Routing and scheduling optimization for UAV assisted delivery system: A hybrid approach

This paper proposes a joint-optimization framework for UAV-routing and UAV-route scheduling problems associated with the UAV-assisted delivery system. The mixed-integer linear programming (MILP) models for UAV-routing and UAV-route scheduling problems are proposed considering the effect of incidenta...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 126; p. 109225
Main Authors Sajid, Mohammad, Mittal, Himanshu, Pare, Shreya, Prasad, Mukesh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a joint-optimization framework for UAV-routing and UAV-route scheduling problems associated with the UAV-assisted delivery system. The mixed-integer linear programming (MILP) models for UAV-routing and UAV-route scheduling problems are proposed considering the effect of incidental processes and the varying payload on travel time. A hybrid genetic and simulated annealing (HGSA) algorithm is proposed for the UAV-routing problem to minimize travel time. In HGSA, genetic algorithm (GA) employs a novel stochastic crossover operator to search for the optimal global position of customers, whereas simulated annealing (SA) utilizes local search operators to avoid the local optima. A UAV-Oriented MinMin (UO-MinMin) algorithm is also proposed to minimize the makespan of the UAV-route scheduling problem. It employs a UAV-oriented view to generate the route-scheduling order with minimal computational efforts without affecting the quality of the makespan. A Monte Carlo simulation-based sensitivity analysis is conducted to evaluate the impact of the hybridization probability of GA and SA in the proposed HGSA algorithm. To assess the performance of the HGSA algorithm, a set P of 24 benchmark instances is adopted and adjusted to meet the constraints of the UAV-Assisted delivery system. The proposed HGSA outperforms the state-of-the-art algorithms such as genetic algorithm (GA), Particle Swarm Optimization & Simulated Annealing algorithm (PSO-SA), Differential Evolution & Simulated Annealing (DE-SA), and Harris-hawks optimization (HHO). For all 24 instances, the aerial routes generated by HGSA have been used to evaluate the effectiveness of the UO-MinMin algorithm for different numbers of UAVs. The proposed UO-MinMin algorithm outperforms the base algorithms such as minimum completion time (MCT) and opportunistic load balancing (OLB). •The proposed model supports multi-parcel delivery in a UAV-assisted delivery system.•MILP models for routing and route scheduling of UAVs are proposed.•An efficient hybrid approach is proposed for UAV-routing and UAV-route scheduling.•A new dataset is adopted to simulate the UAV-Assisted delivery system.•The hybrid approach performs better for all problem instances.
AbstractList This paper proposes a joint-optimization framework for UAV-routing and UAV-route scheduling problems associated with the UAV-assisted delivery system. The mixed-integer linear programming (MILP) models for UAV-routing and UAV-route scheduling problems are proposed considering the effect of incidental processes and the varying payload on travel time. A hybrid genetic and simulated annealing (HGSA) algorithm is proposed for the UAV-routing problem to minimize travel time. In HGSA, genetic algorithm (GA) employs a novel stochastic crossover operator to search for the optimal global position of customers, whereas simulated annealing (SA) utilizes local search operators to avoid the local optima. A UAV-Oriented MinMin (UO-MinMin) algorithm is also proposed to minimize the makespan of the UAV-route scheduling problem. It employs a UAV-oriented view to generate the route-scheduling order with minimal computational efforts without affecting the quality of the makespan. A Monte Carlo simulation-based sensitivity analysis is conducted to evaluate the impact of the hybridization probability of GA and SA in the proposed HGSA algorithm. To assess the performance of the HGSA algorithm, a set P of 24 benchmark instances is adopted and adjusted to meet the constraints of the UAV-Assisted delivery system. The proposed HGSA outperforms the state-of-the-art algorithms such as genetic algorithm (GA), Particle Swarm Optimization & Simulated Annealing algorithm (PSO-SA), Differential Evolution & Simulated Annealing (DE-SA), and Harris-hawks optimization (HHO). For all 24 instances, the aerial routes generated by HGSA have been used to evaluate the effectiveness of the UO-MinMin algorithm for different numbers of UAVs. The proposed UO-MinMin algorithm outperforms the base algorithms such as minimum completion time (MCT) and opportunistic load balancing (OLB). •The proposed model supports multi-parcel delivery in a UAV-assisted delivery system.•MILP models for routing and route scheduling of UAVs are proposed.•An efficient hybrid approach is proposed for UAV-routing and UAV-route scheduling.•A new dataset is adopted to simulate the UAV-Assisted delivery system.•The hybrid approach performs better for all problem instances.
ArticleNumber 109225
Author Mittal, Himanshu
Pare, Shreya
Sajid, Mohammad
Prasad, Mukesh
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0001-8822-5332
  surname: Sajid
  fullname: Sajid, Mohammad
  email: sajid.cst@gmail.com
  organization: Department of Computer Science, Aligarh Muslim University, Aligarh, India
– sequence: 2
  givenname: Himanshu
  surname: Mittal
  fullname: Mittal, Himanshu
  email: Himanshu.mittal224@gmail.com
  organization: Department of Computer Science Engineering and IT, Jaypee Institute of Information technology, Noida, India
– sequence: 3
  givenname: Shreya
  surname: Pare
  fullname: Pare, Shreya
  email: shreya.pare9@gmail.com
  organization: School of Computer Science, FEIT, University of Technology Sydney, Sydney, Australia
– sequence: 4
  givenname: Mukesh
  surname: Prasad
  fullname: Prasad, Mukesh
  email: mukesh.nctu@gmail.com
  organization: School of Computer Science, FEIT, University of Technology Sydney, Sydney, Australia
BookMark eNp9kMtKAzEUhoNUsK2-gKu8wNQkc8uIm1K8QUEQq8uQy4lNmU6GZFoYn94Z68qFq3PhfAf-b4YmjW8AoWtKFpTQ4ma3kNHrBSOMDYuKsfwMTSkvWVIVnE6GPi94klVZcYFmMe7IAFWMT9HHqz90rvnEsjE46i2YQz2Ovu3c3n3JzvkGWx_wZvmOZYwudmCwgdodIfQ49sO8v8VLvO1VcAbLtg1e6u0lOreyjnD1W-do83D_tnpK1i-Pz6vlOtEpIV1irM5AgQZalIZIoCmlNFMqt1JZYitrVSG5TEujqpxYNVxrKFOlS0M5VySdI3b6q4OPMYAVbXB7GXpBiRjViJ0Y1YhRjTipGSD-B9Ku-4naBenq_9G7EwpDqKODIKJ20GgwLoDuhPHuP_wbBpKEWA
CitedBy_id crossref_primary_10_1109_JSTSP_2024_3376962
crossref_primary_10_33042_2522_1809_2024_4_185_235_243
crossref_primary_10_1109_TCYB_2024_3454346
crossref_primary_10_3390_a16080357
crossref_primary_10_4018_IJCAC_308277
crossref_primary_10_3390_technologies11010012
crossref_primary_10_3390_drones8080356
crossref_primary_10_3390_s25051605
crossref_primary_10_3233_JIFS_233045
crossref_primary_10_1016_j_asoc_2024_111845
crossref_primary_10_59973_emjsr_11
crossref_primary_10_1007_s10489_024_06036_2
crossref_primary_10_1007_s11227_024_06055_3
crossref_primary_10_1016_j_clscn_2024_100166
crossref_primary_10_1016_j_iot_2024_101468
crossref_primary_10_3390_electronics11203327
crossref_primary_10_3390_drones7030191
crossref_primary_10_3390_math10203744
crossref_primary_10_1016_j_jiixd_2024_07_002
crossref_primary_10_1109_ACCESS_2023_3329195
crossref_primary_10_1177_09596518241278387
crossref_primary_10_3390_systems12050170
crossref_primary_10_1145_3649224
crossref_primary_10_1109_TVT_2023_3255309
crossref_primary_10_3390_math10213976
crossref_primary_10_3934_era_2024149
crossref_primary_10_1016_j_eng_2023_10_014
crossref_primary_10_3390_electronics13204067
crossref_primary_10_3390_drones8010027
crossref_primary_10_1080_19427867_2023_2237736
crossref_primary_10_3390_app131810427
crossref_primary_10_1109_JIOT_2024_3368200
crossref_primary_10_3390_electronics13163152
crossref_primary_10_1016_j_adhoc_2024_103506
crossref_primary_10_1016_j_engappai_2023_107363
crossref_primary_10_1109_ACCESS_2024_3503686
crossref_primary_10_1002_spy2_462
crossref_primary_10_1007_s41870_023_01526_x
crossref_primary_10_1016_j_eswa_2023_123115
crossref_primary_10_1016_j_iot_2024_101407
crossref_primary_10_1007_s13272_023_00666_x
crossref_primary_10_3389_fpls_2024_1440234
crossref_primary_10_3390_drones8010014
crossref_primary_10_1016_j_measurement_2024_116579
crossref_primary_10_3390_drones7070448
crossref_primary_10_3390_drones8060230
crossref_primary_10_1016_j_elerap_2024_101411
crossref_primary_10_3390_app132212490
crossref_primary_10_3390_bdcc8120177
crossref_primary_10_1016_j_asoc_2023_110592
crossref_primary_10_26599_TST_2023_9010146
crossref_primary_10_3390_drones7030171
crossref_primary_10_1007_s12530_022_09462_0
crossref_primary_10_1016_j_asoc_2025_112927
crossref_primary_10_3390_drones7010029
crossref_primary_10_1109_JIOT_2024_3392244
crossref_primary_10_1080_13675567_2024_2341851
crossref_primary_10_1007_s44196_024_00606_5
Cites_doi 10.1109/UEMCON.2016.7777839
10.1007/s10288-020-00433-2
10.1109/ISMSIT50672.2020.9255181
10.15224/978-1-63248-123-8-14
10.1016/j.phycom.2020.101236
10.1016/j.future.2018.11.024
10.1016/j.jclepro.2018.12.254
10.1016/j.cor.2008.04.003
10.1016/j.trc.2018.04.009
10.3390/s151127783
10.1287/ijoc.1080.0312
10.1016/j.trc.2019.06.016
10.1080/0952813X.2019.1652356
10.1016/j.future.2018.11.014
10.3390/sym13101923
10.1080/17489725.2018.1564845
10.1287/trsc.1030.0056
10.1016/j.ymssp.2019.106548
10.1007/s10846-019-01034-w
10.1109/ICUAS.2017.7991314
10.1016/j.future.2019.02.028
10.1016/j.endm.2018.03.013
10.3390/urbansci3010018
10.1109/TSMC.2018.2867496
10.1016/j.ijpe.2019.01.010
10.1016/j.jfoodeng.2020.110366
10.1016/j.energy.2017.02.069
10.1016/j.cie.2018.05.013
10.1109/TSMC.2016.2582745
10.1002/cpe.5327
10.1016/j.cor.2012.02.010
10.1109/TPDS.2013.107
10.1016/j.cor.2006.09.013
10.1016/j.trc.2019.11.003
10.1109/TASE.2014.2326952
10.1007/s10489-006-6926-z
10.1063/1.3295638
10.1109/TSMC.2020.2968839
10.1109/ACCESS.2019.2910134
10.1002/net.21982
10.1016/j.ejor.2021.07.008
10.1109/MNET.2017.1700206
10.1109/TVT.2021.3090992
10.1016/j.cor.2021.105445
10.3390/s18061696
10.1109/TEVC.2015.2507785
10.1016/j.asoc.2019.105643
10.1016/j.apm.2022.02.024
10.1016/j.engappai.2018.08.011
10.1016/j.cie.2020.106809
10.1016/j.ejor.2015.06.032
10.1016/j.trd.2015.12.010
10.7763/LNSE.2015.V3.204
10.1016/j.trc.2015.03.005
10.1016/j.trc.2018.03.025
10.1016/j.asoc.2019.02.037
10.1126/science.220.4598.671
10.3390/s17051144
10.3390/app10124362
10.1109/CEIT.2018.8751829
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.109225
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_109225
S1568494622004501
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-dfc4ebece167d0ae131114bb5fabf0f9ffb6a8a37db950fbc4ece73bc7d188b03
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:15 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Fri Feb 23 02:39:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Smart logistics
Routing
Unmanned aerial vehicle
Genetic algorithm
Route-scheduling
Simulated annealing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-dfc4ebece167d0ae131114bb5fabf0f9ffb6a8a37db950fbc4ece73bc7d188b03
ORCID 0000-0001-8822-5332
ParticipantIDs crossref_primary_10_1016_j_asoc_2022_109225
crossref_citationtrail_10_1016_j_asoc_2022_109225
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Murray, Chu (b41) 2015; 54
Santucci, Baioletti, Milani (b74) 2016; 20
Peng, Du, Lu, Sun, Dong, Zhou, Hu (b53) 2019; 7
Sajid, Raza, Shahid (b35) 2015; 28
Dorling, Heinrichs, Messier, Magierowski (b11) 2017; 47
Wen, Kenworthy, Guo, Marinova (b6) 2019; 3
Euchi, Sadoka (b59) 2021; 44
Mumbai’s congested roads are costing It – Both Time & Money, The Quint
Murray, Raj (b52) 2020; 110
Jeong, Song, Lee (b49) 2019; 214
Avellar, Pereira, Pimenta, Iscold (b67) 2015; 15
Lee (b32) 2018; 76
Potvin (b31) 2009; 21
UELAND (b12) 2021
D’Andrea (b10) 2014; 11
Bräysy, Gendreau (b72) 2005; 39
Sajid, Raza (b27) 2017; 125
El-Sayed, Sankar, Daraghmi, Tiwari, Rattagan, Mohanty, Puthal, Prasad (b78) 2018; 18
Kim, Moon (b48) 2019; 49
Savuran, Karakaya (b40) 2015; 3
Sethanan, Jamrus (b38) 2020; 1436
de Freitas, Penna (b45) 2018; 66
A. Altan, O. Aslan, R. Hacıoglu, Model Predictive Control of Load Transporting System on Unmanned Aerial Vehicle (UAV), in: Proc. of the Fifth International Conference on Advances in Mechanical and Robotics Engineering (AMRE), Rome, Italy, 2017.
Ai, Kachitvichyanukul (b37) 2009; 36
Borgonovo, Plischke (b77) 2016; 248
A. Altan, O. Aslan, R. Hacıoglu, Real-Time Control based on NARX Neural Network of Hexarotor UAV with Load Transporting System for Path Tracking, in: IEEE 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25-27 Oct, 2018.
.
Turgut, Feyissa, Küçükoner, Karacabey (b75) 2021; 292
Liu, Liu, Shi, Wu, Pedrycz (b50) 2021; 51
Augerat (b73) 2013
Sunay, Altan, Belge, Hacioğlu (b23) 2020; 10
Blanco, P.L. Gonzalez, Pineda, Canca, Calle (b55) 2022; 195
United Nations Population Fund (UNFPA) (b1) 2007
Kurdi, AlDaood, Al-Megren, Aloboud, Aldawood, Youcef-Toumi (b17) 2019; 83
Agatz, Bouman, Schmidt (b44) 2018; 54
Kim, Moon, Jung (b63) 2020; 10
Garey, Johnson (b30) 1990
Tabak, Cambazoglu, Aykanat (b36) 2014; 25
Mufalli, Batta, Nagi (b66) 2012; 39
Song, Park, Kim (b61) 2018; 120
Schermer, Moeini, Wendt (b19) 2019; 106
Lee, Han, Song (b58) 2022; 106
Leung (b28) 2004
Ferrandez, Harbison, Weber, Sturges, Rich (b42) 2016; 9
Haidri, Alam, Shahid, Prakash, Sajid (b26) 2021
Liu, Zhang, Liu, Wang, Wang (b9) 2019; 215
Huang, Hu, Zhu, Wu, Malekian (b65) 2021
Shetty, Sudit, Nagi (b68) 2008; 35
Ombuki, Ross, Hanshar (b71) 2006; 24
Mor, Speranza (b7) 2020
Ham (b46) 2018; 91
Harrison (b76) 2010; 1204
Luo, Liu, Shi (b43) 2017; 17
Rabbouch, Saâdaoui, Mraihi (b34) 2020; 32
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b39) 2019; 97
Grote, Williams, Preston, Kemp (b2) 2016; 43
S.G. Manyam, S. Rasmussen, D.W. Casbeer, K. Kalyanam, S. Manickam, Multi-UAV routing for persistent intelligence surveillance & reconnaissance missions, in: Proc. Int. Conf. UnmannedAircraft Syst. (ICUAS), Miami, FL, USA, 2017, pp. 573–580.
Amorosi, Puerto, Valverde (b56) 2021; 136
Toth, Vigo (b29) 2015
(b3) 2018
Kirkpatrick, Gelatt, Vecchi (b33) 1983; 220
Alwateer, Loke, Zuchowicz (b13) 2019; 13
Torabbeigi, Lim, Kim (b62) 2020; 97
Luo, Wu, Ji, Wang, Suganthan (b51) 2021
A. Altan, Performance of Metaheuristic Optimization Algorithms based on Swarm Intelligence in Attitude and Altitude Control of Unmanned Aerial Vehicle for Path Following, in: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey 22-24 Oct, 2020.
Sajid, Raza (b25) 2019; 31
Poikonen, Campbell (b14) 2020; 77
Yang, You, Wu, Hassan, Almogren, Guna (b16) 2019; 95
Shi, Zhou, Li, Xu, Zhang, Shen (b8) 2018; 32
Hu, Liu, Lu, Fu, Peng, Ma, Liu (b15) 2019; 94
Nguyen, Dang, Hàa, Pham (b54) 2022; 299
Altan, Hacıoglu (b20) 2020; 138
Juyal, Saxena, Sharma, Srivastava (b5) 2018
Wang, Zhao, Han, Zhou, Li (b18) 2019; 78
Gu, Fan, Pan, Zhang (b57) 2020; 149
Sawadsitang, Niyato, Tan, Wang, Nutanong (b64) 2021; 70
Yurek, Ozmutlu (b47) 2018; 91
K.T. San, E.Y. Lee, Y.S. Chang, The delivery assignment solution for swarms of UAVs dealing with multi-dimensional chromosome representation of genetic algorithm, in: Proc. IEEE 7th Annu. Ubiquitous Comput. Electron. Mobile Commun. Conf. (UEMCON), New York, NY, USA, 2016, pp. 1–7.
Sajid, Singh, Haidri, Prasad, Kotecha, Vijayakumar, Garg (b70) 2021; 13
Song (10.1016/j.asoc.2022.109225_b61) 2018; 120
Lee (10.1016/j.asoc.2022.109225_b32) 2018; 76
Heidari (10.1016/j.asoc.2022.109225_b39) 2019; 97
Blanco (10.1016/j.asoc.2022.109225_b55) 2022; 195
Ham (10.1016/j.asoc.2022.109225_b46) 2018; 91
Augerat (10.1016/j.asoc.2022.109225_b73) 2013
Murray (10.1016/j.asoc.2022.109225_b52) 2020; 110
Poikonen (10.1016/j.asoc.2022.109225_b14) 2020; 77
Luo (10.1016/j.asoc.2022.109225_b43) 2017; 17
Sajid (10.1016/j.asoc.2022.109225_b70) 2021; 13
Ferrandez (10.1016/j.asoc.2022.109225_b42) 2016; 9
Borgonovo (10.1016/j.asoc.2022.109225_b77) 2016; 248
UELAND (10.1016/j.asoc.2022.109225_b12) 2021
Ombuki (10.1016/j.asoc.2022.109225_b71) 2006; 24
Alwateer (10.1016/j.asoc.2022.109225_b13) 2019; 13
El-Sayed (10.1016/j.asoc.2022.109225_b78) 2018; 18
Bräysy (10.1016/j.asoc.2022.109225_b72) 2005; 39
Turgut (10.1016/j.asoc.2022.109225_b75) 2021; 292
Gu (10.1016/j.asoc.2022.109225_b57) 2020; 149
United Nations Population Fund (UNFPA) (10.1016/j.asoc.2022.109225_b1) 2007
Potvin (10.1016/j.asoc.2022.109225_b31) 2009; 21
Rabbouch (10.1016/j.asoc.2022.109225_b34) 2020; 32
Kirkpatrick (10.1016/j.asoc.2022.109225_b33) 1983; 220
Juyal (10.1016/j.asoc.2022.109225_b5) 2018
(10.1016/j.asoc.2022.109225_b3) 2018
Luo (10.1016/j.asoc.2022.109225_b51) 2021
Wang (10.1016/j.asoc.2022.109225_b18) 2019; 78
Toth (10.1016/j.asoc.2022.109225_b29) 2015
Sethanan (10.1016/j.asoc.2022.109225_b38) 2020; 1436
Euchi (10.1016/j.asoc.2022.109225_b59) 2021; 44
Schermer (10.1016/j.asoc.2022.109225_b19) 2019; 106
Shi (10.1016/j.asoc.2022.109225_b8) 2018; 32
Jeong (10.1016/j.asoc.2022.109225_b49) 2019; 214
Leung (10.1016/j.asoc.2022.109225_b28) 2004
Altan (10.1016/j.asoc.2022.109225_b20) 2020; 138
Mor (10.1016/j.asoc.2022.109225_b7) 2020
Torabbeigi (10.1016/j.asoc.2022.109225_b62) 2020; 97
Santucci (10.1016/j.asoc.2022.109225_b74) 2016; 20
de Freitas (10.1016/j.asoc.2022.109225_b45) 2018; 66
Nguyen (10.1016/j.asoc.2022.109225_b54) 2022; 299
Wen (10.1016/j.asoc.2022.109225_b6) 2019; 3
Liu (10.1016/j.asoc.2022.109225_b50) 2021; 51
Sajid (10.1016/j.asoc.2022.109225_b25) 2019; 31
Kim (10.1016/j.asoc.2022.109225_b48) 2019; 49
Savuran (10.1016/j.asoc.2022.109225_b40) 2015; 3
Liu (10.1016/j.asoc.2022.109225_b9) 2019; 215
Huang (10.1016/j.asoc.2022.109225_b65) 2021
Tabak (10.1016/j.asoc.2022.109225_b36) 2014; 25
Murray (10.1016/j.asoc.2022.109225_b41) 2015; 54
Sajid (10.1016/j.asoc.2022.109225_b27) 2017; 125
Amorosi (10.1016/j.asoc.2022.109225_b56) 2021; 136
Hu (10.1016/j.asoc.2022.109225_b15) 2019; 94
Haidri (10.1016/j.asoc.2022.109225_b26) 2021
Ai (10.1016/j.asoc.2022.109225_b37) 2009; 36
10.1016/j.asoc.2022.109225_b4
D’Andrea (10.1016/j.asoc.2022.109225_b10) 2014; 11
Peng (10.1016/j.asoc.2022.109225_b53) 2019; 7
Sunay (10.1016/j.asoc.2022.109225_b23) 2020; 10
Avellar (10.1016/j.asoc.2022.109225_b67) 2015; 15
Sajid (10.1016/j.asoc.2022.109225_b35) 2015; 28
Sawadsitang (10.1016/j.asoc.2022.109225_b64) 2021; 70
Kurdi (10.1016/j.asoc.2022.109225_b17) 2019; 83
Grote (10.1016/j.asoc.2022.109225_b2) 2016; 43
10.1016/j.asoc.2022.109225_b60
Dorling (10.1016/j.asoc.2022.109225_b11) 2017; 47
10.1016/j.asoc.2022.109225_b22
Yurek (10.1016/j.asoc.2022.109225_b47) 2018; 91
Kim (10.1016/j.asoc.2022.109225_b63) 2020; 10
10.1016/j.asoc.2022.109225_b21
10.1016/j.asoc.2022.109225_b24
10.1016/j.asoc.2022.109225_b69
Garey (10.1016/j.asoc.2022.109225_b30) 1990
Mufalli (10.1016/j.asoc.2022.109225_b66) 2012; 39
Agatz (10.1016/j.asoc.2022.109225_b44) 2018; 54
Shetty (10.1016/j.asoc.2022.109225_b68) 2008; 35
Yang (10.1016/j.asoc.2022.109225_b16) 2019; 95
Harrison (10.1016/j.asoc.2022.109225_b76) 2010; 1204
Lee (10.1016/j.asoc.2022.109225_b58) 2022; 106
References_xml – volume: 13
  start-page: 94
  year: 2019
  end-page: 127
  ident: b13
  article-title: Drone services: issues in drones for location-based services from human-drone interaction to information processing
  publication-title: J. Location Based Serv.
– volume: 91
  start-page: 249
  year: 2018
  end-page: 262
  ident: b47
  article-title: A decomposition-based iterative optimization algorithm for traveling salesman problem with drone
  publication-title: Transp. Res. C, Emerg. Technol.
– volume: 13
  start-page: 1923
  year: 2021
  ident: b70
  article-title: A novel algorithm for capacitated vehicle routing problem for smart cities
  publication-title: Symmetry
– year: 2021
  ident: b12
  article-title: 8 commercial drone delivery companies, practical ecommerce
– year: 2021
  ident: b65
  article-title: Stochastic task scheduling in UAV-based intelligent on-demand meal delivery system
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 248
  start-page: 869
  year: 2016
  end-page: 887
  ident: b77
  article-title: Sensitivity analysis: A review of recent advances
  publication-title: European J. Oper. Res.
– volume: 1204
  start-page: 17
  year: 2010
  end-page: 21
  ident: b76
  article-title: Introduction to Monte Carlo simulation
  publication-title: AIP Conf. Proc.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b39
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 292
  year: 2021
  ident: b75
  article-title: Uncertainty and sensitivity analysis by Monte Carlo simulation: Recovery of trans-resveratrol from grape cane by pressurised low polarity water system
  publication-title: J. Food Eng.
– reference: A. Altan, O. Aslan, R. Hacıoglu, Model Predictive Control of Load Transporting System on Unmanned Aerial Vehicle (UAV), in: Proc. of the Fifth International Conference on Advances in Mechanical and Robotics Engineering (AMRE), Rome, Italy, 2017.
– volume: 299
  start-page: 910
  year: 2022
  end-page: 930
  ident: b54
  article-title: The min-cost parallel drone scheduling vehicle routing problem
  publication-title: European J. Oper. Res.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b33
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 32
  start-page: 130
  year: 2018
  end-page: 137
  ident: b8
  article-title: Drone assisted vehicular networks: Architecture, challenges, and opportunities
  publication-title: IEEE Netw.
– volume: 39
  start-page: 104
  year: 2005
  end-page: 118
  ident: b72
  article-title: Vehicle routing problem with time windows, Part I: Route construction and local search algorithms
  publication-title: Transp. Sci.
– volume: 215
  start-page: 806
  year: 2019
  end-page: 0820
  ident: b9
  article-title: An internet of things enabled dynamic optimization method for smart vehicles and logistics tasks
  publication-title: J. Clean Prod.
– volume: 83
  year: 2019
  ident: b17
  article-title: Adaptive task allocation for multi-UAV systems based on bacteria foraging behavior
  publication-title: Appl. Soft Comput.
– reference: A. Altan, Performance of Metaheuristic Optimization Algorithms based on Swarm Intelligence in Attitude and Altitude Control of Unmanned Aerial Vehicle for Path Following, in: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey 22-24 Oct, 2020.
– volume: 125
  start-page: 258
  year: 2017
  end-page: 274
  ident: b27
  article-title: Energy-aware stochastic scheduler for batch of precedence-constrained jobs on heterogeneous computing system
  publication-title: Energy
– volume: 49
  start-page: 42
  year: 2019
  end-page: 52
  ident: b48
  article-title: Traveling salesman problem with a drone station
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
– volume: 136
  year: 2021
  ident: b56
  article-title: Coordinating drones with mothership vehicles: The mothership and drone routing problem with graphs
  publication-title: Comput. Oper. Res.
– volume: 39
  start-page: 2787
  year: 2012
  end-page: 2799
  ident: b66
  article-title: Simultaneous sensor selection and routing of unmanned aerial vehicles for complex mission plans
  publication-title: Comput. Oper. Res.
– year: 2004
  ident: b28
  publication-title: Handbook of Scheduling: Algorithms, Models, and Performance Analysis
– volume: 97
  start-page: 471
  year: 2020
  end-page: 487
  ident: b62
  article-title: Drone delivery scheduling optimization considering payload-induced battery consumption rates
  publication-title: J. Intell. Robot. Syst.
– volume: 138
  year: 2020
  ident: b20
  article-title: Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances
  publication-title: Mech. Syst. Signal Process.
– volume: 77
  start-page: 116
  year: 2020
  end-page: 126
  ident: b14
  article-title: Future directions in drone routing research, wiley
  publication-title: Networks
– volume: 9
  start-page: 374
  year: 2016
  end-page: 388
  ident: b42
  article-title: Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm
  publication-title: Int. J. Ind.
– volume: 214
  start-page: 220
  year: 2019
  end-page: 233
  ident: b49
  article-title: Truck-drone hybrid delivery routing: Payload-energy dependency and no-fly zones
  publication-title: Int. J. Prod. Econ.
– volume: 110
  start-page: 368
  year: 2020
  end-page: 398
  ident: b52
  article-title: The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones
  publication-title: Transp. Res. C
– volume: 106
  start-page: 166
  year: 2019
  end-page: 204
  ident: b19
  article-title: A matheuristic for the vehicle routing problem with drones and its variants
  publication-title: Transp. Res. C
– volume: 3
  start-page: 279
  year: 2015
  end-page: 284
  ident: b40
  article-title: Route optimization method for unmanned air vehicle launched from a carrier
  publication-title: Lecture Notes Softw. Eng.
– volume: 21
  start-page: 518
  year: 2009
  end-page: 548
  ident: b31
  article-title: State-of-the-art review evolutionary algorithms for vehicle routing’
  publication-title: INFORMS J. Comput.
– volume: 32
  start-page: 437
  year: 2020
  end-page: 452
  ident: b34
  article-title: Empirical mode simulated annealing for solving the capacitated vehicle routing problem
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 10
  start-page: 4362
  year: 2020
  ident: b63
  article-title: Drone-based parcel delivery using the rooftops of city buildings: Model and solution
  publication-title: Appl. Sci.
– volume: 54
  start-page: 86
  year: 2015
  end-page: 109
  ident: b41
  article-title: The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery
  publication-title: Transp. Res. C, Emerg. Technol.
– volume: 70
  start-page: 7437
  year: 2021
  end-page: 7452
  ident: b64
  article-title: Shipper cooperation in stochastic drone delivery: A dynamic Bayesian game approach
  publication-title: IEEE Trans. Veh. Technol.
– volume: 20
  start-page: 682
  year: 2016
  end-page: 694
  ident: b74
  article-title: Algebraic differential evolution algorithm for the permutation flowshop scheduling problem with total flowtime criterion
  publication-title: IEEE Trans. Evol. Comput.
– volume: 94
  start-page: 214
  year: 2019
  end-page: 223
  ident: b15
  article-title: On the joint design of routing and scheduling for vehicle-assisted multi-UAV inspection
  publication-title: Future Gener. Comput. Syst.
– volume: 66
  start-page: 95
  year: 2018
  end-page: 102
  ident: b45
  article-title: A randomized variable neighborhood descent heuristic to solve the flying sidekick traveling salesman problem
  publication-title: Electron. Notes Discr. Math.
– volume: 43
  start-page: 95
  year: 2016
  end-page: 106
  ident: b2
  article-title: Including congestion effects in urban road traffic CO2 emissions modeling: Do local government authorities have the right options?
  publication-title: Transp. Res. D
– volume: 51
  start-page: 7450
  year: 2021
  end-page: 7465
  ident: b50
  article-title: Two-echelon routing problem for parcel delivery by cooperated truck and drone
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 11
  start-page: 647
  year: 2014
  end-page: 648
  ident: b10
  article-title: Guest editorial can drones deliver?
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 195
  year: 2022
  ident: b55
  article-title: A multi-agent approach to the truck multi-drone routing problem
  publication-title: Expert Syst. Appl.
– volume: 149
  year: 2020
  ident: b57
  article-title: A vehicle-UAV operation scheme for instant delivery
  publication-title: Comput. Ind. Eng.
– volume: 78
  start-page: 240
  year: 2019
  end-page: 260
  ident: b18
  article-title: A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 1144
  year: 2017
  ident: b43
  article-title: A two-echelon cooperated routing problemfor a ground vehicle and its carried unmanned aerial vehicle
  publication-title: Sensors
– volume: 106
  start-page: 844
  year: 2022
  end-page: 866
  ident: b58
  article-title: Simultaneous cooperation of refrigerated ground vehicle (RGV) and unmanned aerial vehicle (UAV) for rapid delivery with perishable food
  publication-title: Appl. Math. Model.
– volume: 76
  start-page: 1
  year: 2018
  end-page: 12
  ident: b32
  article-title: A review of applications of genetic algorithms in operations management
  publication-title: Eng. Appl. Artif. Intell.
– year: 2021
  ident: b26
  article-title: A deadline aware load balancing strategy for cloud computing
  publication-title: Concurr. Comput.: Pract. Exp. (Wiley)
– volume: 44
  year: 2021
  ident: b59
  article-title: Hybrid genetic-sweep algorithm to solve the vehicle routing problem with drones
  publication-title: Phys. Commun.
– year: 2007
  ident: b1
  article-title: State of World Population 2007 – Unleashing the potential of urban growth
– volume: 25
  start-page: 1244
  year: 2014
  end-page: 1256
  ident: b36
  article-title: Improving the performance of independent task assignment heuristics MinMin, MaxMin and sufferage
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 7
  start-page: 49191
  year: 2019
  end-page: 49200
  ident: b53
  article-title: A hybrid genetic algorithm on routing and scheduling for vehicle-assisted multi-drone parcel delivery
  publication-title: IEEE Access
– volume: 47
  start-page: 70
  year: 2017
  end-page: 85
  ident: b11
  article-title: Vehicle routing problems for drone delivery
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 36
  start-page: 1693
  year: 2009
  end-page: 1702
  ident: b37
  article-title: A particle swarm optimization for the vehicle routing problem with simultaneouspick-up and delivery
  publication-title: Comput. Oper. Res.
– year: 1990
  ident: b30
  article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– volume: 28
  start-page: 2664
  year: 2015
  end-page: 2669
  ident: b35
  article-title: Energy efficient scheduling algorithms for batch-of-tasks (BoT) applications on heterogeneous computing systems
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 91
  start-page: 1
  year: 2018
  end-page: 14
  ident: b46
  article-title: Integrated scheduling of m-truck, m-drone, and m-depotconstrained by time-window, drop-pickup, and m-visit using constraint programming
  publication-title: Transp. Res. C, Emerg. Technol.
– volume: 120
  start-page: 418
  year: 2018
  end-page: 428
  ident: b61
  article-title: Persistent UAV delivery logistics:MILP formulation and efficient heuristic
  publication-title: Comput. Ind. Eng.
– volume: 24
  start-page: 17
  year: 2006
  end-page: 30
  ident: b71
  article-title: Multi-objective genetic algorithms for vehicle routing problem with time windows
  publication-title: Appl. Intell.
– year: 2015
  ident: b29
  article-title: Vehicle Routing: Problems, Methods, and Applications
– volume: 35
  start-page: 1813
  year: 2008
  end-page: 1828
  ident: b68
  article-title: Priority-based assignment androuting of a fleet of unmanned combat aerial vehicles
  publication-title: Comput. Oper. Res.
– year: 2021
  ident: b51
  article-title: Hybrid multi-objective optimization approach with Pareto local search for collaborative truck-drone routing problems considering flexible time windows
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: S.G. Manyam, S. Rasmussen, D.W. Casbeer, K. Kalyanam, S. Manickam, Multi-UAV routing for persistent intelligence surveillance & reconnaissance missions, in: Proc. Int. Conf. UnmannedAircraft Syst. (ICUAS), Miami, FL, USA, 2017, pp. 573–580.
– year: 2018
  ident: b3
  article-title: Global status report on road safety
– year: 2018
  ident: b5
  article-title: NITI aayog & the Boston consulting group
– year: 2013
  ident: b73
  article-title: The VRP Web
– year: 2020
  ident: b7
  article-title: Vehicle routing problems over time: A survey. 4OR-Q
  publication-title: J. Oper. Res.
– volume: 31
  year: 2019
  ident: b25
  article-title: Energy-efficient quantum-inspired stochastic Q-hype algorithm for batch-of-stochastic-tasks on heterogeneous DVFS-enabled processors
  publication-title: Concurr. Comput.: Pract. Exp. (Wiley)
– volume: 3
  year: 2019
  ident: b6
  article-title: Solving traffic congestion through street renaissance: A perspective from dense Asian cities
  publication-title: Urban Sci.
– volume: 10
  year: 2020
  ident: b23
  article-title: Investigation of route tracking performance with adaptive PID controller in quadrotor
  publication-title: Eur. J. Tech. (EJT)
– reference: .
– volume: 15
  start-page: 27783
  year: 2015
  end-page: 27803
  ident: b67
  article-title: Multi-UAV routing for area coverage and remote sensing with minimum time
  publication-title: Sensors
– reference: K.T. San, E.Y. Lee, Y.S. Chang, The delivery assignment solution for swarms of UAVs dealing with multi-dimensional chromosome representation of genetic algorithm, in: Proc. IEEE 7th Annu. Ubiquitous Comput. Electron. Mobile Commun. Conf. (UEMCON), New York, NY, USA, 2016, pp. 1–7.
– reference: Mumbai’s congested roads are costing It – Both Time & Money, The Quint,
– reference: A. Altan, O. Aslan, R. Hacıoglu, Real-Time Control based on NARX Neural Network of Hexarotor UAV with Load Transporting System for Path Tracking, in: IEEE 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25-27 Oct, 2018.
– volume: 95
  start-page: 140
  year: 2019
  end-page: 148
  ident: b16
  article-title: Application of reinforcement learning in UAV cluster task scheduling
  publication-title: Future Gener. Comput. Syst.
– volume: 1436
  year: 2020
  ident: b38
  article-title: Hybrid differential evolution algorithm and genetic operator for multi-trip vehicle routing problem with backhauls and heterogeneous fleet in the beverage industry
  publication-title: Comput. Ind. Eng.
– volume: 18
  start-page: 1696
  year: 2018
  ident: b78
  article-title: Accurate traffic flow prediction in heterogeneous vehicular networks in an intelligent transport system using a supervised non-parametric classifier
  publication-title: Sensors
– volume: 54
  start-page: 739
  year: 2018
  end-page: 1034
  ident: b44
  article-title: Optimization approaches for the traveling salesman problem with drone
  publication-title: Transp. Sci.
– year: 2021
  ident: 10.1016/j.asoc.2022.109225_b12
– ident: 10.1016/j.asoc.2022.109225_b60
  doi: 10.1109/UEMCON.2016.7777839
– ident: 10.1016/j.asoc.2022.109225_b4
– year: 2020
  ident: 10.1016/j.asoc.2022.109225_b7
  article-title: Vehicle routing problems over time: A survey. 4OR-Q
  publication-title: J. Oper. Res.
  doi: 10.1007/s10288-020-00433-2
– ident: 10.1016/j.asoc.2022.109225_b21
  doi: 10.1109/ISMSIT50672.2020.9255181
– year: 2021
  ident: 10.1016/j.asoc.2022.109225_b26
  article-title: A deadline aware load balancing strategy for cloud computing
  publication-title: Concurr. Comput.: Pract. Exp. (Wiley)
– ident: 10.1016/j.asoc.2022.109225_b24
  doi: 10.15224/978-1-63248-123-8-14
– volume: 44
  year: 2021
  ident: 10.1016/j.asoc.2022.109225_b59
  article-title: Hybrid genetic-sweep algorithm to solve the vehicle routing problem with drones
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2020.101236
– volume: 94
  start-page: 214
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b15
  article-title: On the joint design of routing and scheduling for vehicle-assisted multi-UAV inspection
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.11.024
– volume: 215
  start-page: 806
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b9
  article-title: An internet of things enabled dynamic optimization method for smart vehicles and logistics tasks
  publication-title: J. Clean Prod.
  doi: 10.1016/j.jclepro.2018.12.254
– volume: 36
  start-page: 1693
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2022.109225_b37
  article-title: A particle swarm optimization for the vehicle routing problem with simultaneouspick-up and delivery
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2008.04.003
– volume: 91
  start-page: 249
  year: 2018
  ident: 10.1016/j.asoc.2022.109225_b47
  article-title: A decomposition-based iterative optimization algorithm for traveling salesman problem with drone
  publication-title: Transp. Res. C, Emerg. Technol.
  doi: 10.1016/j.trc.2018.04.009
– volume: 15
  start-page: 27783
  issue: 11
  year: 2015
  ident: 10.1016/j.asoc.2022.109225_b67
  article-title: Multi-UAV routing for area coverage and remote sensing with minimum time
  publication-title: Sensors
  doi: 10.3390/s151127783
– volume: 21
  start-page: 518
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2022.109225_b31
  article-title: State-of-the-art review evolutionary algorithms for vehicle routing’
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1080.0312
– volume: 106
  start-page: 166
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b19
  article-title: A matheuristic for the vehicle routing problem with drones and its variants
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.06.016
– volume: 32
  start-page: 437
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2022.109225_b34
  article-title: Empirical mode simulated annealing for solving the capacitated vehicle routing problem
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2019.1652356
– year: 2004
  ident: 10.1016/j.asoc.2022.109225_b28
– volume: 95
  start-page: 140
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b16
  article-title: Application of reinforcement learning in UAV cluster task scheduling
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.11.014
– volume: 54
  start-page: 739
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2022.109225_b44
  article-title: Optimization approaches for the traveling salesman problem with drone
  publication-title: Transp. Sci.
– volume: 13
  start-page: 1923
  issue: 10
  year: 2021
  ident: 10.1016/j.asoc.2022.109225_b70
  article-title: A novel algorithm for capacitated vehicle routing problem for smart cities
  publication-title: Symmetry
  doi: 10.3390/sym13101923
– volume: 13
  start-page: 94
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b13
  article-title: Drone services: issues in drones for location-based services from human-drone interaction to information processing
  publication-title: J. Location Based Serv.
  doi: 10.1080/17489725.2018.1564845
– volume: 39
  start-page: 104
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2022.109225_b72
  article-title: Vehicle routing problem with time windows, Part I: Route construction and local search algorithms
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1030.0056
– volume: 138
  year: 2020
  ident: 10.1016/j.asoc.2022.109225_b20
  article-title: Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106548
– year: 2018
  ident: 10.1016/j.asoc.2022.109225_b5
– volume: 28
  start-page: 2664
  issue: 9
  year: 2015
  ident: 10.1016/j.asoc.2022.109225_b35
  article-title: Energy efficient scheduling algorithms for batch-of-tasks (BoT) applications on heterogeneous computing systems
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 9
  start-page: 374
  year: 2016
  ident: 10.1016/j.asoc.2022.109225_b42
  article-title: Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm
  publication-title: Int. J. Ind.
– volume: 97
  start-page: 471
  year: 2020
  ident: 10.1016/j.asoc.2022.109225_b62
  article-title: Drone delivery scheduling optimization considering payload-induced battery consumption rates
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-019-01034-w
– year: 2015
  ident: 10.1016/j.asoc.2022.109225_b29
– ident: 10.1016/j.asoc.2022.109225_b69
  doi: 10.1109/ICUAS.2017.7991314
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b39
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 66
  start-page: 95
  year: 2018
  ident: 10.1016/j.asoc.2022.109225_b45
  article-title: A randomized variable neighborhood descent heuristic to solve the flying sidekick traveling salesman problem
  publication-title: Electron. Notes Discr. Math.
  doi: 10.1016/j.endm.2018.03.013
– year: 2021
  ident: 10.1016/j.asoc.2022.109225_b65
  article-title: Stochastic task scheduling in UAV-based intelligent on-demand meal delivery system
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b6
  article-title: Solving traffic congestion through street renaissance: A perspective from dense Asian cities
  publication-title: Urban Sci.
  doi: 10.3390/urbansci3010018
– volume: 49
  start-page: 42
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b48
  article-title: Traveling salesman problem with a drone station
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2018.2867496
– volume: 214
  start-page: 220
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b49
  article-title: Truck-drone hybrid delivery routing: Payload-energy dependency and no-fly zones
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2019.01.010
– volume: 292
  year: 2021
  ident: 10.1016/j.asoc.2022.109225_b75
  article-title: Uncertainty and sensitivity analysis by Monte Carlo simulation: Recovery of trans-resveratrol from grape cane by pressurised low polarity water system
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.110366
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.109225_b23
  article-title: Investigation of route tracking performance with adaptive PID controller in quadrotor
  publication-title: Eur. J. Tech. (EJT)
– volume: 125
  start-page: 258
  year: 2017
  ident: 10.1016/j.asoc.2022.109225_b27
  article-title: Energy-aware stochastic scheduler for batch of precedence-constrained jobs on heterogeneous computing system
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.069
– volume: 120
  start-page: 418
  year: 2018
  ident: 10.1016/j.asoc.2022.109225_b61
  article-title: Persistent UAV delivery logistics:MILP formulation and efficient heuristic
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.05.013
– volume: 47
  start-page: 70
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2022.109225_b11
  article-title: Vehicle routing problems for drone delivery
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2016.2582745
– volume: 31
  issue: 20
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b25
  article-title: Energy-efficient quantum-inspired stochastic Q-hype algorithm for batch-of-stochastic-tasks on heterogeneous DVFS-enabled processors
  publication-title: Concurr. Comput.: Pract. Exp. (Wiley)
  doi: 10.1002/cpe.5327
– volume: 39
  start-page: 2787
  issue: 11
  year: 2012
  ident: 10.1016/j.asoc.2022.109225_b66
  article-title: Simultaneous sensor selection and routing of unmanned aerial vehicles for complex mission plans
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.02.010
– year: 2007
  ident: 10.1016/j.asoc.2022.109225_b1
– year: 2021
  ident: 10.1016/j.asoc.2022.109225_b51
  article-title: Hybrid multi-objective optimization approach with Pareto local search for collaborative truck-drone routing problems considering flexible time windows
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 25
  start-page: 1244
  issue: 5
  year: 2014
  ident: 10.1016/j.asoc.2022.109225_b36
  article-title: Improving the performance of independent task assignment heuristics MinMin, MaxMin and sufferage
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2013.107
– year: 1990
  ident: 10.1016/j.asoc.2022.109225_b30
– year: 2013
  ident: 10.1016/j.asoc.2022.109225_b73
– volume: 35
  start-page: 1813
  issue: 6
  year: 2008
  ident: 10.1016/j.asoc.2022.109225_b68
  article-title: Priority-based assignment androuting of a fleet of unmanned combat aerial vehicles
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2006.09.013
– volume: 110
  start-page: 368
  year: 2020
  ident: 10.1016/j.asoc.2022.109225_b52
  article-title: The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.11.003
– volume: 11
  start-page: 647
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2022.109225_b10
  article-title: Guest editorial can drones deliver?
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2326952
– volume: 24
  start-page: 17
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2022.109225_b71
  article-title: Multi-objective genetic algorithms for vehicle routing problem with time windows
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-006-6926-z
– volume: 1204
  start-page: 17
  year: 2010
  ident: 10.1016/j.asoc.2022.109225_b76
  article-title: Introduction to Monte Carlo simulation
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3295638
– volume: 51
  start-page: 7450
  issue: 12
  year: 2021
  ident: 10.1016/j.asoc.2022.109225_b50
  article-title: Two-echelon routing problem for parcel delivery by cooperated truck and drone
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2020.2968839
– volume: 7
  start-page: 49191
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b53
  article-title: A hybrid genetic algorithm on routing and scheduling for vehicle-assisted multi-drone parcel delivery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2910134
– volume: 77
  start-page: 116
  year: 2020
  ident: 10.1016/j.asoc.2022.109225_b14
  article-title: Future directions in drone routing research, wiley
  publication-title: Networks
  doi: 10.1002/net.21982
– volume: 299
  start-page: 910
  issue: 3
  year: 2022
  ident: 10.1016/j.asoc.2022.109225_b54
  article-title: The min-cost parallel drone scheduling vehicle routing problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2021.07.008
– year: 2018
  ident: 10.1016/j.asoc.2022.109225_b3
– volume: 32
  start-page: 130
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2022.109225_b8
  article-title: Drone assisted vehicular networks: Architecture, challenges, and opportunities
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2017.1700206
– volume: 70
  start-page: 7437
  issue: 8
  year: 2021
  ident: 10.1016/j.asoc.2022.109225_b64
  article-title: Shipper cooperation in stochastic drone delivery: A dynamic Bayesian game approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3090992
– volume: 136
  year: 2021
  ident: 10.1016/j.asoc.2022.109225_b56
  article-title: Coordinating drones with mothership vehicles: The mothership and drone routing problem with graphs
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105445
– volume: 18
  start-page: 1696
  issue: 6
  year: 2018
  ident: 10.1016/j.asoc.2022.109225_b78
  article-title: Accurate traffic flow prediction in heterogeneous vehicular networks in an intelligent transport system using a supervised non-parametric classifier
  publication-title: Sensors
  doi: 10.3390/s18061696
– volume: 20
  start-page: 682
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2022.109225_b74
  article-title: Algebraic differential evolution algorithm for the permutation flowshop scheduling problem with total flowtime criterion
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2507785
– volume: 83
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b17
  article-title: Adaptive task allocation for multi-UAV systems based on bacteria foraging behavior
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105643
– volume: 106
  start-page: 844
  year: 2022
  ident: 10.1016/j.asoc.2022.109225_b58
  article-title: Simultaneous cooperation of refrigerated ground vehicle (RGV) and unmanned aerial vehicle (UAV) for rapid delivery with perishable food
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.02.024
– volume: 76
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2022.109225_b32
  article-title: A review of applications of genetic algorithms in operations management
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.08.011
– volume: 149
  year: 2020
  ident: 10.1016/j.asoc.2022.109225_b57
  article-title: A vehicle-UAV operation scheme for instant delivery
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106809
– volume: 248
  start-page: 869
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2022.109225_b77
  article-title: Sensitivity analysis: A review of recent advances
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.06.032
– volume: 195
  year: 2022
  ident: 10.1016/j.asoc.2022.109225_b55
  article-title: A multi-agent approach to the truck multi-drone routing problem
  publication-title: Expert Syst. Appl.
– volume: 43
  start-page: 95
  year: 2016
  ident: 10.1016/j.asoc.2022.109225_b2
  article-title: Including congestion effects in urban road traffic CO2 emissions modeling: Do local government authorities have the right options?
  publication-title: Transp. Res. D
  doi: 10.1016/j.trd.2015.12.010
– volume: 3
  start-page: 279
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2022.109225_b40
  article-title: Route optimization method for unmanned air vehicle launched from a carrier
  publication-title: Lecture Notes Softw. Eng.
  doi: 10.7763/LNSE.2015.V3.204
– volume: 54
  start-page: 86
  year: 2015
  ident: 10.1016/j.asoc.2022.109225_b41
  article-title: The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery
  publication-title: Transp. Res. C, Emerg. Technol.
  doi: 10.1016/j.trc.2015.03.005
– volume: 1436
  year: 2020
  ident: 10.1016/j.asoc.2022.109225_b38
  article-title: Hybrid differential evolution algorithm and genetic operator for multi-trip vehicle routing problem with backhauls and heterogeneous fleet in the beverage industry
  publication-title: Comput. Ind. Eng.
– volume: 91
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2022.109225_b46
  article-title: Integrated scheduling of m-truck, m-drone, and m-depotconstrained by time-window, drop-pickup, and m-visit using constraint programming
  publication-title: Transp. Res. C, Emerg. Technol.
  doi: 10.1016/j.trc.2018.03.025
– volume: 78
  start-page: 240
  year: 2019
  ident: 10.1016/j.asoc.2022.109225_b18
  article-title: A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.037
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.asoc.2022.109225_b33
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 17
  start-page: 1144
  issue: 5
  year: 2017
  ident: 10.1016/j.asoc.2022.109225_b43
  article-title: A two-echelon cooperated routing problemfor a ground vehicle and its carried unmanned aerial vehicle
  publication-title: Sensors
  doi: 10.3390/s17051144
– volume: 10
  start-page: 4362
  year: 2020
  ident: 10.1016/j.asoc.2022.109225_b63
  article-title: Drone-based parcel delivery using the rooftops of city buildings: Model and solution
  publication-title: Appl. Sci.
  doi: 10.3390/app10124362
– ident: 10.1016/j.asoc.2022.109225_b22
  doi: 10.1109/CEIT.2018.8751829
SSID ssj0016928
Score 2.5766852
Snippet This paper proposes a joint-optimization framework for UAV-routing and UAV-route scheduling problems associated with the UAV-assisted delivery system. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109225
SubjectTerms Genetic algorithm
Route-scheduling
Routing
Simulated annealing
Smart logistics
Unmanned aerial vehicle
Title Routing and scheduling optimization for UAV assisted delivery system: A hybrid approach
URI https://dx.doi.org/10.1016/j.asoc.2022.109225
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3id0ku9nEWymW-iqiVnsL-8RKTYvUQy_-dneaTVGQHjyFhBkI3-7OzML3zSB0KrgQWhETpHHMA2qUDaTmIohjTYlJs0RJECff9ZPegF4P2bCGOpUWBmiVPvaXMX0Rrf2XlkezNR2NWo_u5pHSjCYRLDRbaLgo5bDLz7-WNI8wyRbzVcE4AGsvnCk5XsIh4O6IUQRdlSIYl_1XcvqRcLpbaMNXirhd_sw2qpliB21WUxiwP5S76AVIPS4BYVFo7O6qLneAxBxPXDB49ypL7EpTPGg_Y1cqw7pqrM0YGBlzXLZyvsBt_DoH9RauuozvoUH38qnTC_y4hEDFhMwCbRWFJTFhwjURBhrphFRKZoW0xGbWykSkIuZaZoxY6ayV4bFUXIdpKkm8j-rFpDAHCEfcuRImmLEpzCaWirlUl6UZo5HRmjdQWOGUK99LHEZajPOKNPaWA7Y5YJuX2DbQ2dJnWnbSWGnNKvjzX_shd6F-hd_hP_2O0Dq8leyxY1SffXyaE1duzGRzsZ-aaK3debi9h-fVTa__DcYS190
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLaqdoCFG1FOD2woqnM4TtiiCtTSY6GFbpFPUVTSCpWh_x6_xqlAQh1YEz8p-my_Q3nf9xC65YxzJYn2kjBkXqSl8YRi3AtDFRGdpLEUQE4eDOPOOHqa0EkNtSsuDLRVOt9f-vS1t3ZPWg7N1mI6bT3byiOJ0igOYKMpcLgaoE5F66iRdXud4eZnQpyuR6zCeg8MHHembPPiFgRbJgYBCCsFMDH7r_j0I-Y8HqA9lyzirPyeQ1TTxRHarwYxYHcvj9Er9PXYGIR5obAtV234AJY5nlt_8OGIlthmp3icvWCbLcPWKqz0DJoyVrhUc77HGX5bAYELV0LjJ2j8-DBqdzw3McGTISFLTxkZwa5oP2aKcA1aOn4kBDVcGGJSY0TMEx4yJVJKjLCrpWahkEz5SSJIeIrqxbzQZwgHzJoSyqk2CYwnFpLaaJcmKY0CrRRrIr_CKZdOThymWszyqm_sPQdsc8A2L7FtoruNzaIU09i6mlbw57-ORG69_Ra783_a3aCdzmjQz_vdYe8C7cKbspnsEtWXn1_6ymYfS3HtTtc3cnHY-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Routing+and+scheduling+optimization+for+UAV+assisted+delivery+system%3A+A+hybrid+approach&rft.jtitle=Applied+soft+computing&rft.au=Sajid%2C+Mohammad&rft.au=Mittal%2C+Himanshu&rft.au=Pare%2C+Shreya&rft.au=Prasad%2C+Mukesh&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=126&rft_id=info:doi/10.1016%2Fj.asoc.2022.109225&rft.externalDocID=S1568494622004501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon