On discrete sequential fractional boundary value problems

In this paper, we analyze several different types of discrete sequential fractional boundary value problems. Our prototype equation is − Δ μ 1 Δ μ 2 Δ μ 3 y ( t ) = f ( t + μ 1 + μ 2 + μ 3 − 1 , y ( t + μ 1 + μ 2 + μ 3 − 1 ) ) subject to the conjugate boundary conditions y ( 0 ) = 0 = y ( b + 2 ) ,...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical analysis and applications Vol. 385; no. 1; pp. 111 - 124
Main Author Goodrich, Christopher S.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we analyze several different types of discrete sequential fractional boundary value problems. Our prototype equation is − Δ μ 1 Δ μ 2 Δ μ 3 y ( t ) = f ( t + μ 1 + μ 2 + μ 3 − 1 , y ( t + μ 1 + μ 2 + μ 3 − 1 ) ) subject to the conjugate boundary conditions y ( 0 ) = 0 = y ( b + 2 ) , where f : [ 1 , b + 1 ] N 0 × R → [ 0 , + ∞ ) is a continuous function and μ 1 , μ 2 , μ 3 ∈ ( 0 , 1 ) satisfy 1 < μ 2 + μ 3 < 2 and 1 < μ 1 + μ 2 + μ 3 < 2 . We also obtain results for delta–nabla discrete fractional boundary value problems. As an application of our analysis, we give conditions under which such problems will admit at least one positive solution.
AbstractList In this paper, we analyze several different types of discrete sequential fractional boundary value problems. Our prototype equation is − Δ μ 1 Δ μ 2 Δ μ 3 y ( t ) = f ( t + μ 1 + μ 2 + μ 3 − 1 , y ( t + μ 1 + μ 2 + μ 3 − 1 ) ) subject to the conjugate boundary conditions y ( 0 ) = 0 = y ( b + 2 ) , where f : [ 1 , b + 1 ] N 0 × R → [ 0 , + ∞ ) is a continuous function and μ 1 , μ 2 , μ 3 ∈ ( 0 , 1 ) satisfy 1 < μ 2 + μ 3 < 2 and 1 < μ 1 + μ 2 + μ 3 < 2 . We also obtain results for delta–nabla discrete fractional boundary value problems. As an application of our analysis, we give conditions under which such problems will admit at least one positive solution.
Author Goodrich, Christopher S.
Author_xml – sequence: 1
  givenname: Christopher S.
  surname: Goodrich
  fullname: Goodrich, Christopher S.
  email: s-cgoodri4@math.unl.edu
  organization: Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
BookMark eNp9j8tqwzAQRUVJoUnaH-jKP2B3JEVSDN2U0BcEssmiOyFLY5Bx5FRSAv372qSrLrKaYZhzuWdBZmEISMgjhYoClU9d1R2MqRhQWoGsgLEbMqdQyxLWlM_IHMZTyVbq644sUupgfBSKzkm9C4XzyUbMWCT8PmHI3vRFG43Nfgjj2gyn4Ez8Kc6mP2FxjEPT4yHdk9vW9Akf_uaS7N9e95uPcrt7_9y8bEvLAXLppEBpjGDO4koYEDVjtWOtYIK3jje0hgYZCMalAqYUly1fOUBFrWoZ5UvCLrE2DilFbPUx-sNYR1PQk7vu9OSuJ3cNUo-iI7T-B1mfzeSTo_H9dfT5guLodPYYdbIeg0XnI9qs3eCv4b-TTXa7
CitedBy_id crossref_primary_10_1002_asjc_1034
crossref_primary_10_1186_1687_1847_2013_48
crossref_primary_10_1155_2013_679290
crossref_primary_10_1080_10236198_2015_1013537
crossref_primary_10_1080_00207721_2013_794907
crossref_primary_10_3934_math_2022579
crossref_primary_10_1080_10236198_2018_1542431
crossref_primary_10_1186_1687_1847_2013_275
crossref_primary_10_1007_s11856_020_1991_2
crossref_primary_10_1186_1029_242X_2014_86
crossref_primary_10_11948_2013003
crossref_primary_10_1007_s11117_017_0527_4
crossref_primary_10_1515_fca_2020_0045
crossref_primary_10_1063_5_0018408
crossref_primary_10_1080_10236198_2017_1380635
crossref_primary_10_1080_10236198_2021_1965132
crossref_primary_10_1016_j_cam_2017_10_021
crossref_primary_10_1186_1687_1847_2014_184
crossref_primary_10_11948_20190051
crossref_primary_10_1007_s12190_012_0590_8
crossref_primary_10_1080_10236198_2013_775259
crossref_primary_10_1155_2013_943961
crossref_primary_10_3390_sym16080991
crossref_primary_10_1007_s00013_012_0463_2
crossref_primary_10_1080_10236198_2021_1999434
crossref_primary_10_1186_1687_1847_2013_260
crossref_primary_10_1016_j_aml_2014_04_013
crossref_primary_10_1007_s10013_020_00449_5
crossref_primary_10_1080_10236198_2017_1307351
crossref_primary_10_1155_2014_230850
crossref_primary_10_1186_1687_1847_2014_253
crossref_primary_10_1186_s13662_019_2184_3
crossref_primary_10_3934_math_2023649
crossref_primary_10_1515_anly_2016_0039
crossref_primary_10_1007_s00013_014_0620_x
crossref_primary_10_1216_RMJ_2019_49_8_2571
crossref_primary_10_3390_axioms13080570
crossref_primary_10_3934_mbe_2022239
crossref_primary_10_1186_s13661_016_0585_8
crossref_primary_10_1155_2014_340159
crossref_primary_10_1186_s13662_015_0616_2
crossref_primary_10_3390_math8050843
crossref_primary_10_1155_2014_147975
crossref_primary_10_1186_2251_7456_6_7
crossref_primary_10_1142_S0218348X23401837
crossref_primary_10_1186_1687_1847_2013_319
crossref_primary_10_1186_s13662_015_0466_y
crossref_primary_10_1016_j_aml_2019_07_003
crossref_primary_10_1016_j_cnsns_2017_01_002
crossref_primary_10_1080_00207160_2013_792921
crossref_primary_10_1016_j_amc_2016_01_051
crossref_primary_10_1080_10236198_2018_1561883
crossref_primary_10_1186_s13660_023_02916_2
crossref_primary_10_1016_j_amc_2017_06_019
crossref_primary_10_3934_math_2023140
crossref_primary_10_1186_s13662_017_1354_4
crossref_primary_10_5937_KgJMath1803371R
crossref_primary_10_1186_s13662_018_1840_3
crossref_primary_10_1186_1687_1847_2012_140
crossref_primary_10_1186_1687_2770_2013_103
crossref_primary_10_1016_j_amc_2012_03_006
crossref_primary_10_1186_1687_1847_2014_57
crossref_primary_10_1007_s00009_018_1258_x
crossref_primary_10_3390_axioms12070650
crossref_primary_10_1002_mma_7247
crossref_primary_10_1186_s13662_015_0559_7
crossref_primary_10_1007_s12591_018_0409_7
crossref_primary_10_1007_s00013_017_1106_4
crossref_primary_10_1155_2014_601092
crossref_primary_10_2298_FIL2305591U
crossref_primary_10_3934_mmc_2024012
crossref_primary_10_3390_math7050471
crossref_primary_10_3390_sym16030337
crossref_primary_10_3934_math_2022829
crossref_primary_10_1002_mma_8174
crossref_primary_10_1016_j_jksus_2024_103224
crossref_primary_10_1002_mma_8176
crossref_primary_10_3390_sym12060980
crossref_primary_10_1016_j_physa_2016_05_045
crossref_primary_10_1515_nleng_2022_0377
crossref_primary_10_1186_s13662_016_0992_2
crossref_primary_10_3390_math8040476
crossref_primary_10_14403_jcms_2015_28_2_173
crossref_primary_10_1007_s10492_014_0079_x
crossref_primary_10_1155_2015_376261
crossref_primary_10_1007_s12190_012_0622_4
crossref_primary_10_3390_math10142433
crossref_primary_10_2478_s13540_013_0044_5
crossref_primary_10_1186_1687_1847_2012_163
crossref_primary_10_1515_anly_2021_0011
crossref_primary_10_1080_10236198_2021_1894142
crossref_primary_10_1142_S0218348X24400371
crossref_primary_10_3934_math_2022997
crossref_primary_10_1002_mma_3263
crossref_primary_10_1186_s13662_020_02835_2
crossref_primary_10_3934_era_2022155
crossref_primary_10_1016_j_aml_2021_107104
crossref_primary_10_1515_anly_2019_0050
crossref_primary_10_1007_s10473_020_0219_1
crossref_primary_10_1155_2013_459161
crossref_primary_10_3390_math12182864
crossref_primary_10_1186_s13662_016_0760_3
crossref_primary_10_1016_j_cnsns_2014_04_010
crossref_primary_10_1016_j_exco_2022_100089
crossref_primary_10_1016_j_chaos_2023_114098
crossref_primary_10_1186_1687_1847_2014_326
crossref_primary_10_1515_ms_2017_0018
crossref_primary_10_1002_mma_9875
crossref_primary_10_1155_2012_707631
crossref_primary_10_1155_2013_643571
crossref_primary_10_1216_rmj_2021_51_1981
crossref_primary_10_1080_10236198_2013_856073
Cites_doi 10.1016/j.jmaa.2003.11.013
10.1016/j.na.2010.06.088
10.1016/j.aml.2010.06.007
10.1016/j.jmaa.2005.11.011
10.1016/j.camwa.2010.03.040
10.1080/10236198.2010.503240
10.1016/S0895-7177(03)90020-3
10.1016/j.na.2005.04.031
10.1016/j.camwa.2010.02.032
10.1006/jmaa.2000.7194
10.1016/j.aml.2010.04.035
10.1016/j.jmaa.2005.02.052
10.1016/j.aml.2009.07.002
10.1090/S0002-9939-08-09626-3
10.14232/ejqtde.2009.4.3
10.1016/j.na.2009.03.030
10.1016/j.jmaa.2004.02.049
10.2298/AADM110111001G
10.1016/j.sigpro.2010.05.001
10.1090/S0002-9939-1994-1204373-9
10.4067/S0719-06462011000300009
10.1080/10236190903029241
10.3934/dcds.2011.29.417
10.1016/S0022-247X(02)00716-3
10.1016/S0377-0427(01)00437-X
10.1016/j.camwa.2010.11.012
10.1016/j.camwa.2010.10.041
10.1007/s10255-006-0322-7
10.1080/1023619021000000717
10.1016/j.na.2009.11.029
10.1112/S0024610706023179
10.1016/j.jmaa.2010.01.023
10.1016/j.jmaa.2006.08.034
10.1016/j.jmaa.2010.02.009
10.1016/j.amc.2010.11.029
10.1016/j.na.2009.06.106
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright_xml – notice: 2011 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jmaa.2011.06.022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 124
ExternalDocumentID 10_1016_j_jmaa_2011_06_022
S0022247X11005701
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-d65e6aa52dce45a059229d2f5253fd3b190be2052367027736f34d0e71c7f213
IEDL.DBID .~1
ISSN 0022-247X
IngestDate Tue Jul 01 01:38:46 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Fri Feb 23 02:23:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Boundary value problem
Cone
Discrete fractional calculus
Sequential fractional difference
Positive solution
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-d65e6aa52dce45a059229d2f5253fd3b190be2052367027736f34d0e71c7f213
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0022247X11005701
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_jmaa_2011_06_022
crossref_citationtrail_10_1016_j_jmaa_2011_06_022
elsevier_sciencedirect_doi_10_1016_j_jmaa_2011_06_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012
2012-01-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Anderson, Hoffacker (br0370) 2006; 323
Atici, Eloe (br0420) 2009; 3
Goodrich (br0220) 2011; 217
C.S. Goodrich, A comparison result for the fractional difference operator, Int. J. Difference Equ. 6 (2011), in press.
Goodrich (br0210) 2011; 61
Bai, Lü (br0070) 2005; 311
Xu, Jiang, Yuan (br0130) 2009; 71
Ferreira (br0270) 2011; 61
Kaufmann, Raffoul (br0290) 2005; 62
Atici, Eloe (br0010) 2011; 17
Goodrich (br0240) 2011; 5
Anderson, Hoffacker (br0320) 2003; 38
Podlubny (br0430) 1999
Guseinov (br0360) 2005; 29
Almeida, Torres (br0040) 2009; 22
Bastos (br0180) 2011; 29
Wang, Wang (br0380) 2006; 22
Agarwal, Lakshmikantham, Nieto (br0030) 2009; 72
Bastos (br0260) 2011; 11
Arara (br0050) 2010; 72
Atici, Şengül (br0170) 2010; 369
Anderson (br0280) 2002; 8
Agarwal, Meehan, OʼRegan (br0440) 2001
Nieto (br0120) 2010; 23
Erbe, Wang (br0450) 1994; 120
C.S. Goodrich, On a discrete fractional three-point boundary value problem, J. Difference Equ. Appl.
Atici, Eloe (br0140) 2009; 137
Anderson, Avery (br0340) 2004; 291
Kirane, Malik (br0100) 2010; 73
Goodrich (br0200) 2011; 3
Infante, Webb (br0460) 2006; 74
Atici, Eloe (br0410) 2007; 2
Malinowska, Torres (br0110) 2010; 59
Goodrich (br0160) 2010; 59
.
Diethelm, Ford (br0080) 2002; 265
DaCunha, Davis, Singh (br0330) 2004; 295
Došlý (br0390) 2007; 16
Anderson, Hoffacker (br0350) 2005; 24
Babakhani, Daftardar-Gejji (br0060) 2003; 278
M. Holm, Sum and difference compositions and applications in discrete fractional calculus, Cubo 3 (13) (2011), in press.
Goodrich (br0090) 2010; 23
Goodrich (br0150) 2010; 5
Wei, Li, Che (br0020) 2010; 367
Bastos (br0250) 2011; 91
Atici, Guseinov (br0310) 2002; 141
Cheung, Ren, Wong, Zhao (br0300) 2007; 330
Erbe (10.1016/j.jmaa.2011.06.022_br0450) 1994; 120
Bastos (10.1016/j.jmaa.2011.06.022_br0260) 2011; 11
Agarwal (10.1016/j.jmaa.2011.06.022_br0440) 2001
Goodrich (10.1016/j.jmaa.2011.06.022_br0090) 2010; 23
10.1016/j.jmaa.2011.06.022_br0190
Infante (10.1016/j.jmaa.2011.06.022_br0460) 2006; 74
Wang (10.1016/j.jmaa.2011.06.022_br0380) 2006; 22
Nieto (10.1016/j.jmaa.2011.06.022_br0120) 2010; 23
Goodrich (10.1016/j.jmaa.2011.06.022_br0210) 2011; 61
Anderson (10.1016/j.jmaa.2011.06.022_br0340) 2004; 291
Podlubny (10.1016/j.jmaa.2011.06.022_br0430) 1999
Goodrich (10.1016/j.jmaa.2011.06.022_br0220) 2011; 217
Babakhani (10.1016/j.jmaa.2011.06.022_br0060) 2003; 278
Kaufmann (10.1016/j.jmaa.2011.06.022_br0290) 2005; 62
Anderson (10.1016/j.jmaa.2011.06.022_br0320) 2003; 38
Atici (10.1016/j.jmaa.2011.06.022_br0010) 2011; 17
Malinowska (10.1016/j.jmaa.2011.06.022_br0110) 2010; 59
Goodrich (10.1016/j.jmaa.2011.06.022_br0240) 2011; 5
Anderson (10.1016/j.jmaa.2011.06.022_br0370) 2006; 323
Cheung (10.1016/j.jmaa.2011.06.022_br0300) 2007; 330
Došlý (10.1016/j.jmaa.2011.06.022_br0390) 2007; 16
Atici (10.1016/j.jmaa.2011.06.022_br0310) 2002; 141
Xu (10.1016/j.jmaa.2011.06.022_br0130) 2009; 71
DaCunha (10.1016/j.jmaa.2011.06.022_br0330) 2004; 295
10.1016/j.jmaa.2011.06.022_br0400
Atici (10.1016/j.jmaa.2011.06.022_br0410) 2007; 2
Goodrich (10.1016/j.jmaa.2011.06.022_br0160) 2010; 59
Atici (10.1016/j.jmaa.2011.06.022_br0140) 2009; 137
Ferreira (10.1016/j.jmaa.2011.06.022_br0270) 2011; 61
Goodrich (10.1016/j.jmaa.2011.06.022_br0150) 2010; 5
Bastos (10.1016/j.jmaa.2011.06.022_br0180) 2011; 29
Kirane (10.1016/j.jmaa.2011.06.022_br0100) 2010; 73
Arara (10.1016/j.jmaa.2011.06.022_br0050) 2010; 72
Agarwal (10.1016/j.jmaa.2011.06.022_br0030) 2009; 72
Bai (10.1016/j.jmaa.2011.06.022_br0070) 2005; 311
Goodrich (10.1016/j.jmaa.2011.06.022_br0200) 2011; 3
Anderson (10.1016/j.jmaa.2011.06.022_br0280) 2002; 8
Almeida (10.1016/j.jmaa.2011.06.022_br0040) 2009; 22
Diethelm (10.1016/j.jmaa.2011.06.022_br0080) 2002; 265
Wei (10.1016/j.jmaa.2011.06.022_br0020) 2010; 367
Atici (10.1016/j.jmaa.2011.06.022_br0170) 2010; 369
Bastos (10.1016/j.jmaa.2011.06.022_br0250) 2011; 91
Anderson (10.1016/j.jmaa.2011.06.022_br0350) 2005; 24
Guseinov (10.1016/j.jmaa.2011.06.022_br0360) 2005; 29
10.1016/j.jmaa.2011.06.022_br0230
Atici (10.1016/j.jmaa.2011.06.022_br0420) 2009; 3
References_xml – volume: 2
  start-page: 165
  year: 2007
  end-page: 176
  ident: br0410
  article-title: A transform method in discrete fractional calculus
  publication-title: Int. J. Difference Equ.
– volume: 295
  start-page: 378
  year: 2004
  end-page: 391
  ident: br0330
  article-title: Existence results for singular three point boundary value problems on time scales
  publication-title: J. Math. Anal. Appl.
– volume: 3
  start-page: 145
  year: 2011
  end-page: 162
  ident: br0200
  article-title: Some new existence results for fractional difference equations
  publication-title: Int. J. Dyn. Syst. Differ. Equ.
– volume: 217
  start-page: 4740
  year: 2011
  end-page: 4753
  ident: br0220
  article-title: Existence of a positive solution to a system of discrete fractional boundary value problems
  publication-title: Appl. Math. Comput.
– volume: 11
  start-page: 1
  year: 2011
  end-page: 9
  ident: br0260
  article-title: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform
  publication-title: Int. J. Math. Comput.
– volume: 24
  year: 2005
  ident: br0350
  article-title: Even order self adjoint time scale problems
  publication-title: Electron. J. Differential Equations
– volume: 59
  start-page: 3489
  year: 2010
  end-page: 3499
  ident: br0160
  article-title: Continuity of solutions to discrete fractional initial value problems
  publication-title: Comput. Math. Appl.
– volume: 23
  start-page: 1248
  year: 2010
  end-page: 1251
  ident: br0120
  article-title: Maximum principles for fractional differential equations derived from Mittag–Leffler functions
  publication-title: Appl. Math. Lett.
– reference: C.S. Goodrich, A comparison result for the fractional difference operator, Int. J. Difference Equ. 6 (2011), in press.
– volume: 141
  start-page: 75
  year: 2002
  end-page: 99
  ident: br0310
  article-title: On Greenʼs functions and positive solutions for boundary value problems on time scales
  publication-title: J. Comput. Appl. Math.
– reference: M. Holm, Sum and difference compositions and applications in discrete fractional calculus, Cubo 3 (13) (2011), in press.
– year: 2001
  ident: br0440
  article-title: Fixed Point Theory and Applications
– volume: 291
  start-page: 514
  year: 2004
  end-page: 525
  ident: br0340
  article-title: An even-order three-point boundary value problem on time scales
  publication-title: J. Math. Anal. Appl.
– volume: 120
  start-page: 743
  year: 1994
  end-page: 748
  ident: br0450
  article-title: On the existence of positive solutions of ordinary differential equations
  publication-title: Proc. Amer. Math. Soc.
– volume: 38
  start-page: 481
  year: 2003
  end-page: 494
  ident: br0320
  article-title: A stacked delta–nabla self-adjoint problem of even order
  publication-title: Math. Comput. Modelling
– volume: 278
  start-page: 434
  year: 2003
  end-page: 442
  ident: br0060
  article-title: Existence of positive solutions of nonlinear fractional differential equations
  publication-title: J. Math. Anal. Appl.
– volume: 5
  start-page: 122
  year: 2011
  end-page: 132
  ident: br0240
  article-title: On positive solutions to nonlocal fractional and integer-order difference equations
  publication-title: Appl. Anal. Discrete Math.
– volume: 22
  start-page: 457
  year: 2006
  end-page: 468
  ident: br0380
  article-title: Existence of positive solutions for second-order m-point boundary value problems on time scales
  publication-title: Acta Math. Appl. Sin. Engl. Ser.
– volume: 61
  start-page: 191
  year: 2011
  end-page: 202
  ident: br0210
  article-title: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions
  publication-title: Comput. Math. Appl.
– volume: 8
  start-page: 673
  year: 2002
  end-page: 688
  ident: br0280
  article-title: Solutions to second-order three-point problems on time scales
  publication-title: J. Difference Equ. Appl.
– volume: 22
  start-page: 1816
  year: 2009
  end-page: 1820
  ident: br0040
  article-title: Calculus of variations with fractional derivatives and fractional integrals
  publication-title: Appl. Math. Lett.
– volume: 16
  start-page: 697
  year: 2007
  end-page: 708
  ident: br0390
  article-title: Reciprocity principle for even-order dynamic equations with mixed derivatives
  publication-title: Dynam. Systems Appl.
– volume: 369
  start-page: 1
  year: 2010
  end-page: 9
  ident: br0170
  article-title: Modeling with fractional difference equations
  publication-title: J. Math. Anal. Appl.
– volume: 323
  start-page: 958
  year: 2006
  end-page: 973
  ident: br0370
  article-title: Existence of solutions for a cantilever beam problem
  publication-title: J. Math. Anal. Appl.
– volume: 17
  start-page: 445
  year: 2011
  end-page: 456
  ident: br0010
  article-title: Two-point boundary value problems for finite fractional difference equations
  publication-title: J. Difference Equ. Appl.
– volume: 265
  start-page: 229
  year: 2002
  end-page: 248
  ident: br0080
  article-title: Analysis of fractional differential equations
  publication-title: J. Math. Anal. Appl.
– reference: C.S. Goodrich, On a discrete fractional three-point boundary value problem, J. Difference Equ. Appl.,
– volume: 62
  start-page: 1267
  year: 2005
  end-page: 1276
  ident: br0290
  article-title: Positive solutions for a nonlinear functional dynamic equation on a time scale
  publication-title: Nonlinear Anal.
– volume: 29
  start-page: 417
  year: 2011
  end-page: 437
  ident: br0180
  article-title: Necessary optimality conditions for fractional difference problems of the calculus of variations
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 72
  start-page: 2859
  year: 2009
  end-page: 2862
  ident: br0030
  article-title: On the concept of solution for fractional differential equations with uncertainty
  publication-title: Nonlinear Anal.
– volume: 330
  start-page: 900
  year: 2007
  end-page: 915
  ident: br0300
  article-title: Multiple positive solutions for discrete nonlocal boundary value problems
  publication-title: J. Math. Anal. Appl.
– volume: 367
  start-page: 260
  year: 2010
  end-page: 272
  ident: br0020
  article-title: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative
  publication-title: J. Math. Anal. Appl.
– volume: 311
  start-page: 495
  year: 2005
  end-page: 505
  ident: br0070
  article-title: Positive solutions for boundary value problem of nonlinear fractional differential equation
  publication-title: J. Math. Anal. Appl.
– volume: 74
  start-page: 673
  year: 2006
  end-page: 693
  ident: br0460
  article-title: Positive solutions of nonlocal boundary value problems: a unified approach
  publication-title: J. Lond. Math. Soc.
– volume: 137
  start-page: 981
  year: 2009
  end-page: 989
  ident: br0140
  article-title: Initial value problems in discrete fractional calculus
  publication-title: Proc. Amer. Math. Soc.
– volume: 72
  start-page: 580
  year: 2010
  end-page: 586
  ident: br0050
  article-title: Fractional order differential equations on an unbounded domain
  publication-title: Nonlinear Anal.
– volume: 29
  start-page: 365
  year: 2005
  end-page: 380
  ident: br0360
  article-title: Self-adjoint boundary value problems on time scales and symmetric Greenʼs functions
  publication-title: Turkish J. Math.
– volume: 59
  start-page: 3110
  year: 2010
  end-page: 3116
  ident: br0110
  article-title: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
  publication-title: Comput. Math. Appl.
– volume: 71
  start-page: 4676
  year: 2009
  end-page: 4688
  ident: br0130
  article-title: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation
  publication-title: Nonlinear Anal.
– volume: 73
  start-page: 3723
  year: 2010
  end-page: 3736
  ident: br0100
  article-title: The profile of blowing-up solutions to a nonlinear system of fractional differential equations
  publication-title: Nonlinear Anal.
– year: 1999
  ident: br0430
  article-title: Fractional Differential Equations
– volume: 61
  start-page: 367
  year: 2011
  end-page: 373
  ident: br0270
  article-title: Positive solutions for a class of boundary value problems with fractional
  publication-title: Comput. Math. Appl.
– volume: 5
  start-page: 195
  year: 2010
  end-page: 216
  ident: br0150
  article-title: Solutions to a discrete right-focal fractional boundary value problem
  publication-title: Int. J. Difference Equ.
– volume: 3
  start-page: 1
  year: 2009
  end-page: 12
  ident: br0420
  article-title: Discrete fractional calculus with the nabla operator
  publication-title: Electron. J. Qual. Theory Differ. Equ.
– volume: 91
  start-page: 513
  year: 2011
  end-page: 524
  ident: br0250
  article-title: Discrete-time fractional variational problems
  publication-title: Signal Process.
– volume: 23
  start-page: 1050
  year: 2010
  end-page: 1055
  ident: br0090
  article-title: Existence of a positive solution to a class of fractional differential equations
  publication-title: Appl. Math. Lett.
– reference: .
– volume: 291
  start-page: 514
  year: 2004
  ident: 10.1016/j.jmaa.2011.06.022_br0340
  article-title: An even-order three-point boundary value problem on time scales
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2003.11.013
– volume: 73
  start-page: 3723
  year: 2010
  ident: 10.1016/j.jmaa.2011.06.022_br0100
  article-title: The profile of blowing-up solutions to a nonlinear system of fractional differential equations
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2010.06.088
– volume: 16
  start-page: 697
  issue: 4
  year: 2007
  ident: 10.1016/j.jmaa.2011.06.022_br0390
  article-title: Reciprocity principle for even-order dynamic equations with mixed derivatives
  publication-title: Dynam. Systems Appl.
– volume: 23
  start-page: 1248
  year: 2010
  ident: 10.1016/j.jmaa.2011.06.022_br0120
  article-title: Maximum principles for fractional differential equations derived from Mittag–Leffler functions
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.06.007
– volume: 323
  start-page: 958
  year: 2006
  ident: 10.1016/j.jmaa.2011.06.022_br0370
  article-title: Existence of solutions for a cantilever beam problem
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.11.011
– volume: 59
  start-page: 3489
  year: 2010
  ident: 10.1016/j.jmaa.2011.06.022_br0160
  article-title: Continuity of solutions to discrete fractional initial value problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.03.040
– year: 2001
  ident: 10.1016/j.jmaa.2011.06.022_br0440
– ident: 10.1016/j.jmaa.2011.06.022_br0190
  doi: 10.1080/10236198.2010.503240
– volume: 38
  start-page: 481
  issue: 5–6
  year: 2003
  ident: 10.1016/j.jmaa.2011.06.022_br0320
  article-title: A stacked delta–nabla self-adjoint problem of even order
  publication-title: Math. Comput. Modelling
  doi: 10.1016/S0895-7177(03)90020-3
– volume: 62
  start-page: 1267
  year: 2005
  ident: 10.1016/j.jmaa.2011.06.022_br0290
  article-title: Positive solutions for a nonlinear functional dynamic equation on a time scale
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2005.04.031
– volume: 59
  start-page: 3110
  year: 2010
  ident: 10.1016/j.jmaa.2011.06.022_br0110
  article-title: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.02.032
– volume: 265
  start-page: 229
  year: 2002
  ident: 10.1016/j.jmaa.2011.06.022_br0080
  article-title: Analysis of fractional differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2000.7194
– volume: 23
  start-page: 1050
  year: 2010
  ident: 10.1016/j.jmaa.2011.06.022_br0090
  article-title: Existence of a positive solution to a class of fractional differential equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.04.035
– volume: 311
  start-page: 495
  year: 2005
  ident: 10.1016/j.jmaa.2011.06.022_br0070
  article-title: Positive solutions for boundary value problem of nonlinear fractional differential equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.02.052
– volume: 22
  start-page: 1816
  year: 2009
  ident: 10.1016/j.jmaa.2011.06.022_br0040
  article-title: Calculus of variations with fractional derivatives and fractional integrals
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2009.07.002
– volume: 137
  start-page: 981
  year: 2009
  ident: 10.1016/j.jmaa.2011.06.022_br0140
  article-title: Initial value problems in discrete fractional calculus
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-08-09626-3
– volume: 5
  start-page: 195
  year: 2010
  ident: 10.1016/j.jmaa.2011.06.022_br0150
  article-title: Solutions to a discrete right-focal fractional boundary value problem
  publication-title: Int. J. Difference Equ.
– volume: 3
  start-page: 1
  year: 2009
  ident: 10.1016/j.jmaa.2011.06.022_br0420
  article-title: Discrete fractional calculus with the nabla operator
  publication-title: Electron. J. Qual. Theory Differ. Equ.
  doi: 10.14232/ejqtde.2009.4.3
– volume: 71
  start-page: 4676
  year: 2009
  ident: 10.1016/j.jmaa.2011.06.022_br0130
  article-title: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.03.030
– volume: 3
  start-page: 145
  year: 2011
  ident: 10.1016/j.jmaa.2011.06.022_br0200
  article-title: Some new existence results for fractional difference equations
  publication-title: Int. J. Dyn. Syst. Differ. Equ.
– volume: 295
  start-page: 378
  year: 2004
  ident: 10.1016/j.jmaa.2011.06.022_br0330
  article-title: Existence results for singular three point boundary value problems on time scales
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.02.049
– volume: 24
  year: 2005
  ident: 10.1016/j.jmaa.2011.06.022_br0350
  article-title: Even order self adjoint time scale problems
  publication-title: Electron. J. Differential Equations
– volume: 2
  start-page: 165
  year: 2007
  ident: 10.1016/j.jmaa.2011.06.022_br0410
  article-title: A transform method in discrete fractional calculus
  publication-title: Int. J. Difference Equ.
– volume: 29
  start-page: 365
  issue: 4
  year: 2005
  ident: 10.1016/j.jmaa.2011.06.022_br0360
  article-title: Self-adjoint boundary value problems on time scales and symmetric Greenʼs functions
  publication-title: Turkish J. Math.
– volume: 5
  start-page: 122
  year: 2011
  ident: 10.1016/j.jmaa.2011.06.022_br0240
  article-title: On positive solutions to nonlocal fractional and integer-order difference equations
  publication-title: Appl. Anal. Discrete Math.
  doi: 10.2298/AADM110111001G
– volume: 91
  start-page: 513
  year: 2011
  ident: 10.1016/j.jmaa.2011.06.022_br0250
  article-title: Discrete-time fractional variational problems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2010.05.001
– volume: 120
  start-page: 743
  year: 1994
  ident: 10.1016/j.jmaa.2011.06.022_br0450
  article-title: On the existence of positive solutions of ordinary differential equations
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1994-1204373-9
– ident: 10.1016/j.jmaa.2011.06.022_br0400
  doi: 10.4067/S0719-06462011000300009
– volume: 17
  start-page: 445
  year: 2011
  ident: 10.1016/j.jmaa.2011.06.022_br0010
  article-title: Two-point boundary value problems for finite fractional difference equations
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236190903029241
– volume: 29
  start-page: 417
  year: 2011
  ident: 10.1016/j.jmaa.2011.06.022_br0180
  article-title: Necessary optimality conditions for fractional difference problems of the calculus of variations
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2011.29.417
– ident: 10.1016/j.jmaa.2011.06.022_br0230
– volume: 278
  start-page: 434
  year: 2003
  ident: 10.1016/j.jmaa.2011.06.022_br0060
  article-title: Existence of positive solutions of nonlinear fractional differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00716-3
– volume: 141
  start-page: 75
  year: 2002
  ident: 10.1016/j.jmaa.2011.06.022_br0310
  article-title: On Greenʼs functions and positive solutions for boundary value problems on time scales
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(01)00437-X
– volume: 61
  start-page: 367
  year: 2011
  ident: 10.1016/j.jmaa.2011.06.022_br0270
  article-title: Positive solutions for a class of boundary value problems with fractional q-differences
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.11.012
– volume: 61
  start-page: 191
  year: 2011
  ident: 10.1016/j.jmaa.2011.06.022_br0210
  article-title: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.10.041
– year: 1999
  ident: 10.1016/j.jmaa.2011.06.022_br0430
– volume: 11
  start-page: 1
  year: 2011
  ident: 10.1016/j.jmaa.2011.06.022_br0260
  article-title: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform
  publication-title: Int. J. Math. Comput.
– volume: 22
  start-page: 457
  year: 2006
  ident: 10.1016/j.jmaa.2011.06.022_br0380
  article-title: Existence of positive solutions for second-order m-point boundary value problems on time scales
  publication-title: Acta Math. Appl. Sin. Engl. Ser.
  doi: 10.1007/s10255-006-0322-7
– volume: 8
  start-page: 673
  year: 2002
  ident: 10.1016/j.jmaa.2011.06.022_br0280
  article-title: Solutions to second-order three-point problems on time scales
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/1023619021000000717
– volume: 72
  start-page: 2859
  year: 2009
  ident: 10.1016/j.jmaa.2011.06.022_br0030
  article-title: On the concept of solution for fractional differential equations with uncertainty
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.11.029
– volume: 74
  start-page: 673
  year: 2006
  ident: 10.1016/j.jmaa.2011.06.022_br0460
  article-title: Positive solutions of nonlocal boundary value problems: a unified approach
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/S0024610706023179
– volume: 367
  start-page: 260
  year: 2010
  ident: 10.1016/j.jmaa.2011.06.022_br0020
  article-title: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.01.023
– volume: 330
  start-page: 900
  year: 2007
  ident: 10.1016/j.jmaa.2011.06.022_br0300
  article-title: Multiple positive solutions for discrete nonlocal boundary value problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.08.034
– volume: 369
  start-page: 1
  year: 2010
  ident: 10.1016/j.jmaa.2011.06.022_br0170
  article-title: Modeling with fractional difference equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.02.009
– volume: 217
  start-page: 4740
  year: 2011
  ident: 10.1016/j.jmaa.2011.06.022_br0220
  article-title: Existence of a positive solution to a system of discrete fractional boundary value problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.11.029
– volume: 72
  start-page: 580
  year: 2010
  ident: 10.1016/j.jmaa.2011.06.022_br0050
  article-title: Fractional order differential equations on an unbounded domain
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.06.106
SSID ssj0011571
Score 2.391182
Snippet In this paper, we analyze several different types of discrete sequential fractional boundary value problems. Our prototype equation is − Δ μ 1 Δ μ 2 Δ μ 3 y (...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111
SubjectTerms Boundary value problem
Cone
Discrete fractional calculus
Positive solution
Sequential fractional difference
Title On discrete sequential fractional boundary value problems
URI https://dx.doi.org/10.1016/j.jmaa.2011.06.022
Volume 385
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4ID14M4V2n3BEIgEJmBiMvTXb7W4CwUoKHrz4291pt0QTw8FT2-1O0ky3M9PZ-b5B6JYriYUN5X1qb_uwf-tLTpRvhAACNPvDYSA1MJny4Qt9jFhUQ_0KCwNllc72lza9sNZupO202V7N54Dxtb6NighIz5goMFyUCljlra9tmQdwyYQVYzjMdsCZssZr8Salo_HkrQDjv53TD4czOEKHLlL0euXDHKOazk7QwWRLs7o-Rd2nzANYbW4jX68sirYf7NIzeQlXsKdJ0TYp__SA1Vt7rn_M-gzNBg-z_tB3vRB8RYJg46ecaS4lw6nSlEkbFGHcTbFhmBGTksT69URjyPFyAduyhBtC00CLUAmDQ3KO6tl7pi-Qh6nsMJVyoxJChWQd2VVJKGQgOfTdCBsorHQQK8cTDu0qlnFVELaIQW8x6C2GqjiMG-huK7MqWTJ2zmaVauNf7zq2ZnyH3OU_5a7Qvr3CZeLkGtU3-Ye-saHEJmkWa6WJ9nqj8XAKx_Hz69iOjqL7b_6vyPA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4inKMwNMKG3ixHY7MCAeaumDpUjdLMdxpFYlVG0R6sKP4hfia5wKJNQBqVsU56L4Yt2dz999B3DJlCTchPJuaIZdPL91JQuUm3COBGhmw5FgaqDdYfWX8KlHewX4ymthEFZpbX9m0-fW2t6pWG1WRv0-1vga3xbyHpKeUe75FlnZ1LMPs2-b3DTuzU--IuTxoXtXd21rAVcFnjd1Y0Y1k5KSWOmQShNjEFKLSUIJDZI4iIybjDTBlCnjeMoZsCQIY09zX_GE-IF57Rqsh8ZaYNeE8ucCVoLcNX7OUI5fZwt1MkzZ4FVKSxvKyh4hfzvDHw7ucQe2bWTq3GaT34WCTvdgq72gdZ3sQ-05dbCMd2wibScDYRsDMXSScVYeYS6jeZum8cxBFnHt2H41kwPorkJBh1BM31J9BA4JZZWqmCUqCkIuaVXWVORz6UmGfT78Evi5DoSyvOTYHmMocgDaQKDeBOpNIAqPkBJcL2RGGSvH0qdprlrxa20J4zaWyB3_U-4CNurddku0Gp3mCWyaEZIlbU6hOB2_6zMTxkyj8_m6cUCseJ1-A_Sv_5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+discrete+sequential+fractional+boundary+value+problems&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Goodrich%2C+Christopher+S.&rft.date=2012&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=385&rft.issue=1&rft.spage=111&rft.epage=124&rft_id=info:doi/10.1016%2Fj.jmaa.2011.06.022&rft.externalDocID=S0022247X11005701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon