page: 14 ident: b3 article-title: SAUNet++: An automatic segmentation model of COVID-19 lesion from CT slices publication-title: Vis. Comput. – year: 2021 ident: b24 article-title: Nnformer: Interleaved transformer for volumetric segmentation – start-page: 536 year: 2021 end-page: 540 ident: b72 article-title: Shape-regularized unsupervised left ventricular motion network with segmentation capability in 3d+ time echocardiography publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging – volume: 202 year: 2021 ident: b92 article-title: Cerebrovascular segmentation from TOF-MRA based on multiple-U-net with focal loss function publication-title: Comput. Methods Programs Biomed. – volume: 37 start-page: 2514 year: 2018 end-page: 2525 ident: b59 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? publication-title: IEEE Trans. Med. Imaging – volume: 580 start-page: 252 year: 2020 end-page: 256 ident: b60 article-title: Video-based AI for beat-to-beat assessment of cardiac function publication-title: Nature – year: 2022 ident: b22 article-title: A multi-scale transformer for medical image segmentation: Architectures, model efficiency, and benchmarks – reference: D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, M. Paluri, A closer look at spatiotemporal convolutions for action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6450–6459. – year: 2016 ident: b86 article-title: Neural architecture search with reinforcement learning – year: 2018 ident: b6 article-title: Nnu-net: Self-adapting framework for u-net-based medical image segmentation – start-page: 300 year: 2021 end-page: 313 ident: b67 article-title: LiteTrans: Reconstruct transformer with convolution for medical image segmentation publication-title: International Symposium on Bioinformatics Research and Applications – start-page: 8857 year: 2021 end-page: 8861 ident: b36 article-title: A transformer-based network for anisotropic 3d medical image segmentation publication-title: 2020 25th International Conference on Pattern Recognition – volume: 133 start-page: 27 year: 2017 end-page: 35 ident: b76 article-title: Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with the cancer genome atlas data publication-title: J. Neuro-Oncology – year: 2020 ident: b84 article-title: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases publication-title: Radiology – start-page: 4846 year: 2021 end-page: 4854 ident: b82 article-title: Miniseg: An extremely minimum network for efficient covid-19 segmentation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 6 – year: 2021 ident: b31 article-title: A volumetric transformer for accurate 3D tumor segmentation – year: 2017 ident: b58 article-title: 2017 Multi-modality whole heart segmentation challenge – start-page: 268 year: 2021 end-page: 276 ident: b70 article-title: Tempera: Spatial transformer feature pyramid network for cardiac MRI segmentation publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart – volume: 157 start-page: 49 year: 2018 end-page: 67 ident: b93 article-title: Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review publication-title: Comput. Methods Programs Biomed. – start-page: 14 year: 2021 end-page: 24 ident: b20 article-title: Transfuse: Fusing transformers and cnns for medical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2022 ident: b25 article-title: D-former: A U-shaped dilated transformer for 3D medical image segmentation – year: 2022 ident: b80 article-title: MISSU: 3D medical image segmentation via self-distilling TransUNet – reference: W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 568–578. – start-page: 1601 year: 2021 end-page: 1604 ident: b66 article-title: ECT-nas: Searching efficient CNN-transformers architecture for medical image segmentation publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine – year: 2020 ident: b91 article-title: Non-small cell lung cancer (NSCLC) segmentation dataset – reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141. – start-page: 45 year: 2016 end-page: 57 ident: b7 article-title: Deep learning over multi-field categorical data publication-title: European Conference on Information Retrieval – year: 2022 ident: b29 article-title: Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images – volume: 10 start-page: 7937 year: 2020 ident: b45 article-title: Prostate MRI and ultrasound with pathology and coordinates of tracked biopsy (prostate-MRI-US-biopsy) publication-title: Cancer Imaging Arch – year: 2021 ident: b52 article-title: MISSFormer: An effective medical image segmentation transformer – year: 2022 ident: b68 article-title: TransFusion: Multi-view divergent fusion for medical image segmentation with transformers – volume: 71 start-page: 209 year: 2021 end-page: 249 ident: b73 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA: Cancer J. Clin. – reference: S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19. – volume: 150 year: 2022 ident: b11 article-title: TransCUNet: Unet cross fused transformer for medical image segmentation publication-title: Comput. Biol. Med. – volume: 160 start-page: 175 year: 2021 end-page: 184 ident: b85 article-title: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy publication-title: Radiother. Oncol. – volume: 20 start-page: 1 year: 2020 end-page: 7 ident: b74 article-title: The association between incidence and mortality of brain cancer and human development index (HDI): an ecological study publication-title: BMC Public Health – year: 2021 ident: b17 article-title: Transclaw u-net: Claw u-net with transformers for medical image segmentation – start-page: 3927 year: 2021 end-page: 3935 ident: b65 article-title: R2net: Recurrent recalibration network for medical image segmentation publication-title: 2021 IEEE International Conference on Big Data (Big Data) – year: 2020 ident: b4 article-title: Claw u-net: A unet-based network with deep feature concatenation for scleral blood vessel segmentation – year: 2021 ident: b48 article-title: Levit-unet: Make faster encoders with transformer for medical image segmentation – start-page: 1 year: 2021 end-page: 8 ident: b33 article-title: Multiple self-attention network for intracranial vessel segmentation publication-title: 2021 International Joint Conference on Neural Networks – year: 2021 ident: b39 article-title: Unified 2D and 3D pre-training for medical image classification and segmentation – start-page: 1579 year: 2022 ident: b83 article-title: COVID-19 CT image segmentation method based on swin transformer publication-title: Front. Physiol. – volume: 37 start-page: 8565 year: 2022 end-page: 8582 ident: b10 article-title: RT-Unet: An advanced network based on residual network and transformer for medical image segmentation publication-title: Int. J. Intell. Syst. – reference: B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, M. Douze, Levit: a vision transformer in convnet’s clothing for faster inference, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 12259–12269. – year: 2021 ident: b15 article-title: Swin-unet: Unet-like pure transformer for medical image segmentation – volume: 2021 year: 2021 ident: b32 article-title: HybridCTrm: Bridging CNN and transformer for multimodal brain image segmentation publication-title: J. Healthc. Eng. – reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022. – year: 2020 ident: b16 article-title: An image is worth 16x16 words: Transformers for image recognition at scale – volume: 30 year: 2017 ident: b41 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2021 ident: b34 article-title: Transattunet: Multi-level attention-guided u-net with transformer for medical image segmentation – reference: X. Yan, H. Tang, S. Sun, H. Ma, D. Kong, X. Xie, After-unet: Axial fusion transformer unet for medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 3971–3981. – reference: J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440. – volume: 30 year: 2017 ident: 10.1016/j.bspc.2023.104791_b41 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.bspc.2023.104791_b62 doi: 10.1007/978-3-030-01234-2_1 – year: 2021 ident: 10.1016/j.bspc.2023.104791_b19 – volume: 2021 year: 2021 ident: 10.1016/j.bspc.2023.104791_b53 article-title: CST: A multitask learning framework for Colorectal Cancer Region mining based on transformer publication-title: Biomed. Res. Int. doi: 10.1155/2021/6207964 – volume: 20 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.bspc.2023.104791_b74 article-title: The association between incidence and mortality of brain cancer and human development index (HDI): an ecological study publication-title: BMC Public Health doi: 10.1186/s12889-020-09838-4 – volume: 150 year: 2022 ident: 10.1016/j.bspc.2023.104791_b12 article-title: SWTRU: Star-shaped window transformer reinforced U-net for medical image segmentation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105954 – start-page: 536 year: 2021 ident: 10.1016/j.bspc.2023.104791_b72 article-title: Shape-regularized unsupervised left ventricular motion network with segmentation capability in 3d+ time echocardiography – volume: 157 start-page: 49 year: 2018 ident: 10.1016/j.bspc.2023.104791_b93 article-title: Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.01.014 – year: 2021 ident: 10.1016/j.bspc.2023.104791_b52 – start-page: 8857 year: 2021 ident: 10.1016/j.bspc.2023.104791_b36 article-title: A transformer-based network for anisotropic 3d medical image segmentation – year: 2021 ident: 10.1016/j.bspc.2023.104791_b30 – year: 2022 ident: 10.1016/j.bspc.2023.104791_b81 – start-page: 565 year: 2016 ident: 10.1016/j.bspc.2023.104791_b5 article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation – year: 2021 ident: 10.1016/j.bspc.2023.104791_b13 – year: 2021 ident: 10.1016/j.bspc.2023.104791_b48 – volume: 38 start-page: 1788 issue: 8 year: 2019 ident: 10.1016/j.bspc.2023.104791_b71 article-title: VoxelMorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2897538 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.104791_b38 article-title: Multimodal lung mass segmentation network based on cross modal space matching publication-title: J. Electron. Inf. – volume: 2021 year: 2021 ident: 10.1016/j.bspc.2023.104791_b32 article-title: HybridCTrm: Bridging CNN and transformer for multimodal brain image segmentation publication-title: J. Healthc. Eng. doi: 10.1155/2021/7467261 – ident: 10.1016/j.bspc.2023.104791_b49 doi: 10.1109/ICCV48922.2021.01204 – year: 2021 ident: 10.1016/j.bspc.2023.104791_b39 – year: 2022 ident: 10.1016/j.bspc.2023.104791_b29 – start-page: 4846 year: 2021 ident: 10.1016/j.bspc.2023.104791_b82 article-title: Miniseg: An extremely minimum network for efficient covid-19 segmentation – start-page: 171 year: 2021 ident: 10.1016/j.bspc.2023.104791_b21 article-title: Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation – volume: 37 start-page: 8565 issue: 11 year: 2022 ident: 10.1016/j.bspc.2023.104791_b10 article-title: RT-Unet: An advanced network based on residual network and transformer for medical image segmentation publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22956 – year: 2022 ident: 10.1016/j.bspc.2023.104791_b14 article-title: Global transformer and dual local attention network via deep-shallow hierarchical feature fusion for retinal vessel segmentation publication-title: IEEE Trans. Cybern. – start-page: 234 year: 2015 ident: 10.1016/j.bspc.2023.104791_b1 article-title: U-net: Convolutional networks for biomedical image segmentation – year: 2021 ident: 10.1016/j.bspc.2023.104791_b31 – start-page: 1579 year: 2022 ident: 10.1016/j.bspc.2023.104791_b83 article-title: COVID-19 CT image segmentation method based on swin transformer publication-title: Front. Physiol. – volume: 37 start-page: 2514 issue: 11 year: 2018 ident: 10.1016/j.bspc.2023.104791_b59 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2837502 – year: 2022 ident: 10.1016/j.bspc.2023.104791_b68 – year: 2022 ident: 10.1016/j.bspc.2023.104791_b25 – start-page: 267 year: 2021 ident: 10.1016/j.bspc.2023.104791_b50 article-title: U-net transformer: Self and cross attention for medical image segmentation – year: 2021 ident: 10.1016/j.bspc.2023.104791_b18 – volume: 185 start-page: 750 year: 2019 ident: 10.1016/j.bspc.2023.104791_b78 article-title: Automated processing pipeline for neonatal diffusion MRI in the developing human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.064 – year: 2016 ident: 10.1016/j.bspc.2023.104791_b86 – ident: 10.1016/j.bspc.2023.104791_b55 doi: 10.1109/CVPR.2018.00675 – volume: 40 start-page: 3543 issue: 12 year: 2021 ident: 10.1016/j.bspc.2023.104791_b61 article-title: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m&ms challenge publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3090082 – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.104791_b33 article-title: Multiple self-attention network for intracranial vessel segmentation – volume: 10 start-page: 7937 year: 2020 ident: 10.1016/j.bspc.2023.104791_b45 article-title: Prostate MRI and ultrasound with pathology and coordinates of tracked biopsy (prostate-MRI-US-biopsy) publication-title: Cancer Imaging Arch – year: 2022 ident: 10.1016/j.bspc.2023.104791_b57 article-title: Comparative analysis of U-net and TLMDB GAN for the cardiovascular segmentation of the ventricles in the heart publication-title: Comput. Methods Programs Biomed. – volume: 150 year: 2022 ident: 10.1016/j.bspc.2023.104791_b11 article-title: TransCUNet: Unet cross fused transformer for medical image segmentation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106207 – start-page: 78 year: 2021 ident: 10.1016/j.bspc.2023.104791_b42 article-title: Convolution-free medical image segmentation using transformers – ident: 10.1016/j.bspc.2023.104791_b44 doi: 10.1109/ISBI52829.2022.9761448 – year: 2021 ident: 10.1016/j.bspc.2023.104791_b51 – start-page: 1601 year: 2021 ident: 10.1016/j.bspc.2023.104791_b66 article-title: ECT-nas: Searching efficient CNN-transformers architecture for medical image segmentation – year: 2022 ident: 10.1016/j.bspc.2023.104791_b80 – year: 2018 ident: 10.1016/j.bspc.2023.104791_b6 – year: 2021 ident: 10.1016/j.bspc.2023.104791_b79 – volume: 160 start-page: 175 year: 2021 ident: 10.1016/j.bspc.2023.104791_b85 article-title: A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2021.04.019 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.104791_b3 article-title: SAUNet++: An automatic segmentation model of COVID-19 lesion from CT slices publication-title: Vis. Comput. – year: 2021 ident: 10.1016/j.bspc.2023.104791_b34 – year: 2022 ident: 10.1016/j.bspc.2023.104791_b22 – ident: 10.1016/j.bspc.2023.104791_b28 doi: 10.1109/WACV51458.2022.00181 – ident: 10.1016/j.bspc.2023.104791_b9 doi: 10.1109/CVPR.2017.549 – volume: 133 start-page: 27 issue: 1 year: 2017 ident: 10.1016/j.bspc.2023.104791_b76 article-title: Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with the cancer genome atlas data publication-title: J. Neuro-Oncology doi: 10.1007/s11060-017-2420-1 – volume: 202 year: 2021 ident: 10.1016/j.bspc.2023.104791_b92 article-title: Cerebrovascular segmentation from TOF-MRA based on multiple-U-net with focal loss function publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.105998 – start-page: 14 year: 2021 ident: 10.1016/j.bspc.2023.104791_b20 article-title: Transfuse: Fusing transformers and cnns for medical image segmentation – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.104791_b35 article-title: HT-Net: hierarchical context-attention transformer network for medical ct image segmentation publication-title: Appl. Intell. – ident: 10.1016/j.bspc.2023.104791_b47 doi: 10.1109/ICCV48922.2021.00951 – start-page: 326 year: 2021 ident: 10.1016/j.bspc.2023.104791_b69 article-title: Multi-compound transformer for accurate biomedical image segmentation – year: 2022 ident: 10.1016/j.bspc.2023.104791_b90 – volume: 109 start-page: 218 year: 2019 ident: 10.1016/j.bspc.2023.104791_b75 article-title: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.05.002 – ident: 10.1016/j.bspc.2023.104791_b89 doi: 10.1109/ICCV48922.2021.00393 – ident: 10.1016/j.bspc.2023.104791_b26 – year: 2017 ident: 10.1016/j.bspc.2023.104791_b58 – year: 2021 ident: 10.1016/j.bspc.2023.104791_b15 – start-page: 45 year: 2016 ident: 10.1016/j.bspc.2023.104791_b7 article-title: Deep learning over multi-field categorical data – volume: 580 start-page: 252 issue: 7802 year: 2020 ident: 10.1016/j.bspc.2023.104791_b60 article-title: Video-based AI for beat-to-beat assessment of cardiac function publication-title: Nature doi: 10.1038/s41586-020-2145-8 – year: 2020 ident: 10.1016/j.bspc.2023.104791_b16 – ident: 10.1016/j.bspc.2023.104791_b88 doi: 10.1109/CVPR.2018.00745 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.104791_b87 article-title: CCAT-NET: A novel transformer based semi-supervised framework for Covid-19 lung lesion segmentation – year: 2020 ident: 10.1016/j.bspc.2023.104791_b91 – volume: 2015 year: 2015 ident: 10.1016/j.bspc.2023.104791_b77 article-title: Mrbrains challenge: online evaluation framework for brain image segmentation in 3T MRI scans publication-title: Comput. Intell. Neurosci. doi: 10.1155/2015/813696 – start-page: 3927 year: 2021 ident: 10.1016/j.bspc.2023.104791_b65 article-title: R2net: Recurrent recalibration network for medical image segmentation – year: 2020 ident: 10.1016/j.bspc.2023.104791_b84 article-title: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases publication-title: Radiology doi: 10.1148/radiol.2020200642 – year: 2021 ident: 10.1016/j.bspc.2023.104791_b17 – ident: 10.1016/j.bspc.2023.104791_b40 doi: 10.1109/ICCV48922.2021.00986 – ident: 10.1016/j.bspc.2023.104791_b54 doi: 10.1109/CVPR.2015.7298965 – start-page: 300 year: 2021 ident: 10.1016/j.bspc.2023.104791_b67 article-title: LiteTrans: Reconstruct transformer with convolution for medical image segmentation – volume: 71 start-page: 209 issue: 3 year: 2021 ident: 10.1016/j.bspc.2023.104791_b73 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA: Cancer J. Clin. – start-page: 109 year: 2021 ident: 10.1016/j.bspc.2023.104791_b27 article-title: Transbts: Multimodal brain tumor segmentation using transformer – year: 2020 ident: 10.1016/j.bspc.2023.104791_b4 – start-page: 553 year: 2022 ident: 10.1016/j.bspc.2023.104791_b23 article-title: TransNUNet: Using attention mechanism for whole heart segmentation – ident: 10.1016/j.bspc.2023.104791_b56 doi: 10.1109/ICCV48922.2021.00061 – year: 2021 ident: 10.1016/j.bspc.2023.104791_b24 – start-page: 61 year: 2021 ident: 10.1016/j.bspc.2023.104791_b63 article-title: Utnet: a hybrid transformer architecture for medical image segmentation – start-page: 63 year: 2021 ident: 10.1016/j.bspc.2023.104791_b64 article-title: TransBridge: A lightweight transformer for left ventricle segmentation in echocardiography – year: 2015 ident: 10.1016/j.bspc.2023.104791_b43 – start-page: 3 year: 2018 ident: 10.1016/j.bspc.2023.104791_b2 article-title: Unet++: A nested u-net architecture for medical image segmentation – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.bspc.2023.104791_b8 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – ident: 10.1016/j.bspc.2023.104791_b37 doi: 10.1109/WACV51458.2022.00333 – start-page: 268 year: 2021 ident: 10.1016/j.bspc.2023.104791_b70 article-title: Tempera: Spatial transformer feature pyramid network for cardiac MRI segmentation – year: 2019 ident: 10.1016/j.bspc.2023.104791_b46 |
SSID | ssj0048714 |
Score | 2.6353292 |
SecondaryResourceType | review_article |
Snippet | Transformer is a model relying entirely on self-attention which has a wide range of applications in the field of natural language processing. Researchers are... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104791 |
SubjectTerms | 3D segmentation Medical image Segmentation analysis Transformer |
Title | Transformers in medical image segmentation: A review |
URI | https://dx.doi.org/10.1016/j.bspc.2023.104791 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lD14k9ik2d0k3kqxVMVebKG3kN3sSsTGYuPV3-5sdlMqSA9CLllmIDtZZr5hZ74BuJY6MyQl1Is05iboJamXaOZ7IslZiAhZ8Xp82_OEj2f0cc7mLRg2vTCmrNL5fuvTa2_tVnrOmr1lUfReEEvzGLMTBNF1YDId7DQyp_z2e13mgXi85vc2wp6Rdo0ztsZLrJaGxrAfmqvOmqfzr-C0EXBGB7DvkCIZ2I85hJYqj2Bvgz_wGOi0gZ0I4khRkoW9diHFAt0EWanXhWstKu_IgNg2lROYje6nw7HnxiB4EndWeSrIME2VXMQqlIEvgiySUueILDQu-yGVcSx8JVmSBUxHLPJFPws0pSyRAp_wFNrlR6nOgFCeM4lAlecGB_k6EyHlNFcJ1xkmQn4Hgmb_qXQc4WZUxXvaFIO9pcZmqbFZam3WgZu1ztIyZGyVZo1Z01__OUUXvkXv_J96F7Br3myB7SW0q88vdYUwohLd-px0YWfw8DSe_ABRvcTW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUZwY2FDVpbCdhqyqqlD4WWqmbFTs2CqKhouX_c04cVCTEgJTJ8UnxOfruO_nuM8Cd1KkRKSFuqDE3QZQkbqyp54o4owEyZMXK69smU5bMydOCLhrQr3thTFmlxf4K00u0tiMd683OKs87z8ilWYTZCZLoMjDtQMuoU9EmtHrDUTKtARkpeSnxbea7xsD2zlRlXmK9MkqG3cCcdpZSnb_Fp62YMziEA0sWnV71PUfQUMUx7G9JCJ4AmdXME3mckxfOsjp5cfIlIoWzVi9L211UPDg9p-pUOYX54HHWT1x7E4IrcXEbV_kpZqqSiUgF0veEn4ZS6gzJhcZhLyAyioSnJI1Tn-qQhp7opr4mhMZS4BOcQbN4L9Q5OIRlVCJXZZmhQp5ORUAYyVTMdIq5kNcGv14_l1Ym3NxW8cbrerBXbnzGjc945bM23H_brCqRjD9n09qt_MdWc0TxP-wu_ml3C7vJbDLm4-F0dAl75k1Vb3sFzc3Hp7pGVrERN_av-QIp2seH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformers+in+medical+image+segmentation%3A+A+review&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Xiao%2C+Hanguang&rft.au=Li%2C+Li&rft.au=Liu%2C+Qiyuan&rft.au=Zhu%2C+Xiuhong&rft.date=2023-07-01&rft.issn=1746-8094&rft.volume=84&rft.spage=104791&rft_id=info:doi/10.1016%2Fj.bspc.2023.104791&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_104791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |