Leaf disease detection using machine learning and deep learning: Review and challenges
Identification of leaf disorder plays an important role in the economic prosperity of any country. Many parts of a plant can be infected by a virus, fungal, bacteria, and other infectious organisms but here we mainly considered the detection of leaf disease of a plant as a research topic. We have pe...
Saved in:
Published in | Applied soft computing Vol. 145; p. 110534 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identification of leaf disorder plays an important role in the economic prosperity of any country. Many parts of a plant can be infected by a virus, fungal, bacteria, and other infectious organisms but here we mainly considered the detection of leaf disease of a plant as a research topic. We have performed an in-depth study of this topic from 2010 to 2022 and found that many researchers use multispectral or hyperspectral imaging to study crop diseases. Machine learning (ML) and deep learning (DL) models are used to classify different types of leaf diseases. We made a workflow mechanism to help researchers in this field. Support vector machine (SVM), Random Forest, and multiple twin SVM (MTSVM) are popular ML models for predicting leaf disease, while convolutional neural networks (CNN), visual geometry group (VGG), ResNet (RNet), GoogLeNet, deep CNN (DCNN), back propagation neural networks (BPNN), DenseNet (DNet), LeafNet (LN), and LeNet are common deep learning models used for detecting leaf disease. Among these deep learning models, it is evident that models like CNN, VGG, and ResNet are highly capable at finding diseases in leaves. The performance of the algorithms is generally evaluated using F1 score, precision, accuracy and others. This review will be helpful for the researchers who are working in this area and looking for various efficient ML and DL-based classifiers for leaf disease detection.
•A study on leaf disease (LD) detection is conducted using Machine Learning and Deep Learning from 2010 to 2022.•Various feature extraction techniques are discussed for LD detection.•Illustrations of various plant diseases are discussed with their images and sources.•Applications, challenges, limitations as well as some future works are also discussed. |
---|---|
AbstractList | Identification of leaf disorder plays an important role in the economic prosperity of any country. Many parts of a plant can be infected by a virus, fungal, bacteria, and other infectious organisms but here we mainly considered the detection of leaf disease of a plant as a research topic. We have performed an in-depth study of this topic from 2010 to 2022 and found that many researchers use multispectral or hyperspectral imaging to study crop diseases. Machine learning (ML) and deep learning (DL) models are used to classify different types of leaf diseases. We made a workflow mechanism to help researchers in this field. Support vector machine (SVM), Random Forest, and multiple twin SVM (MTSVM) are popular ML models for predicting leaf disease, while convolutional neural networks (CNN), visual geometry group (VGG), ResNet (RNet), GoogLeNet, deep CNN (DCNN), back propagation neural networks (BPNN), DenseNet (DNet), LeafNet (LN), and LeNet are common deep learning models used for detecting leaf disease. Among these deep learning models, it is evident that models like CNN, VGG, and ResNet are highly capable at finding diseases in leaves. The performance of the algorithms is generally evaluated using F1 score, precision, accuracy and others. This review will be helpful for the researchers who are working in this area and looking for various efficient ML and DL-based classifiers for leaf disease detection.
•A study on leaf disease (LD) detection is conducted using Machine Learning and Deep Learning from 2010 to 2022.•Various feature extraction techniques are discussed for LD detection.•Illustrations of various plant diseases are discussed with their images and sources.•Applications, challenges, limitations as well as some future works are also discussed. |
ArticleNumber | 110534 |
Author | Gupta, Umesh Sarkar, Chittabarni Gupta, Deepak Hazarika, Barenya Bikash |
Author_xml | – sequence: 1 givenname: Chittabarni surname: Sarkar fullname: Sarkar, Chittabarni email: chittabarni.1@gmail.com organization: Department of Computer Science & Engineering, National Institute of Technology Arunachal Pradesh, Jote 79113, India – sequence: 2 givenname: Deepak orcidid: 0000-0002-6375-8615 surname: Gupta fullname: Gupta, Deepak email: deepakg@mnnit.ac.in organization: Department of Computer Science & Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India – sequence: 3 givenname: Umesh surname: Gupta fullname: Gupta, Umesh email: er.umeshgupta@gmail.com organization: Department of Computer Science & Engineering, Bennett University, Greater Noida, U.P., India – sequence: 4 givenname: Barenya Bikash surname: Hazarika fullname: Hazarika, Barenya Bikash email: barenya1431@gmail.com organization: Department of Computer Science & Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India |
BookMark | eNp9kMtKAzEUhoNUsFZfwNW8wIy5zCUjbqR4g4Ig6jacnpxpU6aZMhkV396MFRcuukr4T75w_u-UTXznibELwTPBRXm5ySB0mEkuVSYEL1R-xKZCVzKtSy0m8V6UOs3rvDxhpyFseIRqqafsbUHQJNYFgkCJpYFwcJ1P3oPzq2QLuHaekpag92MA3sZHtPtLrpJn-nD0-TPBNbQt-RWFM3bcQBvo_Pecsde725f5Q7p4un-c3yxSVJwPqVUVJywqXRTLkmPcvOFKVrjUgLZBKK21ulYFr0sFy0bV0hKibmwhASqRqxnT-3-x70LoqTHoBhgbDD241ghuRj9mY0Y_ZvRj9n4iKv-hu95tof86DF3vIYqlYu_eBHTkkazrozljO3cI_wa-wYIm |
CitedBy_id | crossref_primary_10_1007_s10340_024_01852_4 crossref_primary_10_1016_j_jafr_2024_101350 crossref_primary_10_1038_s41598_025_92112_7 crossref_primary_10_1016_j_jssas_2024_09_002 crossref_primary_10_1016_j_hybadv_2025_100440 crossref_primary_10_3390_app14135926 crossref_primary_10_1016_j_asoc_2024_112582 crossref_primary_10_1016_j_asoc_2025_112897 crossref_primary_10_3390_agronomy14091975 crossref_primary_10_1016_j_compag_2024_109574 crossref_primary_10_3923_asb_2025_82_91 crossref_primary_10_1016_j_jafr_2024_101303 crossref_primary_10_32919_uesit_2024_03_03 crossref_primary_10_1007_s00500_025_10523_0 crossref_primary_10_1186_s10033_024_01124_3 crossref_primary_10_1016_j_aiia_2024_04_003 crossref_primary_10_22430_22565337_3158 crossref_primary_10_1109_ACCESS_2024_3515843 crossref_primary_10_3390_f15122243 crossref_primary_10_1007_s11042_024_20336_2 crossref_primary_10_3390_agriengineering6040238 crossref_primary_10_12720_jait_15_7_812_821 crossref_primary_10_3390_s23218685 crossref_primary_10_3390_agronomy14122783 crossref_primary_10_3103_S1060992X24700231 crossref_primary_10_1007_s00371_024_03729_0 crossref_primary_10_3390_agriculture14071146 crossref_primary_10_3390_agronomy14122869 crossref_primary_10_1016_j_engappai_2025_110117 crossref_primary_10_1080_08839514_2024_2426377 crossref_primary_10_1109_ACCESS_2024_3419906 crossref_primary_10_3389_fpls_2024_1489151 crossref_primary_10_1016_j_atech_2024_100476 crossref_primary_10_1007_s00521_025_11012_z crossref_primary_10_3390_plants13182556 crossref_primary_10_26634_jip_11_3_21305 crossref_primary_10_1016_j_jfca_2024_106270 crossref_primary_10_1016_j_asoc_2023_110850 crossref_primary_10_1016_j_atech_2024_100480 crossref_primary_10_1016_j_engappai_2025_110201 crossref_primary_10_1038_s41598_024_81325_x crossref_primary_10_1016_j_measurement_2024_116579 crossref_primary_10_3389_fhort_2023_1263604 crossref_primary_10_1007_s10751_024_02135_1 crossref_primary_10_1016_j_heliyon_2024_e37141 crossref_primary_10_1038_s41598_024_54540_9 crossref_primary_10_1007_s10462_024_11004_w crossref_primary_10_3389_fpls_2024_1417912 crossref_primary_10_1186_s13007_025_01362_z crossref_primary_10_3390_f15050891 crossref_primary_10_1109_ACCESS_2024_3510456 crossref_primary_10_1016_j_compag_2024_109227 crossref_primary_10_1016_j_compag_2024_109824 |
Cites_doi | 10.1145/244130.244148 10.1007/BF00994018 10.1109/TPAMI.2016.2577031 10.1007/s11119-013-9312-y 10.2139/ssrn.3564973 10.1094/PHYTO.2002.92.6.676 10.1037/h0042519 10.1007/s40858-016-0065-9 10.1109/ACCESS.2018.2800685 10.1007/s11042-020-09461-w 10.1049/ipr2.12397 10.1016/j.eij.2020.02.007 10.1023/A:1008280620621 10.1098/rstb.2018.0269 10.12928/telkomnika.v19i2.16488 10.1038/s41559-018-0793-y 10.1094/PDIS-93-11-1202 10.1016/j.rse.2015.09.011 10.3390/sym10010011 10.1016/0167-9473(95)00032-1 10.1094/PDIS.2003.87.3.208 10.1109/TMTT.2013.2253793 10.1007/s13313-018-0541-4 10.1016/j.knosys.2015.02.009 10.1109/CVPR.2017.243 10.1111/ppa.13119 10.1016/j.ecoinf.2017.05.005 10.20546/ijcmas.2016.503.051 10.1016/j.proeng.2012.07.321 10.1016/j.biosystemseng.2016.08.024 10.3390/electronics11010140 10.1109/34.400568 10.4236/jcc.2020.86002 10.3126/jsce.v7i0.26794 10.1111/j.1364-3703.2004.00218.x 10.1094/PD-66-1101 10.1094/PDIS-10-15-1144-RE 10.1146/annurev.py.24.090186.000503 10.1016/S0004-3702(02)00190-X 10.1007/s11042-019-7588-2 10.1094/PD-67-829 10.1111/j.1744-7348.1992.tb03425.x 10.1109/LGRS.2019.2932385 10.1016/j.asoc.2021.107099 10.3390/info11020095 10.1186/s42522-021-00038-7 10.1007/s00521-020-05235-5 10.1609/aaai.v34i07.7000 10.1016/j.compag.2011.05.007 10.3390/s21093169 10.1016/j.postharvbio.2020.111271 10.1155/2016/3289801 10.21276/ijre.2018.5.9.4 10.1016/j.engappai.2022.104687 10.1111/j.1744-7348.1984.tb05586.x 10.1007/s13042-020-01235-y 10.1007/s10489-019-01465-w 10.1016/j.plantsci.2012.08.004 10.1063/1.4962153 10.1109/5.726791 10.1126/science.171.3976.1113 10.1016/j.compag.2011.09.011 10.1016/j.rse.2012.09.019 10.1007/s00521-012-1108-x 10.3390/pathogens10020131 10.1007/s00521-020-05240-8 10.1111/j.1744-7348.1974.tb01506.x 10.1016/j.compag.2018.10.013 10.1016/S0953-7562(09)80867-8 10.1016/S1532-0464(03)00034-0 10.3390/agriculture11080707 10.1007/s42044-020-00057-z 10.1109/TGRS.1990.572934 10.1007/s12038-021-00241-8 10.1109/TPAMI.2012.120 10.1007/s11042-020-09981-5 10.1007/s11042-021-11790-3 10.1099/0022-1317-74-5-881 10.1109/CVPR.2016.308 10.1007/s10327-006-0299-3 10.3390/agronomy10071027 10.3390/s17092022 10.3390/plants11030384 10.1016/j.neucom.2016.12.038 10.1071/DN10001 10.1007/BF00204594 10.1017/S174217051900022X 10.1109/34.58871 10.1007/s10658-016-1037-0 10.1007/s42161-020-00683-3 10.1016/j.neucom.2005.12.126 10.1016/j.ecoinf.2020.101197 10.17660/ActaHortic.2009.808.1 10.1007/s10489-021-02452-w 10.1094/Phyto-85-843 10.1016/j.compbiomed.2020.103767 10.1007/BF00058655 10.1094/PDIS.2001.85.2.126 10.14257/ijdta.2016.9.4.07 10.3390/rs11111373 10.3389/fpls.2017.01852 10.3381/11-013R.1 10.1016/j.compag.2018.03.032 10.1094/PDIS.1999.83.10.884 10.3390/rs13020162 10.1016/j.neunet.2020.11.015 10.1016/j.postharvbio.2019.04.005 10.1016/j.matpr.2021.05.584 10.3389/fpls.2016.01419 10.1016/j.eswa.2011.07.073 10.1016/j.compag.2018.01.009 10.3390/plants10010031 10.1111/j.1439-0434.2009.01575.x 10.1109/ACCESS.2019.2914929 10.1162/089976698300017467 10.1109/ACCESS.2018.2844405 10.1016/j.gltp.2022.03.016 10.1016/j.procs.2020.03.225 10.1007/s11042-022-13673-7 10.1046/j.1439-0523.2000.00462.x 10.1016/j.chemolab.2020.104190 10.1155/2022/3287561 10.1016/j.compag.2022.107093 10.1007/s12088-008-0053-y 10.1016/j.pmpp.2015.07.001 10.3390/s140712191 10.3390/plants10010028 10.1002/jsfa.10365 10.3390/rs10010075 10.1104/pp.41.9.1505 10.3390/agriengineering3020020 10.3923/itj.2011.267.275 10.1007/s12665-021-09625-3 10.1109/TPAMI.2007.1068 10.1080/01140671.1994.9513814 10.1016/j.imu.2021.100642 10.3390/plants10010095 10.3389/fpls.2020.00751 10.1016/j.compeleceng.2019.04.011 10.1007/s13593-014-0246-1 10.1016/j.compag.2021.106658 10.1371/journal.pone.0168274 10.1016/j.compag.2020.105824 10.1094/PHYTO.2000.90.8.884 10.1016/S0261-2194(91)80134-2 10.1016/j.compag.2017.09.012 10.1046/j.1464-6722.2001.00084.x 10.1145/3065386 10.1023/B:STCO.0000035301.49549.88 10.1088/1748-9326/aae159 10.1094/PDIS-92-4-0530 10.1094/Phyto-80-1341 10.1109/ACCESS.2020.3031914 10.1080/01431161.2014.903353 10.1109/T-C.1975.224110 10.1016/j.compag.2010.06.009 10.1007/s11063-021-10671-y 10.1007/BF00337288 10.1007/s11263-015-0816-y 10.1016/j.ecoinf.2021.101247 10.1016/j.physa.2019.122537 10.3390/sym13030511 10.1016/j.procs.2015.08.022 10.3390/app11041950 10.1007/s11760-020-01780-7 10.1016/j.compag.2016.04.033 10.1111/j.1364-3703.2009.00561.x 10.1071/AP10034 10.1016/j.compag.2019.104852 10.32604/cmc.2022.021875 10.1109/34.1000236 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2023.110534 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2023_110534 S1568494623005525 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-d370ec57855b60c110f0327cb8acdfca6ddd89350963abf392decc8fd52aa7143 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:21 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Fri Feb 23 02:34:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Recognition models Leaf species Plant disease Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-d370ec57855b60c110f0327cb8acdfca6ddd89350963abf392decc8fd52aa7143 |
ORCID | 0000-0002-6375-8615 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2023_110534 crossref_primary_10_1016_j_asoc_2023_110534 elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Taylor, Lindbeck, Chen, Ford (b88) 2007 Greg Pass, Zabih Ramin, Justin Miller, Comparing images using color coherence vectors, in: Proceedings of the Fourth ACM International Conference on Multimedia, 1997, pp. 65–73. Gao Huang, Zhuang Liu, Laurens Van Der Maaten, Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708. Balasamy, Suganyadevi (b351) 2021; 80 (b194) 2021 Hossain, Deb, Dhar, Koshiba (b331) 2021; 13 (b181) 2021 Misra, Shukla, Pandey (b84) 2012 Harakannanavar, Rudagi, Puranikmath, Siddiqua, Pramodhini (b3) 2022; 3 Shah, Trivedi, Sheth, Shah, Chauhan (b68) 2022; 9 (b83) 2021 Brooks, Anders, Yeater (b127) 2009; 93 Kurmi, Gangwar, Agrawal, Kumar, Srivastava (b312) 2021; 15 Jiang, Chen, Liu, He, Liang (b323) 2019; 7 Khamparia, Saini, Gupta, Khanna, Tiwari, de Albuquerque Victor Hugo (b250) 2020; 39 Kakade, Ahire (b208) 2015; 1 Fluorescence imaging “Fluor-ImagingPrinciples.pdf”, Available at Jones, Whipps, Gurr (b112) 2001; 2 Donald (b133) 2011 Ganesh Babu, Chellaswamy (b150) 2022; 47 Sabrol, Satish (b289) 2016 Zhang, Cisse, Dauphin, Lopez-Paz (b357) 2017 . Bock, Parker, Cook, Gottwald (b116) 2008; 92 Ganatra, Patel (b73) 2020; 11 Fogel, Dov (b348) 1989; 61 Liu, Wang, Liu, Zeng, Liu, Alsaadi (b54) 2017; 234 Weiland, Koch (b92) 2004; 5 Gauthier (b143) 2021; 2018 (b224) 2022 Thomas, Jan, Uwe, Anne-Katrin (b39) 2022 Maksim (b145) 2021 McKenzie (b162) 2013 Dekker, Derks, Asjes, Lemmers, Bol, Langeveld (b178) 1993; 74 Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b366) 2012; 34 Tarek, Hesham, Saleh, Mohamed (b327) 2022; 11 Pratt, Williams, Coenen, Zheng (b404) 2017 (b91) 2021 Katawczik, Mila (b107) 2012 Grau (b170) 2021 Friedman, Baskett, Shustek (b390) 1975; 100 Roberts (b166) 2013 Carlier, Zapater, Lapeyre, Jones, Mourichon (b158) 2000; 90 Jackson (b190) 2015 (b237) 2021 Al Bashish, Braik, Bani-Ahmad (b19) 2011; 10 Ganesh Bhadur, Rajneesh Rani, Agricultural Crops Disease Identification and Classification through Leaf Images using Machine Learning and Deep Learning Technique: A Review, in: Proceedings of the International Conference on Innovative Computing & Communications, ICICC, 2020. Koike, Henderson, Butler (b197) 2001; 85 (b336) 2014 Sobel, Feldman (b349) 1968 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, Zbigniew Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826. Pethybridge, Brown, Kikkert, Ryan (b186) 2020; 35 Lu, Lijuan, Huanyu (b55) 2021; 11 Ren, He, Girshick, Sun (b71) 2016; 39 Shane (b137) 2018 Gupta, Gupta (b387) 2021 Kohonen (b398) 1995 Christopher G. Harris, Mike Stephens, A combined corner and edge detector, in: Alvey Vision Conference, No. 15, 1988, pp. 10–5244, 50. Ganguly (b131) 1947; 26 (b216) 2021 Sharma, Berwal, Ghai (b317) 2020; 7 Okada (b175) 1986 (b269) 2021 Subrahmanyam, McDonald (b193) 1983 Ozguven, Adem (b281) 2019; 535 Ahmad, Muhammad (b12) 2022 Li, Lin, Liu, Zhao (b268) 2020; 11 Kapil Prashar, Rajneesh Talwar, Chander Kant, Inconsistent Cluster Analysis With Disease Feature Enhancement (ICADFE) For American Cotton Leaf Disease Recognition, in: International Conference on Intelligent Machines Held at Baba Farid College of Engineering and Technology, 2019, pp. 15–16. Singh, Namita, Shikha (b334) 2020 Chouhan, Ajay, Singh, Jain (b22) 2018; 6 Mahum, Munir, Mughal, Awais, Khan, Saqlain, Mahamad, Tlili (b234) 2022 (b239) 2021 Shrivastava, Pradhan (b300) 2021; 103 Tripathi, Maktedar (b290) 2016 White tininess, Available at (b200) 2021 Silva, Várzea (b202) 2006 Damicone, Lynn (b1) 2015 Abdulridha, Batuman, Ampatzidis (b280) 2019; 11 Muller (b154) 2021 Tomar, Agarwal (b41) 2015; 81 He, Wang (b370) 1990; 28 Gupta, Gupta, Prasad (b379) 2018 Dietterich (b409) 2002 Thirumalesh, Thippeswamy, Krishnappa (b189) 2016; 5 Xu, Lv, Yue (b286) 2014 Morgan (b125) 2019 Tetila, Brandoli Machado, Kirsten Menezes, da Silva Oliveira, Alvarez, Paraguassu Amorim, De Souza Belete, Gonçalves Da Silva, Pistori (b324) 2019; 17 (b138) 2000 (b218) 2021 Uğuz, Uysal (b252) 2021; 33 R.L. Schlub, L.J. Smith, L.E. Datnoff, K. Pernezny, An overview of target spot of tomato caused by Ward, Stromberg, Nowell, Forrest (b153) 1999; 83 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang (b411) 2015; 115 Huang, Yang, Huang, Huang, Qiao (b293) 2018; 5 Zehr (b120) 1982; 66 Smola, Schölkopf (b383) 2004; 14 Rothnie, Chapdelaine, Hohn (b179) 1994 Subrahmanyam, Wongkaew, Reddy, Demski, McDonald, Sharma, Smith (b196) 1992 Plant Seedings Dataset, Available Jayadeva, Suresh (b40) 2007; 29 (b108) 2019 (b135) 2021 Sisson, Mueller, Robertson (b157) 2021 De Castro, Ehsani, Ploetz, Crane, Abdulridha (b274) 2015; 171 (2010). Rong, Kaneko, Tanaka, Kayamori, Shimizu (b301) 2013 Kurdi, Al-Aldawsari, Al-Turaiki, Aldawood (b328) 2021; 10 Ramcharan, Baranowski, McCloskey, Ahmed, Legg, Hughes (b267) 2017; 8 (b333) 2009 Kumar, Vani (b272) 2019 Liu, Zhang, He, Li (b311) 2018; 10 Gupta, Hazarika, Berlin, Sharma, Mishra (b78) 2021; 80 (b222) 2022 Petersen, Mansvelt, Venter, Langenhoven (b188) 2010; 39 Phaethon (b141) 2020 (b192) 2021 Calzarano, Marco, D’agostino, Schiff, Mugnai (b182) 2014 Bhujel, Fawad, Jayanta, Mustafa, Thavisack, Byeong-Eun, Jaesung, Hyeon-Tae (b62) 2022 Vasantha, Bejjam, Krishna (b248) 2021; 9 Hazarika, Gupta (b382) 2022; 54 Yang, Shao, Zhang (b33) 2013; 22 Holmes, Nevill-Manning (b367) 1995 M. Rajesh Khanna, Data hiding in encrypted images using Arnold transform, in: International Conference on Algorithms, 2017. Kalisz, Oszmiański, Wojdyło (b142) 2015; 91 Naghizadeh, Metaxas, Liu (b356) 2021; 135 Caldeira, Santiago, Teruel (b11) 2021; 21 Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (b406) 2016 Hagen, Cespedes (b113) 2021 Li, Ye, Wang, Xiong (b172) 2004; 12 Wang, Li, Ma, Li (b20) 2012 El Massi, Es-saady, El Yassa, Mammass, Benazoun (b243) 2017; 158 Gupta, Gupta (b380) 2019 Badage (b376) 2018; 5 (b99) 2016 Narwade, Kumar (b374) 2016 (b111) 2019 (b215) 2021 Kononenko, Šimec, Robnik-Šikonja (b368) 1997; 7 in: II International Symposium on Tomato Diseases, Vol. 808, 2007, pp. 25–28. Xiao, Chung, Wu, Phan, Yeh, Hou (b282) 2021; 10 Marín-Cevada, Caballero-Mellado, Bustillos-Cristales, Muñoz Rojas, Mascarúa-Esparza, Castañeda Lucio, López-Reyes, Martínez-Aguilar, Fuentes-Ramírez (b167) 2010; 158 Rumpf, Mahlein, Steiner, Oerke, Dehne, Plümer (b32) 2010; 74 LeCun, Bottou, Bengio, Haffner (b50) 1998; 86 Hu, Wu, Zhang, Wan (b72) 2019; 163 (b214) 2021 Martinelli, Riccardo, Salvatore, Stefano, Giuseppe, Paolo, Paolo (b4) 2015; 35 Goyal, Sharma, Singh, Singh (b251) 2021 Gupta, Gupta (b385) 2019; 49 Derie (b198) 2021 Poornappriya, Gopinath (b48) 2022 (b103) 2021 Casela, Renfro, Krattiger (b144) 1998 Rizzo, Maureen, Jonna, Togami, Miller (b16) 2021; 3 Ezra, Gat, Skovorodnikova, Vardi, I. (b82) 2010; 5 Elqassas, Abu (b104) 2000 Rubini, Kavitha (b260) 2021 (b203) 2010 Ahn, Lee, Kim (b164) 1970; 4 Mohanty, Hughes, Salathé (b265) 2016; 7 Chowdhury, Rahman, Khandakar, Ayari, Khan, Khan, Al-Emadi, Reaz, Islam, Ali (b259) 2021; 3 Asraf, Nooritawati, Shah (b285) 2012; 41 Ji, Zhang, Xu, Shi, Yulin (b63) 2018; 10 Laxmi, Gupta (b42) 2022; 110 Shobana, Shanthi, Priya (b295) 2019 Weizheng, Yachun, Zhanliang, Hongda (b373) 2008 (b213) 2021 Indriani, Kusuma, Sari, Rachmawanto (b28) 2017 Fuentes, Sook, Kim, Park (b320) 2017; 17 Al-gaashani, Fengjun, Mohammed, Mashael, Ahmed (b76) 2022 Tan, Le (b401) 2019 Karthik, Hariharan, Anand, Mathikshara, Johnson, Menaka (b405) 2020; 86 Gulya, Mathew, Harveson, Markell, Block (b89) 2016 (b87) 2021 Jakjoud, Hatim, Bouaddi (b27) 2019 Zambolim (b199) 2016; 41 Munir, Amsden, Dixon, Vaillancourt, Gauthier (b184) 2016; 100 Baley (b165) 2018 Kohonen (b397) 1982; 43 (b204) 2021 Comaniciu, Meer (b363) 2002; 24 Melton (b177) 2009 Accessed Feb 2022. Ramya, Kumar, Mugilan, Babykala (b377) 2018; 5 (b210) 2015 Lerat, Simao-Beaunoir, Beaulieu (b94) 2009; 10 (b211) 2021 Ganatra, Patel (b74) 2020; 13 (b206) 2010 Hernández-Lauzardo, Bautista-Baños, Valle, Trejo-Espino (b163) 2006; 24 Hansen (b235) 2021 Afzal, Muhammad, Muhammad, Ghulam, Zahid (b10) 2020 Chen, Zhang, Nanehkaran, Li (b256) 2020; 100 Qi, Liang, Ding, Zou (b75) 2021; 11 (b147) 2021 Udupi (b273) 2019 Zhang, Shang, Wang (b26) 2015; 25 Pan, Chyngyz, Sun, Paliwal, Pu (b298) 2019; 154 (b152) 2020 Bradley, Mangasarian, Street (b364) 1997 Pham, Tran, Dao (b24) 2020; 8 Tsay, Cheng, Teng, Lee, Wu, Lin (b132) 1998; 40 Gómez-Sanchis, Martín-Guerrero, Soria-Olivas, Marcelino, Rafael, José (b309) 2012; 39 Too-Edna, Yujian, Njuki, Yingchun (b254) 2019; 161 Cortes, Vladimir (b31) 1995; 20 Ferentinos (b56) 2018; 145 Mahmud, Zaman, Esau, Chang, Price, Prithiviraj (b23) 2019; 10 Hansen, Salamon (b37) 1990; 12 Amara, Bouaziz, Algergawy (b246) 2017 Esgario, de Castro, Tassis, Krohling (b313) 2022; 9 Arribas, Sánchez-Ferrero, Ruiz-Ruiz, Gómez-Gil (b2) 2011; 78 Pustejovsky, Stubbs (b359) 2012 (b330) 2014 Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (b52) 2012 Rathod, Tanawal, Shah (b5) 2013; 3 Maria, Taki, Mia, Amin, Anup, Firoz (b61) 2022 Ferentinos, Barda, Damer (b247) 2019 Bhange, Hingoliwala (b34) 2015; 58 Olanya, Lee (b134) 1990; 80 (b238) 2021 (b212) 2021 Rumelhart, Hinton, Williams (b393) 1986 Yuan, Zhang, Wang, Loraamm, Huang, Wang, Zhao (b275) 2013; 14 Yamamoto, Guo, Yoshioka, Ninomiya (b253) 2014; 14 Khirade, Patil (b6) 2015 (b335) 2013 (b96) 1994 Pooja, Das, Kanchana (b291) 2017 Joshi, Kaushik, Dutta, Ashish, Choudhary (b329) 2021; 61 (b115) 2018 Grant (b95) 2021 Rush, Lee (b100) 1983; 67 Girshick, Donahue, Darrell, Malik (b399) 2014 (b231) 2022 Stover (b79) 1986; 24 Mahlein, Rumpf, Welke, Dehne, Plümer, Steiner, Oerke (b305) 2013; 128 Lu, Hu, Zhao, Mei, Zhang (b321) 2017; 142 Cattlin (b191) 2021 (b168) 2018 Hazarika, Gupta (b381) 2021; 33 Godliver Owomugisha, John A. Quinn, Ernest Mwebaze, James Lwasa, Automated vision-based diagnosis of banana bacterial wilt disease and black sigatoka disease, in: International Conference on the Use of Mobile ICT in Africa, 2014, pp. 1–5. Mengistu, Alemayehu, Mengistu (b314) 2016; 9 Muniyappa, Singh, Virupakshappa (b102) 1997; 50 Guang-Bin (10.1016/j.asoc.2023.110534_b168) 2018 Gulya (10.1016/j.asoc.2023.110534_b89) 2016 (10.1016/j.asoc.2023.110534_b115) 2018 Noguchi (10.1016/j.asoc.2023.110534_b358) 2020; 121 (10.1016/j.asoc.2023.110534_b220) 2021 Prabhakar (10.1016/j.asoc.2023.110534_b283) 2020; 79 Hernández-Lauzardo (10.1016/j.asoc.2023.110534_b163) 2006; 24 Kulkarni (10.1016/j.asoc.2023.110534_b276) 2013; 2 Scott (10.1016/j.asoc.2023.110534_b156) 1974; 78 Al Bashish (10.1016/j.asoc.2023.110534_b19) 2011; 10 Shrivastava (10.1016/j.asoc.2023.110534_b300) 2021; 103 10.1016/j.asoc.2023.110534_b325 Rosenblatt (10.1016/j.asoc.2023.110534_b391) 1958; 65 Römer (10.1016/j.asoc.2023.110534_b284) 2011; 79 (10.1016/j.asoc.2023.110534_b206) 2010 Li (10.1016/j.asoc.2023.110534_b172) 2004; 12 Sharma (10.1016/j.asoc.2023.110534_b317) 2020; 7 Achanta (10.1016/j.asoc.2023.110534_b366) 2012; 34 (10.1016/j.asoc.2023.110534_b128) 2021 Harakannanavar (10.1016/j.asoc.2023.110534_b3) 2022; 3 Fordellone (10.1016/j.asoc.2023.110534_b378) 2018 Ji (10.1016/j.asoc.2023.110534_b63) 2018; 10 Habib (10.1016/j.asoc.2023.110534_b278) 2020 (10.1016/j.asoc.2023.110534_b238) 2021 (10.1016/j.asoc.2023.110534_b337) 2017 Zhang (10.1016/j.asoc.2023.110534_b357) 2017 Zhang (10.1016/j.asoc.2023.110534_b26) 2015; 25 Simonyan (10.1016/j.asoc.2023.110534_b396) 2014 Maria (10.1016/j.asoc.2023.110534_b61) 2022 Afifi (10.1016/j.asoc.2023.110534_b326) 2021; 10 Friedman (10.1016/j.asoc.2023.110534_b390) 1975; 100 Ahmad (10.1016/j.asoc.2023.110534_b12) 2022 Ho (10.1016/j.asoc.2023.110534_b388) 1995 Hoffman (10.1016/j.asoc.2023.110534_b207) 2002; 92 Gauthier (10.1016/j.asoc.2023.110534_b143) 2021; 2018 (10.1016/j.asoc.2023.110534_b219) 2021 Muniyappa (10.1016/j.asoc.2023.110534_b102) 1997; 50 Zhang (10.1016/j.asoc.2023.110534_b365) 2011 He (10.1016/j.asoc.2023.110534_b370) 1990; 28 LeCun (10.1016/j.asoc.2023.110534_b50) 1998; 86 Kurmi (10.1016/j.asoc.2023.110534_b312) 2021; 15 Goyal (10.1016/j.asoc.2023.110534_b304) 2019; 78 Lu (10.1016/j.asoc.2023.110534_b55) 2021; 11 (10.1016/j.asoc.2023.110534_b212) 2021 (10.1016/j.asoc.2023.110534_b99) 2016 Gómez-Sanchis (10.1016/j.asoc.2023.110534_b309) 2012; 39 Begue (10.1016/j.asoc.2023.110534_b277) 2017; 8 Sabour (10.1016/j.asoc.2023.110534_b402) 2017 Salih (10.1016/j.asoc.2023.110534_b257) 2020; 7 Holmes (10.1016/j.asoc.2023.110534_b367) 1995 Ganguly (10.1016/j.asoc.2023.110534_b131) 1947; 26 Sobel (10.1016/j.asoc.2023.110534_b349) 1968 Tripathi (10.1016/j.asoc.2023.110534_b290) 2016 Breiman (10.1016/j.asoc.2023.110534_b389) 1996; 24 10.1016/j.asoc.2023.110534_b316 Mallick (10.1016/j.asoc.2023.110534_b106) 2023; 82 Grant (10.1016/j.asoc.2023.110534_b95) 2021 (10.1016/j.asoc.2023.110534_b217) 2021 Arribas (10.1016/j.asoc.2023.110534_b2) 2011; 78 Stone (10.1016/j.asoc.2023.110534_b372) 2001 (10.1016/j.asoc.2023.110534_b214) 2021 10.1016/j.asoc.2023.110534_b408 Wise (10.1016/j.asoc.2023.110534_b173) 2019 Ozguven (10.1016/j.asoc.2023.110534_b281) 2019; 535 Li (10.1016/j.asoc.2023.110534_b174) 2012 Pham (10.1016/j.asoc.2023.110534_b24) 2020; 8 Guang-Bin (10.1016/j.asoc.2023.110534_b43) 2006; 70 Jiang (10.1016/j.asoc.2023.110534_b323) 2019; 7 Sadrossadat (10.1016/j.asoc.2023.110534_b413) 2013; 61 Ahn (10.1016/j.asoc.2023.110534_b164) 1970; 4 Roberts (10.1016/j.asoc.2023.110534_b166) 2013 Sambasivam (10.1016/j.asoc.2023.110534_b64) 2021; 22 Mishra (10.1016/j.asoc.2023.110534_b350) 2021; 212 Liu (10.1016/j.asoc.2023.110534_b315) 2015 Welz (10.1016/j.asoc.2023.110534_b171) 2000; 119 Mummies Black (10.1016/j.asoc.2023.110534_b209) 2020 Weizheng (10.1016/j.asoc.2023.110534_b373) 2008 Cattlin (10.1016/j.asoc.2023.110534_b191) 2021 (10.1016/j.asoc.2023.110534_b330) 2014 10.1016/j.asoc.2023.110534_b412 Kumar (10.1016/j.asoc.2023.110534_b272) 2019 (10.1016/j.asoc.2023.110534_b332) 2007 Singh (10.1016/j.asoc.2023.110534_b101) 2015 Shobana (10.1016/j.asoc.2023.110534_b295) 2019 Gupta (10.1016/j.asoc.2023.110534_b46) 2021; 12 Rush (10.1016/j.asoc.2023.110534_b100) 1983; 67 Liu (10.1016/j.asoc.2023.110534_b54) 2017; 234 Hansen (10.1016/j.asoc.2023.110534_b37) 1990; 12 Luaibi (10.1016/j.asoc.2023.110534_b310) 2021; 11 Shane (10.1016/j.asoc.2023.110534_b137) 2018 Schölkopf (10.1016/j.asoc.2023.110534_b371) 1998; 10 (10.1016/j.asoc.2023.110534_b70) 2021 (10.1016/j.asoc.2023.110534_b187) 2021 (10.1016/j.asoc.2023.110534_b222) 2022 Juroszek (10.1016/j.asoc.2023.110534_b15) 2020; 69 Kalisz (10.1016/j.asoc.2023.110534_b142) 2015; 91 Esgario (10.1016/j.asoc.2023.110534_b313) 2022; 9 Pustejovsky (10.1016/j.asoc.2023.110534_b359) 2012 Joshi (10.1016/j.asoc.2023.110534_b329) 2021; 61 (10.1016/j.asoc.2023.110534_b297) 2019 Grabka (10.1016/j.asoc.2023.110534_b17) 2022; 11 Egel (10.1016/j.asoc.2023.110534_b93) 2017 Rong (10.1016/j.asoc.2023.110534_b301) 2013 LeCun (10.1016/j.asoc.2023.110534_b49) 1995 10.1016/j.asoc.2023.110534_b296 Mark (10.1016/j.asoc.2023.110534_b400) 2018 Brooks (10.1016/j.asoc.2023.110534_b127) 2009; 93 Ramya (10.1016/j.asoc.2023.110534_b377) 2018; 5 Carlier (10.1016/j.asoc.2023.110534_b158) 2000; 90 (10.1016/j.asoc.2023.110534_b230) 2022 Laxmi (10.1016/j.asoc.2023.110534_b42) 2022; 110 (10.1016/j.asoc.2023.110534_b185) 2021 Olanya (10.1016/j.asoc.2023.110534_b134) 1990; 80 Gur (10.1016/j.asoc.2023.110534_b109) 2017; 147 Melton (10.1016/j.asoc.2023.110534_b177) 2009 Amara (10.1016/j.asoc.2023.110534_b246) 2017 Gupta (10.1016/j.asoc.2023.110534_b77) 2021 Misra (10.1016/j.asoc.2023.110534_b84) 2012 (10.1016/j.asoc.2023.110534_b223) 2022 Srunitha (10.1016/j.asoc.2023.110534_b302) 2018 Pethybridge (10.1016/j.asoc.2023.110534_b186) 2020; 35 Crane-Droesch (10.1016/j.asoc.2023.110534_b8) 2018; 13 Dreiseitl (10.1016/j.asoc.2023.110534_b18) 2002; 35 Mueller (10.1016/j.asoc.2023.110534_b155) 2012 Mia (10.1016/j.asoc.2023.110534_b35) 2020; 3 (10.1016/j.asoc.2023.110534_b269) 2021 Sabrol (10.1016/j.asoc.2023.110534_b289) 2016 Munir (10.1016/j.asoc.2023.110534_b184) 2016; 100 Geetharamani (10.1016/j.asoc.2023.110534_b255) 2019; 76 (10.1016/j.asoc.2023.110534_b339) 2020 Syed-Ab-Rahman (10.1016/j.asoc.2023.110534_b249) 2022; 52 (10.1016/j.asoc.2023.110534_b341) 2021 (10.1016/j.asoc.2023.110534_b346) 2010 Elliott (10.1016/j.asoc.2023.110534_b98) 1927; 35 Kakade (10.1016/j.asoc.2023.110534_b208) 2015; 1 Zehr (10.1016/j.asoc.2023.110534_b120) 1982; 66 Too-Edna (10.1016/j.asoc.2023.110534_b254) 2019; 161 Al-gaashani (10.1016/j.asoc.2023.110534_b76) 2022 VijayaLakshmi (10.1016/j.asoc.2023.110534_b263) 2016; 125 Allen (10.1016/j.asoc.2023.110534_b149) 2005 10.1016/j.asoc.2023.110534_b36 Veni (10.1016/j.asoc.2023.110534_b241) 2016 Ashwinkumar (10.1016/j.asoc.2023.110534_b264) 2022; 51 Dutta (10.1016/j.asoc.2023.110534_b270) 2014 10.1016/j.asoc.2023.110534_b146 Tatum (10.1016/j.asoc.2023.110534_b169) 1971; 171 Sibiya (10.1016/j.asoc.2023.110534_b308) 2021; 10 Thomas (10.1016/j.asoc.2023.110534_b39) 2022 (10.1016/j.asoc.2023.110534_b97) 2021 Fuentes (10.1016/j.asoc.2023.110534_b320) 2017; 17 Bhatia (10.1016/j.asoc.2023.110534_b44) 2020; 23 Subrahmanyam (10.1016/j.asoc.2023.110534_b196) 1992 Bradley (10.1016/j.asoc.2023.110534_b364) 1997 Cheng (10.1016/j.asoc.2023.110534_b362) 1995; 17 (10.1016/j.asoc.2023.110534_b340) 2019 10.1016/j.asoc.2023.110534_b279 Donald (10.1016/j.asoc.2023.110534_b133) 2011 (10.1016/j.asoc.2023.110534_b236) 2021 (10.1016/j.asoc.2023.110534_b335) 2013 Huang (10.1016/j.asoc.2023.110534_b293) 2018; 5 Gupta (10.1016/j.asoc.2023.110534_b386) 2021 (10.1016/j.asoc.2023.110534_b227) 2022 Zhou (10.1016/j.asoc.2023.110534_b288) 2002; 137 Yadav (10.1016/j.asoc.2023.110534_b66) 2021; 61 Cortes (10.1016/j.asoc.2023.110534_b31) 1995; 20 Marín-Cevada (10.1016/j.asoc.2023.110534_b167) 2010; 158 (10.1016/j.asoc.2023.110534_b119) 2021 Bhange (10.1016/j.asoc.2023.110534_b34) 2015; 58 Dietterich (10.1016/j.asoc.2023.110534_b409) 2002 10.1016/j.asoc.2023.110534_b129 10.1016/j.asoc.2023.110534_b369 Gupta (10.1016/j.asoc.2023.110534_b387) 2021 Jakjoud (10.1016/j.asoc.2023.110534_b27) 2019 (10.1016/j.asoc.2023.110534_b231) 2022 (10.1016/j.asoc.2023.110534_b181) 2021 Beresford (10.1016/j.asoc.2023.110534_b140) 1994; 22 Smola (10.1016/j.asoc.2023.110534_b383) 2004; 14 Mahmud (10.1016/j.asoc.2023.110534_b23) 2019; 10 Semary (10.1016/j.asoc.2023.110534_b287) 2015 Gupta (10.1016/j.asoc.2023.110534_b384) 2021; 102 (10.1016/j.asoc.2023.110534_b117) 2019 Marin (10.1016/j.asoc.2023.110534_b80) 2003; 87 10.1016/j.asoc.2023.110534_b375 Lu (10.1016/j.asoc.2023.110534_b321) 2017; 142 Narwade (10.1016/j.asoc.2023.110534_b374) 2016 Kawasaki (10.1016/j.asoc.2023.110534_b51) 2015 Ramcharan (10.1016/j.asoc.2023.110534_b267) 2017; 8 Agarwal (10.1016/j.asoc.2023.110534_b58) 2020; 167 (10.1016/j.asoc.2023.110534_b229) 2022 Waller (10.1016/j.asoc.2023.110534_b201) 1993; 97 (10.1016/j.asoc.2023.110534_b176) 2018 10.1016/j.asoc.2023.110534_b225 10.1016/j.asoc.2023.110534_b347 Nelson (10.1016/j.asoc.2023.110534_b81) 2008 Obrien (10.1016/j.asoc.2023.110534_b85) 2021 Hagen (10.1016/j.asoc.2023.110534_b113) 2021 Gunasekaran (10.1016/j.asoc.2023.110534_b258) 2020 10.1016/j.asoc.2023.110534_b221 10.1016/j.asoc.2023.110534_b343 Mengistu (10.1016/j.asoc.2023.110534_b314) 2016; 9 Khirade (10.1016/j.asoc.2023.110534_b6) 2015 10.1016/j.asoc.2023.110534_b342 (10.1016/j.asoc.2023.110534_b394) 2022 Savary (10.1016/j.asoc.2023.110534_b14) 2019; 3 Ganatra (10.1016/j.asoc.2023.110534_b73) 2020; 11 Subrahmanyam (10.1016/j.asoc.2023.110534_b193) 1983 (10.1016/j.asoc.2023.110534_b228) 2022 Roberts (10.1016/j.asoc.2023.110534_b233) 2006; 4 Brazee (10.1016/j.asoc.2023.110534_b205) 2020 (10.1016/j.asoc.2023.110534_b338) 2022 Huang (10.1016/j.asoc.2023.110534_b60) 2023; 82 Wani (10.1016/j.asoc.2023.110534_b38) 2021 (10.1016/j.asoc.2023.110534_b123) 2021 McMullen (10.1016/j.asoc.2023.110534_b159) 2011 10.1016/j.asoc.2023.110534_b355 10.1016/j.asoc.2023.110534_b352 Zambolim (10.1016/j.asoc.2023.110534_b199) 2016; 41 (10.1016/j.asoc.2023.110534_b240) 2021 Williams (10.1016/j.asoc.2023.110534_b232) 2017 Calzarano (10.1016/j.asoc.2023.110534_b182) 2014 (10.1016/j.asoc.2023.110534_b200) 2021 (10.1016/j.asoc.2023.110534_b108) 2019 (10.1016/j.asoc.2023.110534_b135) 2021 Koike (10.1016/j.asoc.2023.110534_b197) 2001; 85 Gonzalez (10.1016/j.asoc.2023.110534_b3 |
References_xml | – volume: 17 start-page: 790 year: 1995 end-page: 799 ident: b362 article-title: Mean shift, mode seeking, and clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 61 start-page: 103 year: 1989 end-page: 113 ident: b348 article-title: Gabor filters as texture discriminator publication-title: Biol. Cybernet. – year: 2021 ident: b219 article-title: Scale insects – volume: 3 year: 2013 ident: b5 article-title: Image processing techniques for detection of leaf disease publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng. – volume: 5 start-page: 157 year: 2004 end-page: 166 ident: b92 article-title: Sugarbeet leaf spot disease (CercosporabeticolaSacc) publication-title: Mol. Plant Path. – year: 2006 ident: b202 article-title: Coffee berry disease – volume: 3 start-page: 113 year: 2014 end-page: 124 ident: b118 article-title: Citrus melanose (Diaporthecitri wolf): a review publication-title: Int. J. Curr. Microbiol. Appl. Sci. – volume: 61 year: 2021 ident: b66 article-title: Identification of disease using deep learning and evaluation of bacteriosis in peach leaf publication-title: Ecol. Inform. – volume: 8 start-page: 166 year: 2017 end-page: 175 ident: b277 article-title: Automatic recognition of medicinal plants using machine learning techniques publication-title: Int. J. Adv. Comput. Sci. Appl. – year: 2021 ident: b215 article-title: Grapes: Diseases and symptoms – volume: 128 start-page: 21 year: 2013 end-page: 30 ident: b305 article-title: Development of spectral indices for detecting and identifying plant diseases publication-title: Remote Sens. Environ. – volume: 72 start-page: 335 year: 2006 end-page: 347 ident: b114 article-title: Tomato early blight ( publication-title: J. Gen. Plant Pathol. – year: 2021 ident: b145 article-title: Garden diseases - Pear rust – volume: 158 start-page: 93 year: 2010 end-page: 99 ident: b167 article-title: Tatumellaptyseos, an unrevealed causative agent of pink disease in pineapple publication-title: J. Phytopath. – volume: 79 start-page: 180 year: 2011 end-page: 188 ident: b284 article-title: Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with support vector machines publication-title: Comput. Electron. Agric. – volume: 3 start-page: 1 year: 2021 end-page: 9 ident: b16 article-title: Plant health and its effects on food safety and security in a one health framework: Four case studies publication-title: One Health Outlook – volume: 66 start-page: 1101 year: 1982 end-page: 1105 ident: b120 article-title: Control of brown rot in peach orchards publication-title: Plant Dis. – volume: 22 start-page: 113 year: 1994 end-page: 120 ident: b140 article-title: Economics of reducing fungicide use by weather-based disease forecasts for control of publication-title: N. Z. J. Crop Hortic. Sci. – year: 2013 ident: b166 article-title: Southwest canker publication-title: The Plant Doctor’s Landscape Tips – year: 2021 ident: b204 article-title: Coffee wilt disease – volume: 193 year: 2022 ident: b65 article-title: Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images publication-title: Comput. Electron. Agric. – start-page: 1 year: 2021 end-page: 36 ident: b386 article-title: Least squares large margin distribution machine for regression publication-title: Appl. Intell. – volume: 5 start-page: 3818 year: 2018 end-page: 3823 ident: b377 article-title: A review of different classification techniques in machine learning using weka for plant disease detection publication-title: Int. Res. J. Eng. Technol. (IRJET) – year: 2021 ident: b236 article-title: Stem-chewing insects – volume: 82 start-page: 12017 year: 2023 end-page: 12041 ident: b106 article-title: Deep learning based automated disease detection and pest classification in Indian mung bean publication-title: Multimedia Tools Appl. – start-page: 1 year: 2017 end-page: 6 ident: b28 article-title: Tomatoes classification using K-NN based on GLCM and HSV color space publication-title: 2017 International Conference on Innovative and Creative Information Technology – year: 2021 ident: b191 article-title: Early leaf spot on peanut leaf – start-page: 1 year: 2019 end-page: 6 ident: b272 article-title: Image based tomato leaf disease detection publication-title: 2019 10th International Conference on Computing, Communication and Networking Technologies – volume: 151 start-page: 72 year: 2016 end-page: 80 ident: b53 article-title: Plant species classification using deep convolutional neural network publication-title: Biosyst. Eng. – year: 2021 ident: b213 article-title: Cannabis aphids – volume: 135 start-page: 68 year: 2021 end-page: 77 ident: b356 article-title: Greedy auto-augmentation for n-shot learning using deep neural networks publication-title: Neural Netw. – year: 2022 ident: b227 article-title: Citrus greening – volume: 163 year: 2019 ident: b72 article-title: A low shot learning method for tea leaf’s disease identification publication-title: Comput. Electron. Agric. – year: 2022 ident: b229 article-title: Bean pod mottle – year: 2019 ident: b173 article-title: Curvularia Leaf Spot – year: 2021 ident: b157 article-title: Eyespot of corn – start-page: 1 year: 2016 end-page: 6 ident: b290 article-title: Recent machine learning based approaches for disease detection and classification of agricultural products publication-title: 2016 International Conference on Computing Communication Control and Automation – volume: 3 start-page: 430 year: 2019 end-page: 439 ident: b14 article-title: The global burden of pathogens and pests on major food crops publication-title: Nat. Ecol. Evol. – volume: 9 start-page: 162 year: 2021 end-page: 166 ident: b248 article-title: Techniques for rice leaf disease detection using machine LearningAlgorithms publication-title: Int. J. Eng. Res. Technol. – year: 2021 ident: b181 article-title: Symptoms of PVY – volume: 11 start-page: 1373 year: 2019 ident: b280 article-title: UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning publication-title: Remote Sens. – volume: 23 start-page: 1059 year: 2020 end-page: 1068 ident: b44 article-title: Application of extreme learning machine in plant disease prediction for highly imbalanced dataset publication-title: J. Stat. Manag. Syst. – start-page: 1 year: 2021 end-page: 37 ident: b38 article-title: Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges publication-title: Arch. Comput. Methods Eng. – year: 2022 ident: b226 article-title: Solar scorch – year: 2021 ident: b192 article-title: Groundnut: Minor disease: Leaf spot – year: 2018 ident: b378 article-title: Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data – year: 2017 ident: b337 article-title: Rice leaf disease dataset – year: 2017 ident: b93 article-title: Cercospora Leaf Spot of Beet – volume: 65 start-page: 386 year: 1958 ident: b391 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. – year: 2017 ident: b232 article-title: Bacterial Diseases of Plants Agriculture and Natural Resources – start-page: 1242 year: 2016 end-page: 1246 ident: b289 article-title: Tomato plant disease classification in digital images using classification tree publication-title: 2016 International Conference on Communication and Signal Processing – volume: 3 start-page: 185 year: 2020 end-page: 193 ident: b35 article-title: Mango leaf disease recognition using neural network and support vector machine publication-title: Iran J. Comput. Sci. – volume: 110 year: 2022 ident: b42 article-title: Multi-category intuitionistic fuzzy twin support vector machines with an application to plant leaf recognition publication-title: Eng. Appl. Artif. Intell. – volume: 40 start-page: 50 year: 2017 end-page: 56 ident: b271 article-title: LeafNet: A computer vision system for automatic plant species identification publication-title: Ecol. Inform. – volume: 120 start-page: 279 year: 1992 end-page: 286 ident: b195 article-title: Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut ( publication-title: Ann. Appl. Biol. – reference: Kapil Prashar, Rajneesh Talwar, Chander Kant, Inconsistent Cluster Analysis With Disease Feature Enhancement (ICADFE) For American Cotton Leaf Disease Recognition, in: International Conference on Intelligent Machines Held at Baba Farid College of Engineering and Technology, 2019, pp. 15–16. – volume: 82 start-page: 2121 year: 2023 end-page: 2144 ident: b60 article-title: Tomato leaf disease detection system based on FC-SNDPN publication-title: Multimedia Tools Appl. – volume: 78 start-page: 27785 year: 2019 end-page: 27808 ident: b304 article-title: Multiclass twin support vector machine for plant species identification publication-title: Multimedia Tools Appl. – volume: 8 start-page: 1852 year: 2017 ident: b267 article-title: Deep learning for image-based cassava disease detection publication-title: Front. Plant Sci. – start-page: 278 year: 2012 end-page: 335 ident: b84 article-title: Diseases of mango publication-title: Diseases of Fruit Crops – reference: Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, Zbigniew Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826. – volume: 21 start-page: 661 year: 1996 end-page: 682 ident: b392 article-title: Neural networks and logistic regression: Part i publication-title: Comput. Statist. Data Anal. – volume: 35 start-page: 1 year: 2015 end-page: 25 ident: b4 article-title: Advanced methods of plant disease detection. A review publication-title: Agron. Sustain. Dev. – volume: 26 year: 1947 ident: b131 article-title: Studies on the stackburn disease of rice and identity of the causal organism publication-title: J. Ind. Bot. Soc. – start-page: 115 year: 2015 end-page: 123 ident: b315 article-title: Hybrid deep learning for plant leaves classification publication-title: International Conference on Intelligent Computing – year: 2022 ident: b230 article-title: Sugarcane mosaic virus – volume: 142 start-page: 369 year: 2017 end-page: 379 ident: b321 article-title: An in-field automatic wheat disease diagnosis system publication-title: Comput. Electron. Agric. – year: 2010 ident: b346 article-title: Fluor-imagingprinciples.pdf – start-page: 472 year: 2011 end-page: 474 ident: b365 article-title: The marker-based watershed segmentation algorithm of ore image publication-title: 2011 IEEE 3rd International Conference on Communication Software and Networks – volume: 78 start-page: 9 year: 2011 end-page: 18 ident: b2 article-title: Leaf classification in sunflower crops by computer vision and neural networks publication-title: Comput. Electron. Agric. – year: 1987 ident: b110 article-title: Late Blight of Potato – volume: 120 year: 2016 ident: b414 article-title: Adjoint method for estimating Jiles–Atherton hysteresis model parameters publication-title: J. Appl. Phys. – start-page: 580 year: 2014 end-page: 587 ident: b399 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – year: 2021 ident: b83 article-title: Black spot – year: 2015 ident: b190 article-title: Early and late leaf spot of groundnut – year: 2019 ident: b297 article-title: Alternaria leaf spot: How to wipe out this fungal foe for good – volume: 81 start-page: 131 year: 2015 end-page: 147 ident: b41 article-title: A comparison on multi-class classification methods based on least squares twin support vector machine publication-title: Knowl.-Based Syst. – volume: 103 start-page: 17 year: 2021 end-page: 26 ident: b300 article-title: Rice plant disease classification using color features: a machine learning paradigm publication-title: J. Plant Pathol. – start-page: 1 year: 2021 end-page: 26 ident: b77 article-title: Computational approach to clinical diagnosis of diabetes disease: a comparative study publication-title: Multimedia Tools Appl. – reference: White tininess, Available at: – volume: 374 year: 2019 ident: b9 article-title: Climate change effects on Black Sigatoka disease of banana publication-title: Phil. Trans. R. Soc. B – year: 2021 ident: b198 article-title: Spinach-Stemphylium – volume: 10 start-page: 465 year: 1991 end-page: 468 ident: b122 article-title: Yield losses in soybeans from frogeye leaf spot caused by Cercosporasojina publication-title: Crop Protection – volume: 11 start-page: 707 year: 2021 ident: b55 article-title: Review on convolutional neural network (CNN) applied to plant leaf disease classification publication-title: Agriculture – start-page: 1 year: 2022 end-page: 24 ident: b234 article-title: A novel framework for potato leaf disease detection using an efficient deep learning model publication-title: Hum. Ecol. Risk Assess. – volume: 154 start-page: 96 year: 2019 end-page: 104 ident: b298 article-title: Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging publication-title: Postharvest Biol. Technol. – year: 2019 ident: b111 article-title: Late blight of potato and tomato: declared pest – volume: 76 start-page: 323 year: 2019 end-page: 338 ident: b255 article-title: Identification of plant leaf diseases using a nine-layer deep convolutional neural network publication-title: Comput. Electr. Eng. – volume: 21 start-page: 3169 year: 2021 ident: b11 article-title: Identification of cotton leaf lesions using deep learning techniques publication-title: Sensors – volume: 25 start-page: 42 year: 2015 end-page: 45 ident: b26 article-title: Plant disease recognition based on plant leaf image publication-title: J. Anim. Plant Sci. – year: 2001 ident: b372 article-title: A survey of color for computer graphics publication-title: Course at SIGGRAPH, Vol. 744 – start-page: 300 year: 2013 end-page: 304 ident: b301 article-title: Early detection and continuous quantization of plant disease using template matching and support vector machine algorithms publication-title: 2013 First International Symposium on Computing and Networking – reference: Christopher G. Harris, Mike Stephens, A combined corner and edge detector, in: Alvey Vision Conference, No. 15, 1988, pp. 10–5244, 50. – volume: 198 year: 2022 ident: b67 article-title: Deep diagnosis: A real-time apple leaf disease detection system based on deep learning publication-title: Comput. Electron. Agric. – volume: 14 start-page: 12191 year: 2014 end-page: 12206 ident: b253 article-title: On plant detection of intact tomato fruits using image analysis and machine learning methods publication-title: Sensors – volume: 13 start-page: 162 year: 2021 ident: b306 article-title: Identifying pine wood nematode disease using UAV images and deep learning algorithms publication-title: Remote Sens. – volume: 34 start-page: 2274 year: 2012 end-page: 2282 ident: b366 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 47 year: 2019 end-page: 51 ident: b295 article-title: Glcm Based Plant Leaf Disease Detection Using Multiclass SVM publication-title: Int J. Res. Dev. Technol. – start-page: 175 year: 1995 end-page: 189 ident: b398 article-title: Learning vector quantization publication-title: Self-Organizing Maps – year: 2009 ident: b177 article-title: Control of Tobacco Mosaic Virus on Flue-Cured Tobacco – year: 2021 ident: b185 article-title: Bitter rot – start-page: 1 year: 2008 end-page: 10 ident: b81 article-title: Black Leaf Streak of Banana – start-page: 1 year: 2021 end-page: 57 ident: b387 article-title: On regularization based twin support vector regression with huber loss publication-title: Neural Process. Lett. – start-page: 1 year: 2022 end-page: 16 ident: b39 article-title: Evaluation of the benefits of combined reflection and transmission hyperspectral imaging data through disease detection and quantification in plant–pathogen interactions publication-title: J. Plant Dis. Prot. – start-page: 293 year: 2016 end-page: 300 ident: b374 article-title: Local and global color histogram feature for color content-based image retrieval system publication-title: Proceedings of the International Congress on Information and Communication Technology – volume: 104 start-page: 53 year: 1984 end-page: 59 ident: b86 article-title: The epidemiology of anthracnose disease of mango: inoculum sources, spore production and dispersal publication-title: Ann. Appl. Biol. – volume: 39 start-page: 1137 year: 2016 end-page: 1149 ident: b71 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 1900 ident: b136 article-title: Peach Leaf Curl: Its Nature and Treatment, No. 20 – volume: 92 start-page: 676 year: 2002 end-page: 680 ident: b207 article-title: Utilizing epidemiological investigations to optimize management of grape black rot publication-title: Phytopathology – year: 2011 ident: b159 article-title: Bacterial Leaf Streak and Black Chaff of Wheat – volume: 171 start-page: 33 year: 2015 end-page: 44 ident: b274 article-title: Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado publication-title: Remote Sens. Environ. – year: 1992 ident: b196 article-title: Field Diagnosis of Groundnut Diseases – start-page: 368 year: 1997 end-page: 374 ident: b364 article-title: Clustering via concave minimization publication-title: Advances in Neural Information Processing Systems – volume: 2 start-page: 303 year: 2001 end-page: 309 ident: b112 article-title: The tomato powdery mildew fungus publication-title: Mol. Plant Path. – year: 2020 ident: b339 article-title: Plant pathology – volume: 535 year: 2019 ident: b281 article-title: Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms publication-title: Physica A – volume: 158 start-page: 48 year: 2017 end-page: 51 ident: b243 article-title: Automatic recognition of vegetable crops diseases based on neural network classifier publication-title: Int. J. Comput. Appl. – start-page: 1202 year: 2014 end-page: 1206 ident: b286 article-title: Discussion on sunflower leaf disease diagnosis based on imaging identification publication-title: Applied Mechanics and Materials, Vol. 577 – year: 2021 ident: b240 article-title: Sucking insects – volume: 78 start-page: 269 year: 1974 end-page: 279 ident: b156 article-title: Effects of eyespot on the yield of winter wheat publication-title: Ann. Appl. Biol. – year: 2010 ident: b203 publication-title: Coffee Wilt Disease – year: 2015 ident: b1 article-title: Common Diseases of Tomatoes: Part II. Diseases Caused By Bacteria, Viruses, and Nematodes – start-page: 0678 year: 2018 end-page: 0682 ident: b345 article-title: Disease classification and grading of orange using machine learning and fuzzy logic publication-title: 2018 International Conference on Communication and Signal Processing – volume: 40 start-page: 277 year: 1998 end-page: 286 ident: b132 article-title: Bionomics and control of rice white tip disease nematode, publication-title: Plant Prot. Bull. (Taipei) – year: 2022 ident: b231 article-title: Brown spot – year: 2019 ident: b160 article-title: Wheat disease update: Bacterial streak and black chaff – year: 2021 ident: b218 article-title: Leaf miners – reference: Godliver Owomugisha, John A. Quinn, Ernest Mwebaze, James Lwasa, Automated vision-based diagnosis of banana bacterial wilt disease and black sigatoka disease, in: International Conference on the Use of Mobile ICT in Africa, 2014, pp. 1–5. – year: 2021 ident: b135 article-title: Leaf Symptoms of Leptosphaerulina Leaf Spot – start-page: 422 year: 2018 end-page: 436 ident: b302 article-title: Mango leaf unhealthy region detection and classification publication-title: Computational Vision and Bio Inspired Computing, No. 28 – year: 2022 ident: b12 article-title: Climate change farm based autonomous adaptation measures and its impact on wheat crop productivity in Punjab, Pakistan – reference: (2010). – volume: 54 start-page: 1091 year: 2022 end-page: 1130 ident: b382 article-title: Density weighted twin support vector machines for binary class imbalance learning publication-title: Neural Process. Lett. – year: 2017 ident: b357 article-title: mixup: Beyond empirical risk minimization – start-page: 31 year: 2020 end-page: 44 ident: b10 article-title: Managing planting time for cotton production publication-title: Cotton Production and Uses – year: 2021 ident: b85 article-title: SootyMold – volume: 43 start-page: 59 year: 1982 end-page: 69 ident: b397 article-title: Self-organized formation of topologically correct feature maps publication-title: Biol. Cybernet. – volume: 67 start-page: 829 year: 1983 end-page: 832 ident: b100 article-title: Rice sheath blight: A major rice disease publication-title: Plant Dis. – volume: 13 start-page: 293 year: 2020 end-page: 305 ident: b74 article-title: Performance analysis of fine-tuned convolutional neural network models for plant disease classification publication-title: Int. J. Control Autom. – start-page: 1104 year: 2021 end-page: 1107 ident: b260 article-title: Deep learning model for early prediction of plant disease publication-title: 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks – volume: 97 start-page: 989 year: 1993 end-page: 994 ident: b201 article-title: Characterization of the coffee berry disease pathogen, publication-title: Mycol. Res. – volume: 100 start-page: 3246 year: 2020 end-page: 3256 ident: b256 article-title: Detection of rice plant diseases based on deep transfer learning publication-title: J. Sci. Food Agric. – start-page: 228 year: 2018 end-page: 235 ident: b379 article-title: Kernel target alignment based fuzzy least square twin bounded support vector mac hine publication-title: 2018 IEEE Symposium Series on Computational Intelligence – year: 2013 ident: b335 article-title: Apple leaf dataset – volume: 80 start-page: 1341 year: 1990 end-page: 1347 ident: b134 article-title: Analysis of epidemics of Leptosphaerulina leaf spots on alfalfa and white clover in time and space publication-title: Phytopathology – volume: 41 start-page: 1505 year: 1966 end-page: 1512 ident: b151 article-title: Increased disease resistance and enzyme activity induced by ethylene and ethylene production of black rot infected sweet potato tissue publication-title: Plant Physiol. – volume: 74 year: 1993 ident: b178 article-title: Characterization of potyviruses from tulip and lily which cause flower-breaking publication-title: J. Gen. Virol. – start-page: 768 year: 2015 end-page: 771 ident: b6 article-title: Patil plant disease detection using image processing publication-title: 2015 International Conference on Computing Communication Control and Automation – volume: 10 start-page: 131 year: 2021 ident: b308 article-title: Automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning publication-title: Pathogens – year: 2017 ident: b403 article-title: Gabor capsule network for plant disease detection – reference: Md Sultan Mahmud, Young K. Chang, Qamar U. Zaman, Travis J. Esau, Detection of strawberry powdery mildew disease in leaf using image texture and supervised classifiers, in: Proceedings of the CSBE/SCGAB 2018 Annual Conference, Guelph, ON, USA, 2018, pp. 22–25. – volume: 7 start-page: 1 year: 2020 ident: b257 article-title: Deep learning convolution neural network to detect and classify tomato plant leaf diseases publication-title: Open Access Libr. J. – year: 1998 ident: b144 article-title: Diagnosing Maize Diseases in Latin America – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b411 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – year: 2009 ident: b333 article-title: Flavia dataset – year: 2021 ident: b87 article-title: Anthracnose: What are the symptoms and how to treat it – year: 2014 ident: b330 article-title: Late leafspot a problem in peanuts – volume: 10 start-page: 11 year: 2018 ident: b311 article-title: Identification of apple leaf diseases based on deep convolutional neural networks publication-title: Symmetry – year: 2021 ident: b126 article-title: Bacterial Leaf Scorch of ShadeTrees – start-page: 1 year: 2022 end-page: 14 ident: b62 article-title: Detection of gray mold disease and its severity on strawberry using deep learning networks publication-title: J. Plant Dis. Prot. – year: 2022 ident: b228 article-title: Red rot – volume: 2 start-page: 984 year: 2013 end-page: 988 ident: b276 article-title: A leaf recognition technique for plant classification using RBPNN and Zernike moments publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – year: 2007 ident: b332 article-title: Foliage dataset – year: 2021 ident: b154 article-title: Northern Corn Leaf Blight of Corn – year: 2021 ident: b217 article-title: Mealybugs – year: 2000 ident: b138 publication-title: Fire Blight: the Disease and Its Causative Agent, – year: 2021 ident: b220 article-title: Citrus leaf miner – year: 2021 ident: b128 article-title: Smutplant disease – start-page: 1 year: 1994 end-page: 67 ident: b179 article-title: Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies publication-title: Advances in Virus Research, Vol. 44 – volume: 47 start-page: 101 year: 2018 end-page: 114 ident: b13 article-title: Climate change induced drought impacts on plant diseases in New Zealand publication-title: Australas. Plant Pathol. – year: 2016 ident: b89 article-title: Block Charles Diseases of Sunflower – year: 2018 ident: b165 article-title: What is sunscald: Learn about sunscald on plants – reference: Greg Pass, Zabih Ramin, Justin Miller, Comparing images using color coherence vectors, in: Proceedings of the Fourth ACM International Conference on Multimedia, 1997, pp. 65–73. – volume: 11 start-page: 1719 year: 2021 ident: b310 article-title: Detection of citrus leaf diseases using a deep learning technique publication-title: Int. J. Electr. Comput. Eng. – year: 2022 ident: b223 article-title: Quick wilt – volume: 33 start-page: 4243 year: 2021 end-page: 4261 ident: b381 article-title: Density-weighted support vector machines for binary class imbalance learning publication-title: Neural Comput. Appl. – year: 2021 ident: b239 article-title: Root-chewing insect – year: 2019 ident: b108 article-title: Granville Wilt of Tobacco Tobacco Disease Information – year: 2018 ident: b115 article-title: Early Blight of Tomato – start-page: 150 year: 2018 end-page: 154 ident: b292 article-title: Recognition and detection of tea leaf’s diseases using support vector machine publication-title: 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications – year: 2014 ident: b396 article-title: Very deep convolutional networks for large-scale image recognition – year: 2021 ident: b238 article-title: Spider mite – volume: 10 start-page: 579 year: 2009 end-page: 585 ident: b94 article-title: Genetic and physiological determinants of publication-title: Mol. Plant Path. – volume: 5 start-page: 443 year: 2016 end-page: 448 ident: b189 article-title: In vitro evaluation of chemical formulates on Xanthomonas axonopodispv. punicae publication-title: Int. J. Curr. Microbiol. Appl. Sci. – volume: 10 start-page: 1027 year: 2019 ident: b23 article-title: Real-Time Detection of Strawberry Powdery Mildew Disease Using a Mobile Machine Vision System publication-title: Agronomy – year: 2019 ident: b117 article-title: Citrus Canker – volume: 61 year: 2021 ident: b329 article-title: VirLeafNet: automatic analysis and viral disease diagnosis using deep-learning in vigna mungo plant publication-title: Ecol. Inform. – year: 2011 ident: b69 article-title: Coffee disease detection using a robust HSV color-based segmentation and transfer learning for use on smartphones publication-title: Int. J. Intell. Syst. – year: 2018 ident: b400 article-title: MobileNetV2: The next generation of on-device computer vision networks – year: 2020 ident: b278 article-title: An in-depth exploration of automated jackfruit disease recognition publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 9 start-page: 38 year: 2022 end-page: 47 ident: b313 article-title: An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning publication-title: Inf. Process. Agric. – reference: Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, Yi Yang, Random erasing data augmentation, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 07, 2020, pp. 13001–13008. – volume: 92 start-page: 530 year: 2008 end-page: 541 ident: b116 article-title: Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves publication-title: Plant Dis. – volume: 52 start-page: 927 year: 2022 end-page: 938 ident: b249 article-title: Citrus disease detection and classification using end-to-end anchor-based deep learning model publication-title: Appl. Intell. – year: 2021 ident: b97 article-title: Rice: fungal diseases: stackburn disease – year: 2015 ident: b210 article-title: Diagnosing Barley Scald – start-page: 0538 year: 2019 end-page: 0542 ident: b57 article-title: Machine learning for plant leaf disease detection and classification–A review publication-title: 2019 International Conference on Communication and Signal Processing – volume: 2018 year: 2021 ident: b143 article-title: Apple scab publication-title: Plant Health Instr. – volume: 58 start-page: 280 year: 2015 end-page: 288 ident: b34 article-title: Smart farming: Pomegranate disease detection using image processing publication-title: Procedia Comput. Sci. – reference: New Plant Diseases Dataset, Flowers Recognition and Weed Detection in Soybean Crops datasets are Available at: – volume: 47 start-page: 1 year: 2022 end-page: 14 ident: b150 article-title: Different stages of disease detection in squash plant based on machine learning publication-title: J. Biosci. – volume: 41 start-page: 1353 year: 2012 end-page: 1359 ident: b285 article-title: A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease publication-title: Procedia Eng. – year: 2016 ident: b99 article-title: Diagnosing Stripe Blight in Oats – start-page: 79 year: 2017 end-page: 88 ident: b246 article-title: A deep learning-based approach for banana leaf diseases classification publication-title: Datenbanksystemefür Business, Technologie und Web (BTW 2017)-Workshopband – volume: 1 start-page: 21 year: 1988 end-page: 28 ident: b395 article-title: A theoretical framework for back-propagation publication-title: Proceedings of the 1988 connectionist models summer school – year: 2020 ident: b209 article-title: Black rot of grape – volume: 35 start-page: 599 year: 2020 end-page: 607 ident: b186 article-title: Rolled–crimped cereal rye residue suppresses white mold in no-till soybean and dry bean publication-title: Renew. Agric. Food Syst. – reference: Foot rot /quick wilt (Quick wilt) Available at: – year: 2022 ident: b76 article-title: Tomato leaf disease classification by exploiting transfer learning and feature concatenation publication-title: IET Image Process. – volume: 7 start-page: 39 year: 1997 end-page: 55 ident: b368 article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF publication-title: Appl. Intell. – volume: 87 start-page: 208 year: 2003 end-page: 222 ident: b80 article-title: Black sigatoka: an increasing threat to banana cultivation publication-title: Plant Dis. – year: 2021 ident: b113 article-title: How to get rid of powdery mildew – reference: Shekofa Ghoury, Cemil Sungur, Akif Durdu, Real-Time Diseases Detection of Grape and Grape Leaves using Faster R-CNN and SSD MobileNet Architectures, in: International Conference on Advanced Technologies, Computer Engineering and Science, ICATCES 2019, 2019. – reference: Plant Seedings Dataset, Available: – volume: 161 start-page: 272 year: 2019 end-page: 279 ident: b254 article-title: A comparative study of fine-tuning deep learning models for plant disease identification publication-title: Comput. Electron. Agric. – volume: 137 start-page: 239 year: 2002 end-page: 263 ident: b288 article-title: Ensembling neural networks: many could be better than all publication-title: Artificial Intelligence – volume: 11 year: 2020 ident: b266 article-title: Gabor capsule network for plant disease detection publication-title: Int. J. Adv. Comput. Sci. Appl. – year: 2019 ident: b340 article-title: Plantvillage dataset – volume: 168 year: 2020 ident: b344 article-title: SPORT pre-processing can improve near-infrared quality prediction models for fresh fruits and agro-materials publication-title: Postharvest Biol. Technol. – volume: 35 start-page: 3427 year: 2014 end-page: 3439 ident: b25 article-title: Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms publication-title: Int. J. Remote Sens. – start-page: 1 year: 2016 end-page: 6 ident: b241 article-title: An application of image processing techniques for detection of diseases on brinjal leaves using k-means clustering method publication-title: 2016 international conference on recent trends in information technology (ICRTIT) – start-page: 894 year: 2012 end-page: 900 ident: b20 article-title: Image recognition of plant diseases based on backpropagation networks publication-title: 2012 5th International Congress on Image and Signal Processing – year: 2021 ident: b183 article-title: Esca – year: 2004 ident: b354 article-title: Digital Image Processing Using MATLAB – volume: 7 start-page: 1419 year: 2016 ident: b265 article-title: Using deep learning for image-based plant disease detection publication-title: Front. Plant Sci. – volume: 3 start-page: 294 year: 2021 end-page: 312 ident: b259 article-title: Automatic and reliable leaf disease detection using deep learning techniques publication-title: AgriEngineering – start-page: 1 year: 2019 end-page: 7 ident: b273 article-title: Identification of soybean diseases using learning vector quantization neural network algorithm publication-title: J. Anal. Comput. – start-page: 1 year: 1995 end-page: 5 ident: b367 article-title: Feature selection via the discovery of simple classification rules – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b31 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 171 start-page: 1113 year: 1971 end-page: 1116 ident: b169 article-title: The southern corn leaf blight epidemic publication-title: Science – volume: 12 start-page: 97 year: 2004 end-page: 101 ident: b172 article-title: The research progress of maize Curvularia leaf spot disease publication-title: J. Maize Sci. – volume: 8 year: 2020 ident: b24 article-title: Early disease classification of mango leaves using feed-forward neural network and hybrid metaheuristic feature selection publication-title: IEEE Access – year: 2021 ident: b70 article-title: Coffee disease dataset – year: 2012 ident: b359 article-title: Natural Language Annotation for Machine Learning: A Guide To Corpus-Building for Applications – volume: 10 start-page: 1027 year: 2020 ident: b242 article-title: Real-time detection of strawberry powdery mildew disease using a mobile machine vision system publication-title: Agronomy – start-page: 431 year: 2019 end-page: 444 ident: b380 article-title: Lagrangian twin-bounded support vector machine based on L2-norm publication-title: Recent Developments in Machine Learning and Data Analytics – year: 2010 ident: b7 article-title: Handbook of Image and Video Processing – year: 2021 ident: b212 article-title: Peacock spot – volume: 74 start-page: 91 year: 2010 end-page: 99 ident: b32 article-title: Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance publication-title: Comput. Electron. Agric. – start-page: 553 year: 2012 end-page: 558 ident: b174 article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement publication-title: Advances in Computer Science and Information Engineering – start-page: 638 year: 2015 end-page: 645 ident: b51 article-title: Basic study of automated diagnosis of viral plant diseases using convolutional neural networks publication-title: International Symposium on Visual Computing – year: 2021 ident: b194 article-title: Groundnut: Major disease: Rust – start-page: 318 year: 1986 end-page: 362 ident: b393 article-title: Learning internal representations by error propagation publication-title: Parallel Distributed Processing. Exploration in the Microstructure of Cognition – year: 2021 ident: b211 article-title: Tan spot – volume: 11 start-page: 1 year: 2016 end-page: 26 ident: b319 article-title: Identification of alfalfa leaf diseases using image recognition technology publication-title: PLoS One – volume: 10 start-page: 28 year: 2021 ident: b326 article-title: Convolutional neural network for automatic identification of plant diseases with limited data publication-title: Plants – volume: 121 year: 2020 ident: b358 article-title: Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques publication-title: Comput. Biol. Med. – start-page: 1 year: 2017 end-page: 5 ident: b407 article-title: Disease detection on the leaves of the tomato plants by using deep learning publication-title: 2017 6th International Conference on Agro-Geoinformatics – volume: 41 start-page: 1 year: 2016 end-page: 8 ident: b199 article-title: Current status and management of coffee leaf rust in Brazil publication-title: Trop. Plant Pathol. – volume: 48 start-page: 432 year: 2008 end-page: 437 ident: b124 article-title: Studies on leaf spot disease of withaniasomnifera and its impact on secondary metabolites publication-title: Indian J. Microbiol. – start-page: 110 year: 2002 end-page: 125 ident: b409 article-title: Ensemble learning publication-title: The Handbook of Brain Theory and Neural Networks, Vol. 2 – start-page: 401 year: 2015 end-page: 410 ident: b287 article-title: Fruit-based tomato grading system using features fusion and support vector machine publication-title: Intelligent Systems’ 2014 – volume: 83 start-page: 884 year: 1999 end-page: 895 ident: b153 article-title: Gray leaf spot: a disease of global importance in maize production publication-title: Plant Dis. – volume: 50 start-page: 277 year: 1997 end-page: 281 ident: b102 article-title: Occurrence of a mosaic virus disease on sunflower in Karnataka publication-title: Indian Phytopath. – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: b54 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing – volume: 145 start-page: 311 year: 2018 end-page: 318 ident: b56 article-title: Deep learning models for plant disease detection and diagnosis publication-title: Comput. Electron. Agric. – volume: 79 start-page: 28773 year: 2020 end-page: 28784 ident: b283 article-title: Deep learning based assessment of disease severity for early blight in tomato crop publication-title: Multimedia Tools Appl. – start-page: 267 year: 1986 end-page: 281 ident: b175 article-title: Cucumber green mottle mosaic virus publication-title: The Plant Viruses – volume: 100 start-page: 1000 year: 1975 end-page: 1006 ident: b390 article-title: An algorithm for finding nearest neighbors publication-title: IEEE Trans. Comput. – volume: 4 start-page: 9434 year: 2020 end-page: 9440 ident: b360 article-title: A review on different classification, feature extraction and segmentation methodologies of leaf disease detection using image processing approach publication-title: World Acad. Inform. Manag. Sci. – volume: 93 start-page: 1202 year: 2009 end-page: 1208 ident: b127 article-title: Effect of cultural management practices on the severity of false smut and kernel smut of rice publication-title: Plant Dis. – volume: 119 start-page: 1 year: 2000 end-page: 14 ident: b171 article-title: Genes for resistance to northern corn leaf blight in diverse maize populations publication-title: Plant Breeding – year: 2012 ident: b155 article-title: Grayleafspot (Cercosporazeae-maydis) – volume: 179 year: 2020 ident: b299 article-title: Image recognition of four rice leaf diseases based on deep learning and support vector machine publication-title: Comput. Electron. Agric. – volume: 13 start-page: 511 year: 2021 ident: b331 article-title: Plant leaf disease recognition using depth-wise separable convolution-based models publication-title: Symmetry – volume: 29 start-page: 905 year: 2007 end-page: 910 ident: b40 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2021 ident: b269 article-title: Groundnut: Major disease: Groundnut bud necrosis disease – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b50 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – volume: 10 start-page: 1299 year: 1998 end-page: 1319 ident: b371 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput. – volume: 5 start-page: 1 year: 2010 end-page: 2 ident: b82 article-title: First report of Alternaria black spot of pomegranate caused by Alternaria alternate in Israel publication-title: Australas. Plant Dis. Notes – year: 2019 ident: b125 article-title: Leaf Spot Disease Appearing on Indian Hawthorn – year: 2010 ident: b206 article-title: Ground Ivy and Orange Growths on Cedar Trees – volume: 167 start-page: 293 year: 2020 end-page: 301 ident: b58 article-title: ToLeD: Tomato leaf disease detection using convolution neural network publication-title: Procedia Comput. Sci. – start-page: 271 year: 1968 end-page: 272 ident: b349 article-title: A 3 × 3 isotropic gradient operator for image processing publication-title: A Talk at the Stanford Artificial Project – year: 2013 ident: b162 article-title: Bean angular leaf spot – volume: 80 start-page: 7167 year: 2021 end-page: 7186 ident: b351 article-title: A fuzzy based ROI selection for encryption and watermarking in medical image using DWT and SVD publication-title: Multimedia Tools Appl. – volume: 10 start-page: 31 year: 2021 ident: b282 article-title: Detection of strawberry diseases using a convolutional neural network publication-title: Plants – year: 2022 ident: b394 article-title: Backpropagation model – year: 2020 ident: b141 article-title: What Is Fire Blight? – year: 2022 ident: b48 article-title: Rice plant disease identification using artificial intelligence approaches – start-page: 91 year: 2015 end-page: 99 ident: b101 article-title: Sheath blight disease of paddy and their management publication-title: Recent Advances in the Diagnosis and Management of Plant Diseases – year: 1983 ident: b193 article-title: Rust disease of groundnut, 13 – volume: 61 start-page: 1733 year: 2013 end-page: 1747 ident: b413 article-title: Parametric modeling of microwave passive components using sensitivity-analysis-based adjoint neural-network technique publication-title: IEEE Trans. Microw. Theory Tech. – volume: 5 start-page: 74 year: 2018 end-page: 82 ident: b293 article-title: Detecting sugarcane borer diseases using support vector machine publication-title: Inf. Process. Agric. – year: 2021 ident: b341 article-title: Plant disease dataset – volume: 11 start-page: 1082 year: 2020 end-page: 1086 ident: b73 article-title: A multiclass plant leaf disease detection using image processing and machine learning techniques publication-title: Int. J. Emerg. Technol. – year: 2021 ident: b200 article-title: Coffee Leaf Rust – volume: 212 year: 2021 ident: b350 article-title: Parallel pre-processing through orthogonalization (PORTO) and its application to near-infrared spectroscopy publication-title: Chemometr. Intell. Lab. Syst. – reference: , in: II International Symposium on Tomato Diseases, Vol. 808, 2007, pp. 25–28. – volume: 7 start-page: 61 year: 2019 end-page: 69 ident: b47 article-title: Rice plant disease detection using twin support vector machine (TSVM) publication-title: J. Sci. Eng. – start-page: 6105 year: 2019 end-page: 6114 ident: b401 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks publication-title: International Conference on Machine Learning – reference: Gao Huang, Zhuang Liu, Laurens Van Der Maaten, Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708. – year: 2020 ident: b205 article-title: Cedar-Apple Rust – volume: 11 year: 2020 ident: b318 article-title: A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks publication-title: Front. Plant Sci. – year: 2021 ident: b105 article-title: Rust – year: 2021 ident: b91 article-title: Downy Mildew – volume: 15 start-page: 589 year: 2021 end-page: 597 ident: b312 article-title: Leaf image analysis-based crop diseases classification publication-title: Signal Image Video Process. – volume: 7 start-page: 59069 year: 2019 end-page: 59080 ident: b323 article-title: Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks publication-title: IEEE Access – volume: 35 start-page: 352 year: 2002 end-page: 359 ident: b18 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J. Biomed. Inform. – start-page: 10 year: 2000 end-page: 18 ident: b104 article-title: Expert system for the diagnosis of mango diseases publication-title: Int. J. Acad. Eng. Res. (IJAER) – volume: 7 start-page: 566 year: 2020 end-page: 574 ident: b317 article-title: Performance analysis of deep learning CNN models for disease detection in plants using image segmentation publication-title: Inf. Process. Agric. – volume: 22 start-page: 27 year: 2021 end-page: 34 ident: b64 article-title: A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks publication-title: Egypt. Inform. J. – volume: 13 year: 2018 ident: b8 article-title: Machine learning methods for crop yield prediction and climate change impact assessment in agriculture publication-title: Environ. Res. Lett. – year: 2021 ident: b95 article-title: Scabon vegetables – How to treat scab disease in the vegetable garden – volume: 11 start-page: 140 year: 2022 ident: b327 article-title: Optimized deep learning algorithms for tomato leaf disease detection with hardware deployment publication-title: Electronics – volume: 10 start-page: 267 year: 2011 end-page: 275 ident: b19 article-title: Detection and classification of leaf diseases using K-means-based segmentation and publication-title: Inf. Technol. J. – year: 2005 ident: b149 article-title: Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex – start-page: 278 year: 1995 end-page: 282 ident: b388 article-title: Random decision forests publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition, No. 1 – reference: . – volume: 39 start-page: 818 year: 2020 end-page: 836 ident: b250 article-title: Seasonal crops disease prediction and classification using deep convolutional encoder network – volume: 1 start-page: 1 year: 2015 ident: b208 article-title: Real time grape leaf disease detection publication-title: Int. J. Adv. Res. Innov. Ideas Educ. (IJARIIE) – start-page: 134 year: 2019 end-page: 145 ident: b247 article-title: An image-based deep learning model for cannabis diseases, nutrient deficiencies and pests identification publication-title: EPIA Conference on Artificial Intelligence – start-page: 44 year: 2000 ident: b130 article-title: Leaf scald publication-title: A Guide to Sugarcane Diseases, Vol. 38 – year: 2020 ident: b258 article-title: Delta tributary network—An efficient alternate approach for bottleneck layers in CNN for plant disease classification publication-title: IET Image Processing – volume: 196 start-page: 125 year: 2012 end-page: 131 ident: b21 article-title: Genome-wide association study (GWAS) of resistance to head smut in maize publication-title: Plant Sci. – year: 2011 ident: b133 article-title: White Tip Nematode Damage – volume: 86 year: 2020 ident: b405 article-title: Attention embedded residual CNN for disease detection in tomato leaves publication-title: Appl. Soft Comput. – start-page: 786 year: 2017 end-page: 798 ident: b404 article-title: Fcnn: Fourier convolutional neural networks publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases – year: 2021 ident: b123 article-title: Frogeye leaf spot – start-page: 511 year: 2014 end-page: 514 ident: b270 article-title: Salad leaf disease detection using machine learning based hyper spectral sensing publication-title: SENSORS – volume: 178 year: 2020 ident: b29 article-title: H2K–A robust and optimum approach for detection and classification of groundnut leaf diseases publication-title: Comput. Electron. Agric. – start-page: 291 year: 2007 end-page: 313 ident: b88 article-title: Lentil diseases publication-title: Lentil – volume: 24 start-page: 65 year: 2006 end-page: 69 ident: b163 article-title: Identification of publication-title: Rev. Mex. Fitopatol. – start-page: 130 year: 2017 end-page: 133 ident: b291 article-title: Identification of plant leaf diseases using image processing techniques publication-title: 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development – year: 2020 ident: b180 article-title: Cauliflower mosaic virus (CaMV) biology, management, and relevance to GM plant detection for sustainable organic agriculture publication-title: Front. Sustain. Food Syst. – volume: 11 start-page: 384 year: 2022 ident: b17 article-title: Fungal endophytes and their role in agricultural plant protection against pests and pathogens publication-title: Plants – volume: 51 start-page: 480 year: 2022 end-page: 487 ident: b264 article-title: Automated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networks publication-title: Mater. Today: Proc. – year: 2012 ident: b52 article-title: Improving neural networks by preventing co-adaptation of feature detectors – volume: 39 start-page: 544 year: 2010 end-page: 546 ident: b188 article-title: Detection of Xanthomonas axonopodispv. punicae causing bacterial blight on pomegranate in South Africa publication-title: Australas. Plant Pathol. – volume: 4 start-page: 0004 year: 2006 end-page: 0012 ident: b233 article-title: Community of pathogenic plant viruses found in the human gut publication-title: PLoSBiol – reference: Fluorescence imaging “Fluor-ImagingPrinciples.pdf”, Available at: – reference: Ganesh Bhadur, Rajneesh Rani, Agricultural Crops Disease Identification and Classification through Leaf Images using Machine Learning and Deep Learning Technique: A Review, in: Proceedings of the International Conference on Innovative Computing & Communications, ICICC, 2020. – volume: 61 year: 2021 ident: b262 article-title: Plant leaf disease classification using efficientnet deep learning model publication-title: Ecol. Inform. – volume: 100 start-page: 2194 year: 2016 end-page: 2203 ident: b184 article-title: Characterization of colletotrichum species causing bitter rot of apple in Kentucky orchards publication-title: Plant Dis. – volume: 102 year: 2021 ident: b384 article-title: On robust asymmetric Lagrangian publication-title: Appl. Soft Comput. – year: 2021 ident: b119 article-title: Citrus Diseases Melanose – start-page: 487 year: 2013 end-page: 494 ident: b353 article-title: Fuzzy clustering based medical image watermarking publication-title: KIPS Transactions on Software and Data Engineering, Vol. 2, No. 7 – start-page: 989 year: 2016 end-page: 992 ident: b245 article-title: Basic investigation on a robust and practical plant diagnostic system publication-title: 2016 15th IEEE International Conference on Machine Learning and Applications – start-page: 43 year: 1981 end-page: 93 ident: b361 article-title: Objective function clustering publication-title: Pattern Recognition with Fuzzy Objective Function Algorithms – volume: 6 start-page: 8852 year: 2018 end-page: 8863 ident: b22 article-title: Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards plant pathology publication-title: IEEE Access – start-page: 267 year: 2020 end-page: 276 ident: b59 article-title: Plant leaf disease detection using machine learning publication-title: International Conference on Emerging Technology Trends in Electronics Communication and Networking – volume: 8 start-page: 10 year: 2020 end-page: 22 ident: b307 article-title: Plant disease detection with deep learning and feature extraction using plant village publication-title: J. Comput. Commun. – volume: 85 start-page: 126 year: 2001 end-page: 130 ident: b197 article-title: Leaf spot disease of spinach in California caused by publication-title: Plant Dis. – reference: “Smut plant disease.(Smut plant (2021))” The Editors of Encyclopaedia Britannica, [online], Available (2021): – year: 2021 ident: b187 article-title: Sclerotinia sclerotiorum-Cottony rot – year: 1994 ident: b96 publication-title: Rice blast disease – volume: 12 start-page: 1311 year: 2021 end-page: 1342 ident: b46 article-title: Regularized based implicit Lagrangian twin extreme learning machine in primal for pattern classification publication-title: Int. J. Mach. Learn. Cybern. – volume: 10 start-page: 75 year: 2018 ident: b63 article-title: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images publication-title: Remote Sens. – volume: 155 start-page: 220 year: 2018 end-page: 236 ident: b303 article-title: CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features publication-title: Comput. Electron. Agric. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b43 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – year: 2016 ident: b244 article-title: Deep neural networks-based recognition of plant diseases by leaf image classification publication-title: Comput. Intell. Neurosci. – year: 2016 ident: b406 article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and – volume: 4 start-page: 87 year: 1970 end-page: 91 ident: b164 article-title: Studies on the cause and control of sun scald of plum publication-title: Korean J. Hortic. Sci. – volume: 71 start-page: 1849 year: 2022 end-page: 1866 ident: b30 article-title: Deep learning based automated detection of diseases from apple leaf images publication-title: CMC-Comput. Mater. Continua – volume: 90 start-page: 884 year: 2000 end-page: 890 ident: b158 article-title: Septoria leaf spot of banana: a newly discovered disease caused by publication-title: Phytopathology – volume: 5 start-page: 516 year: 2018 end-page: 523 ident: b294 article-title: Plant leaf disease detection and classification using image processing publication-title: Int. J. Res. Eng. – start-page: 8 year: 2012 end-page: 13 ident: b107 article-title: Plant age and strain of publication-title: Tob. Sci. – volume: 69 start-page: 179 year: 2020 end-page: 193 ident: b15 article-title: Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks publication-title: Plant Pathol. – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: b383 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 35 year: 1927 ident: b98 article-title: Bacterial stripe blight of oats publication-title: J. Agric. Res. – year: 2021 ident: b214 article-title: Grape mites – volume: 125 start-page: 99 year: 2016 end-page: 112 ident: b263 article-title: Kernel-based PSO and FRVM: An automatic plant leaf type detection using texture, shape, and color features publication-title: Comput. Electron. Agric. – volume: 11 start-page: 1950 year: 2021 ident: b75 article-title: Automatic identification of peanut-leaf diseases based on stack ensemble publication-title: Appl. Sci. – year: 2018 ident: b148 article-title: Cowpea Bacterial Wilt-an Old Disease in a New Crop, Vol. 9 – volume: 9 start-page: 212 year: 2022 end-page: 223 ident: b68 article-title: ResTS: Residual deep interpretable architecture for plant disease detection publication-title: Inf. Process. Agric. – volume: 28 start-page: 509 year: 1990 end-page: 512 ident: b370 article-title: Texture unit, texture spectrum, and texture analysis publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 33 start-page: 4133 year: 2021 end-page: 4149 ident: b252 article-title: Classification of olive leaf diseases using deep convolutional neural networks publication-title: Neural Comput. Appl. – start-page: 491 year: 2008 end-page: 494 ident: b373 article-title: Grading method of leaf spot disease based on image processing publication-title: 2008 International Conference on Computer Science and Software Engineering, No. 6 – volume: 5 start-page: 866 year: 2018 end-page: 869 ident: b376 article-title: Crop disease detection using machine learning: Indian agriculture publication-title: Int. Res. J. Eng. Technol. (IRJET) – volume: 19 start-page: 463 year: 2021 end-page: 470 ident: b261 article-title: An effective feature extraction method for rice leaf disease classification publication-title: Telkomnika – year: 2019 ident: b27 article-title: Detection of diseases on tomato leaves based on subclassifiers fuzzy combination publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE) – reference: M. Rajesh Khanna, Data hiding in encrypted images using Arnold transform, in: International Conference on Algorithms, 2017. – start-page: 543 year: 2014 end-page: 558 ident: b182 article-title: Grapevine leaf stripe disease symptoms (esca complex) are reduced by a nutrients and seaweed mixture publication-title: Phytopathol. Mediterr. – year: 2021 ident: b170 article-title: Southern corn leaf blight of corn – year: 2014 ident: b336 article-title: LeafSnap dataset – year: 2018 ident: b176 article-title: Cucumber Green Mosaic Virus – year: 1995 ident: b49 publication-title: The Handbook of Brain Theory and Neural Networks – volume: 85 start-page: 843 year: 1995 end-page: 847 ident: b161 article-title: Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria publication-title: Phytopathology – volume: 2022 year: 2022 ident: b45 article-title: A systematic analysis of machine learning and deep learning based approaches for plant leaf disease classification: a review publication-title: J. Sensors – volume: 17 start-page: 2022 year: 2017 ident: b320 article-title: A robust deep-learning-based detector for real-time tomato plant diseases and pest’s recognition publication-title: Sensors – reference: R.L. Schlub, L.J. Smith, L.E. Datnoff, K. Pernezny, An overview of target spot of tomato caused by – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: b410 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 22 start-page: 153 year: 2013 end-page: 161 ident: b33 article-title: Multiple birth support vector machine for multi-class classification publication-title: Neural Comput. Appl. – year: 2022 ident: b222 article-title: Berry disease – volume: 147 start-page: 695 year: 2017 end-page: 708 ident: b109 article-title: Occurrence and etiology of Alternaria leaf blotch and fruit spot of apple caused by Alternaria alternata f. sp. mali on cv. Pink lady in Israel publication-title: Eur. J. Plant Pathol. – year: 2021 ident: b235 article-title: How to identify and control common plant fungal diseases – year: 2021 ident: b251 article-title: Leaf and spike wheat disease detection & classification using an improved deep convolutional architecture publication-title: Inform. Med. Unlocked – year: 2009 ident: b90 article-title: Downy Mildew of Sunflower – volume: 14 start-page: 495 year: 2013 end-page: 511 ident: b275 article-title: Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat publication-title: Precis. Agric. – volume: 39 start-page: 780 year: 2012 end-page: 785 ident: b309 article-title: Detecting rottenness caused by penicillium genus fungi in citrus fruits using machine learning techniques publication-title: Expert Syst. Appl. – volume: 24 start-page: 83 year: 1986 end-page: 91 ident: b79 article-title: Disease management strategies and the survival of the banana industry publication-title: Annu. Rev. Phytopathol. – volume: 80 start-page: 346 year: 2021 ident: b78 article-title: Artificial intelligence for suspended sediment load prediction: a review publication-title: Environ. Earth Sci. – volume: 3 start-page: 305 year: 2022 end-page: 310 ident: b3 article-title: Plant leaf disease detection using computer vision and machine learning algorithms publication-title: Glob. Transitions Proc. – volume: 9 start-page: 79 year: 2016 end-page: 88 ident: b314 article-title: Ethiopian coffee plant diseases recognition based on imaging and machine learning techniques publication-title: Int. J. Database Theory Appl. – volume: 6 start-page: 30370 year: 2018 end-page: 30377 ident: b322 article-title: Identification of maize leaf diseases using improved deep convolutional neural networks publication-title: IEEE Access – year: 2018 ident: b168 article-title: Pink disease – year: 2022 ident: b224 article-title: Quick wilt image – volume: 91 start-page: 113 year: 2015 end-page: 119 ident: b142 article-title: Increased content of phenolic compounds in pear leaves after infection by the pear rust pathogen publication-title: Physiol. Mol. Plant Path. – year: 2020 ident: b152 article-title: Black rot – year: 2015 ident: b121 article-title: Brown rot management in a wet growing season: Part I – volume: 49 start-page: 3606 year: 2019 end-page: 3627 ident: b385 article-title: An improved regularization based Lagrangian asymmetric publication-title: Appl. Intell. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b389 article-title: Bagging predictors publication-title: Mach. Learn. – year: 2021 ident: b103 article-title: Mosaic Virus – volume: 24 start-page: 603 year: 2002 end-page: 619 ident: b363 article-title: Mean shift: A robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 359 year: 2022 end-page: 375 ident: b61 article-title: Cauliflower disease recognition using machine learning and transfer learning publication-title: Smart Systems Innovations in Computing – year: 2021 ident: b216 article-title: White fly – year: 2022 ident: b338 article-title: Rice diseases dataset – volume: 11 start-page: 95 year: 2020 ident: b268 article-title: Using deep learning for image-based different degrees of ginkgo leaf disease classification publication-title: Information – year: 2020 ident: b334 article-title: A review of imaging techniques for plant disease detection publication-title: Artif. Intell. Agric. – reference: Accessed Feb 2022. – volume: 10 start-page: 95 year: 2021 ident: b328 article-title: Early detection of red palm weevil, publication-title: Plants – volume: 12 start-page: 993 year: 1990 end-page: 1001 ident: b37 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2014 ident: b139 article-title: Fireblight: Symptoms, Causes and Treatment – year: 2021 ident: b237 article-title: Pest – volume: 17 start-page: 903 year: 2019 end-page: 907 ident: b324 article-title: Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2021 ident: b147 article-title: Tomato diseases: TARGET SPOT – year: 2018 ident: b137 article-title: Peach leaf curl is one scary disease – year: 2017 ident: b402 article-title: Dynamic routing between capsules – start-page: 1 year: 2008 ident: 10.1016/j.asoc.2023.110534_b81 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b240 – year: 2017 ident: 10.1016/j.asoc.2023.110534_b403 – ident: 10.1016/j.asoc.2023.110534_b375 doi: 10.1145/244130.244148 – start-page: 422 year: 2018 ident: 10.1016/j.asoc.2023.110534_b302 article-title: Mango leaf unhealthy region detection and classification – year: 2019 ident: 10.1016/j.asoc.2023.110534_b160 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.asoc.2023.110534_b31 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 39 start-page: 1137 issue: 6 year: 2016 ident: 10.1016/j.asoc.2023.110534_b71 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – year: 2001 ident: 10.1016/j.asoc.2023.110534_b372 article-title: A survey of color for computer graphics – year: 2020 ident: 10.1016/j.asoc.2023.110534_b152 – volume: 7 start-page: 1 issue: 05 year: 2020 ident: 10.1016/j.asoc.2023.110534_b257 article-title: Deep learning convolution neural network to detect and classify tomato plant leaf diseases publication-title: Open Access Libr. J. – start-page: 271 year: 1968 ident: 10.1016/j.asoc.2023.110534_b349 article-title: A 3 × 3 isotropic gradient operator for image processing – year: 2021 ident: 10.1016/j.asoc.2023.110534_b204 – year: 2022 ident: 10.1016/j.asoc.2023.110534_b228 – volume: 14 start-page: 495 issue: 5 year: 2013 ident: 10.1016/j.asoc.2023.110534_b275 article-title: Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat publication-title: Precis. Agric. doi: 10.1007/s11119-013-9312-y – ident: 10.1016/j.asoc.2023.110534_b36 doi: 10.2139/ssrn.3564973 – year: 2007 ident: 10.1016/j.asoc.2023.110534_b332 – start-page: 293 year: 2016 ident: 10.1016/j.asoc.2023.110534_b374 article-title: Local and global color histogram feature for color content-based image retrieval system – year: 2022 ident: 10.1016/j.asoc.2023.110534_b227 – start-page: 491 year: 2008 ident: 10.1016/j.asoc.2023.110534_b373 article-title: Grading method of leaf spot disease based on image processing – start-page: 359 year: 2022 ident: 10.1016/j.asoc.2023.110534_b61 article-title: Cauliflower disease recognition using machine learning and transfer learning – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110534_b234 article-title: A novel framework for potato leaf disease detection using an efficient deep learning model publication-title: Hum. Ecol. Risk Assess. – year: 2018 ident: 10.1016/j.asoc.2023.110534_b165 – volume: 92 start-page: 676 issue: 6 year: 2002 ident: 10.1016/j.asoc.2023.110534_b207 article-title: Utilizing epidemiological investigations to optimize management of grape black rot publication-title: Phytopathology doi: 10.1094/PHYTO.2002.92.6.676 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2023.110534_b272 article-title: Image based tomato leaf disease detection – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10.1016/j.asoc.2023.110534_b391 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 41 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.asoc.2023.110534_b199 article-title: Current status and management of coffee leaf rust in Brazil publication-title: Trop. Plant Pathol. doi: 10.1007/s40858-016-0065-9 – volume: 6 start-page: 8852 year: 2018 ident: 10.1016/j.asoc.2023.110534_b22 article-title: Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards plant pathology publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2800685 – volume: 79 start-page: 28773 issue: 39 year: 2020 ident: 10.1016/j.asoc.2023.110534_b283 article-title: Deep learning based assessment of disease severity for early blight in tomato crop publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-09461-w – year: 2022 ident: 10.1016/j.asoc.2023.110534_b76 article-title: Tomato leaf disease classification by exploiting transfer learning and feature concatenation publication-title: IET Image Process. doi: 10.1049/ipr2.12397 – volume: 22 start-page: 27 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110534_b64 article-title: A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2020.02.007 – volume: 26 issue: 4 year: 1947 ident: 10.1016/j.asoc.2023.110534_b131 article-title: Studies on the stackburn disease of rice and identity of the causal organism publication-title: J. Ind. Bot. Soc. – year: 2021 ident: 10.1016/j.asoc.2023.110534_b211 – volume: 7 start-page: 39 issue: 1 year: 1997 ident: 10.1016/j.asoc.2023.110534_b368 article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF publication-title: Appl. Intell. doi: 10.1023/A:1008280620621 – year: 2014 ident: 10.1016/j.asoc.2023.110534_b336 – volume: 374 issue: 1775 year: 2019 ident: 10.1016/j.asoc.2023.110534_b9 article-title: Climate change effects on Black Sigatoka disease of banana publication-title: Phil. Trans. R. Soc. B doi: 10.1098/rstb.2018.0269 – volume: 19 start-page: 463 issue: 2 year: 2021 ident: 10.1016/j.asoc.2023.110534_b261 article-title: An effective feature extraction method for rice leaf disease classification publication-title: Telkomnika doi: 10.12928/telkomnika.v19i2.16488 – volume: 3 start-page: 430 issue: 3 year: 2019 ident: 10.1016/j.asoc.2023.110534_b14 article-title: The global burden of pathogens and pests on major food crops publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0793-y – volume: 93 start-page: 1202 issue: 11 year: 2009 ident: 10.1016/j.asoc.2023.110534_b127 article-title: Effect of cultural management practices on the severity of false smut and kernel smut of rice publication-title: Plant Dis. doi: 10.1094/PDIS-93-11-1202 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b181 – start-page: 278 year: 1995 ident: 10.1016/j.asoc.2023.110534_b388 article-title: Random decision forests – year: 2021 ident: 10.1016/j.asoc.2023.110534_b83 – year: 2019 ident: 10.1016/j.asoc.2023.110534_b173 – volume: 171 start-page: 33 year: 2015 ident: 10.1016/j.asoc.2023.110534_b274 article-title: Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.011 – start-page: 1 year: 2016 ident: 10.1016/j.asoc.2023.110534_b241 article-title: An application of image processing techniques for detection of diseases on brinjal leaves using k-means clustering method – ident: 10.1016/j.asoc.2023.110534_b369 – volume: 10 start-page: 11 issue: 1 year: 2018 ident: 10.1016/j.asoc.2023.110534_b311 article-title: Identification of apple leaf diseases based on deep convolutional neural networks publication-title: Symmetry doi: 10.3390/sym10010011 – volume: 21 start-page: 661 issue: 6 year: 1996 ident: 10.1016/j.asoc.2023.110534_b392 article-title: Neural networks and logistic regression: Part i publication-title: Comput. Statist. Data Anal. doi: 10.1016/0167-9473(95)00032-1 – volume: 11 start-page: 1082 issue: 2 year: 2020 ident: 10.1016/j.asoc.2023.110534_b73 article-title: A multiclass plant leaf disease detection using image processing and machine learning techniques publication-title: Int. J. Emerg. Technol. – start-page: 989 year: 2016 ident: 10.1016/j.asoc.2023.110534_b245 article-title: Basic investigation on a robust and practical plant diagnostic system – volume: 87 start-page: 208 issue: 3 year: 2003 ident: 10.1016/j.asoc.2023.110534_b80 article-title: Black sigatoka: an increasing threat to banana cultivation publication-title: Plant Dis. doi: 10.1094/PDIS.2003.87.3.208 – volume: 40 start-page: 277 issue: 3 year: 1998 ident: 10.1016/j.asoc.2023.110534_b132 article-title: Bionomics and control of rice white tip disease nematode, Aphelenchoides besseyi publication-title: Plant Prot. Bull. (Taipei) – year: 2018 ident: 10.1016/j.asoc.2023.110534_b176 – volume: 61 start-page: 1733 issue: 5 year: 2013 ident: 10.1016/j.asoc.2023.110534_b413 article-title: Parametric modeling of microwave passive components using sensitivity-analysis-based adjoint neural-network technique publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2013.2253793 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b154 – start-page: 91 year: 2015 ident: 10.1016/j.asoc.2023.110534_b101 article-title: Sheath blight disease of paddy and their management – volume: 47 start-page: 101 issue: 1 year: 2018 ident: 10.1016/j.asoc.2023.110534_b13 article-title: Climate change induced drought impacts on plant diseases in New Zealand publication-title: Australas. Plant Pathol. doi: 10.1007/s13313-018-0541-4 – volume: 81 start-page: 131 year: 2015 ident: 10.1016/j.asoc.2023.110534_b41 article-title: A comparison on multi-class classification methods based on least squares twin support vector machine publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.02.009 – ident: 10.1016/j.asoc.2023.110534_b412 doi: 10.1109/CVPR.2017.243 – year: 2020 ident: 10.1016/j.asoc.2023.110534_b141 – volume: 69 start-page: 179 issue: 2 year: 2020 ident: 10.1016/j.asoc.2023.110534_b15 article-title: Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks publication-title: Plant Pathol. doi: 10.1111/ppa.13119 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b170 – volume: 40 start-page: 50 year: 2017 ident: 10.1016/j.asoc.2023.110534_b271 article-title: LeafNet: A computer vision system for automatic plant species identification publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2017.05.005 – year: 2022 ident: 10.1016/j.asoc.2023.110534_b231 – volume: 5 start-page: 443 year: 2016 ident: 10.1016/j.asoc.2023.110534_b189 article-title: In vitro evaluation of chemical formulates on Xanthomonas axonopodispv. punicae publication-title: Int. J. Curr. Microbiol. Appl. Sci. doi: 10.20546/ijcmas.2016.503.051 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b91 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b198 – volume: 41 start-page: 1353 year: 2012 ident: 10.1016/j.asoc.2023.110534_b285 article-title: A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.07.321 – volume: 23 start-page: 1059 issue: 6 year: 2020 ident: 10.1016/j.asoc.2023.110534_b44 article-title: Application of extreme learning machine in plant disease prediction for highly imbalanced dataset publication-title: J. Stat. Manag. Syst. – year: 2011 ident: 10.1016/j.asoc.2023.110534_b159 – start-page: 6105 year: 2019 ident: 10.1016/j.asoc.2023.110534_b401 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks – volume: 151 start-page: 72 year: 2016 ident: 10.1016/j.asoc.2023.110534_b53 article-title: Plant species classification using deep convolutional neural network publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.08.024 – ident: 10.1016/j.asoc.2023.110534_b343 – volume: 11 start-page: 140 issue: 1 year: 2022 ident: 10.1016/j.asoc.2023.110534_b327 article-title: Optimized deep learning algorithms for tomato leaf disease detection with hardware deployment publication-title: Electronics doi: 10.3390/electronics11010140 – volume: 17 start-page: 790 issue: 8 year: 1995 ident: 10.1016/j.asoc.2023.110534_b362 article-title: Mean shift, mode seeking, and clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.400568 – year: 2000 ident: 10.1016/j.asoc.2023.110534_b138 – volume: 8 start-page: 10 issue: 6 year: 2020 ident: 10.1016/j.asoc.2023.110534_b307 article-title: Plant disease detection with deep learning and feature extraction using plant village publication-title: J. Comput. Commun. doi: 10.4236/jcc.2020.86002 – volume: 3 start-page: 113 issue: 4 year: 2014 ident: 10.1016/j.asoc.2023.110534_b118 article-title: Citrus melanose (Diaporthecitri wolf): a review publication-title: Int. J. Curr. Microbiol. Appl. Sci. – volume: 7 start-page: 61 year: 2019 ident: 10.1016/j.asoc.2023.110534_b47 article-title: Rice plant disease detection using twin support vector machine (TSVM) publication-title: J. Sci. Eng. doi: 10.3126/jsce.v7i0.26794 – volume: 5 start-page: 74 issue: 1 year: 2018 ident: 10.1016/j.asoc.2023.110534_b293 article-title: Detecting sugarcane borer diseases using support vector machine publication-title: Inf. Process. Agric. – year: 2010 ident: 10.1016/j.asoc.2023.110534_b7 – year: 2018 ident: 10.1016/j.asoc.2023.110534_b400 – volume: 5 start-page: 157 issue: 3 year: 2004 ident: 10.1016/j.asoc.2023.110534_b92 article-title: Sugarbeet leaf spot disease (CercosporabeticolaSacc) publication-title: Mol. Plant Path. doi: 10.1111/j.1364-3703.2004.00218.x – volume: 66 start-page: 1101 issue: 12 year: 1982 ident: 10.1016/j.asoc.2023.110534_b120 article-title: Control of brown rot in peach orchards publication-title: Plant Dis. doi: 10.1094/PD-66-1101 – volume: 11 issue: 10 year: 2020 ident: 10.1016/j.asoc.2023.110534_b266 article-title: Gabor capsule network for plant disease detection publication-title: Int. J. Adv. Comput. Sci. Appl. – year: 2021 ident: 10.1016/j.asoc.2023.110534_b212 – start-page: 1104 year: 2021 ident: 10.1016/j.asoc.2023.110534_b260 article-title: Deep learning model for early prediction of plant disease – volume: 100 start-page: 2194 issue: 11 year: 2016 ident: 10.1016/j.asoc.2023.110534_b184 article-title: Characterization of colletotrichum species causing bitter rot of apple in Kentucky orchards publication-title: Plant Dis. doi: 10.1094/PDIS-10-15-1144-RE – volume: 24 start-page: 83 issue: 1 year: 1986 ident: 10.1016/j.asoc.2023.110534_b79 article-title: Disease management strategies and the survival of the banana industry publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.py.24.090186.000503 – year: 1983 ident: 10.1016/j.asoc.2023.110534_b193 – ident: 10.1016/j.asoc.2023.110534_b221 – year: 2020 ident: 10.1016/j.asoc.2023.110534_b278 article-title: An in-depth exploration of automated jackfruit disease recognition publication-title: J. King Saud Univ.-Comput. Inf. Sci. – year: 2019 ident: 10.1016/j.asoc.2023.110534_b297 – year: 2019 ident: 10.1016/j.asoc.2023.110534_b117 – year: 2020 ident: 10.1016/j.asoc.2023.110534_b205 – volume: 137 start-page: 239 issue: 1–2 year: 2002 ident: 10.1016/j.asoc.2023.110534_b288 article-title: Ensembling neural networks: many could be better than all publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(02)00190-X – volume: 78 start-page: 27785 issue: 19 year: 2019 ident: 10.1016/j.asoc.2023.110534_b304 article-title: Multiclass twin support vector machine for plant species identification publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-019-7588-2 – start-page: 553 year: 2012 ident: 10.1016/j.asoc.2023.110534_b174 article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement – year: 2018 ident: 10.1016/j.asoc.2023.110534_b148 – volume: 67 start-page: 829 issue: 7 year: 1983 ident: 10.1016/j.asoc.2023.110534_b100 article-title: Rice sheath blight: A major rice disease publication-title: Plant Dis. doi: 10.1094/PD-67-829 – volume: 120 start-page: 279 issue: 2 year: 1992 ident: 10.1016/j.asoc.2023.110534_b195 article-title: Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea l.) in India publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1992.tb03425.x – year: 2015 ident: 10.1016/j.asoc.2023.110534_b1 – year: 2022 ident: 10.1016/j.asoc.2023.110534_b230 – volume: 17 start-page: 903 issue: 5 year: 2019 ident: 10.1016/j.asoc.2023.110534_b324 article-title: Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2932385 – volume: 102 year: 2021 ident: 10.1016/j.asoc.2023.110534_b384 article-title: On robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107099 – volume: 11 start-page: 95 issue: 2 year: 2020 ident: 10.1016/j.asoc.2023.110534_b268 article-title: Using deep learning for image-based different degrees of ginkgo leaf disease classification publication-title: Information doi: 10.3390/info11020095 – year: 2013 ident: 10.1016/j.asoc.2023.110534_b335 – year: 1998 ident: 10.1016/j.asoc.2023.110534_b144 – start-page: 580 year: 2014 ident: 10.1016/j.asoc.2023.110534_b399 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation – volume: 4 start-page: 9434 issue: 9 year: 2020 ident: 10.1016/j.asoc.2023.110534_b360 article-title: A review on different classification, feature extraction and segmentation methodologies of leaf disease detection using image processing approach publication-title: World Acad. Inform. Manag. Sci. – volume: 3 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110534_b16 article-title: Plant health and its effects on food safety and security in a one health framework: Four case studies publication-title: One Health Outlook doi: 10.1186/s42522-021-00038-7 – volume: 33 start-page: 4133 issue: 9 year: 2021 ident: 10.1016/j.asoc.2023.110534_b252 article-title: Classification of olive leaf diseases using deep convolutional neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05235-5 – ident: 10.1016/j.asoc.2023.110534_b342 – ident: 10.1016/j.asoc.2023.110534_b355 doi: 10.1609/aaai.v34i07.7000 – volume: 78 start-page: 9 issue: 1 year: 2011 ident: 10.1016/j.asoc.2023.110534_b2 article-title: Leaf classification in sunflower crops by computer vision and neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2011.05.007 – volume: 21 start-page: 3169 issue: 9 year: 2021 ident: 10.1016/j.asoc.2023.110534_b11 article-title: Identification of cotton leaf lesions using deep learning techniques publication-title: Sensors doi: 10.3390/s21093169 – volume: 168 year: 2020 ident: 10.1016/j.asoc.2023.110534_b344 article-title: SPORT pre-processing can improve near-infrared quality prediction models for fresh fruits and agro-materials publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2020.111271 – start-page: 278 year: 2012 ident: 10.1016/j.asoc.2023.110534_b84 article-title: Diseases of mango – start-page: 291 year: 2007 ident: 10.1016/j.asoc.2023.110534_b88 article-title: Lentil diseases – year: 2019 ident: 10.1016/j.asoc.2023.110534_b340 – year: 2016 ident: 10.1016/j.asoc.2023.110534_b244 article-title: Deep neural networks-based recognition of plant diseases by leaf image classification publication-title: Comput. Intell. Neurosci. doi: 10.1155/2016/3289801 – volume: 5 start-page: 516 issue: 9 year: 2018 ident: 10.1016/j.asoc.2023.110534_b294 article-title: Plant leaf disease detection and classification using image processing publication-title: Int. J. Res. Eng. doi: 10.21276/ijre.2018.5.9.4 – volume: 110 year: 2022 ident: 10.1016/j.asoc.2023.110534_b42 article-title: Multi-category intuitionistic fuzzy twin support vector machines with an application to plant leaf recognition publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104687 – volume: 104 start-page: 53 issue: 1 year: 1984 ident: 10.1016/j.asoc.2023.110534_b86 article-title: The epidemiology of anthracnose disease of mango: inoculum sources, spore production and dispersal publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1984.tb05586.x – volume: 7 start-page: 566 issue: 4 year: 2020 ident: 10.1016/j.asoc.2023.110534_b317 article-title: Performance analysis of deep learning CNN models for disease detection in plants using image segmentation publication-title: Inf. Process. Agric. – year: 2021 ident: 10.1016/j.asoc.2023.110534_b87 – year: 2018 ident: 10.1016/j.asoc.2023.110534_b115 – year: 2019 ident: 10.1016/j.asoc.2023.110534_b108 – volume: 2018 year: 2021 ident: 10.1016/j.asoc.2023.110534_b143 article-title: Apple scab publication-title: Plant Health Instr. – year: 2012 ident: 10.1016/j.asoc.2023.110534_b155 – ident: 10.1016/j.asoc.2023.110534_b279 – start-page: 31 year: 2020 ident: 10.1016/j.asoc.2023.110534_b10 article-title: Managing planting time for cotton production – volume: 12 start-page: 1311 issue: 5 year: 2021 ident: 10.1016/j.asoc.2023.110534_b46 article-title: Regularized based implicit Lagrangian twin extreme learning machine in primal for pattern classification publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01235-y – volume: 49 start-page: 3606 issue: 10 year: 2019 ident: 10.1016/j.asoc.2023.110534_b385 article-title: An improved regularization based Lagrangian asymmetric ν-twin support vector regression using pinball loss function publication-title: Appl. Intell. doi: 10.1007/s10489-019-01465-w – year: 2009 ident: 10.1016/j.asoc.2023.110534_b90 – volume: 196 start-page: 125 year: 2012 ident: 10.1016/j.asoc.2023.110534_b21 article-title: Genome-wide association study (GWAS) of resistance to head smut in maize publication-title: Plant Sci. doi: 10.1016/j.plantsci.2012.08.004 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b183 – start-page: 267 year: 2020 ident: 10.1016/j.asoc.2023.110534_b59 article-title: Plant leaf disease detection using machine learning – volume: 120 issue: 9 year: 2016 ident: 10.1016/j.asoc.2023.110534_b414 article-title: Adjoint method for estimating Jiles–Atherton hysteresis model parameters publication-title: J. Appl. Phys. doi: 10.1063/1.4962153 – year: 2018 ident: 10.1016/j.asoc.2023.110534_b168 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.asoc.2023.110534_b50 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – volume: 171 start-page: 1113 issue: 3976 year: 1971 ident: 10.1016/j.asoc.2023.110534_b169 article-title: The southern corn leaf blight epidemic publication-title: Science doi: 10.1126/science.171.3976.1113 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b237 – volume: 79 start-page: 180 issue: 2 year: 2011 ident: 10.1016/j.asoc.2023.110534_b284 article-title: Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with support vector machines publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2011.09.011 – volume: 128 start-page: 21 year: 2013 ident: 10.1016/j.asoc.2023.110534_b305 article-title: Development of spectral indices for detecting and identifying plant diseases publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.09.019 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b185 – ident: 10.1016/j.asoc.2023.110534_b129 – year: 2009 ident: 10.1016/j.asoc.2023.110534_b333 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2023.110534_b28 article-title: Tomatoes classification using K-NN based on GLCM and HSV color space – volume: 22 start-page: 153 issue: 1 year: 2013 ident: 10.1016/j.asoc.2023.110534_b33 article-title: Multiple birth support vector machine for multi-class classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1108-x – year: 2022 ident: 10.1016/j.asoc.2023.110534_b223 – start-page: 472 year: 2011 ident: 10.1016/j.asoc.2023.110534_b365 article-title: The marker-based watershed segmentation algorithm of ore image – volume: 10 start-page: 131 issue: 2 year: 2021 ident: 10.1016/j.asoc.2023.110534_b308 article-title: Automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning publication-title: Pathogens doi: 10.3390/pathogens10020131 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b147 – volume: 33 start-page: 4243 issue: 9 year: 2021 ident: 10.1016/j.asoc.2023.110534_b381 article-title: Density-weighted support vector machines for binary class imbalance learning publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05240-8 – volume: 78 start-page: 269 issue: 3 year: 1974 ident: 10.1016/j.asoc.2023.110534_b156 article-title: Effects of eyespot on the yield of winter wheat publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1974.tb01506.x – year: 2021 ident: 10.1016/j.asoc.2023.110534_b70 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b123 – year: 2005 ident: 10.1016/j.asoc.2023.110534_b149 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b200 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b213 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b236 – start-page: 1 year: 2016 ident: 10.1016/j.asoc.2023.110534_b290 article-title: Recent machine learning based approaches for disease detection and classification of agricultural products – year: 1995 ident: 10.1016/j.asoc.2023.110534_b49 – volume: 155 start-page: 220 year: 2018 ident: 10.1016/j.asoc.2023.110534_b303 article-title: CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.10.013 – volume: 97 start-page: 989 issue: 8 year: 1993 ident: 10.1016/j.asoc.2023.110534_b201 article-title: Characterization of the coffee berry disease pathogen, Colletotrichum kahawae sp. nov publication-title: Mycol. Res. doi: 10.1016/S0953-7562(09)80867-8 – volume: 35 start-page: 352 issue: 5–6 year: 2002 ident: 10.1016/j.asoc.2023.110534_b18 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J. Biomed. Inform. doi: 10.1016/S1532-0464(03)00034-0 – volume: 11 start-page: 707 issue: 8 year: 2021 ident: 10.1016/j.asoc.2023.110534_b55 article-title: Review on convolutional neural network (CNN) applied to plant leaf disease classification publication-title: Agriculture doi: 10.3390/agriculture11080707 – year: 2022 ident: 10.1016/j.asoc.2023.110534_b229 – year: 2011 ident: 10.1016/j.asoc.2023.110534_b133 – year: 2009 ident: 10.1016/j.asoc.2023.110534_b177 – year: 2017 ident: 10.1016/j.asoc.2023.110534_b232 – volume: 3 start-page: 185 issue: 3 year: 2020 ident: 10.1016/j.asoc.2023.110534_b35 article-title: Mango leaf disease recognition using neural network and support vector machine publication-title: Iran J. Comput. Sci. doi: 10.1007/s42044-020-00057-z – volume: 28 start-page: 509 issue: 4 year: 1990 ident: 10.1016/j.asoc.2023.110534_b370 article-title: Texture unit, texture spectrum, and texture analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1990.572934 – volume: 47 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.asoc.2023.110534_b150 article-title: Different stages of disease detection in squash plant based on machine learning publication-title: J. Biosci. doi: 10.1007/s12038-021-00241-8 – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 10.1016/j.asoc.2023.110534_b366 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – volume: 80 start-page: 7167 issue: 5 year: 2021 ident: 10.1016/j.asoc.2023.110534_b351 article-title: A fuzzy based ROI selection for encryption and watermarking in medical image using DWT and SVD publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-09981-5 – volume: 82 start-page: 2121 issue: 2 year: 2023 ident: 10.1016/j.asoc.2023.110534_b60 article-title: Tomato leaf disease detection system based on FC-SNDPN publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-021-11790-3 – year: 2012 ident: 10.1016/j.asoc.2023.110534_b52 – volume: 74 issue: 5 year: 1993 ident: 10.1016/j.asoc.2023.110534_b178 article-title: Characterization of potyviruses from tulip and lily which cause flower-breaking publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-74-5-881 – ident: 10.1016/j.asoc.2023.110534_b408 doi: 10.1109/CVPR.2016.308 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b95 – volume: 72 start-page: 335 issue: 6 year: 2006 ident: 10.1016/j.asoc.2023.110534_b114 article-title: Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance publication-title: J. Gen. Plant Pathol. doi: 10.1007/s10327-006-0299-3 – volume: 10 start-page: 1027 issue: 7 year: 2020 ident: 10.1016/j.asoc.2023.110534_b242 article-title: Real-time detection of strawberry powdery mildew disease using a mobile machine vision system publication-title: Agronomy doi: 10.3390/agronomy10071027 – volume: 17 start-page: 2022 issue: 9 year: 2017 ident: 10.1016/j.asoc.2023.110534_b320 article-title: A robust deep-learning-based detector for real-time tomato plant diseases and pest’s recognition publication-title: Sensors doi: 10.3390/s17092022 – volume: 11 start-page: 384 issue: 3 year: 2022 ident: 10.1016/j.asoc.2023.110534_b17 article-title: Fungal endophytes and their role in agricultural plant protection against pests and pathogens publication-title: Plants doi: 10.3390/plants11030384 – year: 2010 ident: 10.1016/j.asoc.2023.110534_b206 – volume: 1 start-page: 21 year: 1988 ident: 10.1016/j.asoc.2023.110534_b395 article-title: A theoretical framework for back-propagation – volume: 234 start-page: 11 year: 2017 ident: 10.1016/j.asoc.2023.110534_b54 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 5 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.asoc.2023.110534_b82 article-title: First report of Alternaria black spot of pomegranate caused by Alternaria alternate in Israel publication-title: Australas. Plant Dis. Notes doi: 10.1071/DN10001 – volume: 61 start-page: 103 issue: 2 year: 1989 ident: 10.1016/j.asoc.2023.110534_b348 article-title: Gabor filters as texture discriminator publication-title: Biol. Cybernet. doi: 10.1007/BF00204594 – volume: 35 start-page: 599 issue: 6 year: 2020 ident: 10.1016/j.asoc.2023.110534_b186 article-title: Rolled–crimped cereal rye residue suppresses white mold in no-till soybean and dry bean publication-title: Renew. Agric. Food Syst. doi: 10.1017/S174217051900022X – year: 2021 ident: 10.1016/j.asoc.2023.110534_b214 – volume: 86 year: 2020 ident: 10.1016/j.asoc.2023.110534_b405 article-title: Attention embedded residual CNN for disease detection in tomato leaves publication-title: Appl. Soft Comput. – volume: 12 start-page: 993 issue: 10 year: 1990 ident: 10.1016/j.asoc.2023.110534_b37 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.58871 – year: 2022 ident: 10.1016/j.asoc.2023.110534_b222 – start-page: 300 year: 2013 ident: 10.1016/j.asoc.2023.110534_b301 article-title: Early detection and continuous quantization of plant disease using template matching and support vector machine algorithms – start-page: 44 year: 2000 ident: 10.1016/j.asoc.2023.110534_b130 article-title: Leaf scald – volume: 13 start-page: 293 issue: 3 year: 2020 ident: 10.1016/j.asoc.2023.110534_b74 article-title: Performance analysis of fine-tuned convolutional neural network models for plant disease classification publication-title: Int. J. Control Autom. – start-page: 1202 year: 2014 ident: 10.1016/j.asoc.2023.110534_b286 article-title: Discussion on sunflower leaf disease diagnosis based on imaging identification – volume: 147 start-page: 695 issue: 3 year: 2017 ident: 10.1016/j.asoc.2023.110534_b109 article-title: Occurrence and etiology of Alternaria leaf blotch and fruit spot of apple caused by Alternaria alternata f. sp. mali on cv. Pink lady in Israel publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-016-1037-0 – volume: 103 start-page: 17 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110534_b300 article-title: Rice plant disease classification using color features: a machine learning paradigm publication-title: J. Plant Pathol. doi: 10.1007/s42161-020-00683-3 – volume: 70 start-page: 489 issue: 1-3 year: 2006 ident: 10.1016/j.asoc.2023.110534_b43 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – year: 2018 ident: 10.1016/j.asoc.2023.110534_b378 – start-page: 768 year: 2015 ident: 10.1016/j.asoc.2023.110534_b6 article-title: Patil plant disease detection using image processing – year: 2019 ident: 10.1016/j.asoc.2023.110534_b125 – start-page: 0678 year: 2018 ident: 10.1016/j.asoc.2023.110534_b345 article-title: Disease classification and grading of orange using machine learning and fuzzy logic – volume: 9 start-page: 162 issue: 8 year: 2021 ident: 10.1016/j.asoc.2023.110534_b248 article-title: Techniques for rice leaf disease detection using machine LearningAlgorithms publication-title: Int. J. Eng. Res. Technol. – year: 2020 ident: 10.1016/j.asoc.2023.110534_b180 article-title: Cauliflower mosaic virus (CaMV) biology, management, and relevance to GM plant detection for sustainable organic agriculture publication-title: Front. Sustain. Food Syst. – year: 2017 ident: 10.1016/j.asoc.2023.110534_b402 – volume: 61 year: 2021 ident: 10.1016/j.asoc.2023.110534_b329 article-title: VirLeafNet: automatic analysis and viral disease diagnosis using deep-learning in vigna mungo plant publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101197 – start-page: 487 year: 2013 ident: 10.1016/j.asoc.2023.110534_b353 article-title: Fuzzy clustering based medical image watermarking – ident: 10.1016/j.asoc.2023.110534_b146 doi: 10.17660/ActaHortic.2009.808.1 – volume: 52 start-page: 927 issue: 1 year: 2022 ident: 10.1016/j.asoc.2023.110534_b249 article-title: Citrus disease detection and classification using end-to-end anchor-based deep learning model publication-title: Appl. Intell. doi: 10.1007/s10489-021-02452-w – start-page: 115 year: 2015 ident: 10.1016/j.asoc.2023.110534_b315 article-title: Hybrid deep learning for plant leaves classification – ident: 10.1016/j.asoc.2023.110534_b316 – start-page: 1 year: 1994 ident: 10.1016/j.asoc.2023.110534_b179 article-title: Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies – volume: 39 start-page: 818 issue: 2 year: 2020 ident: 10.1016/j.asoc.2023.110534_b250 article-title: Seasonal crops disease prediction and classification using deep convolutional encoder network – volume: 61 year: 2021 ident: 10.1016/j.asoc.2023.110534_b262 article-title: Plant leaf disease classification using efficientnet deep learning model publication-title: Ecol. Inform. – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110534_b39 article-title: Evaluation of the benefits of combined reflection and transmission hyperspectral imaging data through disease detection and quantification in plant–pathogen interactions publication-title: J. Plant Dis. Prot. – start-page: 1242 year: 2016 ident: 10.1016/j.asoc.2023.110534_b289 article-title: Tomato plant disease classification in digital images using classification tree – volume: 85 start-page: 843 issue: 8 year: 1995 ident: 10.1016/j.asoc.2023.110534_b161 article-title: Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria publication-title: Phytopathology doi: 10.1094/Phyto-85-843 – volume: 121 year: 2020 ident: 10.1016/j.asoc.2023.110534_b358 article-title: Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103767 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.asoc.2023.110534_b389 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 85 start-page: 126 issue: 2 year: 2001 ident: 10.1016/j.asoc.2023.110534_b197 article-title: Leaf spot disease of spinach in California caused by Stemphylium botryosum publication-title: Plant Dis. doi: 10.1094/PDIS.2001.85.2.126 – start-page: 786 year: 2017 ident: 10.1016/j.asoc.2023.110534_b404 article-title: Fcnn: Fourier convolutional neural networks – start-page: 1 year: 2021 ident: 10.1016/j.asoc.2023.110534_b386 article-title: Least squares large margin distribution machine for regression publication-title: Appl. Intell. – year: 2021 ident: 10.1016/j.asoc.2023.110534_b103 – year: 2015 ident: 10.1016/j.asoc.2023.110534_b210 – volume: 9 start-page: 79 issue: 4 year: 2016 ident: 10.1016/j.asoc.2023.110534_b314 article-title: Ethiopian coffee plant diseases recognition based on imaging and machine learning techniques publication-title: Int. J. Database Theory Appl. doi: 10.14257/ijdta.2016.9.4.07 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b217 – volume: 11 start-page: 1373 issue: 11 year: 2019 ident: 10.1016/j.asoc.2023.110534_b280 article-title: UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning publication-title: Remote Sens. doi: 10.3390/rs11111373 – year: 2022 ident: 10.1016/j.asoc.2023.110534_b394 – volume: 8 start-page: 1852 year: 2017 ident: 10.1016/j.asoc.2023.110534_b267 article-title: Deep learning for image-based cassava disease detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01852 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b341 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b216 – start-page: 8 year: 2012 ident: 10.1016/j.asoc.2023.110534_b107 article-title: Plant age and strain of Ralstonia solanacearum affect the expression of resistance of tobacco cultivars to Granville wilt publication-title: Tob. Sci. doi: 10.3381/11-013R.1 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2023.110534_b273 article-title: Identification of soybean diseases using learning vector quantization neural network algorithm publication-title: J. Anal. Comput. – volume: 161 start-page: 272 year: 2019 ident: 10.1016/j.asoc.2023.110534_b254 article-title: A comparative study of fine-tuning deep learning models for plant disease identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.032 – volume: 83 start-page: 884 issue: 10 year: 1999 ident: 10.1016/j.asoc.2023.110534_b153 article-title: Gray leaf spot: a disease of global importance in maize production publication-title: Plant Dis. doi: 10.1094/PDIS.1999.83.10.884 – year: 2006 ident: 10.1016/j.asoc.2023.110534_b202 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b191 – year: 2014 ident: 10.1016/j.asoc.2023.110534_b330 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b187 – volume: 13 start-page: 162 issue: 2 year: 2021 ident: 10.1016/j.asoc.2023.110534_b306 article-title: Identifying pine wood nematode disease using UAV images and deep learning algorithms publication-title: Remote Sens. doi: 10.3390/rs13020162 – volume: 135 start-page: 68 year: 2021 ident: 10.1016/j.asoc.2023.110534_b356 article-title: Greedy auto-augmentation for n-shot learning using deep neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.11.015 – year: 2019 ident: 10.1016/j.asoc.2023.110534_b111 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b128 – volume: 154 start-page: 96 year: 2019 ident: 10.1016/j.asoc.2023.110534_b298 article-title: Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2019.04.005 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b192 – volume: 25 start-page: 42 issue: 3 year: 2015 ident: 10.1016/j.asoc.2023.110534_b26 article-title: Plant disease recognition based on plant leaf image publication-title: J. Anim. Plant Sci. – volume: 5 start-page: 3818 issue: 5 year: 2018 ident: 10.1016/j.asoc.2023.110534_b377 article-title: A review of different classification techniques in machine learning using weka for plant disease detection publication-title: Int. Res. J. Eng. Technol. (IRJET) – volume: 51 start-page: 480 year: 2022 ident: 10.1016/j.asoc.2023.110534_b264 article-title: Automated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networks publication-title: Mater. Today: Proc. doi: 10.1016/j.matpr.2021.05.584 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b126 – ident: 10.1016/j.asoc.2023.110534_b352 – volume: 7 start-page: 1419 year: 2016 ident: 10.1016/j.asoc.2023.110534_b265 article-title: Using deep learning for image-based plant disease detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 – volume: 5 start-page: 866 issue: 9 year: 2018 ident: 10.1016/j.asoc.2023.110534_b376 article-title: Crop disease detection using machine learning: Indian agriculture publication-title: Int. Res. J. Eng. Technol. (IRJET) – volume: 39 start-page: 780 issue: 1 year: 2012 ident: 10.1016/j.asoc.2023.110534_b309 article-title: Detecting rottenness caused by penicillium genus fungi in citrus fruits using machine learning techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.073 – volume: 145 start-page: 311 year: 2018 ident: 10.1016/j.asoc.2023.110534_b56 article-title: Deep learning models for plant disease detection and diagnosis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.01.009 – volume: 10 start-page: 31 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110534_b282 article-title: Detection of strawberry diseases using a convolutional neural network publication-title: Plants doi: 10.3390/plants10010031 – year: 2013 ident: 10.1016/j.asoc.2023.110534_b162 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b194 – start-page: 894 year: 2012 ident: 10.1016/j.asoc.2023.110534_b20 article-title: Image recognition of plant diseases based on backpropagation networks – volume: 158 start-page: 93 issue: 2 year: 2010 ident: 10.1016/j.asoc.2023.110534_b167 article-title: Tatumellaptyseos, an unrevealed causative agent of pink disease in pineapple publication-title: J. Phytopath. doi: 10.1111/j.1439-0434.2009.01575.x – volume: 24 start-page: 65 issue: 1 year: 2006 ident: 10.1016/j.asoc.2023.110534_b163 article-title: Identification of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill., causal agent of Rhizopus rot disease of fruits and vegetables publication-title: Rev. Mex. Fitopatol. – start-page: 1 year: 2021 ident: 10.1016/j.asoc.2023.110534_b38 article-title: Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges publication-title: Arch. Comput. Methods Eng. – volume: 7 start-page: 59069 year: 2019 ident: 10.1016/j.asoc.2023.110534_b323 article-title: Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914929 – year: 2014 ident: 10.1016/j.asoc.2023.110534_b396 – ident: 10.1016/j.asoc.2023.110534_b225 – volume: 10 start-page: 1299 issue: 5 year: 1998 ident: 10.1016/j.asoc.2023.110534_b371 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput. doi: 10.1162/089976698300017467 – volume: 6 start-page: 30370 year: 2018 ident: 10.1016/j.asoc.2023.110534_b322 article-title: Identification of maize leaf diseases using improved deep convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2844405 – volume: 3 start-page: 305 issue: 1 year: 2022 ident: 10.1016/j.asoc.2023.110534_b3 article-title: Plant leaf disease detection using computer vision and machine learning algorithms publication-title: Glob. Transitions Proc. doi: 10.1016/j.gltp.2022.03.016 – start-page: 130 year: 2017 ident: 10.1016/j.asoc.2023.110534_b291 article-title: Identification of plant leaf diseases using image processing techniques – volume: 167 start-page: 293 year: 2020 ident: 10.1016/j.asoc.2023.110534_b58 article-title: ToLeD: Tomato leaf disease detection using convolution neural network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.225 – volume: 2 start-page: 984 issue: 1 year: 2013 ident: 10.1016/j.asoc.2023.110534_b276 article-title: A leaf recognition technique for plant classification using RBPNN and Zernike moments publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – year: 2014 ident: 10.1016/j.asoc.2023.110534_b139 – volume: 82 start-page: 12017 issue: 8 year: 2023 ident: 10.1016/j.asoc.2023.110534_b106 article-title: Deep learning based automated disease detection and pest classification in Indian mung bean publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-022-13673-7 – volume: 119 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.asoc.2023.110534_b171 article-title: Genes for resistance to northern corn leaf blight in diverse maize populations publication-title: Plant Breeding doi: 10.1046/j.1439-0523.2000.00462.x – volume: 212 year: 2021 ident: 10.1016/j.asoc.2023.110534_b350 article-title: Parallel pre-processing through orthogonalization (PORTO) and its application to near-infrared spectroscopy publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104190 – volume: 2022 year: 2022 ident: 10.1016/j.asoc.2023.110534_b45 article-title: A systematic analysis of machine learning and deep learning based approaches for plant leaf disease classification: a review publication-title: J. Sensors doi: 10.1155/2022/3287561 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b215 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b220 – year: 2020 ident: 10.1016/j.asoc.2023.110534_b339 – start-page: 318 year: 1986 ident: 10.1016/j.asoc.2023.110534_b393 article-title: Learning internal representations by error propagation – volume: 198 year: 2022 ident: 10.1016/j.asoc.2023.110534_b67 article-title: Deep diagnosis: A real-time apple leaf disease detection system based on deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107093 – volume: 48 start-page: 432 issue: 4 year: 2008 ident: 10.1016/j.asoc.2023.110534_b124 article-title: Studies on leaf spot disease of withaniasomnifera and its impact on secondary metabolites publication-title: Indian J. Microbiol. doi: 10.1007/s12088-008-0053-y – year: 2013 ident: 10.1016/j.asoc.2023.110534_b166 article-title: Southwest canker – year: 1987 ident: 10.1016/j.asoc.2023.110534_b110 – volume: 91 start-page: 113 year: 2015 ident: 10.1016/j.asoc.2023.110534_b142 article-title: Increased content of phenolic compounds in pear leaves after infection by the pear rust pathogen publication-title: Physiol. Mol. Plant Path. doi: 10.1016/j.pmpp.2015.07.001 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110534_b62 article-title: Detection of gray mold disease and its severity on strawberry using deep learning networks publication-title: J. Plant Dis. Prot. – volume: 14 start-page: 12191 issue: 7 year: 2014 ident: 10.1016/j.asoc.2023.110534_b253 article-title: On plant detection of intact tomato fruits using image analysis and machine learning methods publication-title: Sensors doi: 10.3390/s140712191 – year: 2020 ident: 10.1016/j.asoc.2023.110534_b334 article-title: A review of imaging techniques for plant disease detection publication-title: Artif. Intell. Agric. – start-page: 79 year: 2017 ident: 10.1016/j.asoc.2023.110534_b246 article-title: A deep learning-based approach for banana leaf diseases classification – volume: 10 start-page: 28 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110534_b326 article-title: Convolutional neural network for automatic identification of plant diseases with limited data publication-title: Plants doi: 10.3390/plants10010028 – start-page: 175 year: 1995 ident: 10.1016/j.asoc.2023.110534_b398 article-title: Learning vector quantization – volume: 50 start-page: 277 issue: 2 year: 1997 ident: 10.1016/j.asoc.2023.110534_b102 article-title: Occurrence of a mosaic virus disease on sunflower in Karnataka publication-title: Indian Phytopath. – year: 1992 ident: 10.1016/j.asoc.2023.110534_b196 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b219 – year: 2018 ident: 10.1016/j.asoc.2023.110534_b137 – volume: 100 start-page: 3246 issue: 7 year: 2020 ident: 10.1016/j.asoc.2023.110534_b256 article-title: Detection of rice plant diseases based on deep transfer learning publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.10365 – start-page: 267 year: 1986 ident: 10.1016/j.asoc.2023.110534_b175 article-title: Cucumber green mottle mosaic virus – volume: 10 start-page: 75 issue: 1 year: 2018 ident: 10.1016/j.asoc.2023.110534_b63 article-title: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images publication-title: Remote Sens. doi: 10.3390/rs10010075 – year: 2017 ident: 10.1016/j.asoc.2023.110534_b337 – volume: 41 start-page: 1505 issue: 9 year: 1966 ident: 10.1016/j.asoc.2023.110534_b151 article-title: Increased disease resistance and enzyme activity induced by ethylene and ethylene production of black rot infected sweet potato tissue publication-title: Plant Physiol. doi: 10.1104/pp.41.9.1505 – volume: 3 start-page: 294 issue: 2 year: 2021 ident: 10.1016/j.asoc.2023.110534_b259 article-title: Automatic and reliable leaf disease detection using deep learning techniques publication-title: AgriEngineering doi: 10.3390/agriengineering3020020 – volume: 10 start-page: 267 issue: 2 year: 2011 ident: 10.1016/j.asoc.2023.110534_b19 article-title: Detection and classification of leaf diseases using K-means-based segmentation and publication-title: Inf. Technol. J. doi: 10.3923/itj.2011.267.275 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b238 – year: 2016 ident: 10.1016/j.asoc.2023.110534_b99 – year: 2004 ident: 10.1016/j.asoc.2023.110534_b354 – year: 2022 ident: 10.1016/j.asoc.2023.110534_b12 – year: 2022 ident: 10.1016/j.asoc.2023.110534_b224 – volume: 80 start-page: 346 issue: 9 year: 2021 ident: 10.1016/j.asoc.2023.110534_b78 article-title: Artificial intelligence for suspended sediment load prediction: a review publication-title: Environ. Earth Sci. doi: 10.1007/s12665-021-09625-3 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b85 – start-page: 134 year: 2019 ident: 10.1016/j.asoc.2023.110534_b247 article-title: An image-based deep learning model for cannabis diseases, nutrient deficiencies and pests identification – start-page: 543 year: 2014 ident: 10.1016/j.asoc.2023.110534_b182 article-title: Grapevine leaf stripe disease symptoms (esca complex) are reduced by a nutrients and seaweed mixture publication-title: Phytopathol. Mediterr. – year: 2021 ident: 10.1016/j.asoc.2023.110534_b145 – start-page: 228 year: 2018 ident: 10.1016/j.asoc.2023.110534_b379 article-title: Kernel target alignment based fuzzy least square twin bounded support vector mac hine – year: 2011 ident: 10.1016/j.asoc.2023.110534_b69 article-title: Coffee disease detection using a robust HSV color-based segmentation and transfer learning for use on smartphones publication-title: Int. J. Intell. Syst. – volume: 29 start-page: 905 issue: 5 year: 2007 ident: 10.1016/j.asoc.2023.110534_b40 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1068 – volume: 12 start-page: 97 issue: 2 year: 2004 ident: 10.1016/j.asoc.2023.110534_b172 article-title: The research progress of maize Curvularia leaf spot disease publication-title: J. Maize Sci. – year: 2022 ident: 10.1016/j.asoc.2023.110534_b338 – volume: 22 start-page: 113 issue: 2 year: 1994 ident: 10.1016/j.asoc.2023.110534_b140 article-title: Economics of reducing fungicide use by weather-based disease forecasts for control of Venturia inaequalis in apples publication-title: N. Z. J. Crop Hortic. Sci. doi: 10.1080/01140671.1994.9513814 – year: 2020 ident: 10.1016/j.asoc.2023.110534_b209 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b251 article-title: Leaf and spike wheat disease detection & classification using an improved deep convolutional architecture publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2021.100642 – volume: 10 start-page: 95 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110534_b328 article-title: Early detection of red palm weevil, Rhynchophorus ferrugineus (Olivier), infestation using data mining publication-title: Plants doi: 10.3390/plants10010095 – volume: 11 start-page: 1719 issue: 2 year: 2021 ident: 10.1016/j.asoc.2023.110534_b310 article-title: Detection of citrus leaf diseases using a deep learning technique publication-title: Int. J. Electr. Comput. Eng. – start-page: 1 year: 2021 ident: 10.1016/j.asoc.2023.110534_b387 article-title: On regularization based twin support vector regression with huber loss publication-title: Neural Process. Lett. – year: 2015 ident: 10.1016/j.asoc.2023.110534_b121 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2023.110534_b407 article-title: Disease detection on the leaves of the tomato plants by using deep learning – volume: 10 start-page: 1027 issue: 7 year: 2019 ident: 10.1016/j.asoc.2023.110534_b23 article-title: Real-Time Detection of Strawberry Powdery Mildew Disease Using a Mobile Machine Vision System publication-title: Agronomy doi: 10.3390/agronomy10071027 – volume: 1 start-page: 1 issue: 04 year: 2015 ident: 10.1016/j.asoc.2023.110534_b208 article-title: Real time grape leaf disease detection publication-title: Int. J. Adv. Res. Innov. Ideas Educ. (IJARIIE) – start-page: 511 year: 2014 ident: 10.1016/j.asoc.2023.110534_b270 article-title: Salad leaf disease detection using machine learning based hyper spectral sensing – start-page: 150 year: 2018 ident: 10.1016/j.asoc.2023.110534_b292 article-title: Recognition and detection of tea leaf’s diseases using support vector machine – year: 1994 ident: 10.1016/j.asoc.2023.110534_b96 – year: 1900 ident: 10.1016/j.asoc.2023.110534_b136 – ident: 10.1016/j.asoc.2023.110534_b325 – start-page: 10 year: 2000 ident: 10.1016/j.asoc.2023.110534_b104 article-title: Expert system for the diagnosis of mango diseases publication-title: Int. J. Acad. Eng. Res. (IJAER) – volume: 9 start-page: 38 issue: 1 year: 2022 ident: 10.1016/j.asoc.2023.110534_b313 article-title: An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning publication-title: Inf. Process. Agric. – issn: 2278-3075 year: 2019 ident: 10.1016/j.asoc.2023.110534_b27 article-title: Detection of diseases on tomato leaves based on subclassifiers fuzzy combination publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE) – volume: 178 year: 2020 ident: 10.1016/j.asoc.2023.110534_b29 article-title: H2K–A robust and optimum approach for detection and classification of groundnut leaf diseases publication-title: Comput. Electron. Agric. – volume: 35 issue: 9 year: 1927 ident: 10.1016/j.asoc.2023.110534_b98 article-title: Bacterial stripe blight of oats publication-title: J. Agric. Res. – volume: 11 year: 2020 ident: 10.1016/j.asoc.2023.110534_b318 article-title: A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00751 – volume: 76 start-page: 323 year: 2019 ident: 10.1016/j.asoc.2023.110534_b255 article-title: Identification of plant leaf diseases using a nine-layer deep convolutional neural network publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.04.011 – volume: 158 start-page: 48 issue: 4 year: 2017 ident: 10.1016/j.asoc.2023.110534_b243 article-title: Automatic recognition of vegetable crops diseases based on neural network classifier publication-title: Int. J. Comput. Appl. – start-page: 431 year: 2019 ident: 10.1016/j.asoc.2023.110534_b380 article-title: Lagrangian twin-bounded support vector machine based on L2-norm – year: 2012 ident: 10.1016/j.asoc.2023.110534_b359 – volume: 35 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.asoc.2023.110534_b4 article-title: Advanced methods of plant disease detection. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0246-1 – start-page: 47 year: 2019 ident: 10.1016/j.asoc.2023.110534_b295 article-title: Glcm Based Plant Leaf Disease Detection Using Multiclass SVM publication-title: Int J. Res. Dev. Technol. – volume: 193 year: 2022 ident: 10.1016/j.asoc.2023.110534_b65 article-title: Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106658 – ident: 10.1016/j.asoc.2023.110534_b347 – start-page: 1 year: 2021 ident: 10.1016/j.asoc.2023.110534_b77 article-title: Computational approach to clinical diagnosis of diabetes disease: a comparative study publication-title: Multimedia Tools Appl. – volume: 4 start-page: 0004 issue: 1 year: 2006 ident: 10.1016/j.asoc.2023.110534_b233 article-title: Community of pathogenic plant viruses found in the human gut publication-title: PLoSBiol – volume: 11 start-page: 1 issue: 12 year: 2016 ident: 10.1016/j.asoc.2023.110534_b319 article-title: Identification of alfalfa leaf diseases using image recognition technology publication-title: PLoS One doi: 10.1371/journal.pone.0168274 – start-page: 0538 year: 2019 ident: 10.1016/j.asoc.2023.110534_b57 article-title: Machine learning for plant leaf disease detection and classification–A review – volume: 179 year: 2020 ident: 10.1016/j.asoc.2023.110534_b299 article-title: Image recognition of four rice leaf diseases based on deep learning and support vector machine publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105824 – volume: 4 start-page: 87 year: 1970 ident: 10.1016/j.asoc.2023.110534_b164 article-title: Studies on the cause and control of sun scald of plum publication-title: Korean J. Hortic. Sci. – volume: 90 start-page: 884 issue: 8 year: 2000 ident: 10.1016/j.asoc.2023.110534_b158 article-title: Septoria leaf spot of banana: a newly discovered disease caused by Mycosphaerell aeumusae (anamorph Septoria eumusae) publication-title: Phytopathology doi: 10.1094/PHYTO.2000.90.8.884 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b119 – volume: 10 start-page: 465 issue: 6 year: 1991 ident: 10.1016/j.asoc.2023.110534_b122 article-title: Yield losses in soybeans from frogeye leaf spot caused by Cercosporasojina publication-title: Crop Protection doi: 10.1016/S0261-2194(91)80134-2 – year: 2017 ident: 10.1016/j.asoc.2023.110534_b93 – volume: 142 start-page: 369 year: 2017 ident: 10.1016/j.asoc.2023.110534_b321 article-title: An in-field automatic wheat disease diagnosis system publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.09.012 – volume: 2 start-page: 303 issue: 6 year: 2001 ident: 10.1016/j.asoc.2023.110534_b112 article-title: The tomato powdery mildew fungus Oidium neolycopersici publication-title: Mol. Plant Path. doi: 10.1046/j.1464-6722.2001.00084.x – year: 2021 ident: 10.1016/j.asoc.2023.110534_b269 – start-page: 368 year: 1997 ident: 10.1016/j.asoc.2023.110534_b364 article-title: Clustering via concave minimization – year: 2021 ident: 10.1016/j.asoc.2023.110534_b239 – year: 2020 ident: 10.1016/j.asoc.2023.110534_b258 article-title: Delta tributary network—An efficient alternate approach for bottleneck layers in CNN for plant disease classification – volume: 8 start-page: 166 issue: 4 year: 2017 ident: 10.1016/j.asoc.2023.110534_b277 article-title: Automatic recognition of medicinal plants using machine learning techniques publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.asoc.2023.110534_b410 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 10.1016/j.asoc.2023.110534_b383 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 13 issue: 11 year: 2018 ident: 10.1016/j.asoc.2023.110534_b8 article-title: Machine learning methods for crop yield prediction and climate change impact assessment in agriculture publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aae159 – volume: 3 issue: 11 year: 2013 ident: 10.1016/j.asoc.2023.110534_b5 article-title: Image processing techniques for detection of leaf disease publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng. – start-page: 43 year: 1981 ident: 10.1016/j.asoc.2023.110534_b361 article-title: Objective function clustering – volume: 92 start-page: 530 issue: 4 year: 2008 ident: 10.1016/j.asoc.2023.110534_b116 article-title: Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves publication-title: Plant Dis. doi: 10.1094/PDIS-92-4-0530 – volume: 80 start-page: 1341 issue: 12 year: 1990 ident: 10.1016/j.asoc.2023.110534_b134 article-title: Analysis of epidemics of Leptosphaerulina leaf spots on alfalfa and white clover in time and space publication-title: Phytopathology doi: 10.1094/Phyto-80-1341 – year: 2015 ident: 10.1016/j.asoc.2023.110534_b190 – volume: 8 year: 2020 ident: 10.1016/j.asoc.2023.110534_b24 article-title: Early disease classification of mango leaves using feed-forward neural network and hybrid metaheuristic feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031914 – year: 2022 ident: 10.1016/j.asoc.2023.110534_b48 – year: 2010 ident: 10.1016/j.asoc.2023.110534_b346 – volume: 35 start-page: 3427 issue: 10 year: 2014 ident: 10.1016/j.asoc.2023.110534_b25 article-title: Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.903353 – year: 2022 ident: 10.1016/j.asoc.2023.110534_b226 – volume: 100 start-page: 1000 issue: 10 year: 1975 ident: 10.1016/j.asoc.2023.110534_b390 article-title: An algorithm for finding nearest neighbors publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1975.224110 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b113 – start-page: 638 year: 2015 ident: 10.1016/j.asoc.2023.110534_b51 article-title: Basic study of automated diagnosis of viral plant diseases using convolutional neural networks – volume: 74 start-page: 91 issue: 1 year: 2010 ident: 10.1016/j.asoc.2023.110534_b32 article-title: Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2010.06.009 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b218 – ident: 10.1016/j.asoc.2023.110534_b296 – volume: 54 start-page: 1091 issue: 2 year: 2022 ident: 10.1016/j.asoc.2023.110534_b382 article-title: Density weighted twin support vector machines for binary class imbalance learning publication-title: Neural Process. Lett. doi: 10.1007/s11063-021-10671-y – volume: 43 start-page: 59 issue: 1 year: 1982 ident: 10.1016/j.asoc.2023.110534_b397 article-title: Self-organized formation of topologically correct feature maps publication-title: Biol. Cybernet. doi: 10.1007/BF00337288 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b235 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.asoc.2023.110534_b411 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – year: 2021 ident: 10.1016/j.asoc.2023.110534_b157 – volume: 61 year: 2021 ident: 10.1016/j.asoc.2023.110534_b66 article-title: Identification of disease using deep learning and evaluation of bacteriosis in peach leaf publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101247 – year: 2010 ident: 10.1016/j.asoc.2023.110534_b203 – volume: 535 year: 2019 ident: 10.1016/j.asoc.2023.110534_b281 article-title: Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms publication-title: Physica A doi: 10.1016/j.physa.2019.122537 – year: 2016 ident: 10.1016/j.asoc.2023.110534_b406 – volume: 13 start-page: 511 issue: 3 year: 2021 ident: 10.1016/j.asoc.2023.110534_b331 article-title: Plant leaf disease recognition using depth-wise separable convolution-based models publication-title: Symmetry doi: 10.3390/sym13030511 – volume: 58 start-page: 280 year: 2015 ident: 10.1016/j.asoc.2023.110534_b34 article-title: Smart farming: Pomegranate disease detection using image processing publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.08.022 – volume: 11 start-page: 1950 issue: 4 year: 2021 ident: 10.1016/j.asoc.2023.110534_b75 article-title: Automatic identification of peanut-leaf diseases based on stack ensemble publication-title: Appl. Sci. doi: 10.3390/app11041950 – volume: 15 start-page: 589 issue: 3 year: 2021 ident: 10.1016/j.asoc.2023.110534_b312 article-title: Leaf image analysis-based crop diseases classification publication-title: Signal Image Video Process. doi: 10.1007/s11760-020-01780-7 – year: 2016 ident: 10.1016/j.asoc.2023.110534_b89 – volume: 125 start-page: 99 year: 2016 ident: 10.1016/j.asoc.2023.110534_b263 article-title: Kernel-based PSO and FRVM: An automatic plant leaf type detection using texture, shape, and color features publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.04.033 – start-page: 401 year: 2015 ident: 10.1016/j.asoc.2023.110534_b287 article-title: Fruit-based tomato grading system using features fusion and support vector machine – year: 2017 ident: 10.1016/j.asoc.2023.110534_b357 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b105 – volume: 9 start-page: 212 issue: 2 year: 2022 ident: 10.1016/j.asoc.2023.110534_b68 article-title: ResTS: Residual deep interpretable architecture for plant disease detection publication-title: Inf. Process. Agric. – start-page: 1 year: 1995 ident: 10.1016/j.asoc.2023.110534_b367 – year: 2021 ident: 10.1016/j.asoc.2023.110534_b97 – volume: 10 start-page: 579 issue: 5 year: 2009 ident: 10.1016/j.asoc.2023.110534_b94 article-title: Genetic and physiological determinants of Streptomyces scabies pathogenicity publication-title: Mol. Plant Path. doi: 10.1111/j.1364-3703.2009.00561.x – volume: 39 start-page: 544 issue: 6 year: 2010 ident: 10.1016/j.asoc.2023.110534_b188 article-title: Detection of Xanthomonas axonopodispv. punicae causing bacterial blight on pomegranate in South Africa publication-title: Australas. Plant Pathol. doi: 10.1071/AP10034 – volume: 163 year: 2019 ident: 10.1016/j.asoc.2023.110534_b72 article-title: A low shot learning method for tea leaf’s disease identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104852 – start-page: 110 year: 2002 ident: 10.1016/j.asoc.2023.110534_b409 article-title: Ensemble learning – year: 2021 ident: 10.1016/j.asoc.2023.110534_b135 – volume: 71 start-page: 1849 issue: 1 year: 2022 ident: 10.1016/j.asoc.2023.110534_b30 article-title: Deep learning based automated detection of diseases from apple leaf images publication-title: CMC-Comput. Mater. Continua doi: 10.32604/cmc.2022.021875 – volume: 24 start-page: 603 issue: 5 year: 2002 ident: 10.1016/j.asoc.2023.110534_b363 article-title: Mean shift: A robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.1000236 |
SSID | ssj0016928 |
Score | 2.6642258 |
SecondaryResourceType | review_article |
Snippet | Identification of leaf disorder plays an important role in the economic prosperity of any country. Many parts of a plant can be infected by a virus, fungal,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110534 |
SubjectTerms | Deep learning Leaf species Machine learning Plant disease Recognition models |
Title | Leaf disease detection using machine learning and deep learning: Review and challenges |
URI | https://dx.doi.org/10.1016/j.asoc.2023.110534 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjfisPLChtEnjOAlbVVEVKBUCirpF9tmuiiBUEFZ-O77EqUBCHZiiJGcpebHvLvK7e4SccQW-5uB7grPIY2kgUObFritug1EQA9MR1g7fjvlwwq6n0bRB-nUtDNIqne-vfHrprd2VjkOzs5jPOw_2zyNhKbPxGxtJdbHQnLEYZ3n7a0nzCHha6quisYfWrnCm4ngJi0AbBcSRDR-F7O_g9CPgDLbIhssUaa96mG3S0PkO2axVGKhblLvkaaSFoW6jhSpdlOSqnCKjfUZfS7Kkpk4dYkZFrqyRXiyvXNBqf6C8A7W2yscemQwuH_tDz6kleGABKDwVxr4G7F0TSe6DfSHjh90YZCJAGRBcKWWTE2z3EgppbF6k7OdLjIq6QqAK-j5p5m-5PiA0hDRkTJgklT4DrqU0YCQHFuswBmMOSVDDlIFrJY6KFi9ZzRl7zhDaDKHNKmgPyflyzKJqpLHSOqrRz35Nh8x6-hXjjv457pis41lFHjshzeL9U5_abKOQrXI6tchar38_usPj1c1w_A07hdYN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VcoALO2LHBzih0DRxnAaJA2JRC4ULi7gFxwsCQaigCHHhp_hBZhKnAglxQOrVS-S8OPNs-XkewIbQyjdC-Z4UPPJ40pRk84L_lUAyasaKm4juDp-eifYlP76OrmvwWd2FIVmli_1lTC-itStpODQbvbu7xjnuPFo84cjflEgqqJSVJ-b9DfdtL7udA_zIm0FwdHix3_actYCnsHXf02HsG0WJXqJM-Ao50PphEKusJZW2SgqtNTI55UYJZWZxEaHxXVtWR4GUZBmOzx2BUY7hgmwTtj8GupKmSApDVxqdR8NzN3VKUZlEyLfJsZzk91HIf2fDbwx3NAUTbmnK9sq3n4aayWdgsrJ9YC4KzMJV10jL3MkO06ZfqLlyRhL6W_ZYqDMNc3YUt0zmGhuZ3qBkh5UHEkWNqsxcXubgcigYzkM9f8rNArBQJSHn0raSzOdKmCyzymZC8diEsbJ2EZoVTKlyucvJQuMhrURq9ylBmxK0aQntImwN-vTKzB1_to4q9NMf8y9Favmj39I_-63DWPvitJt2O2cnyzBONaVybQXq_edXs4pLnX62VkwtBjfDnstfxgERSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+disease+detection+using+machine+learning+and+deep+learning%3A+Review+and+challenges&rft.jtitle=Applied+soft+computing&rft.au=Sarkar%2C+Chittabarni&rft.au=Gupta%2C+Deepak&rft.au=Gupta%2C+Umesh&rft.au=Hazarika%2C+Barenya+Bikash&rft.date=2023-09-01&rft.issn=1568-4946&rft.volume=145&rft.spage=110534&rft_id=info:doi/10.1016%2Fj.asoc.2023.110534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_110534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |