A compact metamaterial broadband THz absorber consists of graphene crosses with different sizes
A compact tunable graphene-based broadband metamaterial absorber in the terahertz (THz) frequency band was presented in this paper. The proposed absorber is the classic sandwich structure, which is composed of graphene cross resonators of different sizes placed on the top of a dielectric spacer back...
Saved in:
Published in | Superlattices and microstructures Vol. 159; p. 107038 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A compact tunable graphene-based broadband metamaterial absorber in the terahertz (THz) frequency band was presented in this paper. The proposed absorber is the classic sandwich structure, which is composed of graphene cross resonators of different sizes placed on the top of a dielectric spacer backed with a gold ground at the bottom. It is shown that the absorber can achieve a broad absorption band from 2.81 THz to 4.67 THz with absorption up to 97 % under the normal incident. Meanwhile, the absorption property can be kept to a moderate level when the incident angle is up to 45° for both TE and TM incident light, and the absorption is polarization insensitive. By increasing the chemical potential of graphene from 0.40 eV to 0.60 eV, the broad absorption band can be tuned to shift blue with slightly changing maximum absorption rate. What's more, the absorption bandwidth can be further extended to over 2.34 THz with absorption larger than 97 % by adding another graphene cross layer. Based on the optimal and novel characteristics, we hope that the designed absorber may have potential applications in THz absorbing, sensing, switching, modulating, stealthy and so on.
•The absorber only consists of graphene patterns, dielectric, and gold ground making it easy to be fabricated.•Absorption over 97 % can be realized in 2.81–4.67 THz under the normal incident with bandwidth up to 1.86 THz.•Absorption property is wide-angle in incidence and is insensitive to the polarization angles.•Absorption performance has an obvious improvement than some other reported literatures. |
---|---|
AbstractList | A compact tunable graphene-based broadband metamaterial absorber in the terahertz (THz) frequency band was presented in this paper. The proposed absorber is the classic sandwich structure, which is composed of graphene cross resonators of different sizes placed on the top of a dielectric spacer backed with a gold ground at the bottom. It is shown that the absorber can achieve a broad absorption band from 2.81 THz to 4.67 THz with absorption up to 97 % under the normal incident. Meanwhile, the absorption property can be kept to a moderate level when the incident angle is up to 45° for both TE and TM incident light, and the absorption is polarization insensitive. By increasing the chemical potential of graphene from 0.40 eV to 0.60 eV, the broad absorption band can be tuned to shift blue with slightly changing maximum absorption rate. What's more, the absorption bandwidth can be further extended to over 2.34 THz with absorption larger than 97 % by adding another graphene cross layer. Based on the optimal and novel characteristics, we hope that the designed absorber may have potential applications in THz absorbing, sensing, switching, modulating, stealthy and so on.
•The absorber only consists of graphene patterns, dielectric, and gold ground making it easy to be fabricated.•Absorption over 97 % can be realized in 2.81–4.67 THz under the normal incident with bandwidth up to 1.86 THz.•Absorption property is wide-angle in incidence and is insensitive to the polarization angles.•Absorption performance has an obvious improvement than some other reported literatures. |
ArticleNumber | 107038 |
Author | Yang, Rongcao Lv, Yisong Tian, Jinping Liu, Wen |
Author_xml | – sequence: 1 givenname: Wen surname: Liu fullname: Liu, Wen organization: College of Physics and Electronics Engineering, Shanxi University, Taiyuan, 030006, PR China – sequence: 2 givenname: Yisong surname: Lv fullname: Lv, Yisong organization: College of Physics and Electronics Engineering, Shanxi University, Taiyuan, 030006, PR China – sequence: 3 givenname: Jinping orcidid: 0000-0002-4257-7049 surname: Tian fullname: Tian, Jinping email: tianjp@sxu.edu.cn organization: College of Physics and Electronics Engineering, Shanxi University, Taiyuan, 030006, PR China – sequence: 4 givenname: Rongcao orcidid: 0000-0003-0112-1544 surname: Yang fullname: Yang, Rongcao organization: College of Physics and Electronics Engineering, Shanxi University, Taiyuan, 030006, PR China |
BookMark | eNp9kE1LAzEQhoNUsK3-AU_5A1sn-5HdBS-lqBUKXuo5zCYTm9L9IAmK_fVurScPPQ0M8wzv-8zYpOs7YuxewEKAkA_7RRhat0ghFeOihKy6YlMBtUwyWZYTNoUyrxMJmbxhsxD2AFDnopwyteS6bwfUkbcUscVI3uGBN75H02Bn-HZ95NiE3jfkx9suuBAD7y3_8DjsqCOufR8CBf7l4o4bZy156iIP7kjhll1bPAS6-5tz9v78tF2tk83by-tquUl0BhAToyutoSxMWjZQWWGruqkaxAIoF1WhpUGRmzSVklACyqywaTNCNq3rGiuRzVl1_vsbxpNV2kWMru-iR3dQAtRJlNqrkyh1EqXOokY0_YcO3rXovy9Dj2eIxlKfjrwK2lGnyThPOirTu0v4D94hhiY |
CitedBy_id | crossref_primary_10_1016_j_spmi_2022_107153 crossref_primary_10_1016_j_diamond_2024_111598 crossref_primary_10_1016_j_diamond_2023_110481 crossref_primary_10_1364_AO_513884 crossref_primary_10_1088_1361_6463_ad0912 crossref_primary_10_1002_adfm_202402068 crossref_primary_10_1016_j_diamond_2023_110060 crossref_primary_10_1016_j_jmmm_2024_172418 crossref_primary_10_1016_j_optlastec_2024_111490 crossref_primary_10_1007_s11664_024_11238_y crossref_primary_10_1016_j_aeue_2023_154784 crossref_primary_10_1016_j_optlastec_2025_112591 crossref_primary_10_1007_s11082_023_05064_5 crossref_primary_10_3390_coatings14040478 crossref_primary_10_1016_j_aeue_2023_154602 crossref_primary_10_1016_j_optcom_2023_129991 crossref_primary_10_1364_AO_457708 crossref_primary_10_3788_LOP230572 crossref_primary_10_1364_OE_532809 crossref_primary_10_3389_fmats_2023_1305793 |
Cites_doi | 10.1016/j.ssc.2020.114023 10.1007/s00339-016-9857-5 10.1021/nl404042h 10.1016/j.optmat.2018.07.053 10.1364/OE.25.009579 10.1364/OE.16.007181 10.1002/mmce.22436 10.1038/nature11254 10.1364/OE.27.025983 10.1103/PhysRevE.71.036617 10.1364/OE.394784 10.1364/OE.26.011728 10.1364/OME.383008 10.1364/AO.383637 10.1364/OE.27.037590 10.3390/ma11112193 10.1103/PhysRevB.85.195131 10.1016/j.rinp.2020.103688 10.1002/lpor.201000011 10.1021/acsphotonics.7b00906 10.1364/OE.20.007165 10.1364/OE.24.001518 10.1021/nl400601c 10.1016/j.tsf.2004.10.043 10.1016/j.carbon.2020.07.014 10.1016/j.ijleo.2019.163071 10.1364/OE.26.007148 10.3390/ma11040540 10.1007/s11468-018-0852-x 10.1364/OE.403631 10.1103/PhysRevB.79.125104 10.1016/j.optmat.2020.110235 10.1038/srep06128 10.1364/OE.21.009691 10.1016/j.optcom.2018.09.017 10.1016/j.optmat.2019.109441 10.1002/adem.201800038 10.1364/AO.56.002449 10.1038/nphoton.2012.262 10.1364/AOP.11.000380 10.1364/OE.418865 10.1364/OE.25.032280 10.1109/JPHOT.2015.2513210 10.1063/1.2891452 10.1016/j.carbon.2019.09.024 10.1038/nphoton.2010.186 10.1016/j.optmat.2020.110369 10.1364/OE.27.007393 10.1038/s41377-020-0300-5 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2021.107038 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2021_107038 S0749603621002366 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-dc8cc075d27b08f1f89b8baa50e4185c6da14d2266ea60a635f2bdc8f2999a813 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Thu Apr 24 22:59:37 EDT 2025 Tue Jul 01 01:35:17 EDT 2025 Fri Feb 23 02:47:16 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Metamaterial absorber Terahertz Broadband Graphene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-dc8cc075d27b08f1f89b8baa50e4185c6da14d2266ea60a635f2bdc8f2999a813 |
ORCID | 0000-0002-4257-7049 0000-0003-0112-1544 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2021_107038 crossref_primary_10_1016_j_spmi_2021_107038 elsevier_sciencedirect_doi_10_1016_j_spmi_2021_107038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Moghimi, Lin, Jiang (bib7) 2018; 20 Cheng, Zhao, Li (bib51) 2020; 109 Han, Chen (bib43) 2020; 28 Ding, Arigong, Ren (bib45) 2014; 4 Grigorenko, Polini, Novoselov (bib22) 2012; 6 Nguyen, Kim, Ahn, Lee, Park (bib33) 2020; 168 Fang, Wang, Schather (bib41) 2014; 14 He, Han, Li, Lang, Jing, Hong (bib2) 2019; 27 Liu, Zhong, Huang, Lv, Han, Liu (bib35) 2019; 27 Chen (bib38) 2012; 20 Landy, Bingham, Tyler, Jokerst, Smith, Padilla (bib8) 2009; 79 Kenney, Grant, Shah, Escorcia-Carranza, Humphreys, Cumming (bib6) 2017; 4 Sun, He, Hao, Xiao, Zhou (bib1) 2019; 11 Pierson, Wiederkehr, Billard (bib32) 2005; 478 Wu, Wnag, Feng (bib47) 2019; 155 Yao, Ling, Yue, Luo, Luo, Yao (bib20) 2016; 8 Jepsen, Cooke, Koch (bib14) 2011; 5 Wang, Li, Liu, Yan, Tian, Tian, Zhang (bib42) 2017; 25 Brar, Jang, Sherrott, Lopez, Atwater (bib23) 2013; 13 Ghosh, Das, Bhattacharyya (bib40) 2020; 30 Huang, Cheng, Cheng (bib39) 2018; 11 Yao, Ling, Yue, Luo, Ji, Yao (bib46) 2016; 24 Cheng, Du (bib13) 2019; 98 Tao, Landy, Bingham (bib31) 2008; 16 Hu, Meng, Wang (bib50) 2020; 109 Park, Tuong, Rhee (bib44) 2013; 21 Zhu, Li, Zheng (bib5) 2020; 9 Soleymani, Meymand, Granpayeh (bib24) 2020; 59 Gao, Zhu, Xu (bib49) 2017; 25 Wang, Huang, Li, Dong (bib3) 2019; 27 Kim, Hokmabadi, Balci (bib16) 2016; 122 Jiang, Wang, Liu (bib34) 2020; 41 Jeong, Nguyen, Lim (bib10) 2018; 8 Geng, Su, Wang, Jiang, Liu (bib18) 2019; 194 Zhai, Zhang, Zhang (bib26) 2018; 431 Feng, Xu, Li (bib27) 2021; 29 Deng, Yang, Yin (bib9) 2017; 56 Wang, Zhang, Zhang, Zhang, Cao (bib28) 2020; 28 Bonaccorso, Sun, Hasan, Ferrari (bib19) 2010; 4 Huang, Feng, Zhao, Wang, Jiang (bib4) 2012; 85 Song, Wang, Li, Liu (bib15) 2018; 26 Appasani, Prince, Ranjan, Gupta, Verma (bib17) 2018; 14 Smith, Vier, Koschny, Soukoulis (bib37) 2005; 71 Kang, Gao, Dai, Zhang, Zhang, Zhang (bib30) 2020; 19 Daniel, Bawuah (bib12) 2018; 84 Ahmadi, Vaezi, Harzand, Safian (bib25) 2021; 323 Wang, Zhang, Zhang, Cao (bib29) 2020; 10 Hanson (bib36) 2008; 103 Chen, Badioli, Alonso-Gonzalez (bib21) 2012; 487 Mou, Sun, Dong (bib48) 2018; 26 Lu, Zhang, Qiu (bib11) 2018; 11 Tao (10.1016/j.spmi.2021.107038_bib31) 2008; 16 Appasani (10.1016/j.spmi.2021.107038_bib17) 2018; 14 Smith (10.1016/j.spmi.2021.107038_bib37) 2005; 71 Yao (10.1016/j.spmi.2021.107038_bib20) 2016; 8 Zhu (10.1016/j.spmi.2021.107038_bib5) 2020; 9 Moghimi (10.1016/j.spmi.2021.107038_bib7) 2018; 20 Yao (10.1016/j.spmi.2021.107038_bib46) 2016; 24 Kenney (10.1016/j.spmi.2021.107038_bib6) 2017; 4 Fang (10.1016/j.spmi.2021.107038_bib41) 2014; 14 Gao (10.1016/j.spmi.2021.107038_bib49) 2017; 25 Sun (10.1016/j.spmi.2021.107038_bib1) 2019; 11 Feng (10.1016/j.spmi.2021.107038_bib27) 2021; 29 Chen (10.1016/j.spmi.2021.107038_bib38) 2012; 20 Kang (10.1016/j.spmi.2021.107038_bib30) 2020; 19 Jiang (10.1016/j.spmi.2021.107038_bib34) 2020; 41 Grigorenko (10.1016/j.spmi.2021.107038_bib22) 2012; 6 Park (10.1016/j.spmi.2021.107038_bib44) 2013; 21 Hu (10.1016/j.spmi.2021.107038_bib50) 2020; 109 Jeong (10.1016/j.spmi.2021.107038_bib10) 2018; 8 Brar (10.1016/j.spmi.2021.107038_bib23) 2013; 13 Lu (10.1016/j.spmi.2021.107038_bib11) 2018; 11 Nguyen (10.1016/j.spmi.2021.107038_bib33) 2020; 168 Song (10.1016/j.spmi.2021.107038_bib15) 2018; 26 Han (10.1016/j.spmi.2021.107038_bib43) 2020; 28 Cheng (10.1016/j.spmi.2021.107038_bib51) 2020; 109 Cheng (10.1016/j.spmi.2021.107038_bib13) 2019; 98 Liu (10.1016/j.spmi.2021.107038_bib35) 2019; 27 Deng (10.1016/j.spmi.2021.107038_bib9) 2017; 56 Daniel (10.1016/j.spmi.2021.107038_bib12) 2018; 84 He (10.1016/j.spmi.2021.107038_bib2) 2019; 27 Huang (10.1016/j.spmi.2021.107038_bib4) 2012; 85 Ahmadi (10.1016/j.spmi.2021.107038_bib25) 2021; 323 Chen (10.1016/j.spmi.2021.107038_bib21) 2012; 487 Jepsen (10.1016/j.spmi.2021.107038_bib14) 2011; 5 Kim (10.1016/j.spmi.2021.107038_bib16) 2016; 122 Geng (10.1016/j.spmi.2021.107038_bib18) 2019; 194 Wang (10.1016/j.spmi.2021.107038_bib28) 2020; 28 Soleymani (10.1016/j.spmi.2021.107038_bib24) 2020; 59 Wang (10.1016/j.spmi.2021.107038_bib3) 2019; 27 Ghosh (10.1016/j.spmi.2021.107038_bib40) 2020; 30 Wang (10.1016/j.spmi.2021.107038_bib42) 2017; 25 Wu (10.1016/j.spmi.2021.107038_bib47) 2019; 155 Bonaccorso (10.1016/j.spmi.2021.107038_bib19) 2010; 4 Huang (10.1016/j.spmi.2021.107038_bib39) 2018; 11 Zhai (10.1016/j.spmi.2021.107038_bib26) 2018; 431 Hanson (10.1016/j.spmi.2021.107038_bib36) 2008; 103 Pierson (10.1016/j.spmi.2021.107038_bib32) 2005; 478 Wang (10.1016/j.spmi.2021.107038_bib29) 2020; 10 Landy (10.1016/j.spmi.2021.107038_bib8) 2009; 79 Mou (10.1016/j.spmi.2021.107038_bib48) 2018; 26 Ding (10.1016/j.spmi.2021.107038_bib45) 2014; 4 |
References_xml | – volume: 122 year: 2016 ident: bib16 article-title: Investigation of robust flexible conformal THz perfect metamaterial absorber publication-title: Appl. Phys. A-Mater. – volume: 16 start-page: 7181 year: 2008 end-page: 7188 ident: bib31 article-title: A metamaterial absorber for the terahertz regime: design, fabrication and characterization publication-title: Opt. Express – volume: 14 start-page: 737 year: 2018 end-page: 742 ident: bib17 article-title: A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications publication-title: Plasmonics – volume: 28 year: 2020 ident: bib28 article-title: Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide publication-title: Opt. Express – volume: 28 start-page: 30289 year: 2020 end-page: 30298 ident: bib43 article-title: Tunable broadband terahertz absorber based on a single-layer graphene metasurface publication-title: Opt. Express – volume: 194 year: 2019 ident: bib18 article-title: Numerical design of a metasurface-based ultra-narrow band terahertz perfect absorber with high Q-factors publication-title: Optik – volume: 4 start-page: 611 year: 2010 end-page: 622 ident: bib19 article-title: Graphene photonics and optoelectronics publication-title: Nat. Photonics – volume: 59 start-page: 2839 year: 2020 end-page: 2848 ident: bib24 article-title: Broadband near-perfect terahertz absorber in single-layered and non-structured graphene loaded with dielectrics publication-title: Appl. Opt. – volume: 25 start-page: 32280 year: 2017 end-page: 32289 ident: bib42 article-title: Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal publication-title: Opt. Express – volume: 8 year: 2016 ident: bib20 article-title: Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency publication-title: IEEE Photonics J – volume: 4 year: 2014 ident: bib45 article-title: Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows publication-title: Sci. Rep. – volume: 26 start-page: 11728 year: 2018 end-page: 11736 ident: bib48 article-title: Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces publication-title: Opt. Express – volume: 6 start-page: 749 year: 2012 end-page: 758 ident: bib22 article-title: Graphene plasmonics publication-title: Nat. Photonics – volume: 487 start-page: 77 year: 2012 end-page: 81 ident: bib21 article-title: Optical nano-imaging of gate-tunable graphene plasmons publication-title: Nature – volume: 478 start-page: 196 year: 2005 end-page: 205 ident: bib32 article-title: Reactive magnetron sputtering of copper, silver, and gold publication-title: Thin Solid Films – volume: 85 year: 2012 ident: bib4 article-title: Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures publication-title: Phys. Rev. B – volume: 168 start-page: 580 year: 2020 end-page: 587 ident: bib33 article-title: Large-area growth of high-quality graphene/MoS2 vertical heterostructures by chemical vapor deposition with nucleation control publication-title: Carbon – volume: 14 start-page: 299 year: 2014 end-page: 304 ident: bib41 article-title: Active tunable absorption enhancement with graphene nanodisk arrays publication-title: Nano Lett. – volume: 11 start-page: 380 year: 2019 end-page: 479 ident: bib1 article-title: Electromagnetic metasurfaces: physics and applications publication-title: Adv. Opt Photon – volume: 20 year: 2018 ident: bib7 article-title: Broadband and ultrathin infrared stealth sheets publication-title: Adv. Eng. Mater. – volume: 24 start-page: 1518 year: 2016 end-page: 1527 ident: bib46 article-title: Dual-band tunable perfect metamaterial absorber in the THz range publication-title: Opt. Express – volume: 13 start-page: 2541 year: 2013 end-page: 2547 ident: bib23 article-title: Highly confined tunable mid-infrared plasmonics in graphene nanoresonators publication-title: Nano Lett. – volume: 5 start-page: 124 year: 2011 end-page: 166 ident: bib14 article-title: Terahertz spectroscopy and imaging-modern techniques and applications publication-title: Laser Photon. Rev. – volume: 8 year: 2018 ident: bib10 article-title: Meta-dome for broadband radar absorbing structure publication-title: Sci. Rep-UK – volume: 10 year: 2020 ident: bib29 article-title: Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial publication-title: Opt. Mater. Express – volume: 11 year: 2018 ident: bib39 article-title: Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene publication-title: Materials – volume: 30 year: 2020 ident: bib40 article-title: Graphene based metasurface with near unity broadband absorption in the terahertz gap publication-title: Int. J. RF Microw. Computer-Aided Eng. – volume: 71 year: 2005 ident: bib37 article-title: Electromagnetic parameter retrieval from inhomogeneous metamaterials publication-title: Phys. Rev. E – volume: 27 start-page: 25983 year: 2019 end-page: 25993 ident: bib3 article-title: Chirality selective metamaterial absorber with dual bands publication-title: Opt. Express – volume: 29 start-page: 7158 year: 2021 end-page: 7167 ident: bib27 article-title: Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials publication-title: Opt. Express – volume: 79 year: 2009 ident: bib8 article-title: Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging publication-title: Phys. Rev – volume: 26 start-page: 7148 year: 2018 end-page: 7154 ident: bib15 article-title: Broadband tunable terahertz absorber based on vanadium dioxide metamaterials publication-title: Opt. Express – volume: 431 start-page: 199 year: 2018 end-page: 202 ident: bib26 article-title: Tunable terahertz broadband absorber based on a composite structure of graphene multilayer and silicon strip array publication-title: Opt. Commun. – volume: 84 start-page: 447 year: 2018 end-page: 452 ident: bib12 article-title: Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications publication-title: Opt. Mater. – volume: 323 year: 2021 ident: bib25 article-title: Graphene-based terahertz metamaterial absorber for broadband applications publication-title: Solid State Commun. – volume: 109 year: 2020 ident: bib50 article-title: Tunable broadband terahertz absorber using a single-layer square graphene patch with fourfold rotationally symmetric groove publication-title: Opt. Mater. – volume: 109 year: 2020 ident: bib51 article-title: Broadband tunable terahertz metasurface absorber based on complementary-wheel-shaped graphene publication-title: Opt. Mater. – volume: 41 year: 2020 ident: bib34 article-title: Realization of high-performance tri-layer graphene saturable absorber mirror fabricated via a one-step transfer process publication-title: J. Semicond. Tech. Sci. – volume: 11 year: 2018 ident: bib11 article-title: Dual-band perfect metamaterial absorber based on an asymmetric H-shaped structure for terahertz waves publication-title: Materials – volume: 19 year: 2020 ident: bib30 article-title: Dual-controlled tunable terahertz coherent perfect absorption using Dirac semimetal and vanadium dioxide publication-title: Result Phys. – volume: 25 start-page: 9579 year: 2017 end-page: 9586 ident: bib49 article-title: Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect publication-title: Opt. Express – volume: 155 start-page: 618 year: 2019 end-page: 623 ident: bib47 article-title: Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene publication-title: Carbon – volume: 27 start-page: 7393 year: 2019 end-page: 7404 ident: bib35 article-title: Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials publication-title: Opt. Express – volume: 56 start-page: 2449 year: 2017 end-page: 2454 ident: bib9 article-title: Broadband terahertz metamaterial absorber based on tantalum nitride publication-title: Appl. Opt. – volume: 98 year: 2019 ident: bib13 article-title: Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region publication-title: Opt. Mater. – volume: 9 start-page: 60 year: 2020 ident: bib5 article-title: High-temperature infrared camouflage with efficient thermal management publication-title: Light Sci. Appl. – volume: 103 year: 2008 ident: bib36 article-title: Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene publication-title: J. Appl. Phys. – volume: 20 start-page: 7165 year: 2012 end-page: 7172 ident: bib38 article-title: Interference theory of metamaterial perfect absorbers publication-title: Opt. Express – volume: 27 start-page: 37590 year: 2019 end-page: 37600 ident: bib2 article-title: Analogue of electromagnetically induced transparency with high-Q factor in metal-dielectric metamaterials based on bright-bright mode coupling publication-title: Opt. Express – volume: 21 start-page: 9691 year: 2013 end-page: 9702 ident: bib44 article-title: Multi-band metamaterial absorber based on the arrangement of donut-type resonators publication-title: Opt. Express – volume: 4 start-page: 2604 year: 2017 end-page: 2612 ident: bib6 article-title: Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers publication-title: ACS Photonics – volume: 323 year: 2021 ident: 10.1016/j.spmi.2021.107038_bib25 article-title: Graphene-based terahertz metamaterial absorber for broadband applications publication-title: Solid State Commun. doi: 10.1016/j.ssc.2020.114023 – volume: 122 issue: 4 year: 2016 ident: 10.1016/j.spmi.2021.107038_bib16 article-title: Investigation of robust flexible conformal THz perfect metamaterial absorber publication-title: Appl. Phys. A-Mater. doi: 10.1007/s00339-016-9857-5 – volume: 14 start-page: 299 issue: 1 year: 2014 ident: 10.1016/j.spmi.2021.107038_bib41 article-title: Active tunable absorption enhancement with graphene nanodisk arrays publication-title: Nano Lett. doi: 10.1021/nl404042h – volume: 84 start-page: 447 year: 2018 ident: 10.1016/j.spmi.2021.107038_bib12 article-title: Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications publication-title: Opt. Mater. doi: 10.1016/j.optmat.2018.07.053 – volume: 25 start-page: 9579 issue: 9 year: 2017 ident: 10.1016/j.spmi.2021.107038_bib49 article-title: Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect publication-title: Opt. Express doi: 10.1364/OE.25.009579 – volume: 16 start-page: 7181 issue: 10 year: 2008 ident: 10.1016/j.spmi.2021.107038_bib31 article-title: A metamaterial absorber for the terahertz regime: design, fabrication and characterization publication-title: Opt. Express doi: 10.1364/OE.16.007181 – volume: 30 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib40 article-title: Graphene based metasurface with near unity broadband absorption in the terahertz gap publication-title: Int. J. RF Microw. Computer-Aided Eng. doi: 10.1002/mmce.22436 – volume: 487 start-page: 77 issue: 7405 year: 2012 ident: 10.1016/j.spmi.2021.107038_bib21 article-title: Optical nano-imaging of gate-tunable graphene plasmons publication-title: Nature doi: 10.1038/nature11254 – volume: 27 start-page: 25983 issue: 18 year: 2019 ident: 10.1016/j.spmi.2021.107038_bib3 article-title: Chirality selective metamaterial absorber with dual bands publication-title: Opt. Express doi: 10.1364/OE.27.025983 – volume: 71 issue: 3 year: 2005 ident: 10.1016/j.spmi.2021.107038_bib37 article-title: Electromagnetic parameter retrieval from inhomogeneous metamaterials publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.036617 – volume: 28 issue: 12 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib28 article-title: Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide publication-title: Opt. Express doi: 10.1364/OE.394784 – volume: 26 start-page: 11728 year: 2018 ident: 10.1016/j.spmi.2021.107038_bib48 article-title: Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces publication-title: Opt. Express doi: 10.1364/OE.26.011728 – volume: 10 issue: 2 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib29 article-title: Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial publication-title: Opt. Mater. Express doi: 10.1364/OME.383008 – volume: 8 year: 2018 ident: 10.1016/j.spmi.2021.107038_bib10 article-title: Meta-dome for broadband radar absorbing structure publication-title: Sci. Rep-UK – volume: 59 start-page: 2839 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib24 article-title: Broadband near-perfect terahertz absorber in single-layered and non-structured graphene loaded with dielectrics publication-title: Appl. Opt. doi: 10.1364/AO.383637 – volume: 27 start-page: 37590 issue: 26 year: 2019 ident: 10.1016/j.spmi.2021.107038_bib2 article-title: Analogue of electromagnetically induced transparency with high-Q factor in metal-dielectric metamaterials based on bright-bright mode coupling publication-title: Opt. Express doi: 10.1364/OE.27.037590 – volume: 11 issue: 11 year: 2018 ident: 10.1016/j.spmi.2021.107038_bib11 article-title: Dual-band perfect metamaterial absorber based on an asymmetric H-shaped structure for terahertz waves publication-title: Materials doi: 10.3390/ma11112193 – volume: 41 issue: 1 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib34 article-title: Realization of high-performance tri-layer graphene saturable absorber mirror fabricated via a one-step transfer process publication-title: J. Semicond. Tech. Sci. – volume: 85 issue: 19 year: 2012 ident: 10.1016/j.spmi.2021.107038_bib4 article-title: Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.195131 – volume: 19 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib30 article-title: Dual-controlled tunable terahertz coherent perfect absorption using Dirac semimetal and vanadium dioxide publication-title: Result Phys. doi: 10.1016/j.rinp.2020.103688 – volume: 5 start-page: 124 issue: 1 year: 2011 ident: 10.1016/j.spmi.2021.107038_bib14 article-title: Terahertz spectroscopy and imaging-modern techniques and applications publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201000011 – volume: 4 start-page: 2604 issue: 10 year: 2017 ident: 10.1016/j.spmi.2021.107038_bib6 article-title: Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00906 – volume: 20 start-page: 7165 issue: 7 year: 2012 ident: 10.1016/j.spmi.2021.107038_bib38 article-title: Interference theory of metamaterial perfect absorbers publication-title: Opt. Express doi: 10.1364/OE.20.007165 – volume: 24 start-page: 1518 issue: 2 year: 2016 ident: 10.1016/j.spmi.2021.107038_bib46 article-title: Dual-band tunable perfect metamaterial absorber in the THz range publication-title: Opt. Express doi: 10.1364/OE.24.001518 – volume: 13 start-page: 2541 issue: 6 year: 2013 ident: 10.1016/j.spmi.2021.107038_bib23 article-title: Highly confined tunable mid-infrared plasmonics in graphene nanoresonators publication-title: Nano Lett. doi: 10.1021/nl400601c – volume: 478 start-page: 196 issue: 1–2 year: 2005 ident: 10.1016/j.spmi.2021.107038_bib32 article-title: Reactive magnetron sputtering of copper, silver, and gold publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.10.043 – volume: 168 start-page: 580 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib33 article-title: Large-area growth of high-quality graphene/MoS2 vertical heterostructures by chemical vapor deposition with nucleation control publication-title: Carbon doi: 10.1016/j.carbon.2020.07.014 – volume: 194 year: 2019 ident: 10.1016/j.spmi.2021.107038_bib18 article-title: Numerical design of a metasurface-based ultra-narrow band terahertz perfect absorber with high Q-factors publication-title: Optik doi: 10.1016/j.ijleo.2019.163071 – volume: 26 start-page: 7148 issue: 6 year: 2018 ident: 10.1016/j.spmi.2021.107038_bib15 article-title: Broadband tunable terahertz absorber based on vanadium dioxide metamaterials publication-title: Opt. Express doi: 10.1364/OE.26.007148 – volume: 11 issue: 4 year: 2018 ident: 10.1016/j.spmi.2021.107038_bib39 article-title: Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene publication-title: Materials doi: 10.3390/ma11040540 – volume: 14 start-page: 737 issue: 3 year: 2018 ident: 10.1016/j.spmi.2021.107038_bib17 article-title: A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications publication-title: Plasmonics doi: 10.1007/s11468-018-0852-x – volume: 28 start-page: 30289 issue: 20 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib43 article-title: Tunable broadband terahertz absorber based on a single-layer graphene metasurface publication-title: Opt. Express doi: 10.1364/OE.403631 – volume: 79 issue: 12 year: 2009 ident: 10.1016/j.spmi.2021.107038_bib8 article-title: Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.125104 – volume: 109 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib50 article-title: Tunable broadband terahertz absorber using a single-layer square graphene patch with fourfold rotationally symmetric groove publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110235 – volume: 4 year: 2014 ident: 10.1016/j.spmi.2021.107038_bib45 article-title: Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows publication-title: Sci. Rep. doi: 10.1038/srep06128 – volume: 21 start-page: 9691 issue: 8 year: 2013 ident: 10.1016/j.spmi.2021.107038_bib44 article-title: Multi-band metamaterial absorber based on the arrangement of donut-type resonators publication-title: Opt. Express doi: 10.1364/OE.21.009691 – volume: 431 start-page: 199 year: 2018 ident: 10.1016/j.spmi.2021.107038_bib26 article-title: Tunable terahertz broadband absorber based on a composite structure of graphene multilayer and silicon strip array publication-title: Opt. Commun. doi: 10.1016/j.optcom.2018.09.017 – volume: 98 year: 2019 ident: 10.1016/j.spmi.2021.107038_bib13 article-title: Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region publication-title: Opt. Mater. doi: 10.1016/j.optmat.2019.109441 – volume: 20 issue: 11 year: 2018 ident: 10.1016/j.spmi.2021.107038_bib7 article-title: Broadband and ultrathin infrared stealth sheets publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201800038 – volume: 56 start-page: 2449 issue: 9 year: 2017 ident: 10.1016/j.spmi.2021.107038_bib9 article-title: Broadband terahertz metamaterial absorber based on tantalum nitride publication-title: Appl. Opt. doi: 10.1364/AO.56.002449 – volume: 6 start-page: 749 issue: 11 year: 2012 ident: 10.1016/j.spmi.2021.107038_bib22 article-title: Graphene plasmonics publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.262 – volume: 11 start-page: 380 issue: 2 year: 2019 ident: 10.1016/j.spmi.2021.107038_bib1 article-title: Electromagnetic metasurfaces: physics and applications publication-title: Adv. Opt Photon doi: 10.1364/AOP.11.000380 – volume: 29 start-page: 7158 issue: 5 year: 2021 ident: 10.1016/j.spmi.2021.107038_bib27 article-title: Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials publication-title: Opt. Express doi: 10.1364/OE.418865 – volume: 25 start-page: 32280 issue: 26 year: 2017 ident: 10.1016/j.spmi.2021.107038_bib42 article-title: Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal publication-title: Opt. Express doi: 10.1364/OE.25.032280 – volume: 8 issue: 1 year: 2016 ident: 10.1016/j.spmi.2021.107038_bib20 article-title: Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency publication-title: IEEE Photonics J doi: 10.1109/JPHOT.2015.2513210 – volume: 103 year: 2008 ident: 10.1016/j.spmi.2021.107038_bib36 article-title: Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene publication-title: J. Appl. Phys. doi: 10.1063/1.2891452 – volume: 155 start-page: 618 year: 2019 ident: 10.1016/j.spmi.2021.107038_bib47 article-title: Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene publication-title: Carbon doi: 10.1016/j.carbon.2019.09.024 – volume: 4 start-page: 611 issue: 9 year: 2010 ident: 10.1016/j.spmi.2021.107038_bib19 article-title: Graphene photonics and optoelectronics publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.186 – volume: 109 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib51 article-title: Broadband tunable terahertz metasurface absorber based on complementary-wheel-shaped graphene publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110369 – volume: 27 start-page: 7393 issue: 5 year: 2019 ident: 10.1016/j.spmi.2021.107038_bib35 article-title: Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials publication-title: Opt. Express doi: 10.1364/OE.27.007393 – volume: 9 start-page: 60 year: 2020 ident: 10.1016/j.spmi.2021.107038_bib5 article-title: High-temperature infrared camouflage with efficient thermal management publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-0300-5 |
SSID | ssj0009417 |
Score | 2.0600863 |
Snippet | A compact tunable graphene-based broadband metamaterial absorber in the terahertz (THz) frequency band was presented in this paper. The proposed absorber is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107038 |
SubjectTerms | Broadband Graphene Metamaterial absorber Terahertz |
Title | A compact metamaterial broadband THz absorber consists of graphene crosses with different sizes |
URI | https://dx.doi.org/10.1016/j.spmi.2021.107038 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBm8Qm6SbdHEuxRMVebKG3sE-I2KQk8dKDv93ZTeIDxIPHLLNhmR2--RJm5kPomvuAeCLijpCmJScKAicChHTGPpcR55yF1HQjP83DeEkeVsGqg6ZtL4wpq2ywv8Z0i9bNyrDx5nCTpsNnSH5AvwGAPTsG3YzdJmRsovz2_avMIyJWddcYO8a6aZypa7zKzTqFb0TfgwUIffp7cvqWcGaH6KBhinhSH-YIdVTWQ3vTVqCth3Zt9aYoj1EywbaWXFR4rSoGJNTGFeZFziRnmcSLeIsZL_OCqwJssxLeUeJcYzuwGvAO2xOpEpsfs7iVTalwmW5VeYKWs7vFNHYa5QRHjFy3cqSgQgAZkP6Yu1R7mkaccsYCV5lhNSKUzCMSmFeoWOgyIB0a7kZQDckpYtQbnaJulmfqDGENaMmNnK-vCfGZx1kkDW2iJHA10WEfea3LEtGMFTfqFq9JWz_2khg3J8bNSe3mPrr53LOph2r8aR20N5H8CI0EUP-Pfef_3HeB9s1T3XB4ibpV8aaugHlUfGBDa4B2JveP8fwDYYrX3Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60IvUiWhXf7sGbxCYxiZtjKUp9tBdb8LbsEyo2LUm8ePC3O7tJfID04DWZDcvs5JsvYWY-gHMRIuLJVHhS2ZacNI69FBHSuw6FSoUQPKG2G3k4SgaT6P45fl6BftMLY8sqa-yvMN2hdX2lW3uzu5hOu0-Y_JB-IwAHbgx6sgprEb6-Vsbg8uO7ziONnOyutfased05UxV5FYvZFD8SwwAvYOzTv7PTj4xzuwWbNVUkvWo327Cisw60-41CWwfWXfmmLHaA9YgrJpclmemSIwt1gUVEPudK8EyR8eCdcFHMc6FztM0KfEZB5oa4idUIeMTtSBfE_pkljW5KSYrpuy52YXJ7M-4PvFo6wZNXvl96SlIpkQ2o8Fr41ASGpoIKzmNf22k1MlE8iBRSr0TzxOfIOgwejqQGs1PKaXC1B61snul9IAbhUlg939BEUcgDwVNleRONYt9EJjmAoHEZk_VccStv8cqaArIXZt3MrJtZ5eYDuPhas6imaiy1jpuTYL9igyHsL1l3-M91Z9AejIeP7PFu9HAEG_ZO1X14DK0yf9MnSENKcerC7BN0bdlr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+compact+metamaterial+broadband+THz+absorber+consists+of+graphene+crosses+with+different+sizes&rft.jtitle=Superlattices+and+microstructures&rft.au=Liu%2C+Wen&rft.au=Lv%2C+Yisong&rft.au=Tian%2C+Jinping&rft.au=Yang%2C+Rongcao&rft.date=2021-11-01&rft.issn=0749-6036&rft.volume=159&rft.spage=107038&rft_id=info:doi/10.1016%2Fj.spmi.2021.107038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2021_107038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |