A compact metamaterial broadband THz absorber consists of graphene crosses with different sizes

A compact tunable graphene-based broadband metamaterial absorber in the terahertz (THz) frequency band was presented in this paper. The proposed absorber is the classic sandwich structure, which is composed of graphene cross resonators of different sizes placed on the top of a dielectric spacer back...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 159; p. 107038
Main Authors Liu, Wen, Lv, Yisong, Tian, Jinping, Yang, Rongcao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A compact tunable graphene-based broadband metamaterial absorber in the terahertz (THz) frequency band was presented in this paper. The proposed absorber is the classic sandwich structure, which is composed of graphene cross resonators of different sizes placed on the top of a dielectric spacer backed with a gold ground at the bottom. It is shown that the absorber can achieve a broad absorption band from 2.81 THz to 4.67 THz with absorption up to 97 % under the normal incident. Meanwhile, the absorption property can be kept to a moderate level when the incident angle is up to 45° for both TE and TM incident light, and the absorption is polarization insensitive. By increasing the chemical potential of graphene from 0.40 eV to 0.60 eV, the broad absorption band can be tuned to shift blue with slightly changing maximum absorption rate. What's more, the absorption bandwidth can be further extended to over 2.34 THz with absorption larger than 97 % by adding another graphene cross layer. Based on the optimal and novel characteristics, we hope that the designed absorber may have potential applications in THz absorbing, sensing, switching, modulating, stealthy and so on. •The absorber only consists of graphene patterns, dielectric, and gold ground making it easy to be fabricated.•Absorption over 97 % can be realized in 2.81–4.67 THz under the normal incident with bandwidth up to 1.86 THz.•Absorption property is wide-angle in incidence and is insensitive to the polarization angles.•Absorption performance has an obvious improvement than some other reported literatures.
AbstractList A compact tunable graphene-based broadband metamaterial absorber in the terahertz (THz) frequency band was presented in this paper. The proposed absorber is the classic sandwich structure, which is composed of graphene cross resonators of different sizes placed on the top of a dielectric spacer backed with a gold ground at the bottom. It is shown that the absorber can achieve a broad absorption band from 2.81 THz to 4.67 THz with absorption up to 97 % under the normal incident. Meanwhile, the absorption property can be kept to a moderate level when the incident angle is up to 45° for both TE and TM incident light, and the absorption is polarization insensitive. By increasing the chemical potential of graphene from 0.40 eV to 0.60 eV, the broad absorption band can be tuned to shift blue with slightly changing maximum absorption rate. What's more, the absorption bandwidth can be further extended to over 2.34 THz with absorption larger than 97 % by adding another graphene cross layer. Based on the optimal and novel characteristics, we hope that the designed absorber may have potential applications in THz absorbing, sensing, switching, modulating, stealthy and so on. •The absorber only consists of graphene patterns, dielectric, and gold ground making it easy to be fabricated.•Absorption over 97 % can be realized in 2.81–4.67 THz under the normal incident with bandwidth up to 1.86 THz.•Absorption property is wide-angle in incidence and is insensitive to the polarization angles.•Absorption performance has an obvious improvement than some other reported literatures.
ArticleNumber 107038
Author Yang, Rongcao
Lv, Yisong
Tian, Jinping
Liu, Wen
Author_xml – sequence: 1
  givenname: Wen
  surname: Liu
  fullname: Liu, Wen
  organization: College of Physics and Electronics Engineering, Shanxi University, Taiyuan, 030006, PR China
– sequence: 2
  givenname: Yisong
  surname: Lv
  fullname: Lv, Yisong
  organization: College of Physics and Electronics Engineering, Shanxi University, Taiyuan, 030006, PR China
– sequence: 3
  givenname: Jinping
  orcidid: 0000-0002-4257-7049
  surname: Tian
  fullname: Tian, Jinping
  email: tianjp@sxu.edu.cn
  organization: College of Physics and Electronics Engineering, Shanxi University, Taiyuan, 030006, PR China
– sequence: 4
  givenname: Rongcao
  orcidid: 0000-0003-0112-1544
  surname: Yang
  fullname: Yang, Rongcao
  organization: College of Physics and Electronics Engineering, Shanxi University, Taiyuan, 030006, PR China
BookMark eNp9kE1LAzEQhoNUsK3-AU_5A1sn-5HdBS-lqBUKXuo5zCYTm9L9IAmK_fVurScPPQ0M8wzv-8zYpOs7YuxewEKAkA_7RRhat0ghFeOihKy6YlMBtUwyWZYTNoUyrxMJmbxhsxD2AFDnopwyteS6bwfUkbcUscVI3uGBN75H02Bn-HZ95NiE3jfkx9suuBAD7y3_8DjsqCOufR8CBf7l4o4bZy156iIP7kjhll1bPAS6-5tz9v78tF2tk83by-tquUl0BhAToyutoSxMWjZQWWGruqkaxAIoF1WhpUGRmzSVklACyqywaTNCNq3rGiuRzVl1_vsbxpNV2kWMru-iR3dQAtRJlNqrkyh1EqXOokY0_YcO3rXovy9Dj2eIxlKfjrwK2lGnyThPOirTu0v4D94hhiY
CitedBy_id crossref_primary_10_1016_j_spmi_2022_107153
crossref_primary_10_1016_j_diamond_2024_111598
crossref_primary_10_1016_j_diamond_2023_110481
crossref_primary_10_1364_AO_513884
crossref_primary_10_1088_1361_6463_ad0912
crossref_primary_10_1002_adfm_202402068
crossref_primary_10_1016_j_diamond_2023_110060
crossref_primary_10_1016_j_jmmm_2024_172418
crossref_primary_10_1016_j_optlastec_2024_111490
crossref_primary_10_1007_s11664_024_11238_y
crossref_primary_10_1016_j_aeue_2023_154784
crossref_primary_10_1016_j_optlastec_2025_112591
crossref_primary_10_1007_s11082_023_05064_5
crossref_primary_10_3390_coatings14040478
crossref_primary_10_1016_j_aeue_2023_154602
crossref_primary_10_1016_j_optcom_2023_129991
crossref_primary_10_1364_AO_457708
crossref_primary_10_3788_LOP230572
crossref_primary_10_1364_OE_532809
crossref_primary_10_3389_fmats_2023_1305793
Cites_doi 10.1016/j.ssc.2020.114023
10.1007/s00339-016-9857-5
10.1021/nl404042h
10.1016/j.optmat.2018.07.053
10.1364/OE.25.009579
10.1364/OE.16.007181
10.1002/mmce.22436
10.1038/nature11254
10.1364/OE.27.025983
10.1103/PhysRevE.71.036617
10.1364/OE.394784
10.1364/OE.26.011728
10.1364/OME.383008
10.1364/AO.383637
10.1364/OE.27.037590
10.3390/ma11112193
10.1103/PhysRevB.85.195131
10.1016/j.rinp.2020.103688
10.1002/lpor.201000011
10.1021/acsphotonics.7b00906
10.1364/OE.20.007165
10.1364/OE.24.001518
10.1021/nl400601c
10.1016/j.tsf.2004.10.043
10.1016/j.carbon.2020.07.014
10.1016/j.ijleo.2019.163071
10.1364/OE.26.007148
10.3390/ma11040540
10.1007/s11468-018-0852-x
10.1364/OE.403631
10.1103/PhysRevB.79.125104
10.1016/j.optmat.2020.110235
10.1038/srep06128
10.1364/OE.21.009691
10.1016/j.optcom.2018.09.017
10.1016/j.optmat.2019.109441
10.1002/adem.201800038
10.1364/AO.56.002449
10.1038/nphoton.2012.262
10.1364/AOP.11.000380
10.1364/OE.418865
10.1364/OE.25.032280
10.1109/JPHOT.2015.2513210
10.1063/1.2891452
10.1016/j.carbon.2019.09.024
10.1038/nphoton.2010.186
10.1016/j.optmat.2020.110369
10.1364/OE.27.007393
10.1038/s41377-020-0300-5
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2021.107038
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2021_107038
S0749603621002366
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-dc8cc075d27b08f1f89b8baa50e4185c6da14d2266ea60a635f2bdc8f2999a813
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Thu Apr 24 22:59:37 EDT 2025
Tue Jul 01 01:35:17 EDT 2025
Fri Feb 23 02:47:16 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Metamaterial absorber
Terahertz
Broadband
Graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-dc8cc075d27b08f1f89b8baa50e4185c6da14d2266ea60a635f2bdc8f2999a813
ORCID 0000-0002-4257-7049
0000-0003-0112-1544
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2021_107038
crossref_primary_10_1016_j_spmi_2021_107038
elsevier_sciencedirect_doi_10_1016_j_spmi_2021_107038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Superlattices and microstructures
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moghimi, Lin, Jiang (bib7) 2018; 20
Cheng, Zhao, Li (bib51) 2020; 109
Han, Chen (bib43) 2020; 28
Ding, Arigong, Ren (bib45) 2014; 4
Grigorenko, Polini, Novoselov (bib22) 2012; 6
Nguyen, Kim, Ahn, Lee, Park (bib33) 2020; 168
Fang, Wang, Schather (bib41) 2014; 14
He, Han, Li, Lang, Jing, Hong (bib2) 2019; 27
Liu, Zhong, Huang, Lv, Han, Liu (bib35) 2019; 27
Chen (bib38) 2012; 20
Landy, Bingham, Tyler, Jokerst, Smith, Padilla (bib8) 2009; 79
Kenney, Grant, Shah, Escorcia-Carranza, Humphreys, Cumming (bib6) 2017; 4
Sun, He, Hao, Xiao, Zhou (bib1) 2019; 11
Pierson, Wiederkehr, Billard (bib32) 2005; 478
Wu, Wnag, Feng (bib47) 2019; 155
Yao, Ling, Yue, Luo, Luo, Yao (bib20) 2016; 8
Jepsen, Cooke, Koch (bib14) 2011; 5
Wang, Li, Liu, Yan, Tian, Tian, Zhang (bib42) 2017; 25
Brar, Jang, Sherrott, Lopez, Atwater (bib23) 2013; 13
Ghosh, Das, Bhattacharyya (bib40) 2020; 30
Huang, Cheng, Cheng (bib39) 2018; 11
Yao, Ling, Yue, Luo, Ji, Yao (bib46) 2016; 24
Cheng, Du (bib13) 2019; 98
Tao, Landy, Bingham (bib31) 2008; 16
Hu, Meng, Wang (bib50) 2020; 109
Park, Tuong, Rhee (bib44) 2013; 21
Zhu, Li, Zheng (bib5) 2020; 9
Soleymani, Meymand, Granpayeh (bib24) 2020; 59
Gao, Zhu, Xu (bib49) 2017; 25
Wang, Huang, Li, Dong (bib3) 2019; 27
Kim, Hokmabadi, Balci (bib16) 2016; 122
Jiang, Wang, Liu (bib34) 2020; 41
Jeong, Nguyen, Lim (bib10) 2018; 8
Geng, Su, Wang, Jiang, Liu (bib18) 2019; 194
Zhai, Zhang, Zhang (bib26) 2018; 431
Feng, Xu, Li (bib27) 2021; 29
Deng, Yang, Yin (bib9) 2017; 56
Wang, Zhang, Zhang, Zhang, Cao (bib28) 2020; 28
Bonaccorso, Sun, Hasan, Ferrari (bib19) 2010; 4
Huang, Feng, Zhao, Wang, Jiang (bib4) 2012; 85
Song, Wang, Li, Liu (bib15) 2018; 26
Appasani, Prince, Ranjan, Gupta, Verma (bib17) 2018; 14
Smith, Vier, Koschny, Soukoulis (bib37) 2005; 71
Kang, Gao, Dai, Zhang, Zhang, Zhang (bib30) 2020; 19
Daniel, Bawuah (bib12) 2018; 84
Ahmadi, Vaezi, Harzand, Safian (bib25) 2021; 323
Wang, Zhang, Zhang, Cao (bib29) 2020; 10
Hanson (bib36) 2008; 103
Chen, Badioli, Alonso-Gonzalez (bib21) 2012; 487
Mou, Sun, Dong (bib48) 2018; 26
Lu, Zhang, Qiu (bib11) 2018; 11
Tao (10.1016/j.spmi.2021.107038_bib31) 2008; 16
Appasani (10.1016/j.spmi.2021.107038_bib17) 2018; 14
Smith (10.1016/j.spmi.2021.107038_bib37) 2005; 71
Yao (10.1016/j.spmi.2021.107038_bib20) 2016; 8
Zhu (10.1016/j.spmi.2021.107038_bib5) 2020; 9
Moghimi (10.1016/j.spmi.2021.107038_bib7) 2018; 20
Yao (10.1016/j.spmi.2021.107038_bib46) 2016; 24
Kenney (10.1016/j.spmi.2021.107038_bib6) 2017; 4
Fang (10.1016/j.spmi.2021.107038_bib41) 2014; 14
Gao (10.1016/j.spmi.2021.107038_bib49) 2017; 25
Sun (10.1016/j.spmi.2021.107038_bib1) 2019; 11
Feng (10.1016/j.spmi.2021.107038_bib27) 2021; 29
Chen (10.1016/j.spmi.2021.107038_bib38) 2012; 20
Kang (10.1016/j.spmi.2021.107038_bib30) 2020; 19
Jiang (10.1016/j.spmi.2021.107038_bib34) 2020; 41
Grigorenko (10.1016/j.spmi.2021.107038_bib22) 2012; 6
Park (10.1016/j.spmi.2021.107038_bib44) 2013; 21
Hu (10.1016/j.spmi.2021.107038_bib50) 2020; 109
Jeong (10.1016/j.spmi.2021.107038_bib10) 2018; 8
Brar (10.1016/j.spmi.2021.107038_bib23) 2013; 13
Lu (10.1016/j.spmi.2021.107038_bib11) 2018; 11
Nguyen (10.1016/j.spmi.2021.107038_bib33) 2020; 168
Song (10.1016/j.spmi.2021.107038_bib15) 2018; 26
Han (10.1016/j.spmi.2021.107038_bib43) 2020; 28
Cheng (10.1016/j.spmi.2021.107038_bib51) 2020; 109
Cheng (10.1016/j.spmi.2021.107038_bib13) 2019; 98
Liu (10.1016/j.spmi.2021.107038_bib35) 2019; 27
Deng (10.1016/j.spmi.2021.107038_bib9) 2017; 56
Daniel (10.1016/j.spmi.2021.107038_bib12) 2018; 84
He (10.1016/j.spmi.2021.107038_bib2) 2019; 27
Huang (10.1016/j.spmi.2021.107038_bib4) 2012; 85
Ahmadi (10.1016/j.spmi.2021.107038_bib25) 2021; 323
Chen (10.1016/j.spmi.2021.107038_bib21) 2012; 487
Jepsen (10.1016/j.spmi.2021.107038_bib14) 2011; 5
Kim (10.1016/j.spmi.2021.107038_bib16) 2016; 122
Geng (10.1016/j.spmi.2021.107038_bib18) 2019; 194
Wang (10.1016/j.spmi.2021.107038_bib28) 2020; 28
Soleymani (10.1016/j.spmi.2021.107038_bib24) 2020; 59
Wang (10.1016/j.spmi.2021.107038_bib3) 2019; 27
Ghosh (10.1016/j.spmi.2021.107038_bib40) 2020; 30
Wang (10.1016/j.spmi.2021.107038_bib42) 2017; 25
Wu (10.1016/j.spmi.2021.107038_bib47) 2019; 155
Bonaccorso (10.1016/j.spmi.2021.107038_bib19) 2010; 4
Huang (10.1016/j.spmi.2021.107038_bib39) 2018; 11
Zhai (10.1016/j.spmi.2021.107038_bib26) 2018; 431
Hanson (10.1016/j.spmi.2021.107038_bib36) 2008; 103
Pierson (10.1016/j.spmi.2021.107038_bib32) 2005; 478
Wang (10.1016/j.spmi.2021.107038_bib29) 2020; 10
Landy (10.1016/j.spmi.2021.107038_bib8) 2009; 79
Mou (10.1016/j.spmi.2021.107038_bib48) 2018; 26
Ding (10.1016/j.spmi.2021.107038_bib45) 2014; 4
References_xml – volume: 122
  year: 2016
  ident: bib16
  article-title: Investigation of robust flexible conformal THz perfect metamaterial absorber
  publication-title: Appl. Phys. A-Mater.
– volume: 16
  start-page: 7181
  year: 2008
  end-page: 7188
  ident: bib31
  article-title: A metamaterial absorber for the terahertz regime: design, fabrication and characterization
  publication-title: Opt. Express
– volume: 14
  start-page: 737
  year: 2018
  end-page: 742
  ident: bib17
  article-title: A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications
  publication-title: Plasmonics
– volume: 28
  year: 2020
  ident: bib28
  article-title: Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide
  publication-title: Opt. Express
– volume: 28
  start-page: 30289
  year: 2020
  end-page: 30298
  ident: bib43
  article-title: Tunable broadband terahertz absorber based on a single-layer graphene metasurface
  publication-title: Opt. Express
– volume: 194
  year: 2019
  ident: bib18
  article-title: Numerical design of a metasurface-based ultra-narrow band terahertz perfect absorber with high Q-factors
  publication-title: Optik
– volume: 4
  start-page: 611
  year: 2010
  end-page: 622
  ident: bib19
  article-title: Graphene photonics and optoelectronics
  publication-title: Nat. Photonics
– volume: 59
  start-page: 2839
  year: 2020
  end-page: 2848
  ident: bib24
  article-title: Broadband near-perfect terahertz absorber in single-layered and non-structured graphene loaded with dielectrics
  publication-title: Appl. Opt.
– volume: 25
  start-page: 32280
  year: 2017
  end-page: 32289
  ident: bib42
  article-title: Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal
  publication-title: Opt. Express
– volume: 8
  year: 2016
  ident: bib20
  article-title: Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency
  publication-title: IEEE Photonics J
– volume: 4
  year: 2014
  ident: bib45
  article-title: Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows
  publication-title: Sci. Rep.
– volume: 26
  start-page: 11728
  year: 2018
  end-page: 11736
  ident: bib48
  article-title: Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces
  publication-title: Opt. Express
– volume: 6
  start-page: 749
  year: 2012
  end-page: 758
  ident: bib22
  article-title: Graphene plasmonics
  publication-title: Nat. Photonics
– volume: 487
  start-page: 77
  year: 2012
  end-page: 81
  ident: bib21
  article-title: Optical nano-imaging of gate-tunable graphene plasmons
  publication-title: Nature
– volume: 478
  start-page: 196
  year: 2005
  end-page: 205
  ident: bib32
  article-title: Reactive magnetron sputtering of copper, silver, and gold
  publication-title: Thin Solid Films
– volume: 85
  year: 2012
  ident: bib4
  article-title: Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures
  publication-title: Phys. Rev. B
– volume: 168
  start-page: 580
  year: 2020
  end-page: 587
  ident: bib33
  article-title: Large-area growth of high-quality graphene/MoS2 vertical heterostructures by chemical vapor deposition with nucleation control
  publication-title: Carbon
– volume: 14
  start-page: 299
  year: 2014
  end-page: 304
  ident: bib41
  article-title: Active tunable absorption enhancement with graphene nanodisk arrays
  publication-title: Nano Lett.
– volume: 11
  start-page: 380
  year: 2019
  end-page: 479
  ident: bib1
  article-title: Electromagnetic metasurfaces: physics and applications
  publication-title: Adv. Opt Photon
– volume: 20
  year: 2018
  ident: bib7
  article-title: Broadband and ultrathin infrared stealth sheets
  publication-title: Adv. Eng. Mater.
– volume: 24
  start-page: 1518
  year: 2016
  end-page: 1527
  ident: bib46
  article-title: Dual-band tunable perfect metamaterial absorber in the THz range
  publication-title: Opt. Express
– volume: 13
  start-page: 2541
  year: 2013
  end-page: 2547
  ident: bib23
  article-title: Highly confined tunable mid-infrared plasmonics in graphene nanoresonators
  publication-title: Nano Lett.
– volume: 5
  start-page: 124
  year: 2011
  end-page: 166
  ident: bib14
  article-title: Terahertz spectroscopy and imaging-modern techniques and applications
  publication-title: Laser Photon. Rev.
– volume: 8
  year: 2018
  ident: bib10
  article-title: Meta-dome for broadband radar absorbing structure
  publication-title: Sci. Rep-UK
– volume: 10
  year: 2020
  ident: bib29
  article-title: Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial
  publication-title: Opt. Mater. Express
– volume: 11
  year: 2018
  ident: bib39
  article-title: Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene
  publication-title: Materials
– volume: 30
  year: 2020
  ident: bib40
  article-title: Graphene based metasurface with near unity broadband absorption in the terahertz gap
  publication-title: Int. J. RF Microw. Computer-Aided Eng.
– volume: 71
  year: 2005
  ident: bib37
  article-title: Electromagnetic parameter retrieval from inhomogeneous metamaterials
  publication-title: Phys. Rev. E
– volume: 27
  start-page: 25983
  year: 2019
  end-page: 25993
  ident: bib3
  article-title: Chirality selective metamaterial absorber with dual bands
  publication-title: Opt. Express
– volume: 29
  start-page: 7158
  year: 2021
  end-page: 7167
  ident: bib27
  article-title: Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials
  publication-title: Opt. Express
– volume: 79
  year: 2009
  ident: bib8
  article-title: Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging
  publication-title: Phys. Rev
– volume: 26
  start-page: 7148
  year: 2018
  end-page: 7154
  ident: bib15
  article-title: Broadband tunable terahertz absorber based on vanadium dioxide metamaterials
  publication-title: Opt. Express
– volume: 431
  start-page: 199
  year: 2018
  end-page: 202
  ident: bib26
  article-title: Tunable terahertz broadband absorber based on a composite structure of graphene multilayer and silicon strip array
  publication-title: Opt. Commun.
– volume: 84
  start-page: 447
  year: 2018
  end-page: 452
  ident: bib12
  article-title: Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications
  publication-title: Opt. Mater.
– volume: 323
  year: 2021
  ident: bib25
  article-title: Graphene-based terahertz metamaterial absorber for broadband applications
  publication-title: Solid State Commun.
– volume: 109
  year: 2020
  ident: bib50
  article-title: Tunable broadband terahertz absorber using a single-layer square graphene patch with fourfold rotationally symmetric groove
  publication-title: Opt. Mater.
– volume: 109
  year: 2020
  ident: bib51
  article-title: Broadband tunable terahertz metasurface absorber based on complementary-wheel-shaped graphene
  publication-title: Opt. Mater.
– volume: 41
  year: 2020
  ident: bib34
  article-title: Realization of high-performance tri-layer graphene saturable absorber mirror fabricated via a one-step transfer process
  publication-title: J. Semicond. Tech. Sci.
– volume: 11
  year: 2018
  ident: bib11
  article-title: Dual-band perfect metamaterial absorber based on an asymmetric H-shaped structure for terahertz waves
  publication-title: Materials
– volume: 19
  year: 2020
  ident: bib30
  article-title: Dual-controlled tunable terahertz coherent perfect absorption using Dirac semimetal and vanadium dioxide
  publication-title: Result Phys.
– volume: 25
  start-page: 9579
  year: 2017
  end-page: 9586
  ident: bib49
  article-title: Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect
  publication-title: Opt. Express
– volume: 155
  start-page: 618
  year: 2019
  end-page: 623
  ident: bib47
  article-title: Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene
  publication-title: Carbon
– volume: 27
  start-page: 7393
  year: 2019
  end-page: 7404
  ident: bib35
  article-title: Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials
  publication-title: Opt. Express
– volume: 56
  start-page: 2449
  year: 2017
  end-page: 2454
  ident: bib9
  article-title: Broadband terahertz metamaterial absorber based on tantalum nitride
  publication-title: Appl. Opt.
– volume: 98
  year: 2019
  ident: bib13
  article-title: Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region
  publication-title: Opt. Mater.
– volume: 9
  start-page: 60
  year: 2020
  ident: bib5
  article-title: High-temperature infrared camouflage with efficient thermal management
  publication-title: Light Sci. Appl.
– volume: 103
  year: 2008
  ident: bib36
  article-title: Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene
  publication-title: J. Appl. Phys.
– volume: 20
  start-page: 7165
  year: 2012
  end-page: 7172
  ident: bib38
  article-title: Interference theory of metamaterial perfect absorbers
  publication-title: Opt. Express
– volume: 27
  start-page: 37590
  year: 2019
  end-page: 37600
  ident: bib2
  article-title: Analogue of electromagnetically induced transparency with high-Q factor in metal-dielectric metamaterials based on bright-bright mode coupling
  publication-title: Opt. Express
– volume: 21
  start-page: 9691
  year: 2013
  end-page: 9702
  ident: bib44
  article-title: Multi-band metamaterial absorber based on the arrangement of donut-type resonators
  publication-title: Opt. Express
– volume: 4
  start-page: 2604
  year: 2017
  end-page: 2612
  ident: bib6
  article-title: Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers
  publication-title: ACS Photonics
– volume: 323
  year: 2021
  ident: 10.1016/j.spmi.2021.107038_bib25
  article-title: Graphene-based terahertz metamaterial absorber for broadband applications
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2020.114023
– volume: 122
  issue: 4
  year: 2016
  ident: 10.1016/j.spmi.2021.107038_bib16
  article-title: Investigation of robust flexible conformal THz perfect metamaterial absorber
  publication-title: Appl. Phys. A-Mater.
  doi: 10.1007/s00339-016-9857-5
– volume: 14
  start-page: 299
  issue: 1
  year: 2014
  ident: 10.1016/j.spmi.2021.107038_bib41
  article-title: Active tunable absorption enhancement with graphene nanodisk arrays
  publication-title: Nano Lett.
  doi: 10.1021/nl404042h
– volume: 84
  start-page: 447
  year: 2018
  ident: 10.1016/j.spmi.2021.107038_bib12
  article-title: Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2018.07.053
– volume: 25
  start-page: 9579
  issue: 9
  year: 2017
  ident: 10.1016/j.spmi.2021.107038_bib49
  article-title: Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect
  publication-title: Opt. Express
  doi: 10.1364/OE.25.009579
– volume: 16
  start-page: 7181
  issue: 10
  year: 2008
  ident: 10.1016/j.spmi.2021.107038_bib31
  article-title: A metamaterial absorber for the terahertz regime: design, fabrication and characterization
  publication-title: Opt. Express
  doi: 10.1364/OE.16.007181
– volume: 30
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib40
  article-title: Graphene based metasurface with near unity broadband absorption in the terahertz gap
  publication-title: Int. J. RF Microw. Computer-Aided Eng.
  doi: 10.1002/mmce.22436
– volume: 487
  start-page: 77
  issue: 7405
  year: 2012
  ident: 10.1016/j.spmi.2021.107038_bib21
  article-title: Optical nano-imaging of gate-tunable graphene plasmons
  publication-title: Nature
  doi: 10.1038/nature11254
– volume: 27
  start-page: 25983
  issue: 18
  year: 2019
  ident: 10.1016/j.spmi.2021.107038_bib3
  article-title: Chirality selective metamaterial absorber with dual bands
  publication-title: Opt. Express
  doi: 10.1364/OE.27.025983
– volume: 71
  issue: 3
  year: 2005
  ident: 10.1016/j.spmi.2021.107038_bib37
  article-title: Electromagnetic parameter retrieval from inhomogeneous metamaterials
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.036617
– volume: 28
  issue: 12
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib28
  article-title: Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide
  publication-title: Opt. Express
  doi: 10.1364/OE.394784
– volume: 26
  start-page: 11728
  year: 2018
  ident: 10.1016/j.spmi.2021.107038_bib48
  article-title: Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces
  publication-title: Opt. Express
  doi: 10.1364/OE.26.011728
– volume: 10
  issue: 2
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib29
  article-title: Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.383008
– volume: 8
  year: 2018
  ident: 10.1016/j.spmi.2021.107038_bib10
  article-title: Meta-dome for broadband radar absorbing structure
  publication-title: Sci. Rep-UK
– volume: 59
  start-page: 2839
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib24
  article-title: Broadband near-perfect terahertz absorber in single-layered and non-structured graphene loaded with dielectrics
  publication-title: Appl. Opt.
  doi: 10.1364/AO.383637
– volume: 27
  start-page: 37590
  issue: 26
  year: 2019
  ident: 10.1016/j.spmi.2021.107038_bib2
  article-title: Analogue of electromagnetically induced transparency with high-Q factor in metal-dielectric metamaterials based on bright-bright mode coupling
  publication-title: Opt. Express
  doi: 10.1364/OE.27.037590
– volume: 11
  issue: 11
  year: 2018
  ident: 10.1016/j.spmi.2021.107038_bib11
  article-title: Dual-band perfect metamaterial absorber based on an asymmetric H-shaped structure for terahertz waves
  publication-title: Materials
  doi: 10.3390/ma11112193
– volume: 41
  issue: 1
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib34
  article-title: Realization of high-performance tri-layer graphene saturable absorber mirror fabricated via a one-step transfer process
  publication-title: J. Semicond. Tech. Sci.
– volume: 85
  issue: 19
  year: 2012
  ident: 10.1016/j.spmi.2021.107038_bib4
  article-title: Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.195131
– volume: 19
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib30
  article-title: Dual-controlled tunable terahertz coherent perfect absorption using Dirac semimetal and vanadium dioxide
  publication-title: Result Phys.
  doi: 10.1016/j.rinp.2020.103688
– volume: 5
  start-page: 124
  issue: 1
  year: 2011
  ident: 10.1016/j.spmi.2021.107038_bib14
  article-title: Terahertz spectroscopy and imaging-modern techniques and applications
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201000011
– volume: 4
  start-page: 2604
  issue: 10
  year: 2017
  ident: 10.1016/j.spmi.2021.107038_bib6
  article-title: Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00906
– volume: 20
  start-page: 7165
  issue: 7
  year: 2012
  ident: 10.1016/j.spmi.2021.107038_bib38
  article-title: Interference theory of metamaterial perfect absorbers
  publication-title: Opt. Express
  doi: 10.1364/OE.20.007165
– volume: 24
  start-page: 1518
  issue: 2
  year: 2016
  ident: 10.1016/j.spmi.2021.107038_bib46
  article-title: Dual-band tunable perfect metamaterial absorber in the THz range
  publication-title: Opt. Express
  doi: 10.1364/OE.24.001518
– volume: 13
  start-page: 2541
  issue: 6
  year: 2013
  ident: 10.1016/j.spmi.2021.107038_bib23
  article-title: Highly confined tunable mid-infrared plasmonics in graphene nanoresonators
  publication-title: Nano Lett.
  doi: 10.1021/nl400601c
– volume: 478
  start-page: 196
  issue: 1–2
  year: 2005
  ident: 10.1016/j.spmi.2021.107038_bib32
  article-title: Reactive magnetron sputtering of copper, silver, and gold
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.10.043
– volume: 168
  start-page: 580
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib33
  article-title: Large-area growth of high-quality graphene/MoS2 vertical heterostructures by chemical vapor deposition with nucleation control
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.07.014
– volume: 194
  year: 2019
  ident: 10.1016/j.spmi.2021.107038_bib18
  article-title: Numerical design of a metasurface-based ultra-narrow band terahertz perfect absorber with high Q-factors
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163071
– volume: 26
  start-page: 7148
  issue: 6
  year: 2018
  ident: 10.1016/j.spmi.2021.107038_bib15
  article-title: Broadband tunable terahertz absorber based on vanadium dioxide metamaterials
  publication-title: Opt. Express
  doi: 10.1364/OE.26.007148
– volume: 11
  issue: 4
  year: 2018
  ident: 10.1016/j.spmi.2021.107038_bib39
  article-title: Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene
  publication-title: Materials
  doi: 10.3390/ma11040540
– volume: 14
  start-page: 737
  issue: 3
  year: 2018
  ident: 10.1016/j.spmi.2021.107038_bib17
  article-title: A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications
  publication-title: Plasmonics
  doi: 10.1007/s11468-018-0852-x
– volume: 28
  start-page: 30289
  issue: 20
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib43
  article-title: Tunable broadband terahertz absorber based on a single-layer graphene metasurface
  publication-title: Opt. Express
  doi: 10.1364/OE.403631
– volume: 79
  issue: 12
  year: 2009
  ident: 10.1016/j.spmi.2021.107038_bib8
  article-title: Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.125104
– volume: 109
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib50
  article-title: Tunable broadband terahertz absorber using a single-layer square graphene patch with fourfold rotationally symmetric groove
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110235
– volume: 4
  year: 2014
  ident: 10.1016/j.spmi.2021.107038_bib45
  article-title: Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows
  publication-title: Sci. Rep.
  doi: 10.1038/srep06128
– volume: 21
  start-page: 9691
  issue: 8
  year: 2013
  ident: 10.1016/j.spmi.2021.107038_bib44
  article-title: Multi-band metamaterial absorber based on the arrangement of donut-type resonators
  publication-title: Opt. Express
  doi: 10.1364/OE.21.009691
– volume: 431
  start-page: 199
  year: 2018
  ident: 10.1016/j.spmi.2021.107038_bib26
  article-title: Tunable terahertz broadband absorber based on a composite structure of graphene multilayer and silicon strip array
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2018.09.017
– volume: 98
  year: 2019
  ident: 10.1016/j.spmi.2021.107038_bib13
  article-title: Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2019.109441
– volume: 20
  issue: 11
  year: 2018
  ident: 10.1016/j.spmi.2021.107038_bib7
  article-title: Broadband and ultrathin infrared stealth sheets
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201800038
– volume: 56
  start-page: 2449
  issue: 9
  year: 2017
  ident: 10.1016/j.spmi.2021.107038_bib9
  article-title: Broadband terahertz metamaterial absorber based on tantalum nitride
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.002449
– volume: 6
  start-page: 749
  issue: 11
  year: 2012
  ident: 10.1016/j.spmi.2021.107038_bib22
  article-title: Graphene plasmonics
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.262
– volume: 11
  start-page: 380
  issue: 2
  year: 2019
  ident: 10.1016/j.spmi.2021.107038_bib1
  article-title: Electromagnetic metasurfaces: physics and applications
  publication-title: Adv. Opt Photon
  doi: 10.1364/AOP.11.000380
– volume: 29
  start-page: 7158
  issue: 5
  year: 2021
  ident: 10.1016/j.spmi.2021.107038_bib27
  article-title: Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials
  publication-title: Opt. Express
  doi: 10.1364/OE.418865
– volume: 25
  start-page: 32280
  issue: 26
  year: 2017
  ident: 10.1016/j.spmi.2021.107038_bib42
  article-title: Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal
  publication-title: Opt. Express
  doi: 10.1364/OE.25.032280
– volume: 8
  issue: 1
  year: 2016
  ident: 10.1016/j.spmi.2021.107038_bib20
  article-title: Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency
  publication-title: IEEE Photonics J
  doi: 10.1109/JPHOT.2015.2513210
– volume: 103
  year: 2008
  ident: 10.1016/j.spmi.2021.107038_bib36
  article-title: Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2891452
– volume: 155
  start-page: 618
  year: 2019
  ident: 10.1016/j.spmi.2021.107038_bib47
  article-title: Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.09.024
– volume: 4
  start-page: 611
  issue: 9
  year: 2010
  ident: 10.1016/j.spmi.2021.107038_bib19
  article-title: Graphene photonics and optoelectronics
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 109
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib51
  article-title: Broadband tunable terahertz metasurface absorber based on complementary-wheel-shaped graphene
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110369
– volume: 27
  start-page: 7393
  issue: 5
  year: 2019
  ident: 10.1016/j.spmi.2021.107038_bib35
  article-title: Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials
  publication-title: Opt. Express
  doi: 10.1364/OE.27.007393
– volume: 9
  start-page: 60
  year: 2020
  ident: 10.1016/j.spmi.2021.107038_bib5
  article-title: High-temperature infrared camouflage with efficient thermal management
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-0300-5
SSID ssj0009417
Score 2.0600863
Snippet A compact tunable graphene-based broadband metamaterial absorber in the terahertz (THz) frequency band was presented in this paper. The proposed absorber is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107038
SubjectTerms Broadband
Graphene
Metamaterial absorber
Terahertz
Title A compact metamaterial broadband THz absorber consists of graphene crosses with different sizes
URI https://dx.doi.org/10.1016/j.spmi.2021.107038
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBm8Qm6SbdHEuxRMVebKG3sE-I2KQk8dKDv93ZTeIDxIPHLLNhmR2--RJm5kPomvuAeCLijpCmJScKAicChHTGPpcR55yF1HQjP83DeEkeVsGqg6ZtL4wpq2ywv8Z0i9bNyrDx5nCTpsNnSH5AvwGAPTsG3YzdJmRsovz2_avMIyJWddcYO8a6aZypa7zKzTqFb0TfgwUIffp7cvqWcGaH6KBhinhSH-YIdVTWQ3vTVqCth3Zt9aYoj1EywbaWXFR4rSoGJNTGFeZFziRnmcSLeIsZL_OCqwJssxLeUeJcYzuwGvAO2xOpEpsfs7iVTalwmW5VeYKWs7vFNHYa5QRHjFy3cqSgQgAZkP6Yu1R7mkaccsYCV5lhNSKUzCMSmFeoWOgyIB0a7kZQDckpYtQbnaJulmfqDGENaMmNnK-vCfGZx1kkDW2iJHA10WEfea3LEtGMFTfqFq9JWz_2khg3J8bNSe3mPrr53LOph2r8aR20N5H8CI0EUP-Pfef_3HeB9s1T3XB4ibpV8aaugHlUfGBDa4B2JveP8fwDYYrX3Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60IvUiWhXf7sGbxCYxiZtjKUp9tBdb8LbsEyo2LUm8ePC3O7tJfID04DWZDcvs5JsvYWY-gHMRIuLJVHhS2ZacNI69FBHSuw6FSoUQPKG2G3k4SgaT6P45fl6BftMLY8sqa-yvMN2hdX2lW3uzu5hOu0-Y_JB-IwAHbgx6sgprEb6-Vsbg8uO7ziONnOyutfased05UxV5FYvZFD8SwwAvYOzTv7PTj4xzuwWbNVUkvWo327Cisw60-41CWwfWXfmmLHaA9YgrJpclmemSIwt1gUVEPudK8EyR8eCdcFHMc6FztM0KfEZB5oa4idUIeMTtSBfE_pkljW5KSYrpuy52YXJ7M-4PvFo6wZNXvl96SlIpkQ2o8Fr41ASGpoIKzmNf22k1MlE8iBRSr0TzxOfIOgwejqQGs1PKaXC1B61snul9IAbhUlg939BEUcgDwVNleRONYt9EJjmAoHEZk_VccStv8cqaArIXZt3MrJtZ5eYDuPhas6imaiy1jpuTYL9igyHsL1l3-M91Z9AejIeP7PFu9HAEG_ZO1X14DK0yf9MnSENKcerC7BN0bdlr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+compact+metamaterial+broadband+THz+absorber+consists+of+graphene+crosses+with+different+sizes&rft.jtitle=Superlattices+and+microstructures&rft.au=Liu%2C+Wen&rft.au=Lv%2C+Yisong&rft.au=Tian%2C+Jinping&rft.au=Yang%2C+Rongcao&rft.date=2021-11-01&rft.issn=0749-6036&rft.volume=159&rft.spage=107038&rft_id=info:doi/10.1016%2Fj.spmi.2021.107038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2021_107038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon