On discrete sequential fractional boundary value problems
In this paper, we analyze several different types of discrete sequential fractional boundary value problems. Our prototype equation is − Δ μ 1 Δ μ 2 Δ μ 3 y ( t ) = f ( t + μ 1 + μ 2 + μ 3 − 1 , y ( t + μ 1 + μ 2 + μ 3 − 1 ) ) subject to the conjugate boundary conditions y ( 0 ) = 0 = y ( b + 2 ) ,...
Saved in:
Published in | Journal of mathematical analysis and applications Vol. 385; no. 1; pp. 111 - 124 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we analyze several different types of discrete sequential fractional boundary value problems. Our prototype equation is
−
Δ
μ
1
Δ
μ
2
Δ
μ
3
y
(
t
)
=
f
(
t
+
μ
1
+
μ
2
+
μ
3
−
1
,
y
(
t
+
μ
1
+
μ
2
+
μ
3
−
1
)
)
subject to the conjugate boundary conditions
y
(
0
)
=
0
=
y
(
b
+
2
)
, where
f
:
[
1
,
b
+
1
]
N
0
×
R
→
[
0
,
+
∞
)
is a continuous function and
μ
1
,
μ
2
,
μ
3
∈
(
0
,
1
)
satisfy
1
<
μ
2
+
μ
3
<
2
and
1
<
μ
1
+
μ
2
+
μ
3
<
2
. We also obtain results for delta–nabla discrete fractional boundary value problems. As an application of our analysis, we give conditions under which such problems will admit at least one positive solution. |
---|---|
AbstractList | In this paper, we analyze several different types of discrete sequential fractional boundary value problems. Our prototype equation is
−
Δ
μ
1
Δ
μ
2
Δ
μ
3
y
(
t
)
=
f
(
t
+
μ
1
+
μ
2
+
μ
3
−
1
,
y
(
t
+
μ
1
+
μ
2
+
μ
3
−
1
)
)
subject to the conjugate boundary conditions
y
(
0
)
=
0
=
y
(
b
+
2
)
, where
f
:
[
1
,
b
+
1
]
N
0
×
R
→
[
0
,
+
∞
)
is a continuous function and
μ
1
,
μ
2
,
μ
3
∈
(
0
,
1
)
satisfy
1
<
μ
2
+
μ
3
<
2
and
1
<
μ
1
+
μ
2
+
μ
3
<
2
. We also obtain results for delta–nabla discrete fractional boundary value problems. As an application of our analysis, we give conditions under which such problems will admit at least one positive solution. |
Author | Goodrich, Christopher S. |
Author_xml | – sequence: 1 givenname: Christopher S. surname: Goodrich fullname: Goodrich, Christopher S. email: s-cgoodri4@math.unl.edu organization: Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, USA |
BookMark | eNp9j8tqwzAQRUVJoUnaH-jKP2B3JEVSDN2U0BcEssmiOyFLY5Bx5FRSAv372qSrLrKaYZhzuWdBZmEISMgjhYoClU9d1R2MqRhQWoGsgLEbMqdQyxLWlM_IHMZTyVbq644sUupgfBSKzkm9C4XzyUbMWCT8PmHI3vRFG43Nfgjj2gyn4Ez8Kc6mP2FxjEPT4yHdk9vW9Akf_uaS7N9e95uPcrt7_9y8bEvLAXLppEBpjGDO4koYEDVjtWOtYIK3jje0hgYZCMalAqYUly1fOUBFrWoZ5UvCLrE2DilFbPUx-sNYR1PQk7vu9OSuJ3cNUo-iI7T-B1mfzeSTo_H9dfT5guLodPYYdbIeg0XnI9qs3eCv4b-TTXa7 |
CitedBy_id | crossref_primary_10_1002_asjc_1034 crossref_primary_10_1186_1687_1847_2013_48 crossref_primary_10_1155_2013_679290 crossref_primary_10_1080_10236198_2015_1013537 crossref_primary_10_1080_00207721_2013_794907 crossref_primary_10_3934_math_2022579 crossref_primary_10_1080_10236198_2018_1542431 crossref_primary_10_1186_1687_1847_2013_275 crossref_primary_10_1007_s11856_020_1991_2 crossref_primary_10_1186_1029_242X_2014_86 crossref_primary_10_11948_2013003 crossref_primary_10_1007_s11117_017_0527_4 crossref_primary_10_1515_fca_2020_0045 crossref_primary_10_1063_5_0018408 crossref_primary_10_1080_10236198_2017_1380635 crossref_primary_10_1080_10236198_2021_1965132 crossref_primary_10_1016_j_cam_2017_10_021 crossref_primary_10_1186_1687_1847_2014_184 crossref_primary_10_11948_20190051 crossref_primary_10_1007_s12190_012_0590_8 crossref_primary_10_1080_10236198_2013_775259 crossref_primary_10_1155_2013_943961 crossref_primary_10_3390_sym16080991 crossref_primary_10_1007_s00013_012_0463_2 crossref_primary_10_1080_10236198_2021_1999434 crossref_primary_10_1186_1687_1847_2013_260 crossref_primary_10_1016_j_aml_2014_04_013 crossref_primary_10_1007_s10013_020_00449_5 crossref_primary_10_1080_10236198_2017_1307351 crossref_primary_10_1155_2014_230850 crossref_primary_10_1186_1687_1847_2014_253 crossref_primary_10_1186_s13662_019_2184_3 crossref_primary_10_3934_math_2023649 crossref_primary_10_1515_anly_2016_0039 crossref_primary_10_1007_s00013_014_0620_x crossref_primary_10_1216_RMJ_2019_49_8_2571 crossref_primary_10_3390_axioms13080570 crossref_primary_10_3934_mbe_2022239 crossref_primary_10_1186_s13661_016_0585_8 crossref_primary_10_1155_2014_340159 crossref_primary_10_1186_s13662_015_0616_2 crossref_primary_10_3390_math8050843 crossref_primary_10_1155_2014_147975 crossref_primary_10_1186_2251_7456_6_7 crossref_primary_10_1142_S0218348X23401837 crossref_primary_10_1186_1687_1847_2013_319 crossref_primary_10_1186_s13662_015_0466_y crossref_primary_10_1016_j_aml_2019_07_003 crossref_primary_10_1016_j_cnsns_2017_01_002 crossref_primary_10_1080_00207160_2013_792921 crossref_primary_10_1016_j_amc_2016_01_051 crossref_primary_10_1080_10236198_2018_1561883 crossref_primary_10_1186_s13660_023_02916_2 crossref_primary_10_1016_j_amc_2017_06_019 crossref_primary_10_3934_math_2023140 crossref_primary_10_1186_s13662_017_1354_4 crossref_primary_10_5937_KgJMath1803371R crossref_primary_10_1186_s13662_018_1840_3 crossref_primary_10_1186_1687_1847_2012_140 crossref_primary_10_1186_1687_2770_2013_103 crossref_primary_10_1016_j_amc_2012_03_006 crossref_primary_10_1186_1687_1847_2014_57 crossref_primary_10_1007_s00009_018_1258_x crossref_primary_10_3390_axioms12070650 crossref_primary_10_1002_mma_7247 crossref_primary_10_1186_s13662_015_0559_7 crossref_primary_10_1007_s12591_018_0409_7 crossref_primary_10_1007_s00013_017_1106_4 crossref_primary_10_1155_2014_601092 crossref_primary_10_2298_FIL2305591U crossref_primary_10_3934_mmc_2024012 crossref_primary_10_3390_math7050471 crossref_primary_10_3390_sym16030337 crossref_primary_10_3934_math_2022829 crossref_primary_10_1002_mma_8174 crossref_primary_10_1016_j_jksus_2024_103224 crossref_primary_10_1002_mma_8176 crossref_primary_10_3390_sym12060980 crossref_primary_10_1016_j_physa_2016_05_045 crossref_primary_10_1515_nleng_2022_0377 crossref_primary_10_1186_s13662_016_0992_2 crossref_primary_10_3390_math8040476 crossref_primary_10_14403_jcms_2015_28_2_173 crossref_primary_10_1007_s10492_014_0079_x crossref_primary_10_1155_2015_376261 crossref_primary_10_1007_s12190_012_0622_4 crossref_primary_10_3390_math10142433 crossref_primary_10_2478_s13540_013_0044_5 crossref_primary_10_1186_1687_1847_2012_163 crossref_primary_10_1515_anly_2021_0011 crossref_primary_10_1080_10236198_2021_1894142 crossref_primary_10_1142_S0218348X24400371 crossref_primary_10_3934_math_2022997 crossref_primary_10_1002_mma_3263 crossref_primary_10_1186_s13662_020_02835_2 crossref_primary_10_3934_era_2022155 crossref_primary_10_1016_j_aml_2021_107104 crossref_primary_10_1515_anly_2019_0050 crossref_primary_10_1007_s10473_020_0219_1 crossref_primary_10_1155_2013_459161 crossref_primary_10_3390_math12182864 crossref_primary_10_1186_s13662_016_0760_3 crossref_primary_10_1016_j_cnsns_2014_04_010 crossref_primary_10_1016_j_exco_2022_100089 crossref_primary_10_1016_j_chaos_2023_114098 crossref_primary_10_1186_1687_1847_2014_326 crossref_primary_10_1515_ms_2017_0018 crossref_primary_10_1002_mma_9875 crossref_primary_10_1155_2012_707631 crossref_primary_10_1155_2013_643571 crossref_primary_10_1216_rmj_2021_51_1981 crossref_primary_10_1080_10236198_2013_856073 |
Cites_doi | 10.1016/j.jmaa.2003.11.013 10.1016/j.na.2010.06.088 10.1016/j.aml.2010.06.007 10.1016/j.jmaa.2005.11.011 10.1016/j.camwa.2010.03.040 10.1080/10236198.2010.503240 10.1016/S0895-7177(03)90020-3 10.1016/j.na.2005.04.031 10.1016/j.camwa.2010.02.032 10.1006/jmaa.2000.7194 10.1016/j.aml.2010.04.035 10.1016/j.jmaa.2005.02.052 10.1016/j.aml.2009.07.002 10.1090/S0002-9939-08-09626-3 10.14232/ejqtde.2009.4.3 10.1016/j.na.2009.03.030 10.1016/j.jmaa.2004.02.049 10.2298/AADM110111001G 10.1016/j.sigpro.2010.05.001 10.1090/S0002-9939-1994-1204373-9 10.4067/S0719-06462011000300009 10.1080/10236190903029241 10.3934/dcds.2011.29.417 10.1016/S0022-247X(02)00716-3 10.1016/S0377-0427(01)00437-X 10.1016/j.camwa.2010.11.012 10.1016/j.camwa.2010.10.041 10.1007/s10255-006-0322-7 10.1080/1023619021000000717 10.1016/j.na.2009.11.029 10.1112/S0024610706023179 10.1016/j.jmaa.2010.01.023 10.1016/j.jmaa.2006.08.034 10.1016/j.jmaa.2010.02.009 10.1016/j.amc.2010.11.029 10.1016/j.na.2009.06.106 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. |
Copyright_xml | – notice: 2011 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jmaa.2011.06.022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0813 |
EndPage | 124 |
ExternalDocumentID | 10_1016_j_jmaa_2011_06_022 S0022247X11005701 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ UPT VH1 VOH WH7 WUQ XOL XPP YQT YYP ZCG ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-d65e6aa52dce45a059229d2f5253fd3b190be2052367027736f34d0e71c7f213 |
IEDL.DBID | .~1 |
ISSN | 0022-247X |
IngestDate | Tue Jul 01 01:38:46 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Fri Feb 23 02:23:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Boundary value problem Cone Discrete fractional calculus Sequential fractional difference Positive solution |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-d65e6aa52dce45a059229d2f5253fd3b190be2052367027736f34d0e71c7f213 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022247X11005701 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_jmaa_2011_06_022 crossref_citationtrail_10_1016_j_jmaa_2011_06_022 elsevier_sciencedirect_doi_10_1016_j_jmaa_2011_06_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012 2012-01-00 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012 |
PublicationDecade | 2010 |
PublicationTitle | Journal of mathematical analysis and applications |
PublicationYear | 2012 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Anderson, Hoffacker (br0370) 2006; 323 Atici, Eloe (br0420) 2009; 3 Goodrich (br0220) 2011; 217 C.S. Goodrich, A comparison result for the fractional difference operator, Int. J. Difference Equ. 6 (2011), in press. Goodrich (br0210) 2011; 61 Bai, Lü (br0070) 2005; 311 Xu, Jiang, Yuan (br0130) 2009; 71 Ferreira (br0270) 2011; 61 Kaufmann, Raffoul (br0290) 2005; 62 Atici, Eloe (br0010) 2011; 17 Goodrich (br0240) 2011; 5 Anderson, Hoffacker (br0320) 2003; 38 Podlubny (br0430) 1999 Guseinov (br0360) 2005; 29 Almeida, Torres (br0040) 2009; 22 Bastos (br0180) 2011; 29 Wang, Wang (br0380) 2006; 22 Agarwal, Lakshmikantham, Nieto (br0030) 2009; 72 Bastos (br0260) 2011; 11 Arara (br0050) 2010; 72 Atici, Şengül (br0170) 2010; 369 Anderson (br0280) 2002; 8 Agarwal, Meehan, OʼRegan (br0440) 2001 Nieto (br0120) 2010; 23 Erbe, Wang (br0450) 1994; 120 C.S. Goodrich, On a discrete fractional three-point boundary value problem, J. Difference Equ. Appl. Atici, Eloe (br0140) 2009; 137 Anderson, Avery (br0340) 2004; 291 Kirane, Malik (br0100) 2010; 73 Goodrich (br0200) 2011; 3 Infante, Webb (br0460) 2006; 74 Atici, Eloe (br0410) 2007; 2 Malinowska, Torres (br0110) 2010; 59 Goodrich (br0160) 2010; 59 . Diethelm, Ford (br0080) 2002; 265 DaCunha, Davis, Singh (br0330) 2004; 295 Došlý (br0390) 2007; 16 Anderson, Hoffacker (br0350) 2005; 24 Babakhani, Daftardar-Gejji (br0060) 2003; 278 M. Holm, Sum and difference compositions and applications in discrete fractional calculus, Cubo 3 (13) (2011), in press. Goodrich (br0090) 2010; 23 Goodrich (br0150) 2010; 5 Wei, Li, Che (br0020) 2010; 367 Bastos (br0250) 2011; 91 Atici, Guseinov (br0310) 2002; 141 Cheung, Ren, Wong, Zhao (br0300) 2007; 330 Erbe (10.1016/j.jmaa.2011.06.022_br0450) 1994; 120 Bastos (10.1016/j.jmaa.2011.06.022_br0260) 2011; 11 Agarwal (10.1016/j.jmaa.2011.06.022_br0440) 2001 Goodrich (10.1016/j.jmaa.2011.06.022_br0090) 2010; 23 10.1016/j.jmaa.2011.06.022_br0190 Infante (10.1016/j.jmaa.2011.06.022_br0460) 2006; 74 Wang (10.1016/j.jmaa.2011.06.022_br0380) 2006; 22 Nieto (10.1016/j.jmaa.2011.06.022_br0120) 2010; 23 Goodrich (10.1016/j.jmaa.2011.06.022_br0210) 2011; 61 Anderson (10.1016/j.jmaa.2011.06.022_br0340) 2004; 291 Podlubny (10.1016/j.jmaa.2011.06.022_br0430) 1999 Goodrich (10.1016/j.jmaa.2011.06.022_br0220) 2011; 217 Babakhani (10.1016/j.jmaa.2011.06.022_br0060) 2003; 278 Kaufmann (10.1016/j.jmaa.2011.06.022_br0290) 2005; 62 Anderson (10.1016/j.jmaa.2011.06.022_br0320) 2003; 38 Atici (10.1016/j.jmaa.2011.06.022_br0010) 2011; 17 Malinowska (10.1016/j.jmaa.2011.06.022_br0110) 2010; 59 Goodrich (10.1016/j.jmaa.2011.06.022_br0240) 2011; 5 Anderson (10.1016/j.jmaa.2011.06.022_br0370) 2006; 323 Cheung (10.1016/j.jmaa.2011.06.022_br0300) 2007; 330 Došlý (10.1016/j.jmaa.2011.06.022_br0390) 2007; 16 Atici (10.1016/j.jmaa.2011.06.022_br0310) 2002; 141 Xu (10.1016/j.jmaa.2011.06.022_br0130) 2009; 71 DaCunha (10.1016/j.jmaa.2011.06.022_br0330) 2004; 295 10.1016/j.jmaa.2011.06.022_br0400 Atici (10.1016/j.jmaa.2011.06.022_br0410) 2007; 2 Goodrich (10.1016/j.jmaa.2011.06.022_br0160) 2010; 59 Atici (10.1016/j.jmaa.2011.06.022_br0140) 2009; 137 Ferreira (10.1016/j.jmaa.2011.06.022_br0270) 2011; 61 Goodrich (10.1016/j.jmaa.2011.06.022_br0150) 2010; 5 Bastos (10.1016/j.jmaa.2011.06.022_br0180) 2011; 29 Kirane (10.1016/j.jmaa.2011.06.022_br0100) 2010; 73 Arara (10.1016/j.jmaa.2011.06.022_br0050) 2010; 72 Agarwal (10.1016/j.jmaa.2011.06.022_br0030) 2009; 72 Bai (10.1016/j.jmaa.2011.06.022_br0070) 2005; 311 Goodrich (10.1016/j.jmaa.2011.06.022_br0200) 2011; 3 Anderson (10.1016/j.jmaa.2011.06.022_br0280) 2002; 8 Almeida (10.1016/j.jmaa.2011.06.022_br0040) 2009; 22 Diethelm (10.1016/j.jmaa.2011.06.022_br0080) 2002; 265 Wei (10.1016/j.jmaa.2011.06.022_br0020) 2010; 367 Atici (10.1016/j.jmaa.2011.06.022_br0170) 2010; 369 Bastos (10.1016/j.jmaa.2011.06.022_br0250) 2011; 91 Anderson (10.1016/j.jmaa.2011.06.022_br0350) 2005; 24 Guseinov (10.1016/j.jmaa.2011.06.022_br0360) 2005; 29 10.1016/j.jmaa.2011.06.022_br0230 Atici (10.1016/j.jmaa.2011.06.022_br0420) 2009; 3 |
References_xml | – volume: 2 start-page: 165 year: 2007 end-page: 176 ident: br0410 article-title: A transform method in discrete fractional calculus publication-title: Int. J. Difference Equ. – volume: 295 start-page: 378 year: 2004 end-page: 391 ident: br0330 article-title: Existence results for singular three point boundary value problems on time scales publication-title: J. Math. Anal. Appl. – volume: 3 start-page: 145 year: 2011 end-page: 162 ident: br0200 article-title: Some new existence results for fractional difference equations publication-title: Int. J. Dyn. Syst. Differ. Equ. – volume: 217 start-page: 4740 year: 2011 end-page: 4753 ident: br0220 article-title: Existence of a positive solution to a system of discrete fractional boundary value problems publication-title: Appl. Math. Comput. – volume: 11 start-page: 1 year: 2011 end-page: 9 ident: br0260 article-title: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform publication-title: Int. J. Math. Comput. – volume: 24 year: 2005 ident: br0350 article-title: Even order self adjoint time scale problems publication-title: Electron. J. Differential Equations – volume: 59 start-page: 3489 year: 2010 end-page: 3499 ident: br0160 article-title: Continuity of solutions to discrete fractional initial value problems publication-title: Comput. Math. Appl. – volume: 23 start-page: 1248 year: 2010 end-page: 1251 ident: br0120 article-title: Maximum principles for fractional differential equations derived from Mittag–Leffler functions publication-title: Appl. Math. Lett. – reference: C.S. Goodrich, A comparison result for the fractional difference operator, Int. J. Difference Equ. 6 (2011), in press. – volume: 141 start-page: 75 year: 2002 end-page: 99 ident: br0310 article-title: On Greenʼs functions and positive solutions for boundary value problems on time scales publication-title: J. Comput. Appl. Math. – reference: M. Holm, Sum and difference compositions and applications in discrete fractional calculus, Cubo 3 (13) (2011), in press. – year: 2001 ident: br0440 article-title: Fixed Point Theory and Applications – volume: 291 start-page: 514 year: 2004 end-page: 525 ident: br0340 article-title: An even-order three-point boundary value problem on time scales publication-title: J. Math. Anal. Appl. – volume: 120 start-page: 743 year: 1994 end-page: 748 ident: br0450 article-title: On the existence of positive solutions of ordinary differential equations publication-title: Proc. Amer. Math. Soc. – volume: 38 start-page: 481 year: 2003 end-page: 494 ident: br0320 article-title: A stacked delta–nabla self-adjoint problem of even order publication-title: Math. Comput. Modelling – volume: 278 start-page: 434 year: 2003 end-page: 442 ident: br0060 article-title: Existence of positive solutions of nonlinear fractional differential equations publication-title: J. Math. Anal. Appl. – volume: 5 start-page: 122 year: 2011 end-page: 132 ident: br0240 article-title: On positive solutions to nonlocal fractional and integer-order difference equations publication-title: Appl. Anal. Discrete Math. – volume: 22 start-page: 457 year: 2006 end-page: 468 ident: br0380 article-title: Existence of positive solutions for second-order m-point boundary value problems on time scales publication-title: Acta Math. Appl. Sin. Engl. Ser. – volume: 61 start-page: 191 year: 2011 end-page: 202 ident: br0210 article-title: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions publication-title: Comput. Math. Appl. – volume: 8 start-page: 673 year: 2002 end-page: 688 ident: br0280 article-title: Solutions to second-order three-point problems on time scales publication-title: J. Difference Equ. Appl. – volume: 22 start-page: 1816 year: 2009 end-page: 1820 ident: br0040 article-title: Calculus of variations with fractional derivatives and fractional integrals publication-title: Appl. Math. Lett. – volume: 16 start-page: 697 year: 2007 end-page: 708 ident: br0390 article-title: Reciprocity principle for even-order dynamic equations with mixed derivatives publication-title: Dynam. Systems Appl. – volume: 369 start-page: 1 year: 2010 end-page: 9 ident: br0170 article-title: Modeling with fractional difference equations publication-title: J. Math. Anal. Appl. – volume: 323 start-page: 958 year: 2006 end-page: 973 ident: br0370 article-title: Existence of solutions for a cantilever beam problem publication-title: J. Math. Anal. Appl. – volume: 17 start-page: 445 year: 2011 end-page: 456 ident: br0010 article-title: Two-point boundary value problems for finite fractional difference equations publication-title: J. Difference Equ. Appl. – volume: 265 start-page: 229 year: 2002 end-page: 248 ident: br0080 article-title: Analysis of fractional differential equations publication-title: J. Math. Anal. Appl. – reference: C.S. Goodrich, On a discrete fractional three-point boundary value problem, J. Difference Equ. Appl., – volume: 62 start-page: 1267 year: 2005 end-page: 1276 ident: br0290 article-title: Positive solutions for a nonlinear functional dynamic equation on a time scale publication-title: Nonlinear Anal. – volume: 29 start-page: 417 year: 2011 end-page: 437 ident: br0180 article-title: Necessary optimality conditions for fractional difference problems of the calculus of variations publication-title: Discrete Contin. Dyn. Syst. – volume: 72 start-page: 2859 year: 2009 end-page: 2862 ident: br0030 article-title: On the concept of solution for fractional differential equations with uncertainty publication-title: Nonlinear Anal. – volume: 330 start-page: 900 year: 2007 end-page: 915 ident: br0300 article-title: Multiple positive solutions for discrete nonlocal boundary value problems publication-title: J. Math. Anal. Appl. – volume: 367 start-page: 260 year: 2010 end-page: 272 ident: br0020 article-title: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative publication-title: J. Math. Anal. Appl. – volume: 311 start-page: 495 year: 2005 end-page: 505 ident: br0070 article-title: Positive solutions for boundary value problem of nonlinear fractional differential equation publication-title: J. Math. Anal. Appl. – volume: 74 start-page: 673 year: 2006 end-page: 693 ident: br0460 article-title: Positive solutions of nonlocal boundary value problems: a unified approach publication-title: J. Lond. Math. Soc. – volume: 137 start-page: 981 year: 2009 end-page: 989 ident: br0140 article-title: Initial value problems in discrete fractional calculus publication-title: Proc. Amer. Math. Soc. – volume: 72 start-page: 580 year: 2010 end-page: 586 ident: br0050 article-title: Fractional order differential equations on an unbounded domain publication-title: Nonlinear Anal. – volume: 29 start-page: 365 year: 2005 end-page: 380 ident: br0360 article-title: Self-adjoint boundary value problems on time scales and symmetric Greenʼs functions publication-title: Turkish J. Math. – volume: 59 start-page: 3110 year: 2010 end-page: 3116 ident: br0110 article-title: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative publication-title: Comput. Math. Appl. – volume: 71 start-page: 4676 year: 2009 end-page: 4688 ident: br0130 article-title: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation publication-title: Nonlinear Anal. – volume: 73 start-page: 3723 year: 2010 end-page: 3736 ident: br0100 article-title: The profile of blowing-up solutions to a nonlinear system of fractional differential equations publication-title: Nonlinear Anal. – year: 1999 ident: br0430 article-title: Fractional Differential Equations – volume: 61 start-page: 367 year: 2011 end-page: 373 ident: br0270 article-title: Positive solutions for a class of boundary value problems with fractional publication-title: Comput. Math. Appl. – volume: 5 start-page: 195 year: 2010 end-page: 216 ident: br0150 article-title: Solutions to a discrete right-focal fractional boundary value problem publication-title: Int. J. Difference Equ. – volume: 3 start-page: 1 year: 2009 end-page: 12 ident: br0420 article-title: Discrete fractional calculus with the nabla operator publication-title: Electron. J. Qual. Theory Differ. Equ. – volume: 91 start-page: 513 year: 2011 end-page: 524 ident: br0250 article-title: Discrete-time fractional variational problems publication-title: Signal Process. – volume: 23 start-page: 1050 year: 2010 end-page: 1055 ident: br0090 article-title: Existence of a positive solution to a class of fractional differential equations publication-title: Appl. Math. Lett. – reference: . – volume: 291 start-page: 514 year: 2004 ident: 10.1016/j.jmaa.2011.06.022_br0340 article-title: An even-order three-point boundary value problem on time scales publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2003.11.013 – volume: 73 start-page: 3723 year: 2010 ident: 10.1016/j.jmaa.2011.06.022_br0100 article-title: The profile of blowing-up solutions to a nonlinear system of fractional differential equations publication-title: Nonlinear Anal. doi: 10.1016/j.na.2010.06.088 – volume: 16 start-page: 697 issue: 4 year: 2007 ident: 10.1016/j.jmaa.2011.06.022_br0390 article-title: Reciprocity principle for even-order dynamic equations with mixed derivatives publication-title: Dynam. Systems Appl. – volume: 23 start-page: 1248 year: 2010 ident: 10.1016/j.jmaa.2011.06.022_br0120 article-title: Maximum principles for fractional differential equations derived from Mittag–Leffler functions publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2010.06.007 – volume: 323 start-page: 958 year: 2006 ident: 10.1016/j.jmaa.2011.06.022_br0370 article-title: Existence of solutions for a cantilever beam problem publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.11.011 – volume: 59 start-page: 3489 year: 2010 ident: 10.1016/j.jmaa.2011.06.022_br0160 article-title: Continuity of solutions to discrete fractional initial value problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.03.040 – year: 2001 ident: 10.1016/j.jmaa.2011.06.022_br0440 – ident: 10.1016/j.jmaa.2011.06.022_br0190 doi: 10.1080/10236198.2010.503240 – volume: 38 start-page: 481 issue: 5–6 year: 2003 ident: 10.1016/j.jmaa.2011.06.022_br0320 article-title: A stacked delta–nabla self-adjoint problem of even order publication-title: Math. Comput. Modelling doi: 10.1016/S0895-7177(03)90020-3 – volume: 62 start-page: 1267 year: 2005 ident: 10.1016/j.jmaa.2011.06.022_br0290 article-title: Positive solutions for a nonlinear functional dynamic equation on a time scale publication-title: Nonlinear Anal. doi: 10.1016/j.na.2005.04.031 – volume: 59 start-page: 3110 year: 2010 ident: 10.1016/j.jmaa.2011.06.022_br0110 article-title: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.02.032 – volume: 265 start-page: 229 year: 2002 ident: 10.1016/j.jmaa.2011.06.022_br0080 article-title: Analysis of fractional differential equations publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2000.7194 – volume: 23 start-page: 1050 year: 2010 ident: 10.1016/j.jmaa.2011.06.022_br0090 article-title: Existence of a positive solution to a class of fractional differential equations publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2010.04.035 – volume: 311 start-page: 495 year: 2005 ident: 10.1016/j.jmaa.2011.06.022_br0070 article-title: Positive solutions for boundary value problem of nonlinear fractional differential equation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.02.052 – volume: 22 start-page: 1816 year: 2009 ident: 10.1016/j.jmaa.2011.06.022_br0040 article-title: Calculus of variations with fractional derivatives and fractional integrals publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2009.07.002 – volume: 137 start-page: 981 year: 2009 ident: 10.1016/j.jmaa.2011.06.022_br0140 article-title: Initial value problems in discrete fractional calculus publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-08-09626-3 – volume: 5 start-page: 195 year: 2010 ident: 10.1016/j.jmaa.2011.06.022_br0150 article-title: Solutions to a discrete right-focal fractional boundary value problem publication-title: Int. J. Difference Equ. – volume: 3 start-page: 1 year: 2009 ident: 10.1016/j.jmaa.2011.06.022_br0420 article-title: Discrete fractional calculus with the nabla operator publication-title: Electron. J. Qual. Theory Differ. Equ. doi: 10.14232/ejqtde.2009.4.3 – volume: 71 start-page: 4676 year: 2009 ident: 10.1016/j.jmaa.2011.06.022_br0130 article-title: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.03.030 – volume: 3 start-page: 145 year: 2011 ident: 10.1016/j.jmaa.2011.06.022_br0200 article-title: Some new existence results for fractional difference equations publication-title: Int. J. Dyn. Syst. Differ. Equ. – volume: 295 start-page: 378 year: 2004 ident: 10.1016/j.jmaa.2011.06.022_br0330 article-title: Existence results for singular three point boundary value problems on time scales publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2004.02.049 – volume: 24 year: 2005 ident: 10.1016/j.jmaa.2011.06.022_br0350 article-title: Even order self adjoint time scale problems publication-title: Electron. J. Differential Equations – volume: 2 start-page: 165 year: 2007 ident: 10.1016/j.jmaa.2011.06.022_br0410 article-title: A transform method in discrete fractional calculus publication-title: Int. J. Difference Equ. – volume: 29 start-page: 365 issue: 4 year: 2005 ident: 10.1016/j.jmaa.2011.06.022_br0360 article-title: Self-adjoint boundary value problems on time scales and symmetric Greenʼs functions publication-title: Turkish J. Math. – volume: 5 start-page: 122 year: 2011 ident: 10.1016/j.jmaa.2011.06.022_br0240 article-title: On positive solutions to nonlocal fractional and integer-order difference equations publication-title: Appl. Anal. Discrete Math. doi: 10.2298/AADM110111001G – volume: 91 start-page: 513 year: 2011 ident: 10.1016/j.jmaa.2011.06.022_br0250 article-title: Discrete-time fractional variational problems publication-title: Signal Process. doi: 10.1016/j.sigpro.2010.05.001 – volume: 120 start-page: 743 year: 1994 ident: 10.1016/j.jmaa.2011.06.022_br0450 article-title: On the existence of positive solutions of ordinary differential equations publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1994-1204373-9 – ident: 10.1016/j.jmaa.2011.06.022_br0400 doi: 10.4067/S0719-06462011000300009 – volume: 17 start-page: 445 year: 2011 ident: 10.1016/j.jmaa.2011.06.022_br0010 article-title: Two-point boundary value problems for finite fractional difference equations publication-title: J. Difference Equ. Appl. doi: 10.1080/10236190903029241 – volume: 29 start-page: 417 year: 2011 ident: 10.1016/j.jmaa.2011.06.022_br0180 article-title: Necessary optimality conditions for fractional difference problems of the calculus of variations publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2011.29.417 – ident: 10.1016/j.jmaa.2011.06.022_br0230 – volume: 278 start-page: 434 year: 2003 ident: 10.1016/j.jmaa.2011.06.022_br0060 article-title: Existence of positive solutions of nonlinear fractional differential equations publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(02)00716-3 – volume: 141 start-page: 75 year: 2002 ident: 10.1016/j.jmaa.2011.06.022_br0310 article-title: On Greenʼs functions and positive solutions for boundary value problems on time scales publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(01)00437-X – volume: 61 start-page: 367 year: 2011 ident: 10.1016/j.jmaa.2011.06.022_br0270 article-title: Positive solutions for a class of boundary value problems with fractional q-differences publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.11.012 – volume: 61 start-page: 191 year: 2011 ident: 10.1016/j.jmaa.2011.06.022_br0210 article-title: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.10.041 – year: 1999 ident: 10.1016/j.jmaa.2011.06.022_br0430 – volume: 11 start-page: 1 year: 2011 ident: 10.1016/j.jmaa.2011.06.022_br0260 article-title: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform publication-title: Int. J. Math. Comput. – volume: 22 start-page: 457 year: 2006 ident: 10.1016/j.jmaa.2011.06.022_br0380 article-title: Existence of positive solutions for second-order m-point boundary value problems on time scales publication-title: Acta Math. Appl. Sin. Engl. Ser. doi: 10.1007/s10255-006-0322-7 – volume: 8 start-page: 673 year: 2002 ident: 10.1016/j.jmaa.2011.06.022_br0280 article-title: Solutions to second-order three-point problems on time scales publication-title: J. Difference Equ. Appl. doi: 10.1080/1023619021000000717 – volume: 72 start-page: 2859 year: 2009 ident: 10.1016/j.jmaa.2011.06.022_br0030 article-title: On the concept of solution for fractional differential equations with uncertainty publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.11.029 – volume: 74 start-page: 673 year: 2006 ident: 10.1016/j.jmaa.2011.06.022_br0460 article-title: Positive solutions of nonlocal boundary value problems: a unified approach publication-title: J. Lond. Math. Soc. doi: 10.1112/S0024610706023179 – volume: 367 start-page: 260 year: 2010 ident: 10.1016/j.jmaa.2011.06.022_br0020 article-title: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.01.023 – volume: 330 start-page: 900 year: 2007 ident: 10.1016/j.jmaa.2011.06.022_br0300 article-title: Multiple positive solutions for discrete nonlocal boundary value problems publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.08.034 – volume: 369 start-page: 1 year: 2010 ident: 10.1016/j.jmaa.2011.06.022_br0170 article-title: Modeling with fractional difference equations publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.02.009 – volume: 217 start-page: 4740 year: 2011 ident: 10.1016/j.jmaa.2011.06.022_br0220 article-title: Existence of a positive solution to a system of discrete fractional boundary value problems publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.11.029 – volume: 72 start-page: 580 year: 2010 ident: 10.1016/j.jmaa.2011.06.022_br0050 article-title: Fractional order differential equations on an unbounded domain publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.06.106 |
SSID | ssj0011571 |
Score | 2.391182 |
Snippet | In this paper, we analyze several different types of discrete sequential fractional boundary value problems. Our prototype equation is
−
Δ
μ
1
Δ
μ
2
Δ
μ
3
y
(... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111 |
SubjectTerms | Boundary value problem Cone Discrete fractional calculus Positive solution Sequential fractional difference |
Title | On discrete sequential fractional boundary value problems |
URI | https://dx.doi.org/10.1016/j.jmaa.2011.06.022 |
Volume | 385 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4ID14M4V2n3BEIgEJmBiMvTXb7W4CwUoKHrz4291pt0QTw8FT2-1O0ky3M9PZ-b5B6JYriYUN5X1qb_uwf-tLTpRvhAACNPvDYSA1MJny4Qt9jFhUQ_0KCwNllc72lza9sNZupO202V7N54Dxtb6NighIz5goMFyUCljlra9tmQdwyYQVYzjMdsCZssZr8Salo_HkrQDjv53TD4czOEKHLlL0euXDHKOazk7QwWRLs7o-Rd2nzANYbW4jX68sirYf7NIzeQlXsKdJ0TYp__SA1Vt7rn_M-gzNBg-z_tB3vRB8RYJg46ecaS4lw6nSlEkbFGHcTbFhmBGTksT69URjyPFyAduyhBtC00CLUAmDQ3KO6tl7pi-Qh6nsMJVyoxJChWQd2VVJKGQgOfTdCBsorHQQK8cTDu0qlnFVELaIQW8x6C2GqjiMG-huK7MqWTJ2zmaVauNf7zq2ZnyH3OU_5a7Qvr3CZeLkGtU3-Ye-saHEJmkWa6WJ9nqj8XAKx_Hz69iOjqL7b_6vyPA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4inKMwNMKG3ixHY7MCAeaumDpUjdLMdxpFYlVG0R6sKP4hfia5wKJNQBqVsU56L4Yt2dz999B3DJlCTchPJuaIZdPL91JQuUm3COBGhmw5FgaqDdYfWX8KlHewX4ymthEFZpbX9m0-fW2t6pWG1WRv0-1vga3xbyHpKeUe75FlnZ1LMPs2-b3DTuzU--IuTxoXtXd21rAVcFnjd1Y0Y1k5KSWOmQShNjEFKLSUIJDZI4iIybjDTBlCnjeMoZsCQIY09zX_GE-IF57Rqsh8ZaYNeE8ucCVoLcNX7OUI5fZwt1MkzZ4FVKSxvKyh4hfzvDHw7ucQe2bWTq3GaT34WCTvdgq72gdZ3sQ-05dbCMd2wibScDYRsDMXSScVYeYS6jeZum8cxBFnHt2H41kwPorkJBh1BM31J9BA4JZZWqmCUqCkIuaVXWVORz6UmGfT78Evi5DoSyvOTYHmMocgDaQKDeBOpNIAqPkBJcL2RGGSvH0qdprlrxa20J4zaWyB3_U-4CNurddku0Gp3mCWyaEZIlbU6hOB2_6zMTxkyj8_m6cUCseJ1-A_Sv_5U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+discrete+sequential+fractional+boundary+value+problems&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Goodrich%2C+Christopher+S.&rft.date=2012&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=385&rft.issue=1&rft.spage=111&rft.epage=124&rft_id=info:doi/10.1016%2Fj.jmaa.2011.06.022&rft.externalDocID=S0022247X11005701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |