Leaf disease detection using machine learning and deep learning: Review and challenges

Identification of leaf disorder plays an important role in the economic prosperity of any country. Many parts of a plant can be infected by a virus, fungal, bacteria, and other infectious organisms but here we mainly considered the detection of leaf disease of a plant as a research topic. We have pe...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 145; p. 110534
Main Authors Sarkar, Chittabarni, Gupta, Deepak, Gupta, Umesh, Hazarika, Barenya Bikash
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identification of leaf disorder plays an important role in the economic prosperity of any country. Many parts of a plant can be infected by a virus, fungal, bacteria, and other infectious organisms but here we mainly considered the detection of leaf disease of a plant as a research topic. We have performed an in-depth study of this topic from 2010 to 2022 and found that many researchers use multispectral or hyperspectral imaging to study crop diseases. Machine learning (ML) and deep learning (DL) models are used to classify different types of leaf diseases. We made a workflow mechanism to help researchers in this field. Support vector machine (SVM), Random Forest, and multiple twin SVM (MTSVM) are popular ML models for predicting leaf disease, while convolutional neural networks (CNN), visual geometry group (VGG), ResNet (RNet), GoogLeNet, deep CNN (DCNN), back propagation neural networks (BPNN), DenseNet (DNet), LeafNet (LN), and LeNet are common deep learning models used for detecting leaf disease. Among these deep learning models, it is evident that models like CNN, VGG, and ResNet are highly capable at finding diseases in leaves. The performance of the algorithms is generally evaluated using F1 score, precision, accuracy and others. This review will be helpful for the researchers who are working in this area and looking for various efficient ML and DL-based classifiers for leaf disease detection. •A study on leaf disease (LD) detection is conducted using Machine Learning and Deep Learning from 2010 to 2022.•Various feature extraction techniques are discussed for LD detection.•Illustrations of various plant diseases are discussed with their images and sources.•Applications, challenges, limitations as well as some future works are also discussed.
AbstractList Identification of leaf disorder plays an important role in the economic prosperity of any country. Many parts of a plant can be infected by a virus, fungal, bacteria, and other infectious organisms but here we mainly considered the detection of leaf disease of a plant as a research topic. We have performed an in-depth study of this topic from 2010 to 2022 and found that many researchers use multispectral or hyperspectral imaging to study crop diseases. Machine learning (ML) and deep learning (DL) models are used to classify different types of leaf diseases. We made a workflow mechanism to help researchers in this field. Support vector machine (SVM), Random Forest, and multiple twin SVM (MTSVM) are popular ML models for predicting leaf disease, while convolutional neural networks (CNN), visual geometry group (VGG), ResNet (RNet), GoogLeNet, deep CNN (DCNN), back propagation neural networks (BPNN), DenseNet (DNet), LeafNet (LN), and LeNet are common deep learning models used for detecting leaf disease. Among these deep learning models, it is evident that models like CNN, VGG, and ResNet are highly capable at finding diseases in leaves. The performance of the algorithms is generally evaluated using F1 score, precision, accuracy and others. This review will be helpful for the researchers who are working in this area and looking for various efficient ML and DL-based classifiers for leaf disease detection. •A study on leaf disease (LD) detection is conducted using Machine Learning and Deep Learning from 2010 to 2022.•Various feature extraction techniques are discussed for LD detection.•Illustrations of various plant diseases are discussed with their images and sources.•Applications, challenges, limitations as well as some future works are also discussed.
ArticleNumber 110534
Author Gupta, Umesh
Sarkar, Chittabarni
Gupta, Deepak
Hazarika, Barenya Bikash
Author_xml – sequence: 1
  givenname: Chittabarni
  surname: Sarkar
  fullname: Sarkar, Chittabarni
  email: chittabarni.1@gmail.com
  organization: Department of Computer Science & Engineering, National Institute of Technology Arunachal Pradesh, Jote 79113, India
– sequence: 2
  givenname: Deepak
  orcidid: 0000-0002-6375-8615
  surname: Gupta
  fullname: Gupta, Deepak
  email: deepakg@mnnit.ac.in
  organization: Department of Computer Science & Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
– sequence: 3
  givenname: Umesh
  surname: Gupta
  fullname: Gupta, Umesh
  email: er.umeshgupta@gmail.com
  organization: Department of Computer Science & Engineering, Bennett University, Greater Noida, U.P., India
– sequence: 4
  givenname: Barenya Bikash
  surname: Hazarika
  fullname: Hazarika, Barenya Bikash
  email: barenya1431@gmail.com
  organization: Department of Computer Science & Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
BookMark eNp9kMtKAzEUhoNUsFZfwNW8wIy5zCUjbqR4g4Ig6jacnpxpU6aZMhkV396MFRcuukr4T75w_u-UTXznibELwTPBRXm5ySB0mEkuVSYEL1R-xKZCVzKtSy0m8V6UOs3rvDxhpyFseIRqqafsbUHQJNYFgkCJpYFwcJ1P3oPzq2QLuHaekpag92MA3sZHtPtLrpJn-nD0-TPBNbQt-RWFM3bcQBvo_Pecsde725f5Q7p4un-c3yxSVJwPqVUVJywqXRTLkmPcvOFKVrjUgLZBKK21ulYFr0sFy0bV0hKibmwhASqRqxnT-3-x70LoqTHoBhgbDD241ghuRj9mY0Y_ZvRj9n4iKv-hu95tof86DF3vIYqlYu_eBHTkkazrozljO3cI_wa-wYIm
CitedBy_id crossref_primary_10_1007_s10340_024_01852_4
crossref_primary_10_1016_j_jafr_2024_101350
crossref_primary_10_1038_s41598_025_92112_7
crossref_primary_10_1016_j_jssas_2024_09_002
crossref_primary_10_1016_j_hybadv_2025_100440
crossref_primary_10_3390_app14135926
crossref_primary_10_1016_j_asoc_2024_112582
crossref_primary_10_1016_j_asoc_2025_112897
crossref_primary_10_3390_agronomy14091975
crossref_primary_10_1016_j_compag_2024_109574
crossref_primary_10_3923_asb_2025_82_91
crossref_primary_10_1016_j_jafr_2024_101303
crossref_primary_10_32919_uesit_2024_03_03
crossref_primary_10_1007_s00500_025_10523_0
crossref_primary_10_1186_s10033_024_01124_3
crossref_primary_10_1016_j_aiia_2024_04_003
crossref_primary_10_22430_22565337_3158
crossref_primary_10_1109_ACCESS_2024_3515843
crossref_primary_10_3390_f15122243
crossref_primary_10_1007_s11042_024_20336_2
crossref_primary_10_3390_agriengineering6040238
crossref_primary_10_12720_jait_15_7_812_821
crossref_primary_10_3390_s23218685
crossref_primary_10_3390_agronomy14122783
crossref_primary_10_3103_S1060992X24700231
crossref_primary_10_1007_s00371_024_03729_0
crossref_primary_10_3390_agriculture14071146
crossref_primary_10_3390_agronomy14122869
crossref_primary_10_1016_j_engappai_2025_110117
crossref_primary_10_1080_08839514_2024_2426377
crossref_primary_10_1109_ACCESS_2024_3419906
crossref_primary_10_3389_fpls_2024_1489151
crossref_primary_10_1016_j_atech_2024_100476
crossref_primary_10_1007_s00521_025_11012_z
crossref_primary_10_3390_plants13182556
crossref_primary_10_26634_jip_11_3_21305
crossref_primary_10_1016_j_jfca_2024_106270
crossref_primary_10_1016_j_asoc_2023_110850
crossref_primary_10_1016_j_atech_2024_100480
crossref_primary_10_1016_j_engappai_2025_110201
crossref_primary_10_1038_s41598_024_81325_x
crossref_primary_10_1016_j_measurement_2024_116579
crossref_primary_10_3389_fhort_2023_1263604
crossref_primary_10_1007_s10751_024_02135_1
crossref_primary_10_1016_j_heliyon_2024_e37141
crossref_primary_10_1038_s41598_024_54540_9
crossref_primary_10_1007_s10462_024_11004_w
crossref_primary_10_3389_fpls_2024_1417912
crossref_primary_10_1186_s13007_025_01362_z
crossref_primary_10_3390_f15050891
crossref_primary_10_1109_ACCESS_2024_3510456
crossref_primary_10_1016_j_compag_2024_109227
crossref_primary_10_1016_j_compag_2024_109824
Cites_doi 10.1145/244130.244148
10.1007/BF00994018
10.1109/TPAMI.2016.2577031
10.1007/s11119-013-9312-y
10.2139/ssrn.3564973
10.1094/PHYTO.2002.92.6.676
10.1037/h0042519
10.1007/s40858-016-0065-9
10.1109/ACCESS.2018.2800685
10.1007/s11042-020-09461-w
10.1049/ipr2.12397
10.1016/j.eij.2020.02.007
10.1023/A:1008280620621
10.1098/rstb.2018.0269
10.12928/telkomnika.v19i2.16488
10.1038/s41559-018-0793-y
10.1094/PDIS-93-11-1202
10.1016/j.rse.2015.09.011
10.3390/sym10010011
10.1016/0167-9473(95)00032-1
10.1094/PDIS.2003.87.3.208
10.1109/TMTT.2013.2253793
10.1007/s13313-018-0541-4
10.1016/j.knosys.2015.02.009
10.1109/CVPR.2017.243
10.1111/ppa.13119
10.1016/j.ecoinf.2017.05.005
10.20546/ijcmas.2016.503.051
10.1016/j.proeng.2012.07.321
10.1016/j.biosystemseng.2016.08.024
10.3390/electronics11010140
10.1109/34.400568
10.4236/jcc.2020.86002
10.3126/jsce.v7i0.26794
10.1111/j.1364-3703.2004.00218.x
10.1094/PD-66-1101
10.1094/PDIS-10-15-1144-RE
10.1146/annurev.py.24.090186.000503
10.1016/S0004-3702(02)00190-X
10.1007/s11042-019-7588-2
10.1094/PD-67-829
10.1111/j.1744-7348.1992.tb03425.x
10.1109/LGRS.2019.2932385
10.1016/j.asoc.2021.107099
10.3390/info11020095
10.1186/s42522-021-00038-7
10.1007/s00521-020-05235-5
10.1609/aaai.v34i07.7000
10.1016/j.compag.2011.05.007
10.3390/s21093169
10.1016/j.postharvbio.2020.111271
10.1155/2016/3289801
10.21276/ijre.2018.5.9.4
10.1016/j.engappai.2022.104687
10.1111/j.1744-7348.1984.tb05586.x
10.1007/s13042-020-01235-y
10.1007/s10489-019-01465-w
10.1016/j.plantsci.2012.08.004
10.1063/1.4962153
10.1109/5.726791
10.1126/science.171.3976.1113
10.1016/j.compag.2011.09.011
10.1016/j.rse.2012.09.019
10.1007/s00521-012-1108-x
10.3390/pathogens10020131
10.1007/s00521-020-05240-8
10.1111/j.1744-7348.1974.tb01506.x
10.1016/j.compag.2018.10.013
10.1016/S0953-7562(09)80867-8
10.1016/S1532-0464(03)00034-0
10.3390/agriculture11080707
10.1007/s42044-020-00057-z
10.1109/TGRS.1990.572934
10.1007/s12038-021-00241-8
10.1109/TPAMI.2012.120
10.1007/s11042-020-09981-5
10.1007/s11042-021-11790-3
10.1099/0022-1317-74-5-881
10.1109/CVPR.2016.308
10.1007/s10327-006-0299-3
10.3390/agronomy10071027
10.3390/s17092022
10.3390/plants11030384
10.1016/j.neucom.2016.12.038
10.1071/DN10001
10.1007/BF00204594
10.1017/S174217051900022X
10.1109/34.58871
10.1007/s10658-016-1037-0
10.1007/s42161-020-00683-3
10.1016/j.neucom.2005.12.126
10.1016/j.ecoinf.2020.101197
10.17660/ActaHortic.2009.808.1
10.1007/s10489-021-02452-w
10.1094/Phyto-85-843
10.1016/j.compbiomed.2020.103767
10.1007/BF00058655
10.1094/PDIS.2001.85.2.126
10.14257/ijdta.2016.9.4.07
10.3390/rs11111373
10.3389/fpls.2017.01852
10.3381/11-013R.1
10.1016/j.compag.2018.03.032
10.1094/PDIS.1999.83.10.884
10.3390/rs13020162
10.1016/j.neunet.2020.11.015
10.1016/j.postharvbio.2019.04.005
10.1016/j.matpr.2021.05.584
10.3389/fpls.2016.01419
10.1016/j.eswa.2011.07.073
10.1016/j.compag.2018.01.009
10.3390/plants10010031
10.1111/j.1439-0434.2009.01575.x
10.1109/ACCESS.2019.2914929
10.1162/089976698300017467
10.1109/ACCESS.2018.2844405
10.1016/j.gltp.2022.03.016
10.1016/j.procs.2020.03.225
10.1007/s11042-022-13673-7
10.1046/j.1439-0523.2000.00462.x
10.1016/j.chemolab.2020.104190
10.1155/2022/3287561
10.1016/j.compag.2022.107093
10.1007/s12088-008-0053-y
10.1016/j.pmpp.2015.07.001
10.3390/s140712191
10.3390/plants10010028
10.1002/jsfa.10365
10.3390/rs10010075
10.1104/pp.41.9.1505
10.3390/agriengineering3020020
10.3923/itj.2011.267.275
10.1007/s12665-021-09625-3
10.1109/TPAMI.2007.1068
10.1080/01140671.1994.9513814
10.1016/j.imu.2021.100642
10.3390/plants10010095
10.3389/fpls.2020.00751
10.1016/j.compeleceng.2019.04.011
10.1007/s13593-014-0246-1
10.1016/j.compag.2021.106658
10.1371/journal.pone.0168274
10.1016/j.compag.2020.105824
10.1094/PHYTO.2000.90.8.884
10.1016/S0261-2194(91)80134-2
10.1016/j.compag.2017.09.012
10.1046/j.1464-6722.2001.00084.x
10.1145/3065386
10.1023/B:STCO.0000035301.49549.88
10.1088/1748-9326/aae159
10.1094/PDIS-92-4-0530
10.1094/Phyto-80-1341
10.1109/ACCESS.2020.3031914
10.1080/01431161.2014.903353
10.1109/T-C.1975.224110
10.1016/j.compag.2010.06.009
10.1007/s11063-021-10671-y
10.1007/BF00337288
10.1007/s11263-015-0816-y
10.1016/j.ecoinf.2021.101247
10.1016/j.physa.2019.122537
10.3390/sym13030511
10.1016/j.procs.2015.08.022
10.3390/app11041950
10.1007/s11760-020-01780-7
10.1016/j.compag.2016.04.033
10.1111/j.1364-3703.2009.00561.x
10.1071/AP10034
10.1016/j.compag.2019.104852
10.32604/cmc.2022.021875
10.1109/34.1000236
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110534
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_110534
S1568494623005525
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-d370ec57855b60c110f0327cb8acdfca6ddd89350963abf392decc8fd52aa7143
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:21 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Fri Feb 23 02:34:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Recognition models
Leaf species
Plant disease
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-d370ec57855b60c110f0327cb8acdfca6ddd89350963abf392decc8fd52aa7143
ORCID 0000-0002-6375-8615
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2023_110534
crossref_primary_10_1016_j_asoc_2023_110534
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Taylor, Lindbeck, Chen, Ford (b88) 2007
Greg Pass, Zabih Ramin, Justin Miller, Comparing images using color coherence vectors, in: Proceedings of the Fourth ACM International Conference on Multimedia, 1997, pp. 65–73.
Gao Huang, Zhuang Liu, Laurens Van Der Maaten, Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
Balasamy, Suganyadevi (b351) 2021; 80
(b194) 2021
Hossain, Deb, Dhar, Koshiba (b331) 2021; 13
(b181) 2021
Misra, Shukla, Pandey (b84) 2012
Harakannanavar, Rudagi, Puranikmath, Siddiqua, Pramodhini (b3) 2022; 3
Shah, Trivedi, Sheth, Shah, Chauhan (b68) 2022; 9
(b83) 2021
Brooks, Anders, Yeater (b127) 2009; 93
Kurmi, Gangwar, Agrawal, Kumar, Srivastava (b312) 2021; 15
Jiang, Chen, Liu, He, Liang (b323) 2019; 7
Khamparia, Saini, Gupta, Khanna, Tiwari, de Albuquerque Victor Hugo (b250) 2020; 39
Kakade, Ahire (b208) 2015; 1
Fluorescence imaging “Fluor-ImagingPrinciples.pdf”, Available at
Jones, Whipps, Gurr (b112) 2001; 2
Donald (b133) 2011
Ganesh Babu, Chellaswamy (b150) 2022; 47
Sabrol, Satish (b289) 2016
Zhang, Cisse, Dauphin, Lopez-Paz (b357) 2017
.
Bock, Parker, Cook, Gottwald (b116) 2008; 92
Ganatra, Patel (b73) 2020; 11
Fogel, Dov (b348) 1989; 61
Liu, Wang, Liu, Zeng, Liu, Alsaadi (b54) 2017; 234
Weiland, Koch (b92) 2004; 5
Gauthier (b143) 2021; 2018
(b224) 2022
Thomas, Jan, Uwe, Anne-Katrin (b39) 2022
Maksim (b145) 2021
McKenzie (b162) 2013
Dekker, Derks, Asjes, Lemmers, Bol, Langeveld (b178) 1993; 74
Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b366) 2012; 34
Tarek, Hesham, Saleh, Mohamed (b327) 2022; 11
Pratt, Williams, Coenen, Zheng (b404) 2017
(b91) 2021
Katawczik, Mila (b107) 2012
Grau (b170) 2021
Friedman, Baskett, Shustek (b390) 1975; 100
Roberts (b166) 2013
Carlier, Zapater, Lapeyre, Jones, Mourichon (b158) 2000; 90
Jackson (b190) 2015
(b237) 2021
Al Bashish, Braik, Bani-Ahmad (b19) 2011; 10
Ganesh Bhadur, Rajneesh Rani, Agricultural Crops Disease Identification and Classification through Leaf Images using Machine Learning and Deep Learning Technique: A Review, in: Proceedings of the International Conference on Innovative Computing & Communications, ICICC, 2020.
Koike, Henderson, Butler (b197) 2001; 85
(b336) 2014
Sobel, Feldman (b349) 1968
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, Zbigniew Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
Pethybridge, Brown, Kikkert, Ryan (b186) 2020; 35
Lu, Lijuan, Huanyu (b55) 2021; 11
Ren, He, Girshick, Sun (b71) 2016; 39
Shane (b137) 2018
Gupta, Gupta (b387) 2021
Kohonen (b398) 1995
Christopher G. Harris, Mike Stephens, A combined corner and edge detector, in: Alvey Vision Conference, No. 15, 1988, pp. 10–5244, 50.
Ganguly (b131) 1947; 26
(b216) 2021
Sharma, Berwal, Ghai (b317) 2020; 7
Okada (b175) 1986
(b269) 2021
Subrahmanyam, McDonald (b193) 1983
Ozguven, Adem (b281) 2019; 535
Ahmad, Muhammad (b12) 2022
Li, Lin, Liu, Zhao (b268) 2020; 11
Kapil Prashar, Rajneesh Talwar, Chander Kant, Inconsistent Cluster Analysis With Disease Feature Enhancement (ICADFE) For American Cotton Leaf Disease Recognition, in: International Conference on Intelligent Machines Held at Baba Farid College of Engineering and Technology, 2019, pp. 15–16.
Singh, Namita, Shikha (b334) 2020
Chouhan, Ajay, Singh, Jain (b22) 2018; 6
Mahum, Munir, Mughal, Awais, Khan, Saqlain, Mahamad, Tlili (b234) 2022
(b239) 2021
Shrivastava, Pradhan (b300) 2021; 103
Tripathi, Maktedar (b290) 2016
White tininess, Available at
(b200) 2021
Silva, Várzea (b202) 2006
Damicone, Lynn (b1) 2015
Abdulridha, Batuman, Ampatzidis (b280) 2019; 11
Muller (b154) 2021
Tomar, Agarwal (b41) 2015; 81
He, Wang (b370) 1990; 28
Gupta, Gupta, Prasad (b379) 2018
Dietterich (b409) 2002
Thirumalesh, Thippeswamy, Krishnappa (b189) 2016; 5
Xu, Lv, Yue (b286) 2014
Morgan (b125) 2019
Tetila, Brandoli Machado, Kirsten Menezes, da Silva Oliveira, Alvarez, Paraguassu Amorim, De Souza Belete, Gonçalves Da Silva, Pistori (b324) 2019; 17
(b138) 2000
(b218) 2021
Uğuz, Uysal (b252) 2021; 33
R.L. Schlub, L.J. Smith, L.E. Datnoff, K. Pernezny, An overview of target spot of tomato caused by
Ward, Stromberg, Nowell, Forrest (b153) 1999; 83
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang (b411) 2015; 115
Huang, Yang, Huang, Huang, Qiao (b293) 2018; 5
Zehr (b120) 1982; 66
Smola, Schölkopf (b383) 2004; 14
Rothnie, Chapdelaine, Hohn (b179) 1994
Subrahmanyam, Wongkaew, Reddy, Demski, McDonald, Sharma, Smith (b196) 1992
Plant Seedings Dataset, Available
Jayadeva, Suresh (b40) 2007; 29
(b108) 2019
(b135) 2021
Sisson, Mueller, Robertson (b157) 2021
De Castro, Ehsani, Ploetz, Crane, Abdulridha (b274) 2015; 171
(2010).
Rong, Kaneko, Tanaka, Kayamori, Shimizu (b301) 2013
Kurdi, Al-Aldawsari, Al-Turaiki, Aldawood (b328) 2021; 10
Ramcharan, Baranowski, McCloskey, Ahmed, Legg, Hughes (b267) 2017; 8
(b333) 2009
Kumar, Vani (b272) 2019
Liu, Zhang, He, Li (b311) 2018; 10
Gupta, Hazarika, Berlin, Sharma, Mishra (b78) 2021; 80
(b222) 2022
Petersen, Mansvelt, Venter, Langenhoven (b188) 2010; 39
Phaethon (b141) 2020
(b192) 2021
Calzarano, Marco, D’agostino, Schiff, Mugnai (b182) 2014
Bhujel, Fawad, Jayanta, Mustafa, Thavisack, Byeong-Eun, Jaesung, Hyeon-Tae (b62) 2022
Vasantha, Bejjam, Krishna (b248) 2021; 9
Hazarika, Gupta (b382) 2022; 54
Yang, Shao, Zhang (b33) 2013; 22
Holmes, Nevill-Manning (b367) 1995
M. Rajesh Khanna, Data hiding in encrypted images using Arnold transform, in: International Conference on Algorithms, 2017.
Kalisz, Oszmiański, Wojdyło (b142) 2015; 91
Naghizadeh, Metaxas, Liu (b356) 2021; 135
Caldeira, Santiago, Teruel (b11) 2021; 21
Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (b406) 2016
Hagen, Cespedes (b113) 2021
Li, Ye, Wang, Xiong (b172) 2004; 12
Wang, Li, Ma, Li (b20) 2012
El Massi, Es-saady, El Yassa, Mammass, Benazoun (b243) 2017; 158
Gupta, Gupta (b380) 2019
Badage (b376) 2018; 5
(b99) 2016
Narwade, Kumar (b374) 2016
(b111) 2019
(b215) 2021
Kononenko, Šimec, Robnik-Šikonja (b368) 1997; 7
in: II International Symposium on Tomato Diseases, Vol. 808, 2007, pp. 25–28.
Xiao, Chung, Wu, Phan, Yeh, Hou (b282) 2021; 10
Marín-Cevada, Caballero-Mellado, Bustillos-Cristales, Muñoz Rojas, Mascarúa-Esparza, Castañeda Lucio, López-Reyes, Martínez-Aguilar, Fuentes-Ramírez (b167) 2010; 158
Rumpf, Mahlein, Steiner, Oerke, Dehne, Plümer (b32) 2010; 74
LeCun, Bottou, Bengio, Haffner (b50) 1998; 86
Hu, Wu, Zhang, Wan (b72) 2019; 163
(b214) 2021
Martinelli, Riccardo, Salvatore, Stefano, Giuseppe, Paolo, Paolo (b4) 2015; 35
Goyal, Sharma, Singh, Singh (b251) 2021
Gupta, Gupta (b385) 2019; 49
Derie (b198) 2021
Poornappriya, Gopinath (b48) 2022
(b103) 2021
Casela, Renfro, Krattiger (b144) 1998
Rizzo, Maureen, Jonna, Togami, Miller (b16) 2021; 3
Ezra, Gat, Skovorodnikova, Vardi, I. (b82) 2010; 5
Elqassas, Abu (b104) 2000
Rubini, Kavitha (b260) 2021
(b203) 2010
Ahn, Lee, Kim (b164) 1970; 4
Mohanty, Hughes, Salathé (b265) 2016; 7
Chowdhury, Rahman, Khandakar, Ayari, Khan, Khan, Al-Emadi, Reaz, Islam, Ali (b259) 2021; 3
Asraf, Nooritawati, Shah (b285) 2012; 41
Ji, Zhang, Xu, Shi, Yulin (b63) 2018; 10
Laxmi, Gupta (b42) 2022; 110
Shobana, Shanthi, Priya (b295) 2019
Weizheng, Yachun, Zhanliang, Hongda (b373) 2008
(b213) 2021
Indriani, Kusuma, Sari, Rachmawanto (b28) 2017
Fuentes, Sook, Kim, Park (b320) 2017; 17
Al-gaashani, Fengjun, Mohammed, Mashael, Ahmed (b76) 2022
Tan, Le (b401) 2019
Karthik, Hariharan, Anand, Mathikshara, Johnson, Menaka (b405) 2020; 86
Gulya, Mathew, Harveson, Markell, Block (b89) 2016
(b87) 2021
Jakjoud, Hatim, Bouaddi (b27) 2019
Zambolim (b199) 2016; 41
Munir, Amsden, Dixon, Vaillancourt, Gauthier (b184) 2016; 100
Baley (b165) 2018
Kohonen (b397) 1982; 43
(b204) 2021
Comaniciu, Meer (b363) 2002; 24
Melton (b177) 2009
Accessed Feb 2022.
Ramya, Kumar, Mugilan, Babykala (b377) 2018; 5
(b210) 2015
Lerat, Simao-Beaunoir, Beaulieu (b94) 2009; 10
(b211) 2021
Ganatra, Patel (b74) 2020; 13
(b206) 2010
Hernández-Lauzardo, Bautista-Baños, Valle, Trejo-Espino (b163) 2006; 24
Hansen (b235) 2021
Afzal, Muhammad, Muhammad, Ghulam, Zahid (b10) 2020
Chen, Zhang, Nanehkaran, Li (b256) 2020; 100
Qi, Liang, Ding, Zou (b75) 2021; 11
(b147) 2021
Udupi (b273) 2019
Zhang, Shang, Wang (b26) 2015; 25
Pan, Chyngyz, Sun, Paliwal, Pu (b298) 2019; 154
(b152) 2020
Bradley, Mangasarian, Street (b364) 1997
Pham, Tran, Dao (b24) 2020; 8
Tsay, Cheng, Teng, Lee, Wu, Lin (b132) 1998; 40
Gómez-Sanchis, Martín-Guerrero, Soria-Olivas, Marcelino, Rafael, José (b309) 2012; 39
Too-Edna, Yujian, Njuki, Yingchun (b254) 2019; 161
Cortes, Vladimir (b31) 1995; 20
Ferentinos (b56) 2018; 145
Mahmud, Zaman, Esau, Chang, Price, Prithiviraj (b23) 2019; 10
Hansen, Salamon (b37) 1990; 12
Amara, Bouaziz, Algergawy (b246) 2017
Esgario, de Castro, Tassis, Krohling (b313) 2022; 9
Arribas, Sánchez-Ferrero, Ruiz-Ruiz, Gómez-Gil (b2) 2011; 78
Pustejovsky, Stubbs (b359) 2012
(b330) 2014
Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (b52) 2012
Rathod, Tanawal, Shah (b5) 2013; 3
Maria, Taki, Mia, Amin, Anup, Firoz (b61) 2022
Ferentinos, Barda, Damer (b247) 2019
Bhange, Hingoliwala (b34) 2015; 58
Olanya, Lee (b134) 1990; 80
(b238) 2021
(b212) 2021
Rumelhart, Hinton, Williams (b393) 1986
Yuan, Zhang, Wang, Loraamm, Huang, Wang, Zhao (b275) 2013; 14
Yamamoto, Guo, Yoshioka, Ninomiya (b253) 2014; 14
Khirade, Patil (b6) 2015
(b335) 2013
(b96) 1994
Pooja, Das, Kanchana (b291) 2017
Joshi, Kaushik, Dutta, Ashish, Choudhary (b329) 2021; 61
(b115) 2018
Grant (b95) 2021
Rush, Lee (b100) 1983; 67
Girshick, Donahue, Darrell, Malik (b399) 2014
(b231) 2022
Stover (b79) 1986; 24
Mahlein, Rumpf, Welke, Dehne, Plümer, Steiner, Oerke (b305) 2013; 128
Lu, Hu, Zhao, Mei, Zhang (b321) 2017; 142
Cattlin (b191) 2021
(b168) 2018
Hazarika, Gupta (b381) 2021; 33
Godliver Owomugisha, John A. Quinn, Ernest Mwebaze, James Lwasa, Automated vision-based diagnosis of banana bacterial wilt disease and black sigatoka disease, in: International Conference on the Use of Mobile ICT in Africa, 2014, pp. 1–5.
Mengistu, Alemayehu, Mengistu (b314) 2016; 9
Muniyappa, Singh, Virupakshappa (b102) 1997; 50
Guang-Bin
(10.1016/j.asoc.2023.110534_b168) 2018
Gulya (10.1016/j.asoc.2023.110534_b89) 2016
(10.1016/j.asoc.2023.110534_b115) 2018
Noguchi (10.1016/j.asoc.2023.110534_b358) 2020; 121
(10.1016/j.asoc.2023.110534_b220) 2021
Prabhakar (10.1016/j.asoc.2023.110534_b283) 2020; 79
Hernández-Lauzardo (10.1016/j.asoc.2023.110534_b163) 2006; 24
Kulkarni (10.1016/j.asoc.2023.110534_b276) 2013; 2
Scott (10.1016/j.asoc.2023.110534_b156) 1974; 78
Al Bashish (10.1016/j.asoc.2023.110534_b19) 2011; 10
Shrivastava (10.1016/j.asoc.2023.110534_b300) 2021; 103
10.1016/j.asoc.2023.110534_b325
Rosenblatt (10.1016/j.asoc.2023.110534_b391) 1958; 65
Römer (10.1016/j.asoc.2023.110534_b284) 2011; 79
(10.1016/j.asoc.2023.110534_b206) 2010
Li (10.1016/j.asoc.2023.110534_b172) 2004; 12
Sharma (10.1016/j.asoc.2023.110534_b317) 2020; 7
Achanta (10.1016/j.asoc.2023.110534_b366) 2012; 34
(10.1016/j.asoc.2023.110534_b128) 2021
Harakannanavar (10.1016/j.asoc.2023.110534_b3) 2022; 3
Fordellone (10.1016/j.asoc.2023.110534_b378) 2018
Ji (10.1016/j.asoc.2023.110534_b63) 2018; 10
Habib (10.1016/j.asoc.2023.110534_b278) 2020
(10.1016/j.asoc.2023.110534_b238) 2021
(10.1016/j.asoc.2023.110534_b337) 2017
Zhang (10.1016/j.asoc.2023.110534_b357) 2017
Zhang (10.1016/j.asoc.2023.110534_b26) 2015; 25
Simonyan (10.1016/j.asoc.2023.110534_b396) 2014
Maria (10.1016/j.asoc.2023.110534_b61) 2022
Afifi (10.1016/j.asoc.2023.110534_b326) 2021; 10
Friedman (10.1016/j.asoc.2023.110534_b390) 1975; 100
Ahmad (10.1016/j.asoc.2023.110534_b12) 2022
Ho (10.1016/j.asoc.2023.110534_b388) 1995
Hoffman (10.1016/j.asoc.2023.110534_b207) 2002; 92
Gauthier (10.1016/j.asoc.2023.110534_b143) 2021; 2018
(10.1016/j.asoc.2023.110534_b219) 2021
Muniyappa (10.1016/j.asoc.2023.110534_b102) 1997; 50
Zhang (10.1016/j.asoc.2023.110534_b365) 2011
He (10.1016/j.asoc.2023.110534_b370) 1990; 28
LeCun (10.1016/j.asoc.2023.110534_b50) 1998; 86
Kurmi (10.1016/j.asoc.2023.110534_b312) 2021; 15
Goyal (10.1016/j.asoc.2023.110534_b304) 2019; 78
Lu (10.1016/j.asoc.2023.110534_b55) 2021; 11
(10.1016/j.asoc.2023.110534_b212) 2021
(10.1016/j.asoc.2023.110534_b99) 2016
Gómez-Sanchis (10.1016/j.asoc.2023.110534_b309) 2012; 39
Begue (10.1016/j.asoc.2023.110534_b277) 2017; 8
Sabour (10.1016/j.asoc.2023.110534_b402) 2017
Salih (10.1016/j.asoc.2023.110534_b257) 2020; 7
Holmes (10.1016/j.asoc.2023.110534_b367) 1995
Ganguly (10.1016/j.asoc.2023.110534_b131) 1947; 26
Sobel (10.1016/j.asoc.2023.110534_b349) 1968
Tripathi (10.1016/j.asoc.2023.110534_b290) 2016
Breiman (10.1016/j.asoc.2023.110534_b389) 1996; 24
10.1016/j.asoc.2023.110534_b316
Mallick (10.1016/j.asoc.2023.110534_b106) 2023; 82
Grant (10.1016/j.asoc.2023.110534_b95) 2021
(10.1016/j.asoc.2023.110534_b217) 2021
Arribas (10.1016/j.asoc.2023.110534_b2) 2011; 78
Stone (10.1016/j.asoc.2023.110534_b372) 2001
(10.1016/j.asoc.2023.110534_b214) 2021
10.1016/j.asoc.2023.110534_b408
Wise (10.1016/j.asoc.2023.110534_b173) 2019
Ozguven (10.1016/j.asoc.2023.110534_b281) 2019; 535
Li (10.1016/j.asoc.2023.110534_b174) 2012
Pham (10.1016/j.asoc.2023.110534_b24) 2020; 8
Guang-Bin (10.1016/j.asoc.2023.110534_b43) 2006; 70
Jiang (10.1016/j.asoc.2023.110534_b323) 2019; 7
Sadrossadat (10.1016/j.asoc.2023.110534_b413) 2013; 61
Ahn (10.1016/j.asoc.2023.110534_b164) 1970; 4
Roberts (10.1016/j.asoc.2023.110534_b166) 2013
Sambasivam (10.1016/j.asoc.2023.110534_b64) 2021; 22
Mishra (10.1016/j.asoc.2023.110534_b350) 2021; 212
Liu (10.1016/j.asoc.2023.110534_b315) 2015
Welz (10.1016/j.asoc.2023.110534_b171) 2000; 119
Mummies Black (10.1016/j.asoc.2023.110534_b209) 2020
Weizheng (10.1016/j.asoc.2023.110534_b373) 2008
Cattlin (10.1016/j.asoc.2023.110534_b191) 2021
(10.1016/j.asoc.2023.110534_b330) 2014
10.1016/j.asoc.2023.110534_b412
Kumar (10.1016/j.asoc.2023.110534_b272) 2019
(10.1016/j.asoc.2023.110534_b332) 2007
Singh (10.1016/j.asoc.2023.110534_b101) 2015
Shobana (10.1016/j.asoc.2023.110534_b295) 2019
Gupta (10.1016/j.asoc.2023.110534_b46) 2021; 12
Rush (10.1016/j.asoc.2023.110534_b100) 1983; 67
Liu (10.1016/j.asoc.2023.110534_b54) 2017; 234
Hansen (10.1016/j.asoc.2023.110534_b37) 1990; 12
Luaibi (10.1016/j.asoc.2023.110534_b310) 2021; 11
Shane (10.1016/j.asoc.2023.110534_b137) 2018
Schölkopf (10.1016/j.asoc.2023.110534_b371) 1998; 10
(10.1016/j.asoc.2023.110534_b70) 2021
(10.1016/j.asoc.2023.110534_b187) 2021
(10.1016/j.asoc.2023.110534_b222) 2022
Juroszek (10.1016/j.asoc.2023.110534_b15) 2020; 69
Kalisz (10.1016/j.asoc.2023.110534_b142) 2015; 91
Esgario (10.1016/j.asoc.2023.110534_b313) 2022; 9
Pustejovsky (10.1016/j.asoc.2023.110534_b359) 2012
Joshi (10.1016/j.asoc.2023.110534_b329) 2021; 61
(10.1016/j.asoc.2023.110534_b297) 2019
Grabka (10.1016/j.asoc.2023.110534_b17) 2022; 11
Egel (10.1016/j.asoc.2023.110534_b93) 2017
Rong (10.1016/j.asoc.2023.110534_b301) 2013
LeCun (10.1016/j.asoc.2023.110534_b49) 1995
10.1016/j.asoc.2023.110534_b296
Mark (10.1016/j.asoc.2023.110534_b400) 2018
Brooks (10.1016/j.asoc.2023.110534_b127) 2009; 93
Ramya (10.1016/j.asoc.2023.110534_b377) 2018; 5
Carlier (10.1016/j.asoc.2023.110534_b158) 2000; 90
(10.1016/j.asoc.2023.110534_b230) 2022
Laxmi (10.1016/j.asoc.2023.110534_b42) 2022; 110
(10.1016/j.asoc.2023.110534_b185) 2021
Olanya (10.1016/j.asoc.2023.110534_b134) 1990; 80
Gur (10.1016/j.asoc.2023.110534_b109) 2017; 147
Melton (10.1016/j.asoc.2023.110534_b177) 2009
Amara (10.1016/j.asoc.2023.110534_b246) 2017
Gupta (10.1016/j.asoc.2023.110534_b77) 2021
Misra (10.1016/j.asoc.2023.110534_b84) 2012
(10.1016/j.asoc.2023.110534_b223) 2022
Srunitha (10.1016/j.asoc.2023.110534_b302) 2018
Pethybridge (10.1016/j.asoc.2023.110534_b186) 2020; 35
Crane-Droesch (10.1016/j.asoc.2023.110534_b8) 2018; 13
Dreiseitl (10.1016/j.asoc.2023.110534_b18) 2002; 35
Mueller (10.1016/j.asoc.2023.110534_b155) 2012
Mia (10.1016/j.asoc.2023.110534_b35) 2020; 3
(10.1016/j.asoc.2023.110534_b269) 2021
Sabrol (10.1016/j.asoc.2023.110534_b289) 2016
Munir (10.1016/j.asoc.2023.110534_b184) 2016; 100
Geetharamani (10.1016/j.asoc.2023.110534_b255) 2019; 76
(10.1016/j.asoc.2023.110534_b339) 2020
Syed-Ab-Rahman (10.1016/j.asoc.2023.110534_b249) 2022; 52
(10.1016/j.asoc.2023.110534_b341) 2021
(10.1016/j.asoc.2023.110534_b346) 2010
Elliott (10.1016/j.asoc.2023.110534_b98) 1927; 35
Kakade (10.1016/j.asoc.2023.110534_b208) 2015; 1
Zehr (10.1016/j.asoc.2023.110534_b120) 1982; 66
Too-Edna (10.1016/j.asoc.2023.110534_b254) 2019; 161
Al-gaashani (10.1016/j.asoc.2023.110534_b76) 2022
VijayaLakshmi (10.1016/j.asoc.2023.110534_b263) 2016; 125
Allen (10.1016/j.asoc.2023.110534_b149) 2005
10.1016/j.asoc.2023.110534_b36
Veni (10.1016/j.asoc.2023.110534_b241) 2016
Ashwinkumar (10.1016/j.asoc.2023.110534_b264) 2022; 51
Dutta (10.1016/j.asoc.2023.110534_b270) 2014
10.1016/j.asoc.2023.110534_b146
Tatum (10.1016/j.asoc.2023.110534_b169) 1971; 171
Sibiya (10.1016/j.asoc.2023.110534_b308) 2021; 10
Thomas (10.1016/j.asoc.2023.110534_b39) 2022
(10.1016/j.asoc.2023.110534_b97) 2021
Fuentes (10.1016/j.asoc.2023.110534_b320) 2017; 17
Bhatia (10.1016/j.asoc.2023.110534_b44) 2020; 23
Subrahmanyam (10.1016/j.asoc.2023.110534_b196) 1992
Bradley (10.1016/j.asoc.2023.110534_b364) 1997
Cheng (10.1016/j.asoc.2023.110534_b362) 1995; 17
(10.1016/j.asoc.2023.110534_b340) 2019
10.1016/j.asoc.2023.110534_b279
Donald (10.1016/j.asoc.2023.110534_b133) 2011
(10.1016/j.asoc.2023.110534_b236) 2021
(10.1016/j.asoc.2023.110534_b335) 2013
Huang (10.1016/j.asoc.2023.110534_b293) 2018; 5
Gupta (10.1016/j.asoc.2023.110534_b386) 2021
(10.1016/j.asoc.2023.110534_b227) 2022
Zhou (10.1016/j.asoc.2023.110534_b288) 2002; 137
Yadav (10.1016/j.asoc.2023.110534_b66) 2021; 61
Cortes (10.1016/j.asoc.2023.110534_b31) 1995; 20
Marín-Cevada (10.1016/j.asoc.2023.110534_b167) 2010; 158
(10.1016/j.asoc.2023.110534_b119) 2021
Bhange (10.1016/j.asoc.2023.110534_b34) 2015; 58
Dietterich (10.1016/j.asoc.2023.110534_b409) 2002
10.1016/j.asoc.2023.110534_b129
10.1016/j.asoc.2023.110534_b369
Gupta (10.1016/j.asoc.2023.110534_b387) 2021
Jakjoud (10.1016/j.asoc.2023.110534_b27) 2019
(10.1016/j.asoc.2023.110534_b231) 2022
(10.1016/j.asoc.2023.110534_b181) 2021
Beresford (10.1016/j.asoc.2023.110534_b140) 1994; 22
Smola (10.1016/j.asoc.2023.110534_b383) 2004; 14
Mahmud (10.1016/j.asoc.2023.110534_b23) 2019; 10
Semary (10.1016/j.asoc.2023.110534_b287) 2015
Gupta (10.1016/j.asoc.2023.110534_b384) 2021; 102
(10.1016/j.asoc.2023.110534_b117) 2019
Marin (10.1016/j.asoc.2023.110534_b80) 2003; 87
10.1016/j.asoc.2023.110534_b375
Lu (10.1016/j.asoc.2023.110534_b321) 2017; 142
Narwade (10.1016/j.asoc.2023.110534_b374) 2016
Kawasaki (10.1016/j.asoc.2023.110534_b51) 2015
Ramcharan (10.1016/j.asoc.2023.110534_b267) 2017; 8
Agarwal (10.1016/j.asoc.2023.110534_b58) 2020; 167
(10.1016/j.asoc.2023.110534_b229) 2022
Waller (10.1016/j.asoc.2023.110534_b201) 1993; 97
(10.1016/j.asoc.2023.110534_b176) 2018
10.1016/j.asoc.2023.110534_b225
10.1016/j.asoc.2023.110534_b347
Nelson (10.1016/j.asoc.2023.110534_b81) 2008
Obrien (10.1016/j.asoc.2023.110534_b85) 2021
Hagen (10.1016/j.asoc.2023.110534_b113) 2021
Gunasekaran (10.1016/j.asoc.2023.110534_b258) 2020
10.1016/j.asoc.2023.110534_b221
10.1016/j.asoc.2023.110534_b343
Mengistu (10.1016/j.asoc.2023.110534_b314) 2016; 9
Khirade (10.1016/j.asoc.2023.110534_b6) 2015
10.1016/j.asoc.2023.110534_b342
(10.1016/j.asoc.2023.110534_b394) 2022
Savary (10.1016/j.asoc.2023.110534_b14) 2019; 3
Ganatra (10.1016/j.asoc.2023.110534_b73) 2020; 11
Subrahmanyam (10.1016/j.asoc.2023.110534_b193) 1983
(10.1016/j.asoc.2023.110534_b228) 2022
Roberts (10.1016/j.asoc.2023.110534_b233) 2006; 4
Brazee (10.1016/j.asoc.2023.110534_b205) 2020
(10.1016/j.asoc.2023.110534_b338) 2022
Huang (10.1016/j.asoc.2023.110534_b60) 2023; 82
Wani (10.1016/j.asoc.2023.110534_b38) 2021
(10.1016/j.asoc.2023.110534_b123) 2021
McMullen (10.1016/j.asoc.2023.110534_b159) 2011
10.1016/j.asoc.2023.110534_b355
10.1016/j.asoc.2023.110534_b352
Zambolim (10.1016/j.asoc.2023.110534_b199) 2016; 41
(10.1016/j.asoc.2023.110534_b240) 2021
Williams (10.1016/j.asoc.2023.110534_b232) 2017
Calzarano (10.1016/j.asoc.2023.110534_b182) 2014
(10.1016/j.asoc.2023.110534_b200) 2021
(10.1016/j.asoc.2023.110534_b108) 2019
(10.1016/j.asoc.2023.110534_b135) 2021
Koike (10.1016/j.asoc.2023.110534_b197) 2001; 85
Gonzalez (10.1016/j.asoc.2023.110534_b3
References_xml – volume: 17
  start-page: 790
  year: 1995
  end-page: 799
  ident: b362
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 61
  start-page: 103
  year: 1989
  end-page: 113
  ident: b348
  article-title: Gabor filters as texture discriminator
  publication-title: Biol. Cybernet.
– year: 2021
  ident: b219
  article-title: Scale insects
– volume: 3
  year: 2013
  ident: b5
  article-title: Image processing techniques for detection of leaf disease
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– volume: 5
  start-page: 157
  year: 2004
  end-page: 166
  ident: b92
  article-title: Sugarbeet leaf spot disease (CercosporabeticolaSacc)
  publication-title: Mol. Plant Path.
– year: 2006
  ident: b202
  article-title: Coffee berry disease
– volume: 3
  start-page: 113
  year: 2014
  end-page: 124
  ident: b118
  article-title: Citrus melanose (Diaporthecitri wolf): a review
  publication-title: Int. J. Curr. Microbiol. Appl. Sci.
– volume: 61
  year: 2021
  ident: b66
  article-title: Identification of disease using deep learning and evaluation of bacteriosis in peach leaf
  publication-title: Ecol. Inform.
– volume: 8
  start-page: 166
  year: 2017
  end-page: 175
  ident: b277
  article-title: Automatic recognition of medicinal plants using machine learning techniques
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– year: 2021
  ident: b215
  article-title: Grapes: Diseases and symptoms
– volume: 128
  start-page: 21
  year: 2013
  end-page: 30
  ident: b305
  article-title: Development of spectral indices for detecting and identifying plant diseases
  publication-title: Remote Sens. Environ.
– volume: 72
  start-page: 335
  year: 2006
  end-page: 347
  ident: b114
  article-title: Tomato early blight (
  publication-title: J. Gen. Plant Pathol.
– year: 2021
  ident: b145
  article-title: Garden diseases - Pear rust
– volume: 158
  start-page: 93
  year: 2010
  end-page: 99
  ident: b167
  article-title: Tatumellaptyseos, an unrevealed causative agent of pink disease in pineapple
  publication-title: J. Phytopath.
– volume: 79
  start-page: 180
  year: 2011
  end-page: 188
  ident: b284
  article-title: Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with support vector machines
  publication-title: Comput. Electron. Agric.
– volume: 3
  start-page: 1
  year: 2021
  end-page: 9
  ident: b16
  article-title: Plant health and its effects on food safety and security in a one health framework: Four case studies
  publication-title: One Health Outlook
– volume: 66
  start-page: 1101
  year: 1982
  end-page: 1105
  ident: b120
  article-title: Control of brown rot in peach orchards
  publication-title: Plant Dis.
– volume: 22
  start-page: 113
  year: 1994
  end-page: 120
  ident: b140
  article-title: Economics of reducing fungicide use by weather-based disease forecasts for control of
  publication-title: N. Z. J. Crop Hortic. Sci.
– year: 2013
  ident: b166
  article-title: Southwest canker
  publication-title: The Plant Doctor’s Landscape Tips
– year: 2021
  ident: b204
  article-title: Coffee wilt disease
– volume: 193
  year: 2022
  ident: b65
  article-title: Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images
  publication-title: Comput. Electron. Agric.
– start-page: 1
  year: 2021
  end-page: 36
  ident: b386
  article-title: Least squares large margin distribution machine for regression
  publication-title: Appl. Intell.
– volume: 5
  start-page: 3818
  year: 2018
  end-page: 3823
  ident: b377
  article-title: A review of different classification techniques in machine learning using weka for plant disease detection
  publication-title: Int. Res. J. Eng. Technol. (IRJET)
– year: 2021
  ident: b236
  article-title: Stem-chewing insects
– volume: 82
  start-page: 12017
  year: 2023
  end-page: 12041
  ident: b106
  article-title: Deep learning based automated disease detection and pest classification in Indian mung bean
  publication-title: Multimedia Tools Appl.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b28
  article-title: Tomatoes classification using K-NN based on GLCM and HSV color space
  publication-title: 2017 International Conference on Innovative and Creative Information Technology
– year: 2021
  ident: b191
  article-title: Early leaf spot on peanut leaf
– start-page: 1
  year: 2019
  end-page: 6
  ident: b272
  article-title: Image based tomato leaf disease detection
  publication-title: 2019 10th International Conference on Computing, Communication and Networking Technologies
– volume: 151
  start-page: 72
  year: 2016
  end-page: 80
  ident: b53
  article-title: Plant species classification using deep convolutional neural network
  publication-title: Biosyst. Eng.
– year: 2021
  ident: b213
  article-title: Cannabis aphids
– volume: 135
  start-page: 68
  year: 2021
  end-page: 77
  ident: b356
  article-title: Greedy auto-augmentation for n-shot learning using deep neural networks
  publication-title: Neural Netw.
– year: 2022
  ident: b227
  article-title: Citrus greening
– volume: 163
  year: 2019
  ident: b72
  article-title: A low shot learning method for tea leaf’s disease identification
  publication-title: Comput. Electron. Agric.
– year: 2022
  ident: b229
  article-title: Bean pod mottle
– year: 2019
  ident: b173
  article-title: Curvularia Leaf Spot
– year: 2021
  ident: b157
  article-title: Eyespot of corn
– start-page: 1
  year: 2016
  end-page: 6
  ident: b290
  article-title: Recent machine learning based approaches for disease detection and classification of agricultural products
  publication-title: 2016 International Conference on Computing Communication Control and Automation
– volume: 3
  start-page: 430
  year: 2019
  end-page: 439
  ident: b14
  article-title: The global burden of pathogens and pests on major food crops
  publication-title: Nat. Ecol. Evol.
– volume: 9
  start-page: 162
  year: 2021
  end-page: 166
  ident: b248
  article-title: Techniques for rice leaf disease detection using machine LearningAlgorithms
  publication-title: Int. J. Eng. Res. Technol.
– year: 2021
  ident: b181
  article-title: Symptoms of PVY
– volume: 11
  start-page: 1373
  year: 2019
  ident: b280
  article-title: UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning
  publication-title: Remote Sens.
– volume: 23
  start-page: 1059
  year: 2020
  end-page: 1068
  ident: b44
  article-title: Application of extreme learning machine in plant disease prediction for highly imbalanced dataset
  publication-title: J. Stat. Manag. Syst.
– start-page: 1
  year: 2021
  end-page: 37
  ident: b38
  article-title: Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges
  publication-title: Arch. Comput. Methods Eng.
– year: 2022
  ident: b226
  article-title: Solar scorch
– year: 2021
  ident: b192
  article-title: Groundnut: Minor disease: Leaf spot
– year: 2018
  ident: b378
  article-title: Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data
– year: 2017
  ident: b337
  article-title: Rice leaf disease dataset
– year: 2017
  ident: b93
  article-title: Cercospora Leaf Spot of Beet
– volume: 65
  start-page: 386
  year: 1958
  ident: b391
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
– year: 2017
  ident: b232
  article-title: Bacterial Diseases of Plants Agriculture and Natural Resources
– start-page: 1242
  year: 2016
  end-page: 1246
  ident: b289
  article-title: Tomato plant disease classification in digital images using classification tree
  publication-title: 2016 International Conference on Communication and Signal Processing
– volume: 3
  start-page: 185
  year: 2020
  end-page: 193
  ident: b35
  article-title: Mango leaf disease recognition using neural network and support vector machine
  publication-title: Iran J. Comput. Sci.
– volume: 110
  year: 2022
  ident: b42
  article-title: Multi-category intuitionistic fuzzy twin support vector machines with an application to plant leaf recognition
  publication-title: Eng. Appl. Artif. Intell.
– volume: 40
  start-page: 50
  year: 2017
  end-page: 56
  ident: b271
  article-title: LeafNet: A computer vision system for automatic plant species identification
  publication-title: Ecol. Inform.
– volume: 120
  start-page: 279
  year: 1992
  end-page: 286
  ident: b195
  article-title: Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (
  publication-title: Ann. Appl. Biol.
– reference: Kapil Prashar, Rajneesh Talwar, Chander Kant, Inconsistent Cluster Analysis With Disease Feature Enhancement (ICADFE) For American Cotton Leaf Disease Recognition, in: International Conference on Intelligent Machines Held at Baba Farid College of Engineering and Technology, 2019, pp. 15–16.
– volume: 82
  start-page: 2121
  year: 2023
  end-page: 2144
  ident: b60
  article-title: Tomato leaf disease detection system based on FC-SNDPN
  publication-title: Multimedia Tools Appl.
– volume: 78
  start-page: 27785
  year: 2019
  end-page: 27808
  ident: b304
  article-title: Multiclass twin support vector machine for plant species identification
  publication-title: Multimedia Tools Appl.
– volume: 8
  start-page: 1852
  year: 2017
  ident: b267
  article-title: Deep learning for image-based cassava disease detection
  publication-title: Front. Plant Sci.
– start-page: 278
  year: 2012
  end-page: 335
  ident: b84
  article-title: Diseases of mango
  publication-title: Diseases of Fruit Crops
– reference: Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, Zbigniew Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
– volume: 21
  start-page: 661
  year: 1996
  end-page: 682
  ident: b392
  article-title: Neural networks and logistic regression: Part i
  publication-title: Comput. Statist. Data Anal.
– volume: 35
  start-page: 1
  year: 2015
  end-page: 25
  ident: b4
  article-title: Advanced methods of plant disease detection. A review
  publication-title: Agron. Sustain. Dev.
– volume: 26
  year: 1947
  ident: b131
  article-title: Studies on the stackburn disease of rice and identity of the causal organism
  publication-title: J. Ind. Bot. Soc.
– start-page: 115
  year: 2015
  end-page: 123
  ident: b315
  article-title: Hybrid deep learning for plant leaves classification
  publication-title: International Conference on Intelligent Computing
– year: 2022
  ident: b230
  article-title: Sugarcane mosaic virus
– volume: 142
  start-page: 369
  year: 2017
  end-page: 379
  ident: b321
  article-title: An in-field automatic wheat disease diagnosis system
  publication-title: Comput. Electron. Agric.
– year: 2010
  ident: b346
  article-title: Fluor-imagingprinciples.pdf
– start-page: 472
  year: 2011
  end-page: 474
  ident: b365
  article-title: The marker-based watershed segmentation algorithm of ore image
  publication-title: 2011 IEEE 3rd International Conference on Communication Software and Networks
– volume: 78
  start-page: 9
  year: 2011
  end-page: 18
  ident: b2
  article-title: Leaf classification in sunflower crops by computer vision and neural networks
  publication-title: Comput. Electron. Agric.
– year: 1987
  ident: b110
  article-title: Late Blight of Potato
– volume: 120
  year: 2016
  ident: b414
  article-title: Adjoint method for estimating Jiles–Atherton hysteresis model parameters
  publication-title: J. Appl. Phys.
– start-page: 580
  year: 2014
  end-page: 587
  ident: b399
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– year: 2021
  ident: b83
  article-title: Black spot
– year: 2015
  ident: b190
  article-title: Early and late leaf spot of groundnut
– year: 2019
  ident: b297
  article-title: Alternaria leaf spot: How to wipe out this fungal foe for good
– volume: 81
  start-page: 131
  year: 2015
  end-page: 147
  ident: b41
  article-title: A comparison on multi-class classification methods based on least squares twin support vector machine
  publication-title: Knowl.-Based Syst.
– volume: 103
  start-page: 17
  year: 2021
  end-page: 26
  ident: b300
  article-title: Rice plant disease classification using color features: a machine learning paradigm
  publication-title: J. Plant Pathol.
– start-page: 1
  year: 2021
  end-page: 26
  ident: b77
  article-title: Computational approach to clinical diagnosis of diabetes disease: a comparative study
  publication-title: Multimedia Tools Appl.
– reference: White tininess, Available at:
– volume: 374
  year: 2019
  ident: b9
  article-title: Climate change effects on Black Sigatoka disease of banana
  publication-title: Phil. Trans. R. Soc. B
– year: 2021
  ident: b198
  article-title: Spinach-Stemphylium
– volume: 10
  start-page: 465
  year: 1991
  end-page: 468
  ident: b122
  article-title: Yield losses in soybeans from frogeye leaf spot caused by Cercosporasojina
  publication-title: Crop Protection
– volume: 11
  start-page: 707
  year: 2021
  ident: b55
  article-title: Review on convolutional neural network (CNN) applied to plant leaf disease classification
  publication-title: Agriculture
– start-page: 1
  year: 2022
  end-page: 24
  ident: b234
  article-title: A novel framework for potato leaf disease detection using an efficient deep learning model
  publication-title: Hum. Ecol. Risk Assess.
– volume: 154
  start-page: 96
  year: 2019
  end-page: 104
  ident: b298
  article-title: Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging
  publication-title: Postharvest Biol. Technol.
– year: 2019
  ident: b111
  article-title: Late blight of potato and tomato: declared pest
– volume: 76
  start-page: 323
  year: 2019
  end-page: 338
  ident: b255
  article-title: Identification of plant leaf diseases using a nine-layer deep convolutional neural network
  publication-title: Comput. Electr. Eng.
– volume: 21
  start-page: 3169
  year: 2021
  ident: b11
  article-title: Identification of cotton leaf lesions using deep learning techniques
  publication-title: Sensors
– volume: 25
  start-page: 42
  year: 2015
  end-page: 45
  ident: b26
  article-title: Plant disease recognition based on plant leaf image
  publication-title: J. Anim. Plant Sci.
– year: 2001
  ident: b372
  article-title: A survey of color for computer graphics
  publication-title: Course at SIGGRAPH, Vol. 744
– start-page: 300
  year: 2013
  end-page: 304
  ident: b301
  article-title: Early detection and continuous quantization of plant disease using template matching and support vector machine algorithms
  publication-title: 2013 First International Symposium on Computing and Networking
– reference: Christopher G. Harris, Mike Stephens, A combined corner and edge detector, in: Alvey Vision Conference, No. 15, 1988, pp. 10–5244, 50.
– volume: 198
  year: 2022
  ident: b67
  article-title: Deep diagnosis: A real-time apple leaf disease detection system based on deep learning
  publication-title: Comput. Electron. Agric.
– volume: 14
  start-page: 12191
  year: 2014
  end-page: 12206
  ident: b253
  article-title: On plant detection of intact tomato fruits using image analysis and machine learning methods
  publication-title: Sensors
– volume: 13
  start-page: 162
  year: 2021
  ident: b306
  article-title: Identifying pine wood nematode disease using UAV images and deep learning algorithms
  publication-title: Remote Sens.
– volume: 34
  start-page: 2274
  year: 2012
  end-page: 2282
  ident: b366
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 47
  year: 2019
  end-page: 51
  ident: b295
  article-title: Glcm Based Plant Leaf Disease Detection Using Multiclass SVM
  publication-title: Int J. Res. Dev. Technol.
– start-page: 175
  year: 1995
  end-page: 189
  ident: b398
  article-title: Learning vector quantization
  publication-title: Self-Organizing Maps
– year: 2009
  ident: b177
  article-title: Control of Tobacco Mosaic Virus on Flue-Cured Tobacco
– year: 2021
  ident: b185
  article-title: Bitter rot
– start-page: 1
  year: 2008
  end-page: 10
  ident: b81
  article-title: Black Leaf Streak of Banana
– start-page: 1
  year: 2021
  end-page: 57
  ident: b387
  article-title: On regularization based twin support vector regression with huber loss
  publication-title: Neural Process. Lett.
– start-page: 1
  year: 2022
  end-page: 16
  ident: b39
  article-title: Evaluation of the benefits of combined reflection and transmission hyperspectral imaging data through disease detection and quantification in plant–pathogen interactions
  publication-title: J. Plant Dis. Prot.
– start-page: 293
  year: 2016
  end-page: 300
  ident: b374
  article-title: Local and global color histogram feature for color content-based image retrieval system
  publication-title: Proceedings of the International Congress on Information and Communication Technology
– volume: 104
  start-page: 53
  year: 1984
  end-page: 59
  ident: b86
  article-title: The epidemiology of anthracnose disease of mango: inoculum sources, spore production and dispersal
  publication-title: Ann. Appl. Biol.
– volume: 39
  start-page: 1137
  year: 2016
  end-page: 1149
  ident: b71
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 1900
  ident: b136
  article-title: Peach Leaf Curl: Its Nature and Treatment, No. 20
– volume: 92
  start-page: 676
  year: 2002
  end-page: 680
  ident: b207
  article-title: Utilizing epidemiological investigations to optimize management of grape black rot
  publication-title: Phytopathology
– year: 2011
  ident: b159
  article-title: Bacterial Leaf Streak and Black Chaff of Wheat
– volume: 171
  start-page: 33
  year: 2015
  end-page: 44
  ident: b274
  article-title: Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado
  publication-title: Remote Sens. Environ.
– year: 1992
  ident: b196
  article-title: Field Diagnosis of Groundnut Diseases
– start-page: 368
  year: 1997
  end-page: 374
  ident: b364
  article-title: Clustering via concave minimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 2
  start-page: 303
  year: 2001
  end-page: 309
  ident: b112
  article-title: The tomato powdery mildew fungus
  publication-title: Mol. Plant Path.
– year: 2020
  ident: b339
  article-title: Plant pathology
– volume: 535
  year: 2019
  ident: b281
  article-title: Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms
  publication-title: Physica A
– volume: 158
  start-page: 48
  year: 2017
  end-page: 51
  ident: b243
  article-title: Automatic recognition of vegetable crops diseases based on neural network classifier
  publication-title: Int. J. Comput. Appl.
– start-page: 1202
  year: 2014
  end-page: 1206
  ident: b286
  article-title: Discussion on sunflower leaf disease diagnosis based on imaging identification
  publication-title: Applied Mechanics and Materials, Vol. 577
– year: 2021
  ident: b240
  article-title: Sucking insects
– volume: 78
  start-page: 269
  year: 1974
  end-page: 279
  ident: b156
  article-title: Effects of eyespot on the yield of winter wheat
  publication-title: Ann. Appl. Biol.
– year: 2010
  ident: b203
  publication-title: Coffee Wilt Disease
– year: 2015
  ident: b1
  article-title: Common Diseases of Tomatoes: Part II. Diseases Caused By Bacteria, Viruses, and Nematodes
– start-page: 0678
  year: 2018
  end-page: 0682
  ident: b345
  article-title: Disease classification and grading of orange using machine learning and fuzzy logic
  publication-title: 2018 International Conference on Communication and Signal Processing
– volume: 40
  start-page: 277
  year: 1998
  end-page: 286
  ident: b132
  article-title: Bionomics and control of rice white tip disease nematode,
  publication-title: Plant Prot. Bull. (Taipei)
– year: 2022
  ident: b231
  article-title: Brown spot
– year: 2019
  ident: b160
  article-title: Wheat disease update: Bacterial streak and black chaff
– year: 2021
  ident: b218
  article-title: Leaf miners
– reference: Godliver Owomugisha, John A. Quinn, Ernest Mwebaze, James Lwasa, Automated vision-based diagnosis of banana bacterial wilt disease and black sigatoka disease, in: International Conference on the Use of Mobile ICT in Africa, 2014, pp. 1–5.
– year: 2021
  ident: b135
  article-title: Leaf Symptoms of Leptosphaerulina Leaf Spot
– start-page: 422
  year: 2018
  end-page: 436
  ident: b302
  article-title: Mango leaf unhealthy region detection and classification
  publication-title: Computational Vision and Bio Inspired Computing, No. 28
– year: 2022
  ident: b12
  article-title: Climate change farm based autonomous adaptation measures and its impact on wheat crop productivity in Punjab, Pakistan
– reference: (2010).
– volume: 54
  start-page: 1091
  year: 2022
  end-page: 1130
  ident: b382
  article-title: Density weighted twin support vector machines for binary class imbalance learning
  publication-title: Neural Process. Lett.
– year: 2017
  ident: b357
  article-title: mixup: Beyond empirical risk minimization
– start-page: 31
  year: 2020
  end-page: 44
  ident: b10
  article-title: Managing planting time for cotton production
  publication-title: Cotton Production and Uses
– year: 2021
  ident: b85
  article-title: SootyMold
– volume: 43
  start-page: 59
  year: 1982
  end-page: 69
  ident: b397
  article-title: Self-organized formation of topologically correct feature maps
  publication-title: Biol. Cybernet.
– volume: 67
  start-page: 829
  year: 1983
  end-page: 832
  ident: b100
  article-title: Rice sheath blight: A major rice disease
  publication-title: Plant Dis.
– volume: 13
  start-page: 293
  year: 2020
  end-page: 305
  ident: b74
  article-title: Performance analysis of fine-tuned convolutional neural network models for plant disease classification
  publication-title: Int. J. Control Autom.
– start-page: 1104
  year: 2021
  end-page: 1107
  ident: b260
  article-title: Deep learning model for early prediction of plant disease
  publication-title: 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks
– volume: 97
  start-page: 989
  year: 1993
  end-page: 994
  ident: b201
  article-title: Characterization of the coffee berry disease pathogen,
  publication-title: Mycol. Res.
– volume: 100
  start-page: 3246
  year: 2020
  end-page: 3256
  ident: b256
  article-title: Detection of rice plant diseases based on deep transfer learning
  publication-title: J. Sci. Food Agric.
– start-page: 228
  year: 2018
  end-page: 235
  ident: b379
  article-title: Kernel target alignment based fuzzy least square twin bounded support vector mac hine
  publication-title: 2018 IEEE Symposium Series on Computational Intelligence
– year: 2013
  ident: b335
  article-title: Apple leaf dataset
– volume: 80
  start-page: 1341
  year: 1990
  end-page: 1347
  ident: b134
  article-title: Analysis of epidemics of Leptosphaerulina leaf spots on alfalfa and white clover in time and space
  publication-title: Phytopathology
– volume: 41
  start-page: 1505
  year: 1966
  end-page: 1512
  ident: b151
  article-title: Increased disease resistance and enzyme activity induced by ethylene and ethylene production of black rot infected sweet potato tissue
  publication-title: Plant Physiol.
– volume: 74
  year: 1993
  ident: b178
  article-title: Characterization of potyviruses from tulip and lily which cause flower-breaking
  publication-title: J. Gen. Virol.
– start-page: 768
  year: 2015
  end-page: 771
  ident: b6
  article-title: Patil plant disease detection using image processing
  publication-title: 2015 International Conference on Computing Communication Control and Automation
– volume: 10
  start-page: 131
  year: 2021
  ident: b308
  article-title: Automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning
  publication-title: Pathogens
– year: 2017
  ident: b403
  article-title: Gabor capsule network for plant disease detection
– reference: Md Sultan Mahmud, Young K. Chang, Qamar U. Zaman, Travis J. Esau, Detection of strawberry powdery mildew disease in leaf using image texture and supervised classifiers, in: Proceedings of the CSBE/SCGAB 2018 Annual Conference, Guelph, ON, USA, 2018, pp. 22–25.
– volume: 7
  start-page: 1
  year: 2020
  ident: b257
  article-title: Deep learning convolution neural network to detect and classify tomato plant leaf diseases
  publication-title: Open Access Libr. J.
– year: 1998
  ident: b144
  article-title: Diagnosing Maize Diseases in Latin America
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b411
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– year: 2009
  ident: b333
  article-title: Flavia dataset
– year: 2021
  ident: b87
  article-title: Anthracnose: What are the symptoms and how to treat it
– year: 2014
  ident: b330
  article-title: Late leafspot a problem in peanuts
– volume: 10
  start-page: 11
  year: 2018
  ident: b311
  article-title: Identification of apple leaf diseases based on deep convolutional neural networks
  publication-title: Symmetry
– year: 2021
  ident: b126
  article-title: Bacterial Leaf Scorch of ShadeTrees
– start-page: 1
  year: 2022
  end-page: 14
  ident: b62
  article-title: Detection of gray mold disease and its severity on strawberry using deep learning networks
  publication-title: J. Plant Dis. Prot.
– year: 2022
  ident: b228
  article-title: Red rot
– volume: 2
  start-page: 984
  year: 2013
  end-page: 988
  ident: b276
  article-title: A leaf recognition technique for plant classification using RBPNN and Zernike moments
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
– year: 2007
  ident: b332
  article-title: Foliage dataset
– year: 2021
  ident: b154
  article-title: Northern Corn Leaf Blight of Corn
– year: 2021
  ident: b217
  article-title: Mealybugs
– year: 2000
  ident: b138
  publication-title: Fire Blight: the Disease and Its Causative Agent,
– year: 2021
  ident: b220
  article-title: Citrus leaf miner
– year: 2021
  ident: b128
  article-title: Smutplant disease
– start-page: 1
  year: 1994
  end-page: 67
  ident: b179
  article-title: Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies
  publication-title: Advances in Virus Research, Vol. 44
– volume: 47
  start-page: 101
  year: 2018
  end-page: 114
  ident: b13
  article-title: Climate change induced drought impacts on plant diseases in New Zealand
  publication-title: Australas. Plant Pathol.
– year: 2016
  ident: b89
  article-title: Block Charles Diseases of Sunflower
– year: 2018
  ident: b165
  article-title: What is sunscald: Learn about sunscald on plants
– reference: Greg Pass, Zabih Ramin, Justin Miller, Comparing images using color coherence vectors, in: Proceedings of the Fourth ACM International Conference on Multimedia, 1997, pp. 65–73.
– volume: 11
  start-page: 1719
  year: 2021
  ident: b310
  article-title: Detection of citrus leaf diseases using a deep learning technique
  publication-title: Int. J. Electr. Comput. Eng.
– year: 2022
  ident: b223
  article-title: Quick wilt
– volume: 33
  start-page: 4243
  year: 2021
  end-page: 4261
  ident: b381
  article-title: Density-weighted support vector machines for binary class imbalance learning
  publication-title: Neural Comput. Appl.
– year: 2021
  ident: b239
  article-title: Root-chewing insect
– year: 2019
  ident: b108
  article-title: Granville Wilt of Tobacco Tobacco Disease Information
– year: 2018
  ident: b115
  article-title: Early Blight of Tomato
– start-page: 150
  year: 2018
  end-page: 154
  ident: b292
  article-title: Recognition and detection of tea leaf’s diseases using support vector machine
  publication-title: 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications
– year: 2014
  ident: b396
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2021
  ident: b238
  article-title: Spider mite
– volume: 10
  start-page: 579
  year: 2009
  end-page: 585
  ident: b94
  article-title: Genetic and physiological determinants of
  publication-title: Mol. Plant Path.
– volume: 5
  start-page: 443
  year: 2016
  end-page: 448
  ident: b189
  article-title: In vitro evaluation of chemical formulates on Xanthomonas axonopodispv. punicae
  publication-title: Int. J. Curr. Microbiol. Appl. Sci.
– volume: 10
  start-page: 1027
  year: 2019
  ident: b23
  article-title: Real-Time Detection of Strawberry Powdery Mildew Disease Using a Mobile Machine Vision System
  publication-title: Agronomy
– year: 2019
  ident: b117
  article-title: Citrus Canker
– volume: 61
  year: 2021
  ident: b329
  article-title: VirLeafNet: automatic analysis and viral disease diagnosis using deep-learning in vigna mungo plant
  publication-title: Ecol. Inform.
– year: 2011
  ident: b69
  article-title: Coffee disease detection using a robust HSV color-based segmentation and transfer learning for use on smartphones
  publication-title: Int. J. Intell. Syst.
– year: 2018
  ident: b400
  article-title: MobileNetV2: The next generation of on-device computer vision networks
– year: 2020
  ident: b278
  article-title: An in-depth exploration of automated jackfruit disease recognition
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 9
  start-page: 38
  year: 2022
  end-page: 47
  ident: b313
  article-title: An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning
  publication-title: Inf. Process. Agric.
– reference: Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, Yi Yang, Random erasing data augmentation, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 07, 2020, pp. 13001–13008.
– volume: 92
  start-page: 530
  year: 2008
  end-page: 541
  ident: b116
  article-title: Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves
  publication-title: Plant Dis.
– volume: 52
  start-page: 927
  year: 2022
  end-page: 938
  ident: b249
  article-title: Citrus disease detection and classification using end-to-end anchor-based deep learning model
  publication-title: Appl. Intell.
– year: 2021
  ident: b97
  article-title: Rice: fungal diseases: stackburn disease
– year: 2015
  ident: b210
  article-title: Diagnosing Barley Scald
– start-page: 0538
  year: 2019
  end-page: 0542
  ident: b57
  article-title: Machine learning for plant leaf disease detection and classification–A review
  publication-title: 2019 International Conference on Communication and Signal Processing
– volume: 2018
  year: 2021
  ident: b143
  article-title: Apple scab
  publication-title: Plant Health Instr.
– volume: 58
  start-page: 280
  year: 2015
  end-page: 288
  ident: b34
  article-title: Smart farming: Pomegranate disease detection using image processing
  publication-title: Procedia Comput. Sci.
– reference: New Plant Diseases Dataset, Flowers Recognition and Weed Detection in Soybean Crops datasets are Available at:
– volume: 47
  start-page: 1
  year: 2022
  end-page: 14
  ident: b150
  article-title: Different stages of disease detection in squash plant based on machine learning
  publication-title: J. Biosci.
– volume: 41
  start-page: 1353
  year: 2012
  end-page: 1359
  ident: b285
  article-title: A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease
  publication-title: Procedia Eng.
– year: 2016
  ident: b99
  article-title: Diagnosing Stripe Blight in Oats
– start-page: 79
  year: 2017
  end-page: 88
  ident: b246
  article-title: A deep learning-based approach for banana leaf diseases classification
  publication-title: Datenbanksystemefür Business, Technologie und Web (BTW 2017)-Workshopband
– volume: 1
  start-page: 21
  year: 1988
  end-page: 28
  ident: b395
  article-title: A theoretical framework for back-propagation
  publication-title: Proceedings of the 1988 connectionist models summer school
– year: 2020
  ident: b209
  article-title: Black rot of grape
– volume: 35
  start-page: 599
  year: 2020
  end-page: 607
  ident: b186
  article-title: Rolled–crimped cereal rye residue suppresses white mold in no-till soybean and dry bean
  publication-title: Renew. Agric. Food Syst.
– reference: Foot rot /quick wilt (Quick wilt) Available at:
– year: 2022
  ident: b76
  article-title: Tomato leaf disease classification by exploiting transfer learning and feature concatenation
  publication-title: IET Image Process.
– volume: 7
  start-page: 39
  year: 1997
  end-page: 55
  ident: b368
  article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF
  publication-title: Appl. Intell.
– volume: 87
  start-page: 208
  year: 2003
  end-page: 222
  ident: b80
  article-title: Black sigatoka: an increasing threat to banana cultivation
  publication-title: Plant Dis.
– year: 2021
  ident: b113
  article-title: How to get rid of powdery mildew
– reference: Shekofa Ghoury, Cemil Sungur, Akif Durdu, Real-Time Diseases Detection of Grape and Grape Leaves using Faster R-CNN and SSD MobileNet Architectures, in: International Conference on Advanced Technologies, Computer Engineering and Science, ICATCES 2019, 2019.
– reference: Plant Seedings Dataset, Available:
– volume: 161
  start-page: 272
  year: 2019
  end-page: 279
  ident: b254
  article-title: A comparative study of fine-tuning deep learning models for plant disease identification
  publication-title: Comput. Electron. Agric.
– volume: 137
  start-page: 239
  year: 2002
  end-page: 263
  ident: b288
  article-title: Ensembling neural networks: many could be better than all
  publication-title: Artificial Intelligence
– volume: 11
  year: 2020
  ident: b266
  article-title: Gabor capsule network for plant disease detection
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– year: 2019
  ident: b340
  article-title: Plantvillage dataset
– volume: 168
  year: 2020
  ident: b344
  article-title: SPORT pre-processing can improve near-infrared quality prediction models for fresh fruits and agro-materials
  publication-title: Postharvest Biol. Technol.
– volume: 35
  start-page: 3427
  year: 2014
  end-page: 3439
  ident: b25
  article-title: Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms
  publication-title: Int. J. Remote Sens.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b241
  article-title: An application of image processing techniques for detection of diseases on brinjal leaves using k-means clustering method
  publication-title: 2016 international conference on recent trends in information technology (ICRTIT)
– start-page: 894
  year: 2012
  end-page: 900
  ident: b20
  article-title: Image recognition of plant diseases based on backpropagation networks
  publication-title: 2012 5th International Congress on Image and Signal Processing
– year: 2021
  ident: b183
  article-title: Esca
– year: 2004
  ident: b354
  article-title: Digital Image Processing Using MATLAB
– volume: 7
  start-page: 1419
  year: 2016
  ident: b265
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
– volume: 3
  start-page: 294
  year: 2021
  end-page: 312
  ident: b259
  article-title: Automatic and reliable leaf disease detection using deep learning techniques
  publication-title: AgriEngineering
– start-page: 1
  year: 2019
  end-page: 7
  ident: b273
  article-title: Identification of soybean diseases using learning vector quantization neural network algorithm
  publication-title: J. Anal. Comput.
– start-page: 1
  year: 1995
  end-page: 5
  ident: b367
  article-title: Feature selection via the discovery of simple classification rules
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b31
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 171
  start-page: 1113
  year: 1971
  end-page: 1116
  ident: b169
  article-title: The southern corn leaf blight epidemic
  publication-title: Science
– volume: 12
  start-page: 97
  year: 2004
  end-page: 101
  ident: b172
  article-title: The research progress of maize Curvularia leaf spot disease
  publication-title: J. Maize Sci.
– volume: 8
  year: 2020
  ident: b24
  article-title: Early disease classification of mango leaves using feed-forward neural network and hybrid metaheuristic feature selection
  publication-title: IEEE Access
– year: 2021
  ident: b70
  article-title: Coffee disease dataset
– year: 2012
  ident: b359
  article-title: Natural Language Annotation for Machine Learning: A Guide To Corpus-Building for Applications
– volume: 10
  start-page: 1027
  year: 2020
  ident: b242
  article-title: Real-time detection of strawberry powdery mildew disease using a mobile machine vision system
  publication-title: Agronomy
– start-page: 431
  year: 2019
  end-page: 444
  ident: b380
  article-title: Lagrangian twin-bounded support vector machine based on L2-norm
  publication-title: Recent Developments in Machine Learning and Data Analytics
– year: 2010
  ident: b7
  article-title: Handbook of Image and Video Processing
– year: 2021
  ident: b212
  article-title: Peacock spot
– volume: 74
  start-page: 91
  year: 2010
  end-page: 99
  ident: b32
  article-title: Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance
  publication-title: Comput. Electron. Agric.
– start-page: 553
  year: 2012
  end-page: 558
  ident: b174
  article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement
  publication-title: Advances in Computer Science and Information Engineering
– start-page: 638
  year: 2015
  end-page: 645
  ident: b51
  article-title: Basic study of automated diagnosis of viral plant diseases using convolutional neural networks
  publication-title: International Symposium on Visual Computing
– year: 2021
  ident: b194
  article-title: Groundnut: Major disease: Rust
– start-page: 318
  year: 1986
  end-page: 362
  ident: b393
  article-title: Learning internal representations by error propagation
  publication-title: Parallel Distributed Processing. Exploration in the Microstructure of Cognition
– year: 2021
  ident: b211
  article-title: Tan spot
– volume: 11
  start-page: 1
  year: 2016
  end-page: 26
  ident: b319
  article-title: Identification of alfalfa leaf diseases using image recognition technology
  publication-title: PLoS One
– volume: 10
  start-page: 28
  year: 2021
  ident: b326
  article-title: Convolutional neural network for automatic identification of plant diseases with limited data
  publication-title: Plants
– volume: 121
  year: 2020
  ident: b358
  article-title: Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2017
  end-page: 5
  ident: b407
  article-title: Disease detection on the leaves of the tomato plants by using deep learning
  publication-title: 2017 6th International Conference on Agro-Geoinformatics
– volume: 41
  start-page: 1
  year: 2016
  end-page: 8
  ident: b199
  article-title: Current status and management of coffee leaf rust in Brazil
  publication-title: Trop. Plant Pathol.
– volume: 48
  start-page: 432
  year: 2008
  end-page: 437
  ident: b124
  article-title: Studies on leaf spot disease of withaniasomnifera and its impact on secondary metabolites
  publication-title: Indian J. Microbiol.
– start-page: 110
  year: 2002
  end-page: 125
  ident: b409
  article-title: Ensemble learning
  publication-title: The Handbook of Brain Theory and Neural Networks, Vol. 2
– start-page: 401
  year: 2015
  end-page: 410
  ident: b287
  article-title: Fruit-based tomato grading system using features fusion and support vector machine
  publication-title: Intelligent Systems’ 2014
– volume: 83
  start-page: 884
  year: 1999
  end-page: 895
  ident: b153
  article-title: Gray leaf spot: a disease of global importance in maize production
  publication-title: Plant Dis.
– volume: 50
  start-page: 277
  year: 1997
  end-page: 281
  ident: b102
  article-title: Occurrence of a mosaic virus disease on sunflower in Karnataka
  publication-title: Indian Phytopath.
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: b54
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 145
  start-page: 311
  year: 2018
  end-page: 318
  ident: b56
  article-title: Deep learning models for plant disease detection and diagnosis
  publication-title: Comput. Electron. Agric.
– volume: 79
  start-page: 28773
  year: 2020
  end-page: 28784
  ident: b283
  article-title: Deep learning based assessment of disease severity for early blight in tomato crop
  publication-title: Multimedia Tools Appl.
– start-page: 267
  year: 1986
  end-page: 281
  ident: b175
  article-title: Cucumber green mottle mosaic virus
  publication-title: The Plant Viruses
– volume: 100
  start-page: 1000
  year: 1975
  end-page: 1006
  ident: b390
  article-title: An algorithm for finding nearest neighbors
  publication-title: IEEE Trans. Comput.
– volume: 4
  start-page: 9434
  year: 2020
  end-page: 9440
  ident: b360
  article-title: A review on different classification, feature extraction and segmentation methodologies of leaf disease detection using image processing approach
  publication-title: World Acad. Inform. Manag. Sci.
– volume: 93
  start-page: 1202
  year: 2009
  end-page: 1208
  ident: b127
  article-title: Effect of cultural management practices on the severity of false smut and kernel smut of rice
  publication-title: Plant Dis.
– volume: 119
  start-page: 1
  year: 2000
  end-page: 14
  ident: b171
  article-title: Genes for resistance to northern corn leaf blight in diverse maize populations
  publication-title: Plant Breeding
– year: 2012
  ident: b155
  article-title: Grayleafspot (Cercosporazeae-maydis)
– volume: 179
  year: 2020
  ident: b299
  article-title: Image recognition of four rice leaf diseases based on deep learning and support vector machine
  publication-title: Comput. Electron. Agric.
– volume: 13
  start-page: 511
  year: 2021
  ident: b331
  article-title: Plant leaf disease recognition using depth-wise separable convolution-based models
  publication-title: Symmetry
– volume: 29
  start-page: 905
  year: 2007
  end-page: 910
  ident: b40
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2021
  ident: b269
  article-title: Groundnut: Major disease: Groundnut bud necrosis disease
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b50
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: b371
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
– volume: 5
  start-page: 1
  year: 2010
  end-page: 2
  ident: b82
  article-title: First report of Alternaria black spot of pomegranate caused by Alternaria alternate in Israel
  publication-title: Australas. Plant Dis. Notes
– year: 2019
  ident: b125
  article-title: Leaf Spot Disease Appearing on Indian Hawthorn
– year: 2010
  ident: b206
  article-title: Ground Ivy and Orange Growths on Cedar Trees
– volume: 167
  start-page: 293
  year: 2020
  end-page: 301
  ident: b58
  article-title: ToLeD: Tomato leaf disease detection using convolution neural network
  publication-title: Procedia Comput. Sci.
– start-page: 271
  year: 1968
  end-page: 272
  ident: b349
  article-title: A 3 × 3 isotropic gradient operator for image processing
  publication-title: A Talk at the Stanford Artificial Project
– year: 2013
  ident: b162
  article-title: Bean angular leaf spot
– volume: 80
  start-page: 7167
  year: 2021
  end-page: 7186
  ident: b351
  article-title: A fuzzy based ROI selection for encryption and watermarking in medical image using DWT and SVD
  publication-title: Multimedia Tools Appl.
– volume: 10
  start-page: 31
  year: 2021
  ident: b282
  article-title: Detection of strawberry diseases using a convolutional neural network
  publication-title: Plants
– year: 2022
  ident: b394
  article-title: Backpropagation model
– year: 2020
  ident: b141
  article-title: What Is Fire Blight?
– year: 2022
  ident: b48
  article-title: Rice plant disease identification using artificial intelligence approaches
– start-page: 91
  year: 2015
  end-page: 99
  ident: b101
  article-title: Sheath blight disease of paddy and their management
  publication-title: Recent Advances in the Diagnosis and Management of Plant Diseases
– year: 1983
  ident: b193
  article-title: Rust disease of groundnut, 13
– volume: 61
  start-page: 1733
  year: 2013
  end-page: 1747
  ident: b413
  article-title: Parametric modeling of microwave passive components using sensitivity-analysis-based adjoint neural-network technique
  publication-title: IEEE Trans. Microw. Theory Tech.
– volume: 5
  start-page: 74
  year: 2018
  end-page: 82
  ident: b293
  article-title: Detecting sugarcane borer diseases using support vector machine
  publication-title: Inf. Process. Agric.
– year: 2021
  ident: b341
  article-title: Plant disease dataset
– volume: 11
  start-page: 1082
  year: 2020
  end-page: 1086
  ident: b73
  article-title: A multiclass plant leaf disease detection using image processing and machine learning techniques
  publication-title: Int. J. Emerg. Technol.
– year: 2021
  ident: b200
  article-title: Coffee Leaf Rust
– volume: 212
  year: 2021
  ident: b350
  article-title: Parallel pre-processing through orthogonalization (PORTO) and its application to near-infrared spectroscopy
  publication-title: Chemometr. Intell. Lab. Syst.
– reference: , in: II International Symposium on Tomato Diseases, Vol. 808, 2007, pp. 25–28.
– volume: 7
  start-page: 61
  year: 2019
  end-page: 69
  ident: b47
  article-title: Rice plant disease detection using twin support vector machine (TSVM)
  publication-title: J. Sci. Eng.
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: b401
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
  publication-title: International Conference on Machine Learning
– reference: Gao Huang, Zhuang Liu, Laurens Van Der Maaten, Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
– year: 2020
  ident: b205
  article-title: Cedar-Apple Rust
– volume: 11
  year: 2020
  ident: b318
  article-title: A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks
  publication-title: Front. Plant Sci.
– year: 2021
  ident: b105
  article-title: Rust
– year: 2021
  ident: b91
  article-title: Downy Mildew
– volume: 15
  start-page: 589
  year: 2021
  end-page: 597
  ident: b312
  article-title: Leaf image analysis-based crop diseases classification
  publication-title: Signal Image Video Process.
– volume: 7
  start-page: 59069
  year: 2019
  end-page: 59080
  ident: b323
  article-title: Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks
  publication-title: IEEE Access
– volume: 35
  start-page: 352
  year: 2002
  end-page: 359
  ident: b18
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inform.
– start-page: 10
  year: 2000
  end-page: 18
  ident: b104
  article-title: Expert system for the diagnosis of mango diseases
  publication-title: Int. J. Acad. Eng. Res. (IJAER)
– volume: 7
  start-page: 566
  year: 2020
  end-page: 574
  ident: b317
  article-title: Performance analysis of deep learning CNN models for disease detection in plants using image segmentation
  publication-title: Inf. Process. Agric.
– volume: 22
  start-page: 27
  year: 2021
  end-page: 34
  ident: b64
  article-title: A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks
  publication-title: Egypt. Inform. J.
– volume: 13
  year: 2018
  ident: b8
  article-title: Machine learning methods for crop yield prediction and climate change impact assessment in agriculture
  publication-title: Environ. Res. Lett.
– year: 2021
  ident: b95
  article-title: Scabon vegetables – How to treat scab disease in the vegetable garden
– volume: 11
  start-page: 140
  year: 2022
  ident: b327
  article-title: Optimized deep learning algorithms for tomato leaf disease detection with hardware deployment
  publication-title: Electronics
– volume: 10
  start-page: 267
  year: 2011
  end-page: 275
  ident: b19
  article-title: Detection and classification of leaf diseases using K-means-based segmentation and
  publication-title: Inf. Technol. J.
– year: 2005
  ident: b149
  article-title: Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex
– start-page: 278
  year: 1995
  end-page: 282
  ident: b388
  article-title: Random decision forests
  publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition, No. 1
– reference: .
– volume: 39
  start-page: 818
  year: 2020
  end-page: 836
  ident: b250
  article-title: Seasonal crops disease prediction and classification using deep convolutional encoder network
– volume: 1
  start-page: 1
  year: 2015
  ident: b208
  article-title: Real time grape leaf disease detection
  publication-title: Int. J. Adv. Res. Innov. Ideas Educ. (IJARIIE)
– start-page: 134
  year: 2019
  end-page: 145
  ident: b247
  article-title: An image-based deep learning model for cannabis diseases, nutrient deficiencies and pests identification
  publication-title: EPIA Conference on Artificial Intelligence
– start-page: 44
  year: 2000
  ident: b130
  article-title: Leaf scald
  publication-title: A Guide to Sugarcane Diseases, Vol. 38
– year: 2020
  ident: b258
  article-title: Delta tributary network—An efficient alternate approach for bottleneck layers in CNN for plant disease classification
  publication-title: IET Image Processing
– volume: 196
  start-page: 125
  year: 2012
  end-page: 131
  ident: b21
  article-title: Genome-wide association study (GWAS) of resistance to head smut in maize
  publication-title: Plant Sci.
– year: 2011
  ident: b133
  article-title: White Tip Nematode Damage
– volume: 86
  year: 2020
  ident: b405
  article-title: Attention embedded residual CNN for disease detection in tomato leaves
  publication-title: Appl. Soft Comput.
– start-page: 786
  year: 2017
  end-page: 798
  ident: b404
  article-title: Fcnn: Fourier convolutional neural networks
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– year: 2021
  ident: b123
  article-title: Frogeye leaf spot
– start-page: 511
  year: 2014
  end-page: 514
  ident: b270
  article-title: Salad leaf disease detection using machine learning based hyper spectral sensing
  publication-title: SENSORS
– volume: 178
  year: 2020
  ident: b29
  article-title: H2K–A robust and optimum approach for detection and classification of groundnut leaf diseases
  publication-title: Comput. Electron. Agric.
– start-page: 291
  year: 2007
  end-page: 313
  ident: b88
  article-title: Lentil diseases
  publication-title: Lentil
– volume: 24
  start-page: 65
  year: 2006
  end-page: 69
  ident: b163
  article-title: Identification of
  publication-title: Rev. Mex. Fitopatol.
– start-page: 130
  year: 2017
  end-page: 133
  ident: b291
  article-title: Identification of plant leaf diseases using image processing techniques
  publication-title: 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development
– year: 2020
  ident: b180
  article-title: Cauliflower mosaic virus (CaMV) biology, management, and relevance to GM plant detection for sustainable organic agriculture
  publication-title: Front. Sustain. Food Syst.
– volume: 11
  start-page: 384
  year: 2022
  ident: b17
  article-title: Fungal endophytes and their role in agricultural plant protection against pests and pathogens
  publication-title: Plants
– volume: 51
  start-page: 480
  year: 2022
  end-page: 487
  ident: b264
  article-title: Automated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networks
  publication-title: Mater. Today: Proc.
– year: 2012
  ident: b52
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
– volume: 39
  start-page: 544
  year: 2010
  end-page: 546
  ident: b188
  article-title: Detection of Xanthomonas axonopodispv. punicae causing bacterial blight on pomegranate in South Africa
  publication-title: Australas. Plant Pathol.
– volume: 4
  start-page: 0004
  year: 2006
  end-page: 0012
  ident: b233
  article-title: Community of pathogenic plant viruses found in the human gut
  publication-title: PLoSBiol
– reference: Fluorescence imaging “Fluor-ImagingPrinciples.pdf”, Available at:
– reference: Ganesh Bhadur, Rajneesh Rani, Agricultural Crops Disease Identification and Classification through Leaf Images using Machine Learning and Deep Learning Technique: A Review, in: Proceedings of the International Conference on Innovative Computing & Communications, ICICC, 2020.
– volume: 61
  year: 2021
  ident: b262
  article-title: Plant leaf disease classification using efficientnet deep learning model
  publication-title: Ecol. Inform.
– volume: 100
  start-page: 2194
  year: 2016
  end-page: 2203
  ident: b184
  article-title: Characterization of colletotrichum species causing bitter rot of apple in Kentucky orchards
  publication-title: Plant Dis.
– volume: 102
  year: 2021
  ident: b384
  article-title: On robust asymmetric Lagrangian
  publication-title: Appl. Soft Comput.
– year: 2021
  ident: b119
  article-title: Citrus Diseases Melanose
– start-page: 487
  year: 2013
  end-page: 494
  ident: b353
  article-title: Fuzzy clustering based medical image watermarking
  publication-title: KIPS Transactions on Software and Data Engineering, Vol. 2, No. 7
– start-page: 989
  year: 2016
  end-page: 992
  ident: b245
  article-title: Basic investigation on a robust and practical plant diagnostic system
  publication-title: 2016 15th IEEE International Conference on Machine Learning and Applications
– start-page: 43
  year: 1981
  end-page: 93
  ident: b361
  article-title: Objective function clustering
  publication-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– volume: 6
  start-page: 8852
  year: 2018
  end-page: 8863
  ident: b22
  article-title: Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards plant pathology
  publication-title: IEEE Access
– start-page: 267
  year: 2020
  end-page: 276
  ident: b59
  article-title: Plant leaf disease detection using machine learning
  publication-title: International Conference on Emerging Technology Trends in Electronics Communication and Networking
– volume: 8
  start-page: 10
  year: 2020
  end-page: 22
  ident: b307
  article-title: Plant disease detection with deep learning and feature extraction using plant village
  publication-title: J. Comput. Commun.
– volume: 85
  start-page: 126
  year: 2001
  end-page: 130
  ident: b197
  article-title: Leaf spot disease of spinach in California caused by
  publication-title: Plant Dis.
– reference: “Smut plant disease.(Smut plant (2021))” The Editors of Encyclopaedia Britannica, [online], Available (2021):
– year: 2021
  ident: b187
  article-title: Sclerotinia sclerotiorum-Cottony rot
– year: 1994
  ident: b96
  publication-title: Rice blast disease
– volume: 12
  start-page: 1311
  year: 2021
  end-page: 1342
  ident: b46
  article-title: Regularized based implicit Lagrangian twin extreme learning machine in primal for pattern classification
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 10
  start-page: 75
  year: 2018
  ident: b63
  article-title: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images
  publication-title: Remote Sens.
– volume: 155
  start-page: 220
  year: 2018
  end-page: 236
  ident: b303
  article-title: CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features
  publication-title: Comput. Electron. Agric.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b43
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– year: 2016
  ident: b244
  article-title: Deep neural networks-based recognition of plant diseases by leaf image classification
  publication-title: Comput. Intell. Neurosci.
– year: 2016
  ident: b406
  article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
– volume: 4
  start-page: 87
  year: 1970
  end-page: 91
  ident: b164
  article-title: Studies on the cause and control of sun scald of plum
  publication-title: Korean J. Hortic. Sci.
– volume: 71
  start-page: 1849
  year: 2022
  end-page: 1866
  ident: b30
  article-title: Deep learning based automated detection of diseases from apple leaf images
  publication-title: CMC-Comput. Mater. Continua
– volume: 90
  start-page: 884
  year: 2000
  end-page: 890
  ident: b158
  article-title: Septoria leaf spot of banana: a newly discovered disease caused by
  publication-title: Phytopathology
– volume: 5
  start-page: 516
  year: 2018
  end-page: 523
  ident: b294
  article-title: Plant leaf disease detection and classification using image processing
  publication-title: Int. J. Res. Eng.
– start-page: 8
  year: 2012
  end-page: 13
  ident: b107
  article-title: Plant age and strain of
  publication-title: Tob. Sci.
– volume: 69
  start-page: 179
  year: 2020
  end-page: 193
  ident: b15
  article-title: Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks
  publication-title: Plant Pathol.
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b383
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 35
  year: 1927
  ident: b98
  article-title: Bacterial stripe blight of oats
  publication-title: J. Agric. Res.
– year: 2021
  ident: b214
  article-title: Grape mites
– volume: 125
  start-page: 99
  year: 2016
  end-page: 112
  ident: b263
  article-title: Kernel-based PSO and FRVM: An automatic plant leaf type detection using texture, shape, and color features
  publication-title: Comput. Electron. Agric.
– volume: 11
  start-page: 1950
  year: 2021
  ident: b75
  article-title: Automatic identification of peanut-leaf diseases based on stack ensemble
  publication-title: Appl. Sci.
– year: 2018
  ident: b148
  article-title: Cowpea Bacterial Wilt-an Old Disease in a New Crop, Vol. 9
– volume: 9
  start-page: 212
  year: 2022
  end-page: 223
  ident: b68
  article-title: ResTS: Residual deep interpretable architecture for plant disease detection
  publication-title: Inf. Process. Agric.
– volume: 28
  start-page: 509
  year: 1990
  end-page: 512
  ident: b370
  article-title: Texture unit, texture spectrum, and texture analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 33
  start-page: 4133
  year: 2021
  end-page: 4149
  ident: b252
  article-title: Classification of olive leaf diseases using deep convolutional neural networks
  publication-title: Neural Comput. Appl.
– start-page: 491
  year: 2008
  end-page: 494
  ident: b373
  article-title: Grading method of leaf spot disease based on image processing
  publication-title: 2008 International Conference on Computer Science and Software Engineering, No. 6
– volume: 5
  start-page: 866
  year: 2018
  end-page: 869
  ident: b376
  article-title: Crop disease detection using machine learning: Indian agriculture
  publication-title: Int. Res. J. Eng. Technol. (IRJET)
– volume: 19
  start-page: 463
  year: 2021
  end-page: 470
  ident: b261
  article-title: An effective feature extraction method for rice leaf disease classification
  publication-title: Telkomnika
– year: 2019
  ident: b27
  article-title: Detection of diseases on tomato leaves based on subclassifiers fuzzy combination
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
– reference: M. Rajesh Khanna, Data hiding in encrypted images using Arnold transform, in: International Conference on Algorithms, 2017.
– start-page: 543
  year: 2014
  end-page: 558
  ident: b182
  article-title: Grapevine leaf stripe disease symptoms (esca complex) are reduced by a nutrients and seaweed mixture
  publication-title: Phytopathol. Mediterr.
– year: 2021
  ident: b170
  article-title: Southern corn leaf blight of corn
– year: 2014
  ident: b336
  article-title: LeafSnap dataset
– year: 2018
  ident: b176
  article-title: Cucumber Green Mosaic Virus
– year: 1995
  ident: b49
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 85
  start-page: 843
  year: 1995
  end-page: 847
  ident: b161
  article-title: Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria
  publication-title: Phytopathology
– volume: 2022
  year: 2022
  ident: b45
  article-title: A systematic analysis of machine learning and deep learning based approaches for plant leaf disease classification: a review
  publication-title: J. Sensors
– volume: 17
  start-page: 2022
  year: 2017
  ident: b320
  article-title: A robust deep-learning-based detector for real-time tomato plant diseases and pest’s recognition
  publication-title: Sensors
– reference: R.L. Schlub, L.J. Smith, L.E. Datnoff, K. Pernezny, An overview of target spot of tomato caused by
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b410
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 22
  start-page: 153
  year: 2013
  end-page: 161
  ident: b33
  article-title: Multiple birth support vector machine for multi-class classification
  publication-title: Neural Comput. Appl.
– year: 2022
  ident: b222
  article-title: Berry disease
– volume: 147
  start-page: 695
  year: 2017
  end-page: 708
  ident: b109
  article-title: Occurrence and etiology of Alternaria leaf blotch and fruit spot of apple caused by Alternaria alternata f. sp. mali on cv. Pink lady in Israel
  publication-title: Eur. J. Plant Pathol.
– year: 2021
  ident: b235
  article-title: How to identify and control common plant fungal diseases
– year: 2021
  ident: b251
  article-title: Leaf and spike wheat disease detection & classification using an improved deep convolutional architecture
  publication-title: Inform. Med. Unlocked
– year: 2009
  ident: b90
  article-title: Downy Mildew of Sunflower
– volume: 14
  start-page: 495
  year: 2013
  end-page: 511
  ident: b275
  article-title: Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat
  publication-title: Precis. Agric.
– volume: 39
  start-page: 780
  year: 2012
  end-page: 785
  ident: b309
  article-title: Detecting rottenness caused by penicillium genus fungi in citrus fruits using machine learning techniques
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 83
  year: 1986
  end-page: 91
  ident: b79
  article-title: Disease management strategies and the survival of the banana industry
  publication-title: Annu. Rev. Phytopathol.
– volume: 80
  start-page: 346
  year: 2021
  ident: b78
  article-title: Artificial intelligence for suspended sediment load prediction: a review
  publication-title: Environ. Earth Sci.
– volume: 3
  start-page: 305
  year: 2022
  end-page: 310
  ident: b3
  article-title: Plant leaf disease detection using computer vision and machine learning algorithms
  publication-title: Glob. Transitions Proc.
– volume: 9
  start-page: 79
  year: 2016
  end-page: 88
  ident: b314
  article-title: Ethiopian coffee plant diseases recognition based on imaging and machine learning techniques
  publication-title: Int. J. Database Theory Appl.
– volume: 6
  start-page: 30370
  year: 2018
  end-page: 30377
  ident: b322
  article-title: Identification of maize leaf diseases using improved deep convolutional neural networks
  publication-title: IEEE Access
– year: 2018
  ident: b168
  article-title: Pink disease
– year: 2022
  ident: b224
  article-title: Quick wilt image
– volume: 91
  start-page: 113
  year: 2015
  end-page: 119
  ident: b142
  article-title: Increased content of phenolic compounds in pear leaves after infection by the pear rust pathogen
  publication-title: Physiol. Mol. Plant Path.
– year: 2020
  ident: b152
  article-title: Black rot
– year: 2015
  ident: b121
  article-title: Brown rot management in a wet growing season: Part I
– volume: 49
  start-page: 3606
  year: 2019
  end-page: 3627
  ident: b385
  article-title: An improved regularization based Lagrangian asymmetric
  publication-title: Appl. Intell.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b389
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– year: 2021
  ident: b103
  article-title: Mosaic Virus
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  ident: b363
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 359
  year: 2022
  end-page: 375
  ident: b61
  article-title: Cauliflower disease recognition using machine learning and transfer learning
  publication-title: Smart Systems Innovations in Computing
– year: 2021
  ident: b216
  article-title: White fly
– year: 2022
  ident: b338
  article-title: Rice diseases dataset
– volume: 11
  start-page: 95
  year: 2020
  ident: b268
  article-title: Using deep learning for image-based different degrees of ginkgo leaf disease classification
  publication-title: Information
– year: 2020
  ident: b334
  article-title: A review of imaging techniques for plant disease detection
  publication-title: Artif. Intell. Agric.
– reference: Accessed Feb 2022.
– volume: 10
  start-page: 95
  year: 2021
  ident: b328
  article-title: Early detection of red palm weevil,
  publication-title: Plants
– volume: 12
  start-page: 993
  year: 1990
  end-page: 1001
  ident: b37
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2014
  ident: b139
  article-title: Fireblight: Symptoms, Causes and Treatment
– year: 2021
  ident: b237
  article-title: Pest
– volume: 17
  start-page: 903
  year: 2019
  end-page: 907
  ident: b324
  article-title: Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2021
  ident: b147
  article-title: Tomato diseases: TARGET SPOT
– year: 2018
  ident: b137
  article-title: Peach leaf curl is one scary disease
– year: 2017
  ident: b402
  article-title: Dynamic routing between capsules
– start-page: 1
  year: 2008
  ident: 10.1016/j.asoc.2023.110534_b81
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b240
– year: 2017
  ident: 10.1016/j.asoc.2023.110534_b403
– ident: 10.1016/j.asoc.2023.110534_b375
  doi: 10.1145/244130.244148
– start-page: 422
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b302
  article-title: Mango leaf unhealthy region detection and classification
– year: 2019
  ident: 10.1016/j.asoc.2023.110534_b160
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.asoc.2023.110534_b31
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b71
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– year: 2001
  ident: 10.1016/j.asoc.2023.110534_b372
  article-title: A survey of color for computer graphics
– year: 2020
  ident: 10.1016/j.asoc.2023.110534_b152
– volume: 7
  start-page: 1
  issue: 05
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b257
  article-title: Deep learning convolution neural network to detect and classify tomato plant leaf diseases
  publication-title: Open Access Libr. J.
– start-page: 271
  year: 1968
  ident: 10.1016/j.asoc.2023.110534_b349
  article-title: A 3 × 3 isotropic gradient operator for image processing
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b204
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b228
– volume: 14
  start-page: 495
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2023.110534_b275
  article-title: Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-013-9312-y
– ident: 10.1016/j.asoc.2023.110534_b36
  doi: 10.2139/ssrn.3564973
– year: 2007
  ident: 10.1016/j.asoc.2023.110534_b332
– start-page: 293
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b374
  article-title: Local and global color histogram feature for color content-based image retrieval system
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b227
– start-page: 491
  year: 2008
  ident: 10.1016/j.asoc.2023.110534_b373
  article-title: Grading method of leaf spot disease based on image processing
– start-page: 359
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b61
  article-title: Cauliflower disease recognition using machine learning and transfer learning
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b234
  article-title: A novel framework for potato leaf disease detection using an efficient deep learning model
  publication-title: Hum. Ecol. Risk Assess.
– year: 2018
  ident: 10.1016/j.asoc.2023.110534_b165
– volume: 92
  start-page: 676
  issue: 6
  year: 2002
  ident: 10.1016/j.asoc.2023.110534_b207
  article-title: Utilizing epidemiological investigations to optimize management of grape black rot
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2002.92.6.676
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b272
  article-title: Image based tomato leaf disease detection
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 10.1016/j.asoc.2023.110534_b391
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 41
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b199
  article-title: Current status and management of coffee leaf rust in Brazil
  publication-title: Trop. Plant Pathol.
  doi: 10.1007/s40858-016-0065-9
– volume: 6
  start-page: 8852
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b22
  article-title: Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards plant pathology
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2800685
– volume: 79
  start-page: 28773
  issue: 39
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b283
  article-title: Deep learning based assessment of disease severity for early blight in tomato crop
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-09461-w
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b76
  article-title: Tomato leaf disease classification by exploiting transfer learning and feature concatenation
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12397
– volume: 22
  start-page: 27
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b64
  article-title: A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks
  publication-title: Egypt. Inform. J.
  doi: 10.1016/j.eij.2020.02.007
– volume: 26
  issue: 4
  year: 1947
  ident: 10.1016/j.asoc.2023.110534_b131
  article-title: Studies on the stackburn disease of rice and identity of the causal organism
  publication-title: J. Ind. Bot. Soc.
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b211
– volume: 7
  start-page: 39
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2023.110534_b368
  article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF
  publication-title: Appl. Intell.
  doi: 10.1023/A:1008280620621
– year: 2014
  ident: 10.1016/j.asoc.2023.110534_b336
– volume: 374
  issue: 1775
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b9
  article-title: Climate change effects on Black Sigatoka disease of banana
  publication-title: Phil. Trans. R. Soc. B
  doi: 10.1098/rstb.2018.0269
– volume: 19
  start-page: 463
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b261
  article-title: An effective feature extraction method for rice leaf disease classification
  publication-title: Telkomnika
  doi: 10.12928/telkomnika.v19i2.16488
– volume: 3
  start-page: 430
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b14
  article-title: The global burden of pathogens and pests on major food crops
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-018-0793-y
– volume: 93
  start-page: 1202
  issue: 11
  year: 2009
  ident: 10.1016/j.asoc.2023.110534_b127
  article-title: Effect of cultural management practices on the severity of false smut and kernel smut of rice
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-93-11-1202
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b181
– start-page: 278
  year: 1995
  ident: 10.1016/j.asoc.2023.110534_b388
  article-title: Random decision forests
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b83
– year: 2019
  ident: 10.1016/j.asoc.2023.110534_b173
– volume: 171
  start-page: 33
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b274
  article-title: Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.011
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b241
  article-title: An application of image processing techniques for detection of diseases on brinjal leaves using k-means clustering method
– ident: 10.1016/j.asoc.2023.110534_b369
– volume: 10
  start-page: 11
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b311
  article-title: Identification of apple leaf diseases based on deep convolutional neural networks
  publication-title: Symmetry
  doi: 10.3390/sym10010011
– volume: 21
  start-page: 661
  issue: 6
  year: 1996
  ident: 10.1016/j.asoc.2023.110534_b392
  article-title: Neural networks and logistic regression: Part i
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/0167-9473(95)00032-1
– volume: 11
  start-page: 1082
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b73
  article-title: A multiclass plant leaf disease detection using image processing and machine learning techniques
  publication-title: Int. J. Emerg. Technol.
– start-page: 989
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b245
  article-title: Basic investigation on a robust and practical plant diagnostic system
– volume: 87
  start-page: 208
  issue: 3
  year: 2003
  ident: 10.1016/j.asoc.2023.110534_b80
  article-title: Black sigatoka: an increasing threat to banana cultivation
  publication-title: Plant Dis.
  doi: 10.1094/PDIS.2003.87.3.208
– volume: 40
  start-page: 277
  issue: 3
  year: 1998
  ident: 10.1016/j.asoc.2023.110534_b132
  article-title: Bionomics and control of rice white tip disease nematode, Aphelenchoides besseyi
  publication-title: Plant Prot. Bull. (Taipei)
– year: 2018
  ident: 10.1016/j.asoc.2023.110534_b176
– volume: 61
  start-page: 1733
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2023.110534_b413
  article-title: Parametric modeling of microwave passive components using sensitivity-analysis-based adjoint neural-network technique
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2013.2253793
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b154
– start-page: 91
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b101
  article-title: Sheath blight disease of paddy and their management
– volume: 47
  start-page: 101
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b13
  article-title: Climate change induced drought impacts on plant diseases in New Zealand
  publication-title: Australas. Plant Pathol.
  doi: 10.1007/s13313-018-0541-4
– volume: 81
  start-page: 131
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b41
  article-title: A comparison on multi-class classification methods based on least squares twin support vector machine
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.02.009
– ident: 10.1016/j.asoc.2023.110534_b412
  doi: 10.1109/CVPR.2017.243
– year: 2020
  ident: 10.1016/j.asoc.2023.110534_b141
– volume: 69
  start-page: 179
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b15
  article-title: Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13119
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b170
– volume: 40
  start-page: 50
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b271
  article-title: LeafNet: A computer vision system for automatic plant species identification
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2017.05.005
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b231
– volume: 5
  start-page: 443
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b189
  article-title: In vitro evaluation of chemical formulates on Xanthomonas axonopodispv. punicae
  publication-title: Int. J. Curr. Microbiol. Appl. Sci.
  doi: 10.20546/ijcmas.2016.503.051
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b91
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b198
– volume: 41
  start-page: 1353
  year: 2012
  ident: 10.1016/j.asoc.2023.110534_b285
  article-title: A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.07.321
– volume: 23
  start-page: 1059
  issue: 6
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b44
  article-title: Application of extreme learning machine in plant disease prediction for highly imbalanced dataset
  publication-title: J. Stat. Manag. Syst.
– year: 2011
  ident: 10.1016/j.asoc.2023.110534_b159
– start-page: 6105
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b401
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– volume: 151
  start-page: 72
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b53
  article-title: Plant species classification using deep convolutional neural network
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.08.024
– ident: 10.1016/j.asoc.2023.110534_b343
– volume: 11
  start-page: 140
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b327
  article-title: Optimized deep learning algorithms for tomato leaf disease detection with hardware deployment
  publication-title: Electronics
  doi: 10.3390/electronics11010140
– volume: 17
  start-page: 790
  issue: 8
  year: 1995
  ident: 10.1016/j.asoc.2023.110534_b362
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.400568
– year: 2000
  ident: 10.1016/j.asoc.2023.110534_b138
– volume: 8
  start-page: 10
  issue: 6
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b307
  article-title: Plant disease detection with deep learning and feature extraction using plant village
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2020.86002
– volume: 3
  start-page: 113
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2023.110534_b118
  article-title: Citrus melanose (Diaporthecitri wolf): a review
  publication-title: Int. J. Curr. Microbiol. Appl. Sci.
– volume: 7
  start-page: 61
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b47
  article-title: Rice plant disease detection using twin support vector machine (TSVM)
  publication-title: J. Sci. Eng.
  doi: 10.3126/jsce.v7i0.26794
– volume: 5
  start-page: 74
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b293
  article-title: Detecting sugarcane borer diseases using support vector machine
  publication-title: Inf. Process. Agric.
– year: 2010
  ident: 10.1016/j.asoc.2023.110534_b7
– year: 2018
  ident: 10.1016/j.asoc.2023.110534_b400
– volume: 5
  start-page: 157
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2023.110534_b92
  article-title: Sugarbeet leaf spot disease (CercosporabeticolaSacc)
  publication-title: Mol. Plant Path.
  doi: 10.1111/j.1364-3703.2004.00218.x
– volume: 66
  start-page: 1101
  issue: 12
  year: 1982
  ident: 10.1016/j.asoc.2023.110534_b120
  article-title: Control of brown rot in peach orchards
  publication-title: Plant Dis.
  doi: 10.1094/PD-66-1101
– volume: 11
  issue: 10
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b266
  article-title: Gabor capsule network for plant disease detection
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b212
– start-page: 1104
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b260
  article-title: Deep learning model for early prediction of plant disease
– volume: 100
  start-page: 2194
  issue: 11
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b184
  article-title: Characterization of colletotrichum species causing bitter rot of apple in Kentucky orchards
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-10-15-1144-RE
– volume: 24
  start-page: 83
  issue: 1
  year: 1986
  ident: 10.1016/j.asoc.2023.110534_b79
  article-title: Disease management strategies and the survival of the banana industry
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.py.24.090186.000503
– year: 1983
  ident: 10.1016/j.asoc.2023.110534_b193
– ident: 10.1016/j.asoc.2023.110534_b221
– year: 2020
  ident: 10.1016/j.asoc.2023.110534_b278
  article-title: An in-depth exploration of automated jackfruit disease recognition
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– year: 2019
  ident: 10.1016/j.asoc.2023.110534_b297
– year: 2019
  ident: 10.1016/j.asoc.2023.110534_b117
– year: 2020
  ident: 10.1016/j.asoc.2023.110534_b205
– volume: 137
  start-page: 239
  issue: 1–2
  year: 2002
  ident: 10.1016/j.asoc.2023.110534_b288
  article-title: Ensembling neural networks: many could be better than all
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(02)00190-X
– volume: 78
  start-page: 27785
  issue: 19
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b304
  article-title: Multiclass twin support vector machine for plant species identification
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-019-7588-2
– start-page: 553
  year: 2012
  ident: 10.1016/j.asoc.2023.110534_b174
  article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement
– year: 2018
  ident: 10.1016/j.asoc.2023.110534_b148
– volume: 67
  start-page: 829
  issue: 7
  year: 1983
  ident: 10.1016/j.asoc.2023.110534_b100
  article-title: Rice sheath blight: A major rice disease
  publication-title: Plant Dis.
  doi: 10.1094/PD-67-829
– volume: 120
  start-page: 279
  issue: 2
  year: 1992
  ident: 10.1016/j.asoc.2023.110534_b195
  article-title: Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea l.) in India
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.1992.tb03425.x
– year: 2015
  ident: 10.1016/j.asoc.2023.110534_b1
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b230
– volume: 17
  start-page: 903
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b324
  article-title: Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2932385
– volume: 102
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b384
  article-title: On robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107099
– volume: 11
  start-page: 95
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b268
  article-title: Using deep learning for image-based different degrees of ginkgo leaf disease classification
  publication-title: Information
  doi: 10.3390/info11020095
– year: 2013
  ident: 10.1016/j.asoc.2023.110534_b335
– year: 1998
  ident: 10.1016/j.asoc.2023.110534_b144
– start-page: 580
  year: 2014
  ident: 10.1016/j.asoc.2023.110534_b399
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– volume: 4
  start-page: 9434
  issue: 9
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b360
  article-title: A review on different classification, feature extraction and segmentation methodologies of leaf disease detection using image processing approach
  publication-title: World Acad. Inform. Manag. Sci.
– volume: 3
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b16
  article-title: Plant health and its effects on food safety and security in a one health framework: Four case studies
  publication-title: One Health Outlook
  doi: 10.1186/s42522-021-00038-7
– volume: 33
  start-page: 4133
  issue: 9
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b252
  article-title: Classification of olive leaf diseases using deep convolutional neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05235-5
– ident: 10.1016/j.asoc.2023.110534_b342
– ident: 10.1016/j.asoc.2023.110534_b355
  doi: 10.1609/aaai.v34i07.7000
– volume: 78
  start-page: 9
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2023.110534_b2
  article-title: Leaf classification in sunflower crops by computer vision and neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.05.007
– volume: 21
  start-page: 3169
  issue: 9
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b11
  article-title: Identification of cotton leaf lesions using deep learning techniques
  publication-title: Sensors
  doi: 10.3390/s21093169
– volume: 168
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b344
  article-title: SPORT pre-processing can improve near-infrared quality prediction models for fresh fruits and agro-materials
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2020.111271
– start-page: 278
  year: 2012
  ident: 10.1016/j.asoc.2023.110534_b84
  article-title: Diseases of mango
– start-page: 291
  year: 2007
  ident: 10.1016/j.asoc.2023.110534_b88
  article-title: Lentil diseases
– year: 2019
  ident: 10.1016/j.asoc.2023.110534_b340
– year: 2016
  ident: 10.1016/j.asoc.2023.110534_b244
  article-title: Deep neural networks-based recognition of plant diseases by leaf image classification
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2016/3289801
– volume: 5
  start-page: 516
  issue: 9
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b294
  article-title: Plant leaf disease detection and classification using image processing
  publication-title: Int. J. Res. Eng.
  doi: 10.21276/ijre.2018.5.9.4
– volume: 110
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b42
  article-title: Multi-category intuitionistic fuzzy twin support vector machines with an application to plant leaf recognition
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104687
– volume: 104
  start-page: 53
  issue: 1
  year: 1984
  ident: 10.1016/j.asoc.2023.110534_b86
  article-title: The epidemiology of anthracnose disease of mango: inoculum sources, spore production and dispersal
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.1984.tb05586.x
– volume: 7
  start-page: 566
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b317
  article-title: Performance analysis of deep learning CNN models for disease detection in plants using image segmentation
  publication-title: Inf. Process. Agric.
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b87
– year: 2018
  ident: 10.1016/j.asoc.2023.110534_b115
– year: 2019
  ident: 10.1016/j.asoc.2023.110534_b108
– volume: 2018
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b143
  article-title: Apple scab
  publication-title: Plant Health Instr.
– year: 2012
  ident: 10.1016/j.asoc.2023.110534_b155
– ident: 10.1016/j.asoc.2023.110534_b279
– start-page: 31
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b10
  article-title: Managing planting time for cotton production
– volume: 12
  start-page: 1311
  issue: 5
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b46
  article-title: Regularized based implicit Lagrangian twin extreme learning machine in primal for pattern classification
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01235-y
– volume: 49
  start-page: 3606
  issue: 10
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b385
  article-title: An improved regularization based Lagrangian asymmetric ν-twin support vector regression using pinball loss function
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01465-w
– year: 2009
  ident: 10.1016/j.asoc.2023.110534_b90
– volume: 196
  start-page: 125
  year: 2012
  ident: 10.1016/j.asoc.2023.110534_b21
  article-title: Genome-wide association study (GWAS) of resistance to head smut in maize
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2012.08.004
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b183
– start-page: 267
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b59
  article-title: Plant leaf disease detection using machine learning
– volume: 120
  issue: 9
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b414
  article-title: Adjoint method for estimating Jiles–Atherton hysteresis model parameters
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4962153
– year: 2018
  ident: 10.1016/j.asoc.2023.110534_b168
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.asoc.2023.110534_b50
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– volume: 171
  start-page: 1113
  issue: 3976
  year: 1971
  ident: 10.1016/j.asoc.2023.110534_b169
  article-title: The southern corn leaf blight epidemic
  publication-title: Science
  doi: 10.1126/science.171.3976.1113
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b237
– volume: 79
  start-page: 180
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2023.110534_b284
  article-title: Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with support vector machines
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.09.011
– volume: 128
  start-page: 21
  year: 2013
  ident: 10.1016/j.asoc.2023.110534_b305
  article-title: Development of spectral indices for detecting and identifying plant diseases
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.09.019
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b185
– ident: 10.1016/j.asoc.2023.110534_b129
– year: 2009
  ident: 10.1016/j.asoc.2023.110534_b333
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b28
  article-title: Tomatoes classification using K-NN based on GLCM and HSV color space
– volume: 22
  start-page: 153
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2023.110534_b33
  article-title: Multiple birth support vector machine for multi-class classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1108-x
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b223
– start-page: 472
  year: 2011
  ident: 10.1016/j.asoc.2023.110534_b365
  article-title: The marker-based watershed segmentation algorithm of ore image
– volume: 10
  start-page: 131
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b308
  article-title: Automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning
  publication-title: Pathogens
  doi: 10.3390/pathogens10020131
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b147
– volume: 33
  start-page: 4243
  issue: 9
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b381
  article-title: Density-weighted support vector machines for binary class imbalance learning
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05240-8
– volume: 78
  start-page: 269
  issue: 3
  year: 1974
  ident: 10.1016/j.asoc.2023.110534_b156
  article-title: Effects of eyespot on the yield of winter wheat
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.1974.tb01506.x
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b70
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b123
– year: 2005
  ident: 10.1016/j.asoc.2023.110534_b149
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b200
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b213
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b236
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b290
  article-title: Recent machine learning based approaches for disease detection and classification of agricultural products
– year: 1995
  ident: 10.1016/j.asoc.2023.110534_b49
– volume: 155
  start-page: 220
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b303
  article-title: CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.10.013
– volume: 97
  start-page: 989
  issue: 8
  year: 1993
  ident: 10.1016/j.asoc.2023.110534_b201
  article-title: Characterization of the coffee berry disease pathogen, Colletotrichum kahawae sp. nov
  publication-title: Mycol. Res.
  doi: 10.1016/S0953-7562(09)80867-8
– volume: 35
  start-page: 352
  issue: 5–6
  year: 2002
  ident: 10.1016/j.asoc.2023.110534_b18
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(03)00034-0
– volume: 11
  start-page: 707
  issue: 8
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b55
  article-title: Review on convolutional neural network (CNN) applied to plant leaf disease classification
  publication-title: Agriculture
  doi: 10.3390/agriculture11080707
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b229
– year: 2011
  ident: 10.1016/j.asoc.2023.110534_b133
– year: 2009
  ident: 10.1016/j.asoc.2023.110534_b177
– year: 2017
  ident: 10.1016/j.asoc.2023.110534_b232
– volume: 3
  start-page: 185
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b35
  article-title: Mango leaf disease recognition using neural network and support vector machine
  publication-title: Iran J. Comput. Sci.
  doi: 10.1007/s42044-020-00057-z
– volume: 28
  start-page: 509
  issue: 4
  year: 1990
  ident: 10.1016/j.asoc.2023.110534_b370
  article-title: Texture unit, texture spectrum, and texture analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.1990.572934
– volume: 47
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b150
  article-title: Different stages of disease detection in squash plant based on machine learning
  publication-title: J. Biosci.
  doi: 10.1007/s12038-021-00241-8
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 10.1016/j.asoc.2023.110534_b366
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– volume: 80
  start-page: 7167
  issue: 5
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b351
  article-title: A fuzzy based ROI selection for encryption and watermarking in medical image using DWT and SVD
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-09981-5
– volume: 82
  start-page: 2121
  issue: 2
  year: 2023
  ident: 10.1016/j.asoc.2023.110534_b60
  article-title: Tomato leaf disease detection system based on FC-SNDPN
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-11790-3
– year: 2012
  ident: 10.1016/j.asoc.2023.110534_b52
– volume: 74
  issue: 5
  year: 1993
  ident: 10.1016/j.asoc.2023.110534_b178
  article-title: Characterization of potyviruses from tulip and lily which cause flower-breaking
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-74-5-881
– ident: 10.1016/j.asoc.2023.110534_b408
  doi: 10.1109/CVPR.2016.308
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b95
– volume: 72
  start-page: 335
  issue: 6
  year: 2006
  ident: 10.1016/j.asoc.2023.110534_b114
  article-title: Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance
  publication-title: J. Gen. Plant Pathol.
  doi: 10.1007/s10327-006-0299-3
– volume: 10
  start-page: 1027
  issue: 7
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b242
  article-title: Real-time detection of strawberry powdery mildew disease using a mobile machine vision system
  publication-title: Agronomy
  doi: 10.3390/agronomy10071027
– volume: 17
  start-page: 2022
  issue: 9
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b320
  article-title: A robust deep-learning-based detector for real-time tomato plant diseases and pest’s recognition
  publication-title: Sensors
  doi: 10.3390/s17092022
– volume: 11
  start-page: 384
  issue: 3
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b17
  article-title: Fungal endophytes and their role in agricultural plant protection against pests and pathogens
  publication-title: Plants
  doi: 10.3390/plants11030384
– year: 2010
  ident: 10.1016/j.asoc.2023.110534_b206
– volume: 1
  start-page: 21
  year: 1988
  ident: 10.1016/j.asoc.2023.110534_b395
  article-title: A theoretical framework for back-propagation
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b54
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 5
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2023.110534_b82
  article-title: First report of Alternaria black spot of pomegranate caused by Alternaria alternate in Israel
  publication-title: Australas. Plant Dis. Notes
  doi: 10.1071/DN10001
– volume: 61
  start-page: 103
  issue: 2
  year: 1989
  ident: 10.1016/j.asoc.2023.110534_b348
  article-title: Gabor filters as texture discriminator
  publication-title: Biol. Cybernet.
  doi: 10.1007/BF00204594
– volume: 35
  start-page: 599
  issue: 6
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b186
  article-title: Rolled–crimped cereal rye residue suppresses white mold in no-till soybean and dry bean
  publication-title: Renew. Agric. Food Syst.
  doi: 10.1017/S174217051900022X
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b214
– volume: 86
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b405
  article-title: Attention embedded residual CNN for disease detection in tomato leaves
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 993
  issue: 10
  year: 1990
  ident: 10.1016/j.asoc.2023.110534_b37
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.58871
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b222
– start-page: 300
  year: 2013
  ident: 10.1016/j.asoc.2023.110534_b301
  article-title: Early detection and continuous quantization of plant disease using template matching and support vector machine algorithms
– start-page: 44
  year: 2000
  ident: 10.1016/j.asoc.2023.110534_b130
  article-title: Leaf scald
– volume: 13
  start-page: 293
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b74
  article-title: Performance analysis of fine-tuned convolutional neural network models for plant disease classification
  publication-title: Int. J. Control Autom.
– start-page: 1202
  year: 2014
  ident: 10.1016/j.asoc.2023.110534_b286
  article-title: Discussion on sunflower leaf disease diagnosis based on imaging identification
– volume: 147
  start-page: 695
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b109
  article-title: Occurrence and etiology of Alternaria leaf blotch and fruit spot of apple caused by Alternaria alternata f. sp. mali on cv. Pink lady in Israel
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-016-1037-0
– volume: 103
  start-page: 17
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b300
  article-title: Rice plant disease classification using color features: a machine learning paradigm
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-020-00683-3
– volume: 70
  start-page: 489
  issue: 1-3
  year: 2006
  ident: 10.1016/j.asoc.2023.110534_b43
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– year: 2018
  ident: 10.1016/j.asoc.2023.110534_b378
– start-page: 768
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b6
  article-title: Patil plant disease detection using image processing
– year: 2019
  ident: 10.1016/j.asoc.2023.110534_b125
– start-page: 0678
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b345
  article-title: Disease classification and grading of orange using machine learning and fuzzy logic
– volume: 9
  start-page: 162
  issue: 8
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b248
  article-title: Techniques for rice leaf disease detection using machine LearningAlgorithms
  publication-title: Int. J. Eng. Res. Technol.
– year: 2020
  ident: 10.1016/j.asoc.2023.110534_b180
  article-title: Cauliflower mosaic virus (CaMV) biology, management, and relevance to GM plant detection for sustainable organic agriculture
  publication-title: Front. Sustain. Food Syst.
– year: 2017
  ident: 10.1016/j.asoc.2023.110534_b402
– volume: 61
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b329
  article-title: VirLeafNet: automatic analysis and viral disease diagnosis using deep-learning in vigna mungo plant
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101197
– start-page: 487
  year: 2013
  ident: 10.1016/j.asoc.2023.110534_b353
  article-title: Fuzzy clustering based medical image watermarking
– ident: 10.1016/j.asoc.2023.110534_b146
  doi: 10.17660/ActaHortic.2009.808.1
– volume: 52
  start-page: 927
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b249
  article-title: Citrus disease detection and classification using end-to-end anchor-based deep learning model
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02452-w
– start-page: 115
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b315
  article-title: Hybrid deep learning for plant leaves classification
– ident: 10.1016/j.asoc.2023.110534_b316
– start-page: 1
  year: 1994
  ident: 10.1016/j.asoc.2023.110534_b179
  article-title: Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies
– volume: 39
  start-page: 818
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b250
  article-title: Seasonal crops disease prediction and classification using deep convolutional encoder network
– volume: 61
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b262
  article-title: Plant leaf disease classification using efficientnet deep learning model
  publication-title: Ecol. Inform.
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b39
  article-title: Evaluation of the benefits of combined reflection and transmission hyperspectral imaging data through disease detection and quantification in plant–pathogen interactions
  publication-title: J. Plant Dis. Prot.
– start-page: 1242
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b289
  article-title: Tomato plant disease classification in digital images using classification tree
– volume: 85
  start-page: 843
  issue: 8
  year: 1995
  ident: 10.1016/j.asoc.2023.110534_b161
  article-title: Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria
  publication-title: Phytopathology
  doi: 10.1094/Phyto-85-843
– volume: 121
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b358
  article-title: Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103767
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.asoc.2023.110534_b389
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 85
  start-page: 126
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2023.110534_b197
  article-title: Leaf spot disease of spinach in California caused by Stemphylium botryosum
  publication-title: Plant Dis.
  doi: 10.1094/PDIS.2001.85.2.126
– start-page: 786
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b404
  article-title: Fcnn: Fourier convolutional neural networks
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b386
  article-title: Least squares large margin distribution machine for regression
  publication-title: Appl. Intell.
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b103
– year: 2015
  ident: 10.1016/j.asoc.2023.110534_b210
– volume: 9
  start-page: 79
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b314
  article-title: Ethiopian coffee plant diseases recognition based on imaging and machine learning techniques
  publication-title: Int. J. Database Theory Appl.
  doi: 10.14257/ijdta.2016.9.4.07
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b217
– volume: 11
  start-page: 1373
  issue: 11
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b280
  article-title: UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning
  publication-title: Remote Sens.
  doi: 10.3390/rs11111373
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b394
– volume: 8
  start-page: 1852
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b267
  article-title: Deep learning for image-based cassava disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01852
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b341
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b216
– start-page: 8
  year: 2012
  ident: 10.1016/j.asoc.2023.110534_b107
  article-title: Plant age and strain of Ralstonia solanacearum affect the expression of resistance of tobacco cultivars to Granville wilt
  publication-title: Tob. Sci.
  doi: 10.3381/11-013R.1
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b273
  article-title: Identification of soybean diseases using learning vector quantization neural network algorithm
  publication-title: J. Anal. Comput.
– volume: 161
  start-page: 272
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b254
  article-title: A comparative study of fine-tuning deep learning models for plant disease identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.032
– volume: 83
  start-page: 884
  issue: 10
  year: 1999
  ident: 10.1016/j.asoc.2023.110534_b153
  article-title: Gray leaf spot: a disease of global importance in maize production
  publication-title: Plant Dis.
  doi: 10.1094/PDIS.1999.83.10.884
– year: 2006
  ident: 10.1016/j.asoc.2023.110534_b202
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b191
– year: 2014
  ident: 10.1016/j.asoc.2023.110534_b330
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b187
– volume: 13
  start-page: 162
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b306
  article-title: Identifying pine wood nematode disease using UAV images and deep learning algorithms
  publication-title: Remote Sens.
  doi: 10.3390/rs13020162
– volume: 135
  start-page: 68
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b356
  article-title: Greedy auto-augmentation for n-shot learning using deep neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.11.015
– year: 2019
  ident: 10.1016/j.asoc.2023.110534_b111
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b128
– volume: 154
  start-page: 96
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b298
  article-title: Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2019.04.005
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b192
– volume: 25
  start-page: 42
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b26
  article-title: Plant disease recognition based on plant leaf image
  publication-title: J. Anim. Plant Sci.
– volume: 5
  start-page: 3818
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b377
  article-title: A review of different classification techniques in machine learning using weka for plant disease detection
  publication-title: Int. Res. J. Eng. Technol. (IRJET)
– volume: 51
  start-page: 480
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b264
  article-title: Automated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networks
  publication-title: Mater. Today: Proc.
  doi: 10.1016/j.matpr.2021.05.584
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b126
– ident: 10.1016/j.asoc.2023.110534_b352
– volume: 7
  start-page: 1419
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b265
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– volume: 5
  start-page: 866
  issue: 9
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b376
  article-title: Crop disease detection using machine learning: Indian agriculture
  publication-title: Int. Res. J. Eng. Technol. (IRJET)
– volume: 39
  start-page: 780
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2023.110534_b309
  article-title: Detecting rottenness caused by penicillium genus fungi in citrus fruits using machine learning techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.073
– volume: 145
  start-page: 311
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b56
  article-title: Deep learning models for plant disease detection and diagnosis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.01.009
– volume: 10
  start-page: 31
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b282
  article-title: Detection of strawberry diseases using a convolutional neural network
  publication-title: Plants
  doi: 10.3390/plants10010031
– year: 2013
  ident: 10.1016/j.asoc.2023.110534_b162
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b194
– start-page: 894
  year: 2012
  ident: 10.1016/j.asoc.2023.110534_b20
  article-title: Image recognition of plant diseases based on backpropagation networks
– volume: 158
  start-page: 93
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2023.110534_b167
  article-title: Tatumellaptyseos, an unrevealed causative agent of pink disease in pineapple
  publication-title: J. Phytopath.
  doi: 10.1111/j.1439-0434.2009.01575.x
– volume: 24
  start-page: 65
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2023.110534_b163
  article-title: Identification of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill., causal agent of Rhizopus rot disease of fruits and vegetables
  publication-title: Rev. Mex. Fitopatol.
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b38
  article-title: Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges
  publication-title: Arch. Comput. Methods Eng.
– volume: 7
  start-page: 59069
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b323
  article-title: Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914929
– year: 2014
  ident: 10.1016/j.asoc.2023.110534_b396
– ident: 10.1016/j.asoc.2023.110534_b225
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  ident: 10.1016/j.asoc.2023.110534_b371
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: 6
  start-page: 30370
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b322
  article-title: Identification of maize leaf diseases using improved deep convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2844405
– volume: 3
  start-page: 305
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b3
  article-title: Plant leaf disease detection using computer vision and machine learning algorithms
  publication-title: Glob. Transitions Proc.
  doi: 10.1016/j.gltp.2022.03.016
– start-page: 130
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b291
  article-title: Identification of plant leaf diseases using image processing techniques
– volume: 167
  start-page: 293
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b58
  article-title: ToLeD: Tomato leaf disease detection using convolution neural network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.225
– volume: 2
  start-page: 984
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2023.110534_b276
  article-title: A leaf recognition technique for plant classification using RBPNN and Zernike moments
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
– year: 2014
  ident: 10.1016/j.asoc.2023.110534_b139
– volume: 82
  start-page: 12017
  issue: 8
  year: 2023
  ident: 10.1016/j.asoc.2023.110534_b106
  article-title: Deep learning based automated disease detection and pest classification in Indian mung bean
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-022-13673-7
– volume: 119
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.asoc.2023.110534_b171
  article-title: Genes for resistance to northern corn leaf blight in diverse maize populations
  publication-title: Plant Breeding
  doi: 10.1046/j.1439-0523.2000.00462.x
– volume: 212
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b350
  article-title: Parallel pre-processing through orthogonalization (PORTO) and its application to near-infrared spectroscopy
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104190
– volume: 2022
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b45
  article-title: A systematic analysis of machine learning and deep learning based approaches for plant leaf disease classification: a review
  publication-title: J. Sensors
  doi: 10.1155/2022/3287561
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b215
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b220
– year: 2020
  ident: 10.1016/j.asoc.2023.110534_b339
– start-page: 318
  year: 1986
  ident: 10.1016/j.asoc.2023.110534_b393
  article-title: Learning internal representations by error propagation
– volume: 198
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b67
  article-title: Deep diagnosis: A real-time apple leaf disease detection system based on deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107093
– volume: 48
  start-page: 432
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2023.110534_b124
  article-title: Studies on leaf spot disease of withaniasomnifera and its impact on secondary metabolites
  publication-title: Indian J. Microbiol.
  doi: 10.1007/s12088-008-0053-y
– year: 2013
  ident: 10.1016/j.asoc.2023.110534_b166
  article-title: Southwest canker
– year: 1987
  ident: 10.1016/j.asoc.2023.110534_b110
– volume: 91
  start-page: 113
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b142
  article-title: Increased content of phenolic compounds in pear leaves after infection by the pear rust pathogen
  publication-title: Physiol. Mol. Plant Path.
  doi: 10.1016/j.pmpp.2015.07.001
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b62
  article-title: Detection of gray mold disease and its severity on strawberry using deep learning networks
  publication-title: J. Plant Dis. Prot.
– volume: 14
  start-page: 12191
  issue: 7
  year: 2014
  ident: 10.1016/j.asoc.2023.110534_b253
  article-title: On plant detection of intact tomato fruits using image analysis and machine learning methods
  publication-title: Sensors
  doi: 10.3390/s140712191
– year: 2020
  ident: 10.1016/j.asoc.2023.110534_b334
  article-title: A review of imaging techniques for plant disease detection
  publication-title: Artif. Intell. Agric.
– start-page: 79
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b246
  article-title: A deep learning-based approach for banana leaf diseases classification
– volume: 10
  start-page: 28
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b326
  article-title: Convolutional neural network for automatic identification of plant diseases with limited data
  publication-title: Plants
  doi: 10.3390/plants10010028
– start-page: 175
  year: 1995
  ident: 10.1016/j.asoc.2023.110534_b398
  article-title: Learning vector quantization
– volume: 50
  start-page: 277
  issue: 2
  year: 1997
  ident: 10.1016/j.asoc.2023.110534_b102
  article-title: Occurrence of a mosaic virus disease on sunflower in Karnataka
  publication-title: Indian Phytopath.
– year: 1992
  ident: 10.1016/j.asoc.2023.110534_b196
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b219
– year: 2018
  ident: 10.1016/j.asoc.2023.110534_b137
– volume: 100
  start-page: 3246
  issue: 7
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b256
  article-title: Detection of rice plant diseases based on deep transfer learning
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.10365
– start-page: 267
  year: 1986
  ident: 10.1016/j.asoc.2023.110534_b175
  article-title: Cucumber green mottle mosaic virus
– volume: 10
  start-page: 75
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b63
  article-title: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs10010075
– year: 2017
  ident: 10.1016/j.asoc.2023.110534_b337
– volume: 41
  start-page: 1505
  issue: 9
  year: 1966
  ident: 10.1016/j.asoc.2023.110534_b151
  article-title: Increased disease resistance and enzyme activity induced by ethylene and ethylene production of black rot infected sweet potato tissue
  publication-title: Plant Physiol.
  doi: 10.1104/pp.41.9.1505
– volume: 3
  start-page: 294
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b259
  article-title: Automatic and reliable leaf disease detection using deep learning techniques
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering3020020
– volume: 10
  start-page: 267
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2023.110534_b19
  article-title: Detection and classification of leaf diseases using K-means-based segmentation and
  publication-title: Inf. Technol. J.
  doi: 10.3923/itj.2011.267.275
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b238
– year: 2016
  ident: 10.1016/j.asoc.2023.110534_b99
– year: 2004
  ident: 10.1016/j.asoc.2023.110534_b354
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b12
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b224
– volume: 80
  start-page: 346
  issue: 9
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b78
  article-title: Artificial intelligence for suspended sediment load prediction: a review
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-021-09625-3
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b85
– start-page: 134
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b247
  article-title: An image-based deep learning model for cannabis diseases, nutrient deficiencies and pests identification
– start-page: 543
  year: 2014
  ident: 10.1016/j.asoc.2023.110534_b182
  article-title: Grapevine leaf stripe disease symptoms (esca complex) are reduced by a nutrients and seaweed mixture
  publication-title: Phytopathol. Mediterr.
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b145
– start-page: 228
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b379
  article-title: Kernel target alignment based fuzzy least square twin bounded support vector mac hine
– year: 2011
  ident: 10.1016/j.asoc.2023.110534_b69
  article-title: Coffee disease detection using a robust HSV color-based segmentation and transfer learning for use on smartphones
  publication-title: Int. J. Intell. Syst.
– volume: 29
  start-page: 905
  issue: 5
  year: 2007
  ident: 10.1016/j.asoc.2023.110534_b40
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1068
– volume: 12
  start-page: 97
  issue: 2
  year: 2004
  ident: 10.1016/j.asoc.2023.110534_b172
  article-title: The research progress of maize Curvularia leaf spot disease
  publication-title: J. Maize Sci.
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b338
– volume: 22
  start-page: 113
  issue: 2
  year: 1994
  ident: 10.1016/j.asoc.2023.110534_b140
  article-title: Economics of reducing fungicide use by weather-based disease forecasts for control of Venturia inaequalis in apples
  publication-title: N. Z. J. Crop Hortic. Sci.
  doi: 10.1080/01140671.1994.9513814
– year: 2020
  ident: 10.1016/j.asoc.2023.110534_b209
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b251
  article-title: Leaf and spike wheat disease detection & classification using an improved deep convolutional architecture
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2021.100642
– volume: 10
  start-page: 95
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b328
  article-title: Early detection of red palm weevil, Rhynchophorus ferrugineus (Olivier), infestation using data mining
  publication-title: Plants
  doi: 10.3390/plants10010095
– volume: 11
  start-page: 1719
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b310
  article-title: Detection of citrus leaf diseases using a deep learning technique
  publication-title: Int. J. Electr. Comput. Eng.
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b387
  article-title: On regularization based twin support vector regression with huber loss
  publication-title: Neural Process. Lett.
– year: 2015
  ident: 10.1016/j.asoc.2023.110534_b121
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b407
  article-title: Disease detection on the leaves of the tomato plants by using deep learning
– volume: 10
  start-page: 1027
  issue: 7
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b23
  article-title: Real-Time Detection of Strawberry Powdery Mildew Disease Using a Mobile Machine Vision System
  publication-title: Agronomy
  doi: 10.3390/agronomy10071027
– volume: 1
  start-page: 1
  issue: 04
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b208
  article-title: Real time grape leaf disease detection
  publication-title: Int. J. Adv. Res. Innov. Ideas Educ. (IJARIIE)
– start-page: 511
  year: 2014
  ident: 10.1016/j.asoc.2023.110534_b270
  article-title: Salad leaf disease detection using machine learning based hyper spectral sensing
– start-page: 150
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b292
  article-title: Recognition and detection of tea leaf’s diseases using support vector machine
– year: 1994
  ident: 10.1016/j.asoc.2023.110534_b96
– year: 1900
  ident: 10.1016/j.asoc.2023.110534_b136
– ident: 10.1016/j.asoc.2023.110534_b325
– start-page: 10
  year: 2000
  ident: 10.1016/j.asoc.2023.110534_b104
  article-title: Expert system for the diagnosis of mango diseases
  publication-title: Int. J. Acad. Eng. Res. (IJAER)
– volume: 9
  start-page: 38
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b313
  article-title: An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning
  publication-title: Inf. Process. Agric.
– issn: 2278-3075
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b27
  article-title: Detection of diseases on tomato leaves based on subclassifiers fuzzy combination
  publication-title: Int. J. Innov. Technol. Explor. Eng. (IJITEE)
– volume: 178
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b29
  article-title: H2K–A robust and optimum approach for detection and classification of groundnut leaf diseases
  publication-title: Comput. Electron. Agric.
– volume: 35
  issue: 9
  year: 1927
  ident: 10.1016/j.asoc.2023.110534_b98
  article-title: Bacterial stripe blight of oats
  publication-title: J. Agric. Res.
– volume: 11
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b318
  article-title: A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00751
– volume: 76
  start-page: 323
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b255
  article-title: Identification of plant leaf diseases using a nine-layer deep convolutional neural network
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.04.011
– volume: 158
  start-page: 48
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b243
  article-title: Automatic recognition of vegetable crops diseases based on neural network classifier
  publication-title: Int. J. Comput. Appl.
– start-page: 431
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b380
  article-title: Lagrangian twin-bounded support vector machine based on L2-norm
– year: 2012
  ident: 10.1016/j.asoc.2023.110534_b359
– volume: 35
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b4
  article-title: Advanced methods of plant disease detection. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0246-1
– start-page: 47
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b295
  article-title: Glcm Based Plant Leaf Disease Detection Using Multiclass SVM
  publication-title: Int J. Res. Dev. Technol.
– volume: 193
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b65
  article-title: Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106658
– ident: 10.1016/j.asoc.2023.110534_b347
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b77
  article-title: Computational approach to clinical diagnosis of diabetes disease: a comparative study
  publication-title: Multimedia Tools Appl.
– volume: 4
  start-page: 0004
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2023.110534_b233
  article-title: Community of pathogenic plant viruses found in the human gut
  publication-title: PLoSBiol
– volume: 11
  start-page: 1
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b319
  article-title: Identification of alfalfa leaf diseases using image recognition technology
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0168274
– start-page: 0538
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b57
  article-title: Machine learning for plant leaf disease detection and classification–A review
– volume: 179
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b299
  article-title: Image recognition of four rice leaf diseases based on deep learning and support vector machine
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105824
– volume: 4
  start-page: 87
  year: 1970
  ident: 10.1016/j.asoc.2023.110534_b164
  article-title: Studies on the cause and control of sun scald of plum
  publication-title: Korean J. Hortic. Sci.
– volume: 90
  start-page: 884
  issue: 8
  year: 2000
  ident: 10.1016/j.asoc.2023.110534_b158
  article-title: Septoria leaf spot of banana: a newly discovered disease caused by Mycosphaerell aeumusae (anamorph Septoria eumusae)
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2000.90.8.884
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b119
– volume: 10
  start-page: 465
  issue: 6
  year: 1991
  ident: 10.1016/j.asoc.2023.110534_b122
  article-title: Yield losses in soybeans from frogeye leaf spot caused by Cercosporasojina
  publication-title: Crop Protection
  doi: 10.1016/S0261-2194(91)80134-2
– year: 2017
  ident: 10.1016/j.asoc.2023.110534_b93
– volume: 142
  start-page: 369
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b321
  article-title: An in-field automatic wheat disease diagnosis system
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.09.012
– volume: 2
  start-page: 303
  issue: 6
  year: 2001
  ident: 10.1016/j.asoc.2023.110534_b112
  article-title: The tomato powdery mildew fungus Oidium neolycopersici
  publication-title: Mol. Plant Path.
  doi: 10.1046/j.1464-6722.2001.00084.x
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b269
– start-page: 368
  year: 1997
  ident: 10.1016/j.asoc.2023.110534_b364
  article-title: Clustering via concave minimization
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b239
– year: 2020
  ident: 10.1016/j.asoc.2023.110534_b258
  article-title: Delta tributary network—An efficient alternate approach for bottleneck layers in CNN for plant disease classification
– volume: 8
  start-page: 166
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b277
  article-title: Automatic recognition of medicinal plants using machine learning techniques
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.asoc.2023.110534_b410
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2023.110534_b383
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 13
  issue: 11
  year: 2018
  ident: 10.1016/j.asoc.2023.110534_b8
  article-title: Machine learning methods for crop yield prediction and climate change impact assessment in agriculture
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aae159
– volume: 3
  issue: 11
  year: 2013
  ident: 10.1016/j.asoc.2023.110534_b5
  article-title: Image processing techniques for detection of leaf disease
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– start-page: 43
  year: 1981
  ident: 10.1016/j.asoc.2023.110534_b361
  article-title: Objective function clustering
– volume: 92
  start-page: 530
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2023.110534_b116
  article-title: Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-92-4-0530
– volume: 80
  start-page: 1341
  issue: 12
  year: 1990
  ident: 10.1016/j.asoc.2023.110534_b134
  article-title: Analysis of epidemics of Leptosphaerulina leaf spots on alfalfa and white clover in time and space
  publication-title: Phytopathology
  doi: 10.1094/Phyto-80-1341
– year: 2015
  ident: 10.1016/j.asoc.2023.110534_b190
– volume: 8
  year: 2020
  ident: 10.1016/j.asoc.2023.110534_b24
  article-title: Early disease classification of mango leaves using feed-forward neural network and hybrid metaheuristic feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031914
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b48
– year: 2010
  ident: 10.1016/j.asoc.2023.110534_b346
– volume: 35
  start-page: 3427
  issue: 10
  year: 2014
  ident: 10.1016/j.asoc.2023.110534_b25
  article-title: Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.903353
– year: 2022
  ident: 10.1016/j.asoc.2023.110534_b226
– volume: 100
  start-page: 1000
  issue: 10
  year: 1975
  ident: 10.1016/j.asoc.2023.110534_b390
  article-title: An algorithm for finding nearest neighbors
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1975.224110
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b113
– start-page: 638
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b51
  article-title: Basic study of automated diagnosis of viral plant diseases using convolutional neural networks
– volume: 74
  start-page: 91
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2023.110534_b32
  article-title: Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.06.009
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b218
– ident: 10.1016/j.asoc.2023.110534_b296
– volume: 54
  start-page: 1091
  issue: 2
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b382
  article-title: Density weighted twin support vector machines for binary class imbalance learning
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-021-10671-y
– volume: 43
  start-page: 59
  issue: 1
  year: 1982
  ident: 10.1016/j.asoc.2023.110534_b397
  article-title: Self-organized formation of topologically correct feature maps
  publication-title: Biol. Cybernet.
  doi: 10.1007/BF00337288
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b235
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b411
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b157
– volume: 61
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b66
  article-title: Identification of disease using deep learning and evaluation of bacteriosis in peach leaf
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101247
– year: 2010
  ident: 10.1016/j.asoc.2023.110534_b203
– volume: 535
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b281
  article-title: Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.122537
– year: 2016
  ident: 10.1016/j.asoc.2023.110534_b406
– volume: 13
  start-page: 511
  issue: 3
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b331
  article-title: Plant leaf disease recognition using depth-wise separable convolution-based models
  publication-title: Symmetry
  doi: 10.3390/sym13030511
– volume: 58
  start-page: 280
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b34
  article-title: Smart farming: Pomegranate disease detection using image processing
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.08.022
– volume: 11
  start-page: 1950
  issue: 4
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b75
  article-title: Automatic identification of peanut-leaf diseases based on stack ensemble
  publication-title: Appl. Sci.
  doi: 10.3390/app11041950
– volume: 15
  start-page: 589
  issue: 3
  year: 2021
  ident: 10.1016/j.asoc.2023.110534_b312
  article-title: Leaf image analysis-based crop diseases classification
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-020-01780-7
– year: 2016
  ident: 10.1016/j.asoc.2023.110534_b89
– volume: 125
  start-page: 99
  year: 2016
  ident: 10.1016/j.asoc.2023.110534_b263
  article-title: Kernel-based PSO and FRVM: An automatic plant leaf type detection using texture, shape, and color features
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.04.033
– start-page: 401
  year: 2015
  ident: 10.1016/j.asoc.2023.110534_b287
  article-title: Fruit-based tomato grading system using features fusion and support vector machine
– year: 2017
  ident: 10.1016/j.asoc.2023.110534_b357
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b105
– volume: 9
  start-page: 212
  issue: 2
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b68
  article-title: ResTS: Residual deep interpretable architecture for plant disease detection
  publication-title: Inf. Process. Agric.
– start-page: 1
  year: 1995
  ident: 10.1016/j.asoc.2023.110534_b367
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b97
– volume: 10
  start-page: 579
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2023.110534_b94
  article-title: Genetic and physiological determinants of Streptomyces scabies pathogenicity
  publication-title: Mol. Plant Path.
  doi: 10.1111/j.1364-3703.2009.00561.x
– volume: 39
  start-page: 544
  issue: 6
  year: 2010
  ident: 10.1016/j.asoc.2023.110534_b188
  article-title: Detection of Xanthomonas axonopodispv. punicae causing bacterial blight on pomegranate in South Africa
  publication-title: Australas. Plant Pathol.
  doi: 10.1071/AP10034
– volume: 163
  year: 2019
  ident: 10.1016/j.asoc.2023.110534_b72
  article-title: A low shot learning method for tea leaf’s disease identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104852
– start-page: 110
  year: 2002
  ident: 10.1016/j.asoc.2023.110534_b409
  article-title: Ensemble learning
– year: 2021
  ident: 10.1016/j.asoc.2023.110534_b135
– volume: 71
  start-page: 1849
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110534_b30
  article-title: Deep learning based automated detection of diseases from apple leaf images
  publication-title: CMC-Comput. Mater. Continua
  doi: 10.32604/cmc.2022.021875
– volume: 24
  start-page: 603
  issue: 5
  year: 2002
  ident: 10.1016/j.asoc.2023.110534_b363
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.1000236
SSID ssj0016928
Score 2.6642258
SecondaryResourceType review_article
Snippet Identification of leaf disorder plays an important role in the economic prosperity of any country. Many parts of a plant can be infected by a virus, fungal,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110534
SubjectTerms Deep learning
Leaf species
Machine learning
Plant disease
Recognition models
Title Leaf disease detection using machine learning and deep learning: Review and challenges
URI https://dx.doi.org/10.1016/j.asoc.2023.110534
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjfisPLChtEnjOAlbVVEVKBUCirpF9tmuiiBUEFZ-O77EqUBCHZiiJGcpebHvLvK7e4SccQW-5uB7grPIY2kgUObFritug1EQA9MR1g7fjvlwwq6n0bRB-nUtDNIqne-vfHrprd2VjkOzs5jPOw_2zyNhKbPxGxtJdbHQnLEYZ3n7a0nzCHha6quisYfWrnCm4ngJi0AbBcSRDR-F7O_g9CPgDLbIhssUaa96mG3S0PkO2axVGKhblLvkaaSFoW6jhSpdlOSqnCKjfUZfS7Kkpk4dYkZFrqyRXiyvXNBqf6C8A7W2yscemQwuH_tDz6kleGABKDwVxr4G7F0TSe6DfSHjh90YZCJAGRBcKWWTE2z3EgppbF6k7OdLjIq6QqAK-j5p5m-5PiA0hDRkTJgklT4DrqU0YCQHFuswBmMOSVDDlIFrJY6KFi9ZzRl7zhDaDKHNKmgPyflyzKJqpLHSOqrRz35Nh8x6-hXjjv457pis41lFHjshzeL9U5_abKOQrXI6tchar38_usPj1c1w_A07hdYN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VcoALO2LHBzih0DRxnAaJA2JRC4ULi7gFxwsCQaigCHHhp_hBZhKnAglxQOrVS-S8OPNs-XkewIbQyjdC-Z4UPPJ40pRk84L_lUAyasaKm4juDp-eifYlP76OrmvwWd2FIVmli_1lTC-itStpODQbvbu7xjnuPFo84cjflEgqqJSVJ-b9DfdtL7udA_zIm0FwdHix3_actYCnsHXf02HsG0WJXqJM-Ao50PphEKusJZW2SgqtNTI55UYJZWZxEaHxXVtWR4GUZBmOzx2BUY7hgmwTtj8GupKmSApDVxqdR8NzN3VKUZlEyLfJsZzk91HIf2fDbwx3NAUTbmnK9sq3n4aayWdgsrJ9YC4KzMJV10jL3MkO06ZfqLlyRhL6W_ZYqDMNc3YUt0zmGhuZ3qBkh5UHEkWNqsxcXubgcigYzkM9f8rNArBQJSHn0raSzOdKmCyzymZC8diEsbJ2EZoVTKlyucvJQuMhrURq9ylBmxK0aQntImwN-vTKzB1_to4q9NMf8y9Favmj39I_-63DWPvitJt2O2cnyzBONaVybQXq_edXs4pLnX62VkwtBjfDnstfxgERSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+disease+detection+using+machine+learning+and+deep+learning%3A+Review+and+challenges&rft.jtitle=Applied+soft+computing&rft.au=Sarkar%2C+Chittabarni&rft.au=Gupta%2C+Deepak&rft.au=Gupta%2C+Umesh&rft.au=Hazarika%2C+Barenya+Bikash&rft.date=2023-09-01&rft.issn=1568-4946&rft.volume=145&rft.spage=110534&rft_id=info:doi/10.1016%2Fj.asoc.2023.110534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_110534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon