Multi-objective Pigeon-inspired Optimized feature enhancement soft-sensing model of Wastewater Treatment Process

Under the increasingly severe fresh water supply pressure, wastewater treatment is considered to be the optimal strategy to satisfy the current and future water demand, thus being highly valued by most countries. As a complicated process, there are some hard-to-measure effluent indicators in wastewa...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 215; p. 119193
Main Authors Chang, Peng, Bao, Xun, Meng, FanChao, Lu, RuiWei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under the increasingly severe fresh water supply pressure, wastewater treatment is considered to be the optimal strategy to satisfy the current and future water demand, thus being highly valued by most countries. As a complicated process, there are some hard-to-measure effluent indicators in wastewater treatment such as 5-day Biological Oxygen Demand (BOD5), which brings significant difficulties to the monitoring of key indicators in sewage disposal process, thus imposing massive constraints on evaluation of effluent quality. In order to realize the real time supervision of the water quality, data-driven artificial intelligence soft-sensing models have been widely considered as an active research field. However, the over-parameterization of artificial intelligence methods and the complication of sewage treatment environment lead to obvious non-Gaussian characteristics in the wastewater data, which makes it difficult to artificially set parameters to maintain the optimal values to satisfy the accuracy requirement in wastewater treatment process. In view of the aforementioned problems, a soft-sensing model for super-parameter intelligent setting of Broad Learning System based on Overcomplete Independent Component Analysis (OICA) is proposed in this paper. A two-stage multi-objective optimization algorithm is adopted in the model to set superparameters intelligently, which reduces human intervention and improves the accuracy of the model. Additionally, the adaptability of the proposed model to data is significantly enhanced through improvement of the feature extraction ability of the Broad Learning System (BLS) and the capture of peculiar non-Gaussianity in wastewater data with statistical methods. Comparative experiments are conducted on the sewage simulation platform BSM1 with state-of-the-art artificial intelligence soft measurement models, and the results show that the advantage of the presented model lies both in accuracy and in modeling speed, demonstrating the effectiveness of the proposed method. •A OBLS method combining Over-complete Independent Analysis and Broad Learning System.•The OBLS is presented to handle the characteristics of non-linearity and non-Gaussianity.•The algorithm is adopted to ensure the rationality of the settings of hyper-parameters in OBLS.
AbstractList Under the increasingly severe fresh water supply pressure, wastewater treatment is considered to be the optimal strategy to satisfy the current and future water demand, thus being highly valued by most countries. As a complicated process, there are some hard-to-measure effluent indicators in wastewater treatment such as 5-day Biological Oxygen Demand (BOD5), which brings significant difficulties to the monitoring of key indicators in sewage disposal process, thus imposing massive constraints on evaluation of effluent quality. In order to realize the real time supervision of the water quality, data-driven artificial intelligence soft-sensing models have been widely considered as an active research field. However, the over-parameterization of artificial intelligence methods and the complication of sewage treatment environment lead to obvious non-Gaussian characteristics in the wastewater data, which makes it difficult to artificially set parameters to maintain the optimal values to satisfy the accuracy requirement in wastewater treatment process. In view of the aforementioned problems, a soft-sensing model for super-parameter intelligent setting of Broad Learning System based on Overcomplete Independent Component Analysis (OICA) is proposed in this paper. A two-stage multi-objective optimization algorithm is adopted in the model to set superparameters intelligently, which reduces human intervention and improves the accuracy of the model. Additionally, the adaptability of the proposed model to data is significantly enhanced through improvement of the feature extraction ability of the Broad Learning System (BLS) and the capture of peculiar non-Gaussianity in wastewater data with statistical methods. Comparative experiments are conducted on the sewage simulation platform BSM1 with state-of-the-art artificial intelligence soft measurement models, and the results show that the advantage of the presented model lies both in accuracy and in modeling speed, demonstrating the effectiveness of the proposed method. •A OBLS method combining Over-complete Independent Analysis and Broad Learning System.•The OBLS is presented to handle the characteristics of non-linearity and non-Gaussianity.•The algorithm is adopted to ensure the rationality of the settings of hyper-parameters in OBLS.
ArticleNumber 119193
Author Meng, FanChao
Chang, Peng
Bao, Xun
Lu, RuiWei
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0002-7766-5583
  surname: Chang
  fullname: Chang, Peng
  email: changpeng@bjut.edu.cn
– sequence: 2
  givenname: Xun
  surname: Bao
  fullname: Bao, Xun
  email: sherry@emails.bjut.edu.cn
– sequence: 3
  givenname: FanChao
  surname: Meng
  fullname: Meng, FanChao
  email: mengfc@emails.bjut.edu.cn
– sequence: 4
  givenname: RuiWei
  surname: Lu
  fullname: Lu, RuiWei
  email: Andrewlee@emails.bjut.edu.cn
BookMark eNp90LtOwzAUgGELFYm28AJMeYEUO24ullhQxU0qaociRsuxj4ujxI5stxU8PSllYujkM_g70vknaGSdBYRuCZ4RTIq7ZgbhIGYZzrIZIYwweoHGpCppWpSMjtAYs7xM56ScX6FJCA3GpMS4HKP-bddGk7q6ARnNHpK12YKzqbGhNx5Usuqj6cz3MGkQcechAfsprIQObEyC0zENYIOx26RzCtrE6eRDhAgHEcEnGz-o369r7ySEcI0utWgD3Py9U_T-9LhZvKTL1fPr4mGZSopxTFVR6oooBWWhKiUBNKsLobBWdV4xhWvNiCaZqllV0HleQwVFJgBLkDTPGKVTVJ32Su9C8KC5NFFE42z0wrScYH4sxxt-LMeP5fip3ECzf7T3phP-6zy6PyEYjtob8DxIA0MnNWSUkStnzvEfK8OOIg
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125215
crossref_primary_10_3390_app131910892
crossref_primary_10_1016_j_jwpe_2023_103775
crossref_primary_10_1109_TIE_2023_3279562
crossref_primary_10_1109_JIOT_2024_3388043
crossref_primary_10_1016_j_ins_2024_120876
crossref_primary_10_3390_mi14091786
crossref_primary_10_1109_TIM_2024_3396838
crossref_primary_10_15407_emodel_45_02_003
crossref_primary_10_1007_s11227_023_05260_w
Cites_doi 10.1109/ACCESS.2017.2654378
10.1016/j.neunet.2020.05.031
10.1007/s40710-016-0129-3
10.1016/j.cjche.2014.09.023
10.1016/j.asoc.2021.107227
10.1109/TII.2019.2902129
10.1109/TEVC.2009.2035921
10.1016/j.asoc.2021.108235
10.1016/S0169-7439(98)00145-2
10.1109/TCYB.2017.2764744
10.1007/s40815-019-00644-8
10.1109/TNNLS.2017.2716952
10.1109/TE.2020.3008878
10.1108/IJICC-02-2014-0005
10.3390/s19061280
10.1093/bioinformatics/btu101
10.1021/ie050916k
10.1109/TII.2018.2809730
10.1137/080716542
10.1016/S0003-2670(00)86332-1
10.1002/(SICI)1099-128X(199609)10:5/6<697::AID-CEM453>3.0.CO;2-5
10.1016/j.chb.2014.03.052
10.1016/j.chemolab.2016.12.009
10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7
10.1016/j.icheatmasstransfer.2016.08.015
10.1016/j.asoc.2014.10.034
10.1252/jcej.16we016
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.119193
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_119193
S0957417422022114
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-d67f81dde76d8dceef9b6ad0fdb589d0bf91f12db986345be8e62ae0cec352933
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Apr 24 23:01:26 EDT 2025
Tue Jul 01 04:06:06 EDT 2025
Fri Feb 23 02:38:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pigeon-inspired Optimization
Wastewater Treatment Process
Soft-sensing model
Overcomplete Broad Learning System
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-d67f81dde76d8dceef9b6ad0fdb589d0bf91f12db986345be8e62ae0cec352933
ORCID 0000-0002-7766-5583
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_119193
crossref_primary_10_1016_j_eswa_2022_119193
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_119193
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Precup, Hedrea, Roman, Petriu, Szedlak-Stinean, Bojan-Dragos (b30) 2020; 64
Chen, Hong, Harris (b14) 2010; 14
Heddam, Lamda, Filali (b21) 2016; 3
Bergstra, Bengio (b4) 2012; 13
Han, Wu, Zhang, Tian, Qiao (b20) 2017; 49
Hulland (b24) 1999; 20
Qiao, Sun, Han (b32) 2018; 25
Teppola, Mujunen, Minkkinen (b35) 1999; 45
Alex, Benedetti, Copp, Gernaey, Jeppsson, Nopens, Pons, Rieger, Rosen, Steyer (b2) 2008
Xiao, Huang, Pan, Liu, Song (b36) 2017; 161
Qiu, Liu, Huang (b33) 2016; 49
Chang, Lu, Olivia, Wang (b10) 2020; 129
Huang, Ma, Wan, Chen (b23) 2015; 27
Yuan, Huang, Wang, Yang, Gui (b37) 2018; 14
Chang, Lu (b9) 2021; 99
Chang, Ding (b6) 2022; 187
Yuan, Li, Wang (b38) 2019; 16
Zhong, Guan, Ma, Peng (b40) 2010
Chang, Li, Wang, Wang (b8) 2021; 167
Chiang, Shih, Lin, Shih (b16) 2014; 30
Podosinnikova, Perry, Wein, Bach, d’Aspremont, Sontag (b28) 2019
Chang, Zhao, Meng, Xu (b12) 2022; 115
Esfe, Razi, Hajmohammad, Rostamian, Sarsam, Arani, Dahari (b18) 2017; 82
Blom (b5) 1996; 10
Beck, Teboulle (b3) 2009; 2
Zapata, Perozo, Angulo, Contreras (b39) 2020; 18
Aarnio, Minkkinen (b1) 1986; 191
Lee, Lee, Woo, Kim, Park (b25) 2006; 45
Chang, Li (b7) 2021; 105
Chen, Liu (b15) 2017; 29
Han, Liu, Qiao (b19) 2019; 21
Duan, Qiao (b17) 2014
Chen, Babanin, Muhammad, Chapron, Chen (b13) 2020; 23
Hu, Yen (b22) 2013; 19
Tan, Ooi, Leong, Lin (b34) 2014; 36
Mao, Lin, Xu, He (b26) 2017; 5
Pisa, Santín, Vicario, Morell, Vilanova (b27) 2019; 19
Qiao, Li, Han (b31) 2014; 22
Precup, David, Roman, Szedlak-Stinean, Petriu (b29) 2021
Chang, Wang, Wang (b11) 2020; 205
Chang (10.1016/j.eswa.2022.119193_b9) 2021; 99
Mao (10.1016/j.eswa.2022.119193_b26) 2017; 5
Beck (10.1016/j.eswa.2022.119193_b3) 2009; 2
Pisa (10.1016/j.eswa.2022.119193_b27) 2019; 19
Chen (10.1016/j.eswa.2022.119193_b13) 2020; 23
Huang (10.1016/j.eswa.2022.119193_b23) 2015; 27
Tan (10.1016/j.eswa.2022.119193_b34) 2014; 36
Blom (10.1016/j.eswa.2022.119193_b5) 1996; 10
Precup (10.1016/j.eswa.2022.119193_b29) 2021
Duan (10.1016/j.eswa.2022.119193_b17) 2014
Zapata (10.1016/j.eswa.2022.119193_b39) 2020; 18
Aarnio (10.1016/j.eswa.2022.119193_b1) 1986; 191
Precup (10.1016/j.eswa.2022.119193_b30) 2020; 64
Hu (10.1016/j.eswa.2022.119193_b22) 2013; 19
Chang (10.1016/j.eswa.2022.119193_b12) 2022; 115
Qiao (10.1016/j.eswa.2022.119193_b32) 2018; 25
Esfe (10.1016/j.eswa.2022.119193_b18) 2017; 82
Yuan (10.1016/j.eswa.2022.119193_b38) 2019; 16
Lee (10.1016/j.eswa.2022.119193_b25) 2006; 45
Chang (10.1016/j.eswa.2022.119193_b6) 2022; 187
Chang (10.1016/j.eswa.2022.119193_b11) 2020; 205
Han (10.1016/j.eswa.2022.119193_b20) 2017; 49
Hulland (10.1016/j.eswa.2022.119193_b24) 1999; 20
Teppola (10.1016/j.eswa.2022.119193_b35) 1999; 45
Chiang (10.1016/j.eswa.2022.119193_b16) 2014; 30
Han (10.1016/j.eswa.2022.119193_b19) 2019; 21
Alex (10.1016/j.eswa.2022.119193_b2) 2008
Bergstra (10.1016/j.eswa.2022.119193_b4) 2012; 13
Chang (10.1016/j.eswa.2022.119193_b10) 2020; 129
Chen (10.1016/j.eswa.2022.119193_b15) 2017; 29
Yuan (10.1016/j.eswa.2022.119193_b37) 2018; 14
Qiu (10.1016/j.eswa.2022.119193_b33) 2016; 49
Zhong (10.1016/j.eswa.2022.119193_b40) 2010
Chang (10.1016/j.eswa.2022.119193_b7) 2021; 105
Podosinnikova (10.1016/j.eswa.2022.119193_b28) 2019
Xiao (10.1016/j.eswa.2022.119193_b36) 2017; 161
Heddam (10.1016/j.eswa.2022.119193_b21) 2016; 3
Chang (10.1016/j.eswa.2022.119193_b8) 2021; 167
Qiao (10.1016/j.eswa.2022.119193_b31) 2014; 22
Chen (10.1016/j.eswa.2022.119193_b14) 2010; 14
References_xml – volume: 187
  year: 2022
  ident: b6
  article-title: Monitoring multi-domain batch process state based on fuzzy broad learning system
  publication-title: Expert Systems with Applications
– volume: 129
  start-page: 298
  year: 2020
  end-page: 312
  ident: b10
  article-title: Batch process fault detection for multi-stage broad learning system
  publication-title: Neural Networks
– volume: 29
  start-page: 10
  year: 2017
  end-page: 24
  ident: b15
  article-title: Broad learning system: An effective and efficient incremental learning system without the need for deep architecture
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 14
  start-page: 477
  year: 2010
  end-page: 499
  ident: b14
  article-title: Particle swarm optimization aided orthogonal forward regression for unified data modeling
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 19
  year: 2008
  end-page: 20
  ident: b2
  article-title: Benchmark simulation model no. 1 (BSM1)
  publication-title: Report by the IWA taskgroup on benchmarking of control strategies for WWTPs
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b3
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM Journal on Imaging Sciences
– volume: 16
  start-page: 3168
  year: 2019
  end-page: 3176
  ident: b38
  article-title: Nonlinear dynamic soft sensor modeling with supervised long short-term memory network
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 99
  year: 2021
  ident: b9
  article-title: Process monitoring of batch process based on overcomplete broad learning network
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 82
  start-page: 154
  year: 2017
  end-page: 160
  ident: b18
  article-title: Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2o3 nanofluids by NSGA-II using ANN
  publication-title: International Communications in Heat and Mass Transfer
– volume: 45
  start-page: 371
  year: 1999
  end-page: 384
  ident: b35
  article-title: Kalman filter for updating the coefficients of regression models. a case study from an activated sludge waste-water treatment plant
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 45
  start-page: 4335
  year: 2006
  end-page: 4344
  ident: b25
  article-title: Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms
  publication-title: Industrial and Engineering Chemistry Research
– volume: 22
  start-page: 1254
  year: 2014
  end-page: 1259
  ident: b31
  article-title: Soft computing of biochemical oxygen demand using an improved T–S fuzzy neural network
  publication-title: Chinese Journal of Chemical Engineering
– volume: 105
  year: 2021
  ident: b7
  article-title: Over-complete deep recurrent neutral network based on wastewater treatment process soft sensor application
  publication-title: Applied Soft Computing
– volume: 23
  start-page: 28
  year: 2020
  end-page: 40
  ident: b13
  article-title: Modified evolved bat algorithm of fuzzy optimal control for complex nonlinear systems
  publication-title: Romanian Journal of Information Science and Technology
– year: 2014
  ident: b17
  article-title: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning
  publication-title: International Journal of Intelligent Computing and Cybernetics
– start-page: 39
  year: 2010
  end-page: 42
  ident: b40
  article-title: Compensatory fuzzy neural network modeling in a wastewater treatment process
  publication-title: 2010 IEEE international conference on intelligent systems and knowledge engineering
– volume: 191
  start-page: 457
  year: 1986
  end-page: 460
  ident: b1
  article-title: Application of partial least-squares modelling in the optimization of a waste-water treatment plant
  publication-title: Analytica Chimica Acta
– volume: 20
  start-page: 195
  year: 1999
  end-page: 204
  ident: b24
  article-title: Use of partial least squares (PLS) in strategic management research: A review of four recent studies
  publication-title: Strategic Management Journal
– volume: 30
  start-page: 1739
  year: 2014
  end-page: 1746
  ident: b16
  article-title: An APN model for arrhythmic beat classification
  publication-title: Bioinformatics
– volume: 10
  start-page: 697
  year: 1996
  end-page: 706
  ident: b5
  article-title: Indirect measurement of key water quality parameters in sewage treatment plants
  publication-title: Journal of Chemometrics
– start-page: 1
  year: 2021
  end-page: 16
  ident: b29
  article-title: Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using slime Mould algorithm
  publication-title: International Journal of Systems Science
– volume: 3
  start-page: 153
  year: 2016
  end-page: 165
  ident: b21
  article-title: Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study
  publication-title: Environmental Processes
– volume: 205
  year: 2020
  ident: b11
  article-title: Quality relevant over-complete independent component analysis based monitoring for non-linear and non-Gaussian batch process
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 64
  start-page: 88
  year: 2020
  end-page: 94
  ident: b30
  article-title: Experiment-based approach to teach optimization techniques
  publication-title: IEEE Transactions on Education
– volume: 19
  start-page: 1280
  year: 2019
  ident: b27
  article-title: ANN-based soft sensor to predict effluent violations in wastewater treatment plants
  publication-title: Sensors
– volume: 49
  start-page: 69
  year: 2017
  end-page: 82
  ident: b20
  article-title: Self-organizing RBF neural network using an adaptive gradient multiobjective particle swarm optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 19
  start-page: 1
  year: 2013
  end-page: 18
  ident: b22
  article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 49
  start-page: 925
  year: 2016
  end-page: 936
  ident: b33
  article-title: Date-driven soft-sensor design for biological wastewater treatment using deep neural networks and genetic algorithms
  publication-title: Journal of Chemical Engineering of Japan
– start-page: 2583
  year: 2019
  end-page: 2592
  ident: b28
  article-title: Overcomplete independent component analysis via SDP
  publication-title: The 22nd international conference on artificial intelligence and statistics
– volume: 161
  start-page: 96
  year: 2017
  end-page: 107
  ident: b36
  article-title: Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 13
  year: 2012
  ident: b4
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of Machine Learning Research
– volume: 167
  year: 2021
  ident: b8
  article-title: An effective deep recurrent network with high-order statistic information for fault monitoring in wastewater treatment process
  publication-title: Expert Systems with Applications
– volume: 27
  start-page: 1
  year: 2015
  end-page: 10
  ident: b23
  article-title: A sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment process
  publication-title: Applied Soft Computing
– volume: 18
  start-page: 1
  year: 2020
  end-page: 18
  ident: b39
  article-title: A hybrid swarm algorithm for collective construction of 3D structures
  publication-title: International Journal of Artificial Intelligence
– volume: 5
  start-page: 2187
  year: 2017
  end-page: 2199
  ident: b26
  article-title: Towards a trust prediction framework for cloud services based on PSO-driven neural network
  publication-title: IEEE Access
– volume: 21
  start-page: 1497
  year: 2019
  end-page: 1510
  ident: b19
  article-title: Fuzzy neural network-based model predictive control for dissolved oxygen concentration of WWTPs
  publication-title: International Journal of Fuzzy Systems
– volume: 25
  start-page: 279
  year: 2018
  end-page: 375
  ident: b32
  article-title: Prediction of effluent ammonia nitrogen based on improved K-means algorithm optimizing RBF neural network
  publication-title: Control Engineering of China
– volume: 36
  start-page: 198
  year: 2014
  end-page: 213
  ident: b34
  article-title: Predicting the drivers of behavioral intention to use mobile learning: A hybrid SEM-neural networks approach
  publication-title: Computers in Human Behavior
– volume: 14
  start-page: 3235
  year: 2018
  end-page: 3243
  ident: b37
  article-title: Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 115
  year: 2022
  ident: b12
  article-title: Soft measurement of effluent index in sewage treatment process based on overcomplete broad learning system
  publication-title: Applied Soft Computing
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.119193_b39
  article-title: A hybrid swarm algorithm for collective construction of 3D structures
  publication-title: International Journal of Artificial Intelligence
– volume: 5
  start-page: 2187
  year: 2017
  ident: 10.1016/j.eswa.2022.119193_b26
  article-title: Towards a trust prediction framework for cloud services based on PSO-driven neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2654378
– volume: 129
  start-page: 298
  year: 2020
  ident: 10.1016/j.eswa.2022.119193_b10
  article-title: Batch process fault detection for multi-stage broad learning system
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.05.031
– volume: 3
  start-page: 153
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2022.119193_b21
  article-title: Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study
  publication-title: Environmental Processes
  doi: 10.1007/s40710-016-0129-3
– volume: 187
  year: 2022
  ident: 10.1016/j.eswa.2022.119193_b6
  article-title: Monitoring multi-domain batch process state based on fuzzy broad learning system
  publication-title: Expert Systems with Applications
– start-page: 2583
  year: 2019
  ident: 10.1016/j.eswa.2022.119193_b28
  article-title: Overcomplete independent component analysis via SDP
– volume: 22
  start-page: 1254
  issue: 11–12
  year: 2014
  ident: 10.1016/j.eswa.2022.119193_b31
  article-title: Soft computing of biochemical oxygen demand using an improved T–S fuzzy neural network
  publication-title: Chinese Journal of Chemical Engineering
  doi: 10.1016/j.cjche.2014.09.023
– start-page: 19
  year: 2008
  ident: 10.1016/j.eswa.2022.119193_b2
  article-title: Benchmark simulation model no. 1 (BSM1)
– start-page: 39
  year: 2010
  ident: 10.1016/j.eswa.2022.119193_b40
  article-title: Compensatory fuzzy neural network modeling in a wastewater treatment process
– volume: 25
  start-page: 279
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2022.119193_b32
  article-title: Prediction of effluent ammonia nitrogen based on improved K-means algorithm optimizing RBF neural network
  publication-title: Control Engineering of China
– volume: 23
  start-page: 28
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.119193_b13
  article-title: Modified evolved bat algorithm of fuzzy optimal control for complex nonlinear systems
  publication-title: Romanian Journal of Information Science and Technology
– volume: 205
  year: 2020
  ident: 10.1016/j.eswa.2022.119193_b11
  article-title: Quality relevant over-complete independent component analysis based monitoring for non-linear and non-Gaussian batch process
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 105
  year: 2021
  ident: 10.1016/j.eswa.2022.119193_b7
  article-title: Over-complete deep recurrent neutral network based on wastewater treatment process soft sensor application
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107227
– volume: 16
  start-page: 3168
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2022.119193_b38
  article-title: Nonlinear dynamic soft sensor modeling with supervised long short-term memory network
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2902129
– volume: 14
  start-page: 477
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2022.119193_b14
  article-title: Particle swarm optimization aided orthogonal forward regression for unified data modeling
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2035921
– volume: 115
  year: 2022
  ident: 10.1016/j.eswa.2022.119193_b12
  article-title: Soft measurement of effluent index in sewage treatment process based on overcomplete broad learning system
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.108235
– volume: 45
  start-page: 371
  issue: 1–2
  year: 1999
  ident: 10.1016/j.eswa.2022.119193_b35
  article-title: Kalman filter for updating the coefficients of regression models. a case study from an activated sludge waste-water treatment plant
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/S0169-7439(98)00145-2
– volume: 49
  start-page: 69
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.119193_b20
  article-title: Self-organizing RBF neural network using an adaptive gradient multiobjective particle swarm optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2764744
– volume: 21
  start-page: 1497
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2022.119193_b19
  article-title: Fuzzy neural network-based model predictive control for dissolved oxygen concentration of WWTPs
  publication-title: International Journal of Fuzzy Systems
  doi: 10.1007/s40815-019-00644-8
– volume: 19
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2022.119193_b22
  article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 29
  start-page: 10
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.119193_b15
  article-title: Broad learning system: An effective and efficient incremental learning system without the need for deep architecture
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2716952
– volume: 64
  start-page: 88
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2022.119193_b30
  article-title: Experiment-based approach to teach optimization techniques
  publication-title: IEEE Transactions on Education
  doi: 10.1109/TE.2020.3008878
– year: 2014
  ident: 10.1016/j.eswa.2022.119193_b17
  article-title: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning
  publication-title: International Journal of Intelligent Computing and Cybernetics
  doi: 10.1108/IJICC-02-2014-0005
– volume: 99
  year: 2021
  ident: 10.1016/j.eswa.2022.119193_b9
  article-title: Process monitoring of batch process based on overcomplete broad learning network
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 19
  start-page: 1280
  issue: 6
  year: 2019
  ident: 10.1016/j.eswa.2022.119193_b27
  article-title: ANN-based soft sensor to predict effluent violations in wastewater treatment plants
  publication-title: Sensors
  doi: 10.3390/s19061280
– volume: 30
  start-page: 1739
  issue: 12
  year: 2014
  ident: 10.1016/j.eswa.2022.119193_b16
  article-title: An APN model for arrhythmic beat classification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu101
– volume: 45
  start-page: 4335
  issue: 12
  year: 2006
  ident: 10.1016/j.eswa.2022.119193_b25
  article-title: Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie050916k
– volume: 14
  start-page: 3235
  issue: 7
  year: 2018
  ident: 10.1016/j.eswa.2022.119193_b37
  article-title: Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2809730
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.119193_b29
  article-title: Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using slime Mould algorithm
  publication-title: International Journal of Systems Science
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2022.119193_b3
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM Journal on Imaging Sciences
  doi: 10.1137/080716542
– volume: 191
  start-page: 457
  year: 1986
  ident: 10.1016/j.eswa.2022.119193_b1
  article-title: Application of partial least-squares modelling in the optimization of a waste-water treatment plant
  publication-title: Analytica Chimica Acta
  doi: 10.1016/S0003-2670(00)86332-1
– volume: 10
  start-page: 697
  issue: 5–6
  year: 1996
  ident: 10.1016/j.eswa.2022.119193_b5
  article-title: Indirect measurement of key water quality parameters in sewage treatment plants
  publication-title: Journal of Chemometrics
  doi: 10.1002/(SICI)1099-128X(199609)10:5/6<697::AID-CEM453>3.0.CO;2-5
– volume: 36
  start-page: 198
  year: 2014
  ident: 10.1016/j.eswa.2022.119193_b34
  article-title: Predicting the drivers of behavioral intention to use mobile learning: A hybrid SEM-neural networks approach
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2014.03.052
– volume: 161
  start-page: 96
  year: 2017
  ident: 10.1016/j.eswa.2022.119193_b36
  article-title: Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2016.12.009
– volume: 167
  year: 2021
  ident: 10.1016/j.eswa.2022.119193_b8
  article-title: An effective deep recurrent network with high-order statistic information for fault monitoring in wastewater treatment process
  publication-title: Expert Systems with Applications
– volume: 20
  start-page: 195
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2022.119193_b24
  article-title: Use of partial least squares (PLS) in strategic management research: A review of four recent studies
  publication-title: Strategic Management Journal
  doi: 10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7
– volume: 13
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2022.119193_b4
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of Machine Learning Research
– volume: 82
  start-page: 154
  year: 2017
  ident: 10.1016/j.eswa.2022.119193_b18
  article-title: Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2o3 nanofluids by NSGA-II using ANN
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2016.08.015
– volume: 27
  start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2022.119193_b23
  article-title: A sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment process
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.10.034
– volume: 49
  start-page: 925
  issue: 10
  year: 2016
  ident: 10.1016/j.eswa.2022.119193_b33
  article-title: Date-driven soft-sensor design for biological wastewater treatment using deep neural networks and genetic algorithms
  publication-title: Journal of Chemical Engineering of Japan
  doi: 10.1252/jcej.16we016
SSID ssj0017007
Score 2.4616826
Snippet Under the increasingly severe fresh water supply pressure, wastewater treatment is considered to be the optimal strategy to satisfy the current and future...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119193
SubjectTerms Overcomplete Broad Learning System
Pigeon-inspired Optimization
Soft-sensing model
Wastewater Treatment Process
Title Multi-objective Pigeon-inspired Optimized feature enhancement soft-sensing model of Wastewater Treatment Process
URI https://dx.doi.org/10.1016/j.eswa.2022.119193
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc4vcvAm2dI2_chxDGUqTkHF3UrSJLNDu2Enggf_dvPaVBRkB2-l5NHwkr6P5Pd-D6EToaTMvFAT8IWEiUQRboKQCC3jgFFBjYBE8XoUDR_Y5Tgct9CgqYUBWKWz_bVNr6y1e9Nz2uzN87x3Z4MD6w5tamfzd5vGACcoYzHs8u7nN8wD6Ofimm_PTsWOdoUzNcZLl-_APeT7XeA548HfzumHwznfQGsuUsT9ejKbqKWLLbTedGHA7qfcRvOqhpbM5LS2Xfg2n-hZQfICLtG1wjfWKrzkH_bJ6IrGE-viCRYbDgZxae0wKQHGXkxw1RcHzwx-FCWcqsGH7hsoOnZFBTvo4fzsfjAkro8CyQJKF0RFsbFhqdJxpBJlvaLhMhKKGiXDhCsqDfeM5yvJkyhgodSJjnyhaaYzG57xINhF7WJW6D2E_dhQBgULhnnMxL4QjMdC-15kwwROkw7yGgWmmSMZh14Xz2mDJpumoPQUlJ7WSu-g02-ZeU2xsXR02KxL-mujpNYHLJHb_6fcAVqFDvM1WOcQtRevb_rIxiELeVxttGO00r-4Go6-AN1e33o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALb0QpDx_ghNx1HOfhQw8IqLb0ARJb0Vuw43FJRbMrslUFh_6p_kFmEqcCCfWA1FsUZZR4PPpmxvlmhrGX1jtXJxkI8oVC29ILE9JMWHBFqqWVwVKiuLefTw_0h8PscIVdjLUwRKuM2D9geo_W8c4kanOyaJrJZwwO0B1iaof5O6YxOjIrd-DnGeZt3eb2O9zkV0ptvZ-9nYo4WkDUqZRL4fMiYKTmoch96dFRBONy62XwLiuNly6YJCTKO1Pmqc4clJArC7KGGiMWQ6egiPs3NMIFjU3YOL_klVC_u2Jo8Idrx8-LlToDqQy6M2p2pNQGNVYz6b-94R8ebusuux1DU_5mWP09tgLtfXZnHPvAIwo8YIu-aFfM3fEAlvxTcwTzVjQt_bUHzz8iDJ00v_AqQN83lEP7jayLTiJ5h8AvOuLNt0e8H8TD54F_sR0d49GLZiP3nccqhofs4Fq0-4ittvMWHjOuiiA1VUgEnehQKGu1KSyoJMe4xMhyjSWjAqs6djWn4Rrfq5G-dlyR0itSejUofY29vpRZDD09rnw6G_el-ssyK3Q6V8g9-U-5F-zmdLa3W-1u7--ss1s03n5gCj1lq8sfp_AMg6Cle94bHWdfr9vKfwO6ux2z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+Pigeon-inspired+Optimized+feature+enhancement+soft-sensing+model+of+Wastewater+Treatment+Process&rft.jtitle=Expert+systems+with+applications&rft.au=Chang%2C+Peng&rft.au=Bao%2C+Xun&rft.au=Meng%2C+FanChao&rft.au=Lu%2C+RuiWei&rft.date=2023-04-01&rft.issn=0957-4174&rft.volume=215&rft.spage=119193&rft_id=info:doi/10.1016%2Fj.eswa.2022.119193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_119193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon