Temporal Convolutional Networks with RNN approach for chaotic time series prediction
The prediction of chaotic time series, which constitutes many systems in the field of science and engineering, has recently become the focus of attention of researchers. Chaotic time series prediction is making future predictions about these systems using previously observed data for a nonlinear cha...
Saved in:
Published in | Applied soft computing Vol. 133; p. 109945 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The prediction of chaotic time series, which constitutes many systems in the field of science and engineering, has recently become the focus of attention of researchers. Chaotic time series prediction is making future predictions about these systems using previously observed data for a nonlinear chaotic system with a known initial condition. Chaotic time series prediction can be applied in many fields such as weather forecasting, finance and stock markets. Many disciplines work on solving time series prediction problem, ranging from forecasting weather events days in advance to traders predicting the future of stocks. In recent studies, it has been observed that hybrid deep neural network methods give better performance in solving time series prediction problems and have gained popularity in order to benefit from the advantages of more than one method in solving such problems. In this study, a hybrid deep neural network architecture is proposed for chaotic time series prediction. The used hybrid approach includes both temporal convolutional network to extract low level features from input and recurrent neural network layers such as long short-term memory and gated recurrent units to capture temporal information. Simulations were carried out on nine different chaotic time series dataset which are obtained from Lorenz, Rössler and a Lorenz-like chaotic equation sets, and twenty-one electrocardiogram (ECG) recordings of patients with arrhythmias. In the benchmark study, in which twelve different methods, including classical machine learning, deep neural network and hybrid models were used, the proposed model achieved the best prediction performance with an average root-mean-square error (RMSE) value of 0.0022 for chaotic dataset and 0.0082 for ECG arrhythmia dataset. Performance evaluation metrics show that the proposed hybrid architecture can compete with the models in state-of-the-art studies in chaotic time series prediction.
•Chaotic time series prediction using 30 different dataset.•Novel TCN with RNN architectures is used for chaotic time series prediction.•Benchmarking study with 12 different methods including TCN with RNNs, classical ML and DNNs.•Proposed method has obtained lowest average RMSE as 0.0022. |
---|---|
AbstractList | The prediction of chaotic time series, which constitutes many systems in the field of science and engineering, has recently become the focus of attention of researchers. Chaotic time series prediction is making future predictions about these systems using previously observed data for a nonlinear chaotic system with a known initial condition. Chaotic time series prediction can be applied in many fields such as weather forecasting, finance and stock markets. Many disciplines work on solving time series prediction problem, ranging from forecasting weather events days in advance to traders predicting the future of stocks. In recent studies, it has been observed that hybrid deep neural network methods give better performance in solving time series prediction problems and have gained popularity in order to benefit from the advantages of more than one method in solving such problems. In this study, a hybrid deep neural network architecture is proposed for chaotic time series prediction. The used hybrid approach includes both temporal convolutional network to extract low level features from input and recurrent neural network layers such as long short-term memory and gated recurrent units to capture temporal information. Simulations were carried out on nine different chaotic time series dataset which are obtained from Lorenz, Rössler and a Lorenz-like chaotic equation sets, and twenty-one electrocardiogram (ECG) recordings of patients with arrhythmias. In the benchmark study, in which twelve different methods, including classical machine learning, deep neural network and hybrid models were used, the proposed model achieved the best prediction performance with an average root-mean-square error (RMSE) value of 0.0022 for chaotic dataset and 0.0082 for ECG arrhythmia dataset. Performance evaluation metrics show that the proposed hybrid architecture can compete with the models in state-of-the-art studies in chaotic time series prediction.
•Chaotic time series prediction using 30 different dataset.•Novel TCN with RNN architectures is used for chaotic time series prediction.•Benchmarking study with 12 different methods including TCN with RNNs, classical ML and DNNs.•Proposed method has obtained lowest average RMSE as 0.0022. |
ArticleNumber | 109945 |
Author | Taskiran, Murat Yildirim, Tulay Cam Taskiran, Zehra Gulru Dudukcu, Hatice Vildan |
Author_xml | – sequence: 1 givenname: Hatice Vildan orcidid: 0000-0002-0314-6262 surname: Dudukcu fullname: Dudukcu, Hatice Vildan email: vdudukcu@yildiz.edu.tr – sequence: 2 givenname: Murat orcidid: 0000-0002-6436-6963 surname: Taskiran fullname: Taskiran, Murat email: mrttskrn@yildiz.edu.tr – sequence: 3 givenname: Zehra Gulru orcidid: 0000-0002-7996-7948 surname: Cam Taskiran fullname: Cam Taskiran, Zehra Gulru email: zgcam@yildiz.edu.tr – sequence: 4 givenname: Tulay orcidid: 0000-0001-9993-5583 surname: Yildirim fullname: Yildirim, Tulay email: tulay@yildiz.edu.tr |
BookMark | eNp9kMtKAzEUhoNUsFZfwFVeYGqSmUkTcCPFG5QKUtchk5yhqdPJkMQW394MdeWiq3OB73D-7xpNet8DQneUzCmh_H4319GbOSOM5YWUVX2BplQsWCG5oJPc11wUlaz4FbqOcUcyJJmYos0G9oMPusNL3x98952c7_O0hnT04Svio0tb_LFeYz0MwWuzxa0P2Gy1T87g5PaAIwQHEQ8BrDMjf4MuW91FuP2rM_T5_LRZvhar95e35eOqMCUhqbDMcMusaKCE0oK2paXEtItcGZWkJMxKAGtqwdtKL2ijtWh4zVjZiqblTTlD4nTXBB9jgFYZl_T4QQradYoSNdpROzXaUaMddbKTUfYPHYLb6_BzHno4QZBDHRwEFY2D3uTcAUxS1rtz-C8i-4Lg |
CitedBy_id | crossref_primary_10_1142_S2196888824500234 crossref_primary_10_1016_j_engfailanal_2024_108696 crossref_primary_10_1111_exsy_13459 crossref_primary_10_1016_j_chaos_2023_114222 crossref_primary_10_1016_j_sbsr_2025_100749 crossref_primary_10_1109_ACCESS_2024_3514082 crossref_primary_10_3390_machines12120906 crossref_primary_10_1109_TKDE_2024_3490843 crossref_primary_10_1016_j_epsr_2023_109224 crossref_primary_10_1016_j_flowmeasinst_2024_102667 crossref_primary_10_1016_j_eswa_2025_126881 crossref_primary_10_1016_j_bspc_2024_106262 crossref_primary_10_3390_bioengineering11010089 crossref_primary_10_1109_ACCESS_2023_3285197 crossref_primary_10_1007_s00521_024_10606_3 crossref_primary_10_1371_journal_pone_0306520 crossref_primary_10_1016_j_isatra_2024_06_020 crossref_primary_10_1016_j_engappai_2024_109353 crossref_primary_10_3390_systems12050171 crossref_primary_10_12677_aam_2025_143124 crossref_primary_10_3390_en16207105 crossref_primary_10_1371_journal_pone_0298684 crossref_primary_10_1007_s11694_024_02616_5 crossref_primary_10_1016_j_jpse_2024_100220 crossref_primary_10_1007_s11581_024_05686_z crossref_primary_10_1109_ACCESS_2024_3519438 crossref_primary_10_1109_ACCESS_2024_3404456 crossref_primary_10_1016_j_asoc_2024_112441 crossref_primary_10_1109_ACCESS_2024_3354702 crossref_primary_10_1007_s00607_024_01366_y crossref_primary_10_3390_en17174322 crossref_primary_10_3390_math11183904 crossref_primary_10_1016_j_rineng_2025_104158 crossref_primary_10_3390_info15110709 crossref_primary_10_1109_ACCESS_2025_3536877 crossref_primary_10_1016_j_ijoes_2025_100988 crossref_primary_10_1371_journal_pone_0298451 crossref_primary_10_1080_17445302_2025_2478365 crossref_primary_10_1016_j_eswa_2024_126222 crossref_primary_10_23919_CSMS_2024_0015 crossref_primary_10_1016_j_eswa_2024_124555 crossref_primary_10_1063_5_0224768 crossref_primary_10_1007_s13177_024_00455_8 crossref_primary_10_1016_j_swevo_2024_101693 crossref_primary_10_1007_s00500_025_10437_x crossref_primary_10_1016_j_asoc_2024_112390 crossref_primary_10_1016_j_epsr_2024_110275 crossref_primary_10_1109_ACCESS_2024_3371259 crossref_primary_10_1016_j_eswa_2024_123948 crossref_primary_10_1016_j_chaos_2024_115442 crossref_primary_10_1016_j_asoc_2024_111735 crossref_primary_10_1016_j_ins_2024_121244 crossref_primary_10_1016_j_asoc_2023_110469 crossref_primary_10_1016_j_oceaneng_2024_119227 crossref_primary_10_1007_s11071_023_08652_y crossref_primary_10_1016_j_chaos_2024_115523 crossref_primary_10_3390_info14110598 crossref_primary_10_1109_OJCOMS_2024_3487847 crossref_primary_10_35377_saucis___1404116 |
Cites_doi | 10.1016/j.asoc.2021.108321 10.1007/s00500-018-3566-2 10.1142/S0129065721300011 10.1109/51.932724 10.1016/j.eswa.2017.09.059 10.1016/j.enconman.2018.04.021 10.1016/j.neucom.2020.03.011 10.3390/en11071636 10.1016/j.eswa.2019.112896 10.1109/TNNLS.2012.2198074 10.1016/j.ijforecast.2019.03.017 10.3390/e23010112 10.7498/aps.54.2568 10.3390/en11123493 10.1016/j.ejor.2017.11.054 10.3390/en11010213 10.1007/s11063-017-9723-2 10.1016/j.trc.2015.03.014 10.21314/JCF.2019.358 10.5951/MT.93.3.0230 10.1177/0278364904045481 10.1016/S0169-7439(03)00111-4 10.5194/gmd-7-1247-2014 10.1016/j.apenergy.2018.12.042 10.1016/j.neucom.2012.01.014 10.1161/01.CIR.101.23.e215 10.1016/0167-2789(85)90011-9 10.3390/app10072322 10.1016/j.chaos.2021.111304 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1109/TNN.2007.896859 10.1007/s11220-020-0272-9 10.1007/s00500-015-1833-z 10.1016/0375-9601(76)90101-8 10.1016/j.irbm.2019.10.001 10.3390/electronics8080876 10.1162/neco.1997.9.8.1735 10.1016/j.eswa.2013.12.011 10.1016/j.chaos.2020.110045 10.1016/S0925-2312(01)00702-0 10.1080/01621459.1937.10503522 10.1016/j.neucom.2018.12.084 10.1016/j.neucom.2018.09.082 10.1109/ACCESS.2020.3021527 10.2307/1358 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2022.109945 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2022_109945 S1568494622009942 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-d2c6d2d8be3e3dead3d10cf7d3d2190302d9eedc586f4a71baa8b65223f8bf6b3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:59:39 EDT 2025 Tue Jul 01 01:50:18 EDT 2025 Fri Feb 23 02:37:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep neural network Recurrent neural networks Time series prediction ECG recordings Temporal convolutional neural network Chaotic systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-d2c6d2d8be3e3dead3d10cf7d3d2190302d9eedc586f4a71baa8b65223f8bf6b3 |
ORCID | 0000-0002-6436-6963 0000-0002-7996-7948 0000-0001-9993-5583 0000-0002-0314-6262 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2022_109945 crossref_primary_10_1016_j_asoc_2022_109945 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Borovykh, Bohte, Oosterlee (b32) 2018 Mohammadi, Talebpour, Safaee, Ghadimi, Abedinia (b20) 2018; 48 Ruiz, Rueda, Cuéllar, Pegalajar (b21) 2018; 92 Thissen, Van Brakel, De Weijer, Melssen, Buydens (b7) 2003; 69 Gupta, Mittal (b61) 2019; 100 Barrett (b65) 2000; 93 Moody, Mark (b49) 2001; 20 Gorshkov, Ombao (b58) 2021; 23 Pan, Tan, Feng, Li (b27) 2019 Ma, Tao, Wang, Yu, Wang (b22) 2015; 54 Ye, Wang, Zhang (b1) 2005; 54 Bai, Kolter, Koltun (b37) 2018 Friedman (b67) 1939; 34 Abd Hamid, Noorani (b3) 2017; 46 Abdulkadir, Yong (b4) 2015; 19 Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (b52) 2014 Liu, Mi, Li (b15) 2018; 166 Lea, Vidal, Reiter, Hager (b38) 2016 Koprinska, Wu, Wang (b13) 2018 Lara-Benítez, Carranza-García, Riquelme (b40) 2021; 31 Sagheer, Kotb (b28) 2019; 323 Hipel, McLeod (b41) 1994 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b50) 2000; 101 Xiaoyan, Bingjie, Jing, Hua, Guojing (b51) 2021 Xie, Zhang, Lim (b46) 2020; 8 Gupta, Mittal, Mittal (b59) 2019; 40 Meng, Wang, Zhang, Bao (b2) 2016; 18 Khair, Fahmi, Al Hakim, Rahim (b64) 2017; 930 Jiang, Song (b11) 2010; vol. 5 Cai, Pipattanasomporn, Rahman (b17) 2019; 236 Xu, Ren (b47) 2022; 116 Zhang, Kline (b8) 2007; 18 Cheng, Wang, Peng, Ren, Shuai, Zang, Liu, Cheng, Wu (b36) 2021; 152 Bandara, Bergmeir, Smyl (b26) 2020; 140 Smyl (b29) 2020; 36 Chen, Kang, Chen, Wang (b34) 2020; 399 Lorenz (b53) 1963; 20 Ntakaris, Magris, Kanniainen, Gabbouj, Iosifidis (b43) 2017 Wolf, Swift, Swinney, Vastano (b54) 1985; 16 Rössler (b55) 1976; 57 Chandra, Zhang (b19) 2012; 86 Lara-Benítez, Carranza-García, Luna-Romera, Riquelme (b35) 2020; 10 Yan (b9) 2012; 23 LaValle, Branicky, Lindemann (b62) 2004; 23 Kuo, Huang (b14) 2018; 11 Bouktif, Fiaz, Ouni, Serhani (b24) 2018; 11 Zhang (b6) 2003; 50 Friedman (b66) 1937; 32 Tian, Pan (b23) 2015 Sangiorgio, Dercole (b31) 2020; 139 Tian, Ma, Zhang, Zhan (b16) 2018; 11 Yanan, Xiaoqun, Bainian, Kecheng (b30) 2020; vol. 1617 Hochreiter, Schmidhuber (b39) 1997; 9 Van Den Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b45) 2016; 125 Nemenyi (b68) 1963 Rodriguez, Flores, Morales, Lara, Guerra, Manjarrez (b5) 2019; 23 Leon Glass Wan, Mei, Wang, Liu, Yang (b33) 2019; 8 Bi, Zhang, Yuan, Zhang, Zhou (b48) 2021 Kourentzes, Barrow, Crone (b10) 2014; 41 Chai, Draxler (b63) 2014; 7 Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b44) 2016 Fischer, Krauss (b25) 2018; 270 Tsantekidis, Passalis, Tefas, Kanniainen, Gabbouj, Iosifidis (b12) 2017; vol. 1 Shen, Zhang, Lu, Xu, Xiao (b18) 2020; 396 Gupta, Mittal, Mittal (b57) 2020; 21 Elton, Nicholson (b42) 1942 Bocheng, Zhong, Jianping (b56) 2009; 20 Lara-Benítez (10.1016/j.asoc.2022.109945_b35) 2020; 10 Bi (10.1016/j.asoc.2022.109945_b48) 2021 Gupta (10.1016/j.asoc.2022.109945_b61) 2019; 100 Ye (10.1016/j.asoc.2022.109945_b1) 2005; 54 Ruiz (10.1016/j.asoc.2022.109945_b21) 2018; 92 Khair (10.1016/j.asoc.2022.109945_b64) 2017; 930 Gorshkov (10.1016/j.asoc.2022.109945_b58) 2021; 23 Tsantekidis (10.1016/j.asoc.2022.109945_b12) 2017; vol. 1 Barrett (10.1016/j.asoc.2022.109945_b65) 2000; 93 Hochreiter (10.1016/j.asoc.2022.109945_b39) 1997; 9 Mohammadi (10.1016/j.asoc.2022.109945_b20) 2018; 48 Pan (10.1016/j.asoc.2022.109945_b27) 2019 Goldberger (10.1016/j.asoc.2022.109945_b50) 2000; 101 Tian (10.1016/j.asoc.2022.109945_b23) 2015 10.1016/j.asoc.2022.109945_b60 Jiang (10.1016/j.asoc.2022.109945_b11) 2010; vol. 5 Lea (10.1016/j.asoc.2022.109945_b38) 2016 Shen (10.1016/j.asoc.2022.109945_b18) 2020; 396 Ma (10.1016/j.asoc.2022.109945_b22) 2015; 54 Sagheer (10.1016/j.asoc.2022.109945_b28) 2019; 323 Hipel (10.1016/j.asoc.2022.109945_b41) 1994 Cheng (10.1016/j.asoc.2022.109945_b36) 2021; 152 Friedman (10.1016/j.asoc.2022.109945_b67) 1939; 34 Xiaoyan (10.1016/j.asoc.2022.109945_b51) 2021 Tian (10.1016/j.asoc.2022.109945_b16) 2018; 11 Rodriguez (10.1016/j.asoc.2022.109945_b5) 2019; 23 Borovykh (10.1016/j.asoc.2022.109945_b32) 2018 Bouktif (10.1016/j.asoc.2022.109945_b24) 2018; 11 Bai (10.1016/j.asoc.2022.109945_b37) 2018 Zhang (10.1016/j.asoc.2022.109945_b6) 2003; 50 Lorenz (10.1016/j.asoc.2022.109945_b53) 1963; 20 Gupta (10.1016/j.asoc.2022.109945_b59) 2019; 40 Liu (10.1016/j.asoc.2022.109945_b15) 2018; 166 Moody (10.1016/j.asoc.2022.109945_b49) 2001; 20 Chai (10.1016/j.asoc.2022.109945_b63) 2014; 7 Rössler (10.1016/j.asoc.2022.109945_b55) 1976; 57 Oord (10.1016/j.asoc.2022.109945_b44) 2016 Abdulkadir (10.1016/j.asoc.2022.109945_b4) 2015; 19 Xie (10.1016/j.asoc.2022.109945_b46) 2020; 8 Cho (10.1016/j.asoc.2022.109945_b52) 2014 Abd Hamid (10.1016/j.asoc.2022.109945_b3) 2017; 46 Thissen (10.1016/j.asoc.2022.109945_b7) 2003; 69 Chandra (10.1016/j.asoc.2022.109945_b19) 2012; 86 LaValle (10.1016/j.asoc.2022.109945_b62) 2004; 23 Zhang (10.1016/j.asoc.2022.109945_b8) 2007; 18 Fischer (10.1016/j.asoc.2022.109945_b25) 2018; 270 Wolf (10.1016/j.asoc.2022.109945_b54) 1985; 16 Wan (10.1016/j.asoc.2022.109945_b33) 2019; 8 Chen (10.1016/j.asoc.2022.109945_b34) 2020; 399 Gupta (10.1016/j.asoc.2022.109945_b57) 2020; 21 Meng (10.1016/j.asoc.2022.109945_b2) 2016; 18 Sangiorgio (10.1016/j.asoc.2022.109945_b31) 2020; 139 Yanan (10.1016/j.asoc.2022.109945_b30) 2020; vol. 1617 Cai (10.1016/j.asoc.2022.109945_b17) 2019; 236 Koprinska (10.1016/j.asoc.2022.109945_b13) 2018 Bocheng (10.1016/j.asoc.2022.109945_b56) 2009; 20 Kuo (10.1016/j.asoc.2022.109945_b14) 2018; 11 Nemenyi (10.1016/j.asoc.2022.109945_b68) 1963 Elton (10.1016/j.asoc.2022.109945_b42) 1942 Friedman (10.1016/j.asoc.2022.109945_b66) 1937; 32 Bandara (10.1016/j.asoc.2022.109945_b26) 2020; 140 Kourentzes (10.1016/j.asoc.2022.109945_b10) 2014; 41 Yan (10.1016/j.asoc.2022.109945_b9) 2012; 23 Xu (10.1016/j.asoc.2022.109945_b47) 2022; 116 Ntakaris (10.1016/j.asoc.2022.109945_b43) 2017 Smyl (10.1016/j.asoc.2022.109945_b29) 2020; 36 Lara-Benítez (10.1016/j.asoc.2022.109945_b40) 2021; 31 Van Den Oord (10.1016/j.asoc.2022.109945_b45) 2016; 125 |
References_xml | – volume: 20 start-page: 130 year: 1963 end-page: 141 ident: b53 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. – volume: 11 start-page: 213 year: 2018 ident: b14 article-title: A high precision artificial neural networks model for short-term energy load forecasting publication-title: Energies – reference: Leon Glass, – volume: 50 start-page: 159 year: 2003 end-page: 175 ident: b6 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing – volume: 36 start-page: 75 year: 2020 end-page: 85 ident: b29 article-title: A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting publication-title: Int. J. Forecast. – volume: 8 start-page: 876 year: 2019 ident: b33 article-title: Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting publication-title: Electronics – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b39 article-title: Long short-term memory publication-title: Neural Comput. – volume: 116 year: 2022 ident: b47 article-title: A hybrid model of stacked autoencoder and modified particle swarm optimization for multivariate chaotic time series forecasting publication-title: Appl. Soft Comput. – volume: 8 start-page: 161519 year: 2020 end-page: 161541 ident: b46 article-title: Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer publication-title: IEEE Access – year: 2021 ident: b48 article-title: A hybrid prediction method for realistic network traffic with temporal convolutional network and lstm publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 11 start-page: 3493 year: 2018 ident: b16 article-title: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network publication-title: Energies – volume: 323 start-page: 203 year: 2019 end-page: 213 ident: b28 article-title: Time series forecasting of petroleum production using deep lstm recurrent networks publication-title: Neurocomputing – year: 1994 ident: b41 article-title: Time Series Modelling of Water Resources and Environmental Systems – volume: 57 start-page: 397 year: 1976 end-page: 398 ident: b55 article-title: An equation for continuous chaos publication-title: Phys. Lett. A – volume: 139 year: 2020 ident: b31 article-title: Robustness of LSTM neural networks for multi-step forecasting of chaotic time series publication-title: Chaos Solitons Fractals – volume: 10 start-page: 2322 year: 2020 ident: b35 article-title: Temporal convolutional networks applied to energy-related time series forecasting publication-title: Appl. Sci. – volume: 23 start-page: 112 year: 2021 ident: b58 article-title: Multi-chaotic analysis of inter-beat (RR) intervals in cardiac signals for discrimination between normal and pathological classes publication-title: Entropy – volume: 930 year: 2017 ident: b64 article-title: Forecasting error calculation with mean absolute deviation and mean absolute percentage error publication-title: Journal of Physics: Conference Series – volume: 399 start-page: 491 year: 2020 end-page: 501 ident: b34 article-title: Probabilistic forecasting with temporal convolutional neural network publication-title: Neurocomputing – volume: 152 year: 2021 ident: b36 article-title: High-efficiency chaotic time series prediction based on time convolution neural network publication-title: Chaos Solitons Fractals – volume: 46 start-page: 1333 year: 2017 end-page: 1339 ident: b3 article-title: New improved chaotic approach model application on forecasting ozone concentration time series publication-title: Sains Malays. – volume: 69 start-page: 35 year: 2003 end-page: 49 ident: b7 article-title: Using support vector machines for time series prediction publication-title: Chemometr. Intell. Lab. Syst. – year: 2017 ident: b43 article-title: Benchmark dataset for mid-price prediction of limit order book data – year: 2016 ident: b44 article-title: WaveNet: A generative model for raw audio – volume: 86 start-page: 116 year: 2012 end-page: 123 ident: b19 article-title: Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction publication-title: Neurocomputing – start-page: 215 year: 1942 end-page: 244 ident: b42 article-title: The ten-year cycle in numbers of the lynx in Canada publication-title: J. Anim. Ecol. – volume: 166 start-page: 120 year: 2018 end-page: 131 ident: b15 article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network publication-title: Energy Convers. Manage. – start-page: 79 year: 2021 end-page: 83 ident: b51 article-title: A novel forecasting method for short-term load based on TCN-gru model publication-title: 2021 IEEE International Conference on Energy Internet – volume: 31 year: 2021 ident: b40 article-title: An experimental review on deep learning architectures for time series forecasting publication-title: Int. J. Neural Syst. – volume: 18 start-page: 1800 year: 2007 end-page: 1814 ident: b8 article-title: Quarterly time-series forecasting with neural networks publication-title: IEEE Trans. Neural Netw. – volume: 125 start-page: 2 year: 2016 ident: b45 article-title: WaveNet: A generative model for raw audio publication-title: SSW – volume: 92 start-page: 380 year: 2018 end-page: 389 ident: b21 article-title: Energy consumption forecasting based on Elman neural networks with evolutive optimization publication-title: Expert Syst. Appl. – volume: 140 year: 2020 ident: b26 article-title: Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach publication-title: Expert Syst. Appl. – volume: 11 start-page: 1636 year: 2018 ident: b24 article-title: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches publication-title: Energies – volume: 34 start-page: 109 year: 1939 ident: b67 article-title: A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J. Amer. Statist. Assoc. – volume: 19 start-page: 3479 year: 2015 end-page: 3496 ident: b4 article-title: Scaled UKF–NARX hybrid model for multi-step-ahead forecasting of chaotic time series data publication-title: Soft Comput. – volume: 23 start-page: 1028 year: 2012 end-page: 1039 ident: b9 article-title: Toward automatic time-series forecasting using neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 20 start-page: 1179 year: 2009 end-page: 1187 ident: b56 article-title: New chaotic system and its hyperchaos generation publication-title: J. Syst. Eng. Electronics – volume: 40 start-page: 341 year: 2019 end-page: 354 ident: b59 article-title: R-peak detection using chaos analysis in standard and real time ECG databases publication-title: IRBM – volume: 21 start-page: 1 year: 2020 end-page: 22 ident: b57 article-title: Chaos theory: an emerging tool for arrhythmia detection publication-title: Sens. Imaging – volume: 32 start-page: 675 year: 1937 end-page: 701 ident: b66 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J. Amer. Statist. Assoc. – volume: vol. 1 start-page: 7 year: 2017 end-page: 12 ident: b12 article-title: Forecasting stock prices from the limit order book using convolutional neural networks publication-title: 2017 IEEE 19th Conference on Business Informatics – start-page: 267 year: 2019 end-page: 271 ident: b27 article-title: Very short-term solar generation forecasting based on LSTM with temporal attention mechanism publication-title: 2019 IEEE 5th International Conference on Computer and Communications – year: 2018 ident: b37 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b50 article-title: PhysioBank, PhysioToolkit, PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 16 start-page: 285 year: 1985 end-page: 317 ident: b54 article-title: Determining Lyapunov exponents from a time series publication-title: Physica D – volume: 41 start-page: 4235 year: 2014 end-page: 4244 ident: b10 article-title: Neural network ensemble operators for time series forecasting publication-title: Expert Syst. Appl. – year: 1963 ident: b68 article-title: Distribution-Free Multiple Comparisons. – volume: 93 start-page: 230 year: 2000 end-page: 234 ident: b65 article-title: The Coefficient of Determination: Understanding r squared and R squared publication-title: Math. Teach. – volume: 54 start-page: 187 year: 2015 end-page: 197 ident: b22 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transp. Res. C – volume: 23 start-page: 10119 year: 2019 end-page: 10127 ident: b5 article-title: Forecasting from incomplete and chaotic wind speed data publication-title: Soft Comput. – volume: 270 start-page: 654 year: 2018 end-page: 669 ident: b25 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: European J. Oper. Res. – volume: 23 start-page: 673 year: 2004 end-page: 692 ident: b62 article-title: On the relationship between classical grid search and probabilistic roadmaps publication-title: Int. J. Robot. Res. – start-page: 153 year: 2015 end-page: 158 ident: b23 article-title: Predicting short-term traffic flow by long short-term memory recurrent neural network publication-title: 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity) – volume: 54 start-page: 2568 year: 2005 end-page: 2573 ident: b1 article-title: Chaotic time series forecasting using online least squares support vector machine regression publication-title: Acta Phys. Sin. – volume: 396 start-page: 302 year: 2020 end-page: 313 ident: b18 article-title: A novel time series forecasting model with deep learning publication-title: Neurocomputing – volume: 100 start-page: 489 year: 2019 end-page: 497 ident: b61 article-title: QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases publication-title: J. Inst. Eng. (India): Ser. B – volume: 236 start-page: 1078 year: 2019 end-page: 1088 ident: b17 article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques publication-title: Appl. Energy – year: 2014 ident: b52 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation – volume: 7 start-page: 1247 year: 2014 end-page: 1250 ident: b63 article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. – volume: 18 start-page: 562 year: 2016 end-page: 576 ident: b2 article-title: A novel chaotic time series prediction method and its application to carrier vibration interference attitude prediction of stabilized platform publication-title: J. Vibroeng. – start-page: 47 year: 2016 end-page: 54 ident: b38 article-title: Temporal convolutional networks: A unified approach to action segmentation publication-title: European Conference on Computer Vision – start-page: 1 year: 2018 end-page: 8 ident: b13 article-title: Convolutional neural networks for energy time series forecasting publication-title: 2018 International Joint Conference on Neural Networks – volume: 48 start-page: 329 year: 2018 end-page: 351 ident: b20 article-title: Small-scale building load forecast based on hybrid forecast engine publication-title: Neural Process. Lett. – volume: vol. 1617 year: 2020 ident: b30 article-title: Chaotic time series prediction using LSTM with CEEMDAN publication-title: Journal of Physics: Conference Series – volume: vol. 5 start-page: 238 year: 2010 end-page: 241 ident: b11 article-title: Forecasting chaotic time series of exchange rate based on nonlinear autoregressive model publication-title: 2010 2nd International Conference on Advanced Computer Control – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b49 article-title: The impact of the MIT-bih arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. – year: 2018 ident: b32 article-title: Dilated convolutional neural networks for time series forecasting publication-title: Journal of Computational Finance, Forthcoming – volume: 116 year: 2022 ident: 10.1016/j.asoc.2022.109945_b47 article-title: A hybrid model of stacked autoencoder and modified particle swarm optimization for multivariate chaotic time series forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108321 – volume: 23 start-page: 10119 issue: 20 year: 2019 ident: 10.1016/j.asoc.2022.109945_b5 article-title: Forecasting from incomplete and chaotic wind speed data publication-title: Soft Comput. doi: 10.1007/s00500-018-3566-2 – volume: 31 issue: 03 year: 2021 ident: 10.1016/j.asoc.2022.109945_b40 article-title: An experimental review on deep learning architectures for time series forecasting publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065721300011 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.asoc.2022.109945_b49 article-title: The impact of the MIT-bih arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – volume: 92 start-page: 380 year: 2018 ident: 10.1016/j.asoc.2022.109945_b21 article-title: Energy consumption forecasting based on Elman neural networks with evolutive optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.059 – volume: 166 start-page: 120 year: 2018 ident: 10.1016/j.asoc.2022.109945_b15 article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.04.021 – volume: 20 start-page: 1179 issue: 6 year: 2009 ident: 10.1016/j.asoc.2022.109945_b56 article-title: New chaotic system and its hyperchaos generation publication-title: J. Syst. Eng. Electronics – volume: 399 start-page: 491 year: 2020 ident: 10.1016/j.asoc.2022.109945_b34 article-title: Probabilistic forecasting with temporal convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.011 – year: 2021 ident: 10.1016/j.asoc.2022.109945_b48 article-title: A hybrid prediction method for realistic network traffic with temporal convolutional network and lstm publication-title: IEEE Trans. Autom. Sci. Eng. – volume: vol. 1 start-page: 7 year: 2017 ident: 10.1016/j.asoc.2022.109945_b12 article-title: Forecasting stock prices from the limit order book using convolutional neural networks – volume: 11 start-page: 1636 issue: 7 year: 2018 ident: 10.1016/j.asoc.2022.109945_b24 article-title: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches publication-title: Energies doi: 10.3390/en11071636 – volume: 140 year: 2020 ident: 10.1016/j.asoc.2022.109945_b26 article-title: Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112896 – volume: 23 start-page: 1028 issue: 7 year: 2012 ident: 10.1016/j.asoc.2022.109945_b9 article-title: Toward automatic time-series forecasting using neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2198074 – year: 2018 ident: 10.1016/j.asoc.2022.109945_b37 – volume: 34 start-page: 109 issue: 205 year: 1939 ident: 10.1016/j.asoc.2022.109945_b67 article-title: A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J. Amer. Statist. Assoc. – volume: 36 start-page: 75 issue: 1 year: 2020 ident: 10.1016/j.asoc.2022.109945_b29 article-title: A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2019.03.017 – volume: 23 start-page: 112 issue: 1 year: 2021 ident: 10.1016/j.asoc.2022.109945_b58 article-title: Multi-chaotic analysis of inter-beat (RR) intervals in cardiac signals for discrimination between normal and pathological classes publication-title: Entropy doi: 10.3390/e23010112 – volume: 100 start-page: 489 issue: 5 year: 2019 ident: 10.1016/j.asoc.2022.109945_b61 article-title: QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases publication-title: J. Inst. Eng. (India): Ser. B – volume: 54 start-page: 2568 issue: 6 year: 2005 ident: 10.1016/j.asoc.2022.109945_b1 article-title: Chaotic time series forecasting using online least squares support vector machine regression publication-title: Acta Phys. Sin. doi: 10.7498/aps.54.2568 – year: 2014 ident: 10.1016/j.asoc.2022.109945_b52 – volume: 930 year: 2017 ident: 10.1016/j.asoc.2022.109945_b64 article-title: Forecasting error calculation with mean absolute deviation and mean absolute percentage error – volume: 11 start-page: 3493 issue: 12 year: 2018 ident: 10.1016/j.asoc.2022.109945_b16 article-title: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network publication-title: Energies doi: 10.3390/en11123493 – volume: 270 start-page: 654 issue: 2 year: 2018 ident: 10.1016/j.asoc.2022.109945_b25 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2017.11.054 – start-page: 267 year: 2019 ident: 10.1016/j.asoc.2022.109945_b27 article-title: Very short-term solar generation forecasting based on LSTM with temporal attention mechanism – volume: 46 start-page: 1333 issue: 8 year: 2017 ident: 10.1016/j.asoc.2022.109945_b3 article-title: New improved chaotic approach model application on forecasting ozone concentration time series publication-title: Sains Malays. – volume: 11 start-page: 213 issue: 1 year: 2018 ident: 10.1016/j.asoc.2022.109945_b14 article-title: A high precision artificial neural networks model for short-term energy load forecasting publication-title: Energies doi: 10.3390/en11010213 – year: 2016 ident: 10.1016/j.asoc.2022.109945_b44 – volume: 48 start-page: 329 issue: 1 year: 2018 ident: 10.1016/j.asoc.2022.109945_b20 article-title: Small-scale building load forecast based on hybrid forecast engine publication-title: Neural Process. Lett. doi: 10.1007/s11063-017-9723-2 – volume: 54 start-page: 187 year: 2015 ident: 10.1016/j.asoc.2022.109945_b22 article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.03.014 – year: 2018 ident: 10.1016/j.asoc.2022.109945_b32 article-title: Dilated convolutional neural networks for time series forecasting publication-title: Journal of Computational Finance, Forthcoming doi: 10.21314/JCF.2019.358 – volume: 93 start-page: 230 issue: 3 year: 2000 ident: 10.1016/j.asoc.2022.109945_b65 article-title: The Coefficient of Determination: Understanding r squared and R squared publication-title: Math. Teach. doi: 10.5951/MT.93.3.0230 – volume: 23 start-page: 673 issue: 7–8 year: 2004 ident: 10.1016/j.asoc.2022.109945_b62 article-title: On the relationship between classical grid search and probabilistic roadmaps publication-title: Int. J. Robot. Res. doi: 10.1177/0278364904045481 – volume: 69 start-page: 35 issue: 1–2 year: 2003 ident: 10.1016/j.asoc.2022.109945_b7 article-title: Using support vector machines for time series prediction publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(03)00111-4 – volume: 7 start-page: 1247 issue: 3 year: 2014 ident: 10.1016/j.asoc.2022.109945_b63 article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1247-2014 – volume: 236 start-page: 1078 year: 2019 ident: 10.1016/j.asoc.2022.109945_b17 article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.042 – volume: vol. 1617 year: 2020 ident: 10.1016/j.asoc.2022.109945_b30 article-title: Chaotic time series prediction using LSTM with CEEMDAN – volume: 86 start-page: 116 year: 2012 ident: 10.1016/j.asoc.2022.109945_b19 article-title: Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.01.014 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.asoc.2022.109945_b50 article-title: PhysioBank, PhysioToolkit, PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 16 start-page: 285 issue: 3 year: 1985 ident: 10.1016/j.asoc.2022.109945_b54 article-title: Determining Lyapunov exponents from a time series publication-title: Physica D doi: 10.1016/0167-2789(85)90011-9 – volume: 10 start-page: 2322 issue: 7 year: 2020 ident: 10.1016/j.asoc.2022.109945_b35 article-title: Temporal convolutional networks applied to energy-related time series forecasting publication-title: Appl. Sci. doi: 10.3390/app10072322 – volume: 152 year: 2021 ident: 10.1016/j.asoc.2022.109945_b36 article-title: High-efficiency chaotic time series prediction based on time convolution neural network publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111304 – volume: 20 start-page: 130 issue: 2 year: 1963 ident: 10.1016/j.asoc.2022.109945_b53 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – ident: 10.1016/j.asoc.2022.109945_b60 – volume: 18 start-page: 1800 issue: 6 year: 2007 ident: 10.1016/j.asoc.2022.109945_b8 article-title: Quarterly time-series forecasting with neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2007.896859 – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.asoc.2022.109945_b57 article-title: Chaos theory: an emerging tool for arrhythmia detection publication-title: Sens. Imaging doi: 10.1007/s11220-020-0272-9 – volume: 19 start-page: 3479 issue: 12 year: 2015 ident: 10.1016/j.asoc.2022.109945_b4 article-title: Scaled UKF–NARX hybrid model for multi-step-ahead forecasting of chaotic time series data publication-title: Soft Comput. doi: 10.1007/s00500-015-1833-z – start-page: 79 year: 2021 ident: 10.1016/j.asoc.2022.109945_b51 article-title: A novel forecasting method for short-term load based on TCN-gru model – volume: 18 start-page: 562 issue: 1 year: 2016 ident: 10.1016/j.asoc.2022.109945_b2 article-title: A novel chaotic time series prediction method and its application to carrier vibration interference attitude prediction of stabilized platform publication-title: J. Vibroeng. – start-page: 47 year: 2016 ident: 10.1016/j.asoc.2022.109945_b38 article-title: Temporal convolutional networks: A unified approach to action segmentation – volume: 57 start-page: 397 issue: 5 year: 1976 ident: 10.1016/j.asoc.2022.109945_b55 article-title: An equation for continuous chaos publication-title: Phys. Lett. A doi: 10.1016/0375-9601(76)90101-8 – year: 2017 ident: 10.1016/j.asoc.2022.109945_b43 – volume: 125 start-page: 2 year: 2016 ident: 10.1016/j.asoc.2022.109945_b45 article-title: WaveNet: A generative model for raw audio publication-title: SSW – volume: 40 start-page: 341 issue: 6 year: 2019 ident: 10.1016/j.asoc.2022.109945_b59 article-title: R-peak detection using chaos analysis in standard and real time ECG databases publication-title: IRBM doi: 10.1016/j.irbm.2019.10.001 – volume: vol. 5 start-page: 238 year: 2010 ident: 10.1016/j.asoc.2022.109945_b11 article-title: Forecasting chaotic time series of exchange rate based on nonlinear autoregressive model – volume: 8 start-page: 876 issue: 8 year: 2019 ident: 10.1016/j.asoc.2022.109945_b33 article-title: Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting publication-title: Electronics doi: 10.3390/electronics8080876 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.asoc.2022.109945_b39 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 41 start-page: 4235 issue: 9 year: 2014 ident: 10.1016/j.asoc.2022.109945_b10 article-title: Neural network ensemble operators for time series forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.011 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2022.109945_b13 article-title: Convolutional neural networks for energy time series forecasting – start-page: 153 year: 2015 ident: 10.1016/j.asoc.2022.109945_b23 article-title: Predicting short-term traffic flow by long short-term memory recurrent neural network – volume: 139 year: 2020 ident: 10.1016/j.asoc.2022.109945_b31 article-title: Robustness of LSTM neural networks for multi-step forecasting of chaotic time series publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110045 – year: 1963 ident: 10.1016/j.asoc.2022.109945_b68 – volume: 50 start-page: 159 year: 2003 ident: 10.1016/j.asoc.2022.109945_b6 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 10.1016/j.asoc.2022.109945_b66 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1937.10503522 – year: 1994 ident: 10.1016/j.asoc.2022.109945_b41 – volume: 396 start-page: 302 year: 2020 ident: 10.1016/j.asoc.2022.109945_b18 article-title: A novel time series forecasting model with deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.084 – volume: 323 start-page: 203 year: 2019 ident: 10.1016/j.asoc.2022.109945_b28 article-title: Time series forecasting of petroleum production using deep lstm recurrent networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.082 – volume: 8 start-page: 161519 year: 2020 ident: 10.1016/j.asoc.2022.109945_b46 article-title: Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021527 – start-page: 215 year: 1942 ident: 10.1016/j.asoc.2022.109945_b42 article-title: The ten-year cycle in numbers of the lynx in Canada publication-title: J. Anim. Ecol. doi: 10.2307/1358 |
SSID | ssj0016928 |
Score | 2.6505704 |
Snippet | The prediction of chaotic time series, which constitutes many systems in the field of science and engineering, has recently become the focus of attention of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109945 |
SubjectTerms | Chaotic systems Deep neural network ECG recordings Recurrent neural networks Temporal convolutional neural network Time series prediction |
Title | Temporal Convolutional Networks with RNN approach for chaotic time series prediction |
URI | https://dx.doi.org/10.1016/j.asoc.2022.109945 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3ic1js8keS1DqgyC1hd7CJrvBSklLWz36253JboqC9OBpSZgJ4ctkdmZ2HoRcKxGD8-8qJ2Ju6bBCCyfWMnRk6WP_bx15ss62SPlgzB4n4aRFkqYWBtMqre43Or3W1vZOz6LZW0ynvVfwPGImGPcxwC8Y6mHGIpTy269NmofHRT1fFYkdpLaFMybHSwIC4CP6PnZVEljS9Nfm9GPDuT8ge9ZSpH3zMoekpasjst9MYaD2pzwmo5HpLjWjybz6tJIEV6lJ8F5RDLXSYZrSpn84BUOVFm9yDk-mOFyeohzqFV0s8dgG-U_I-P5ulAwcOyvBKQLXXTvKL7jyVZzrQAcKxCNQnluUEaygk-Br-ErAdliEMS-ZjLxcyjjnYHwFZZyXPA9OSbuaV_qMUPCYC-2BXcgRVZaLSHos0lx4KhTK5x3iNSBlhW0kjvMsZlmTMfaeIbAZApsZYDvkZsOzMG00tlKHDfbZL2HIQM9v4Tv_J98F2cUp8iayckna6-WHvgJbY513a2Hqkp1-Mnx-wfXhaZB-A2X51UU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4QwEJ74OOjFt_FtD3oyuFBKoQcPxkfWFwddE29YaIlrzO7GXTVe_FP-QWeWYjQxHkw8EQhDytdhHmU6H8CWUQkm_77xYuGXniis8hKrI0-XnPp_2zjQw2qLVDavxelNdDMC7_VeGCqrdLa_sulDa-2uNByajV673bjCzCMRSkhOC_xKcFdZeWZfXzBv6--dHOIkb3N-fNQ6aHqOWsArQt8feIYX0nCT5Da0oUE0QxP4RRnjET9hHDw3Cr1HESWyFDoOcq2TXGKsEpZJXso8xOeOwrhAc0G0Cbtvn3UlgVRDQlcanUfDczt1qqIyjZBjUso5tXFStIfqJ2_4xcMdz8CUC03ZfvX2szBiO3MwXdM-MGcF5qHVqtpZPbCDbufZqS6epVVFeZ_R2i67TFNWNyxnGBmz4k538cmM2OwZKb7ts94j_Sci-QW4_hcEF2Gs0-3YJWCYohc2wEBU0jSKXMU6ELGVKjCRMlwuQ1CDlBWuczkRaDxkdYnafUbAZgRsVgG7DDufMr2qb8evd0c19tk37cvQsfwit_JHuU2YaLYuzrPzk_RsFSaJwr5a1lmDscHjk13HQGeQbwwVi8Htf2vyB1pdEZc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Convolutional+Networks+with+RNN+approach+for+chaotic+time+series+prediction&rft.jtitle=Applied+soft+computing&rft.au=Dudukcu%2C+Hatice+Vildan&rft.au=Taskiran%2C+Murat&rft.au=Cam+Taskiran%2C+Zehra+Gulru&rft.au=Yildirim%2C+Tulay&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=133&rft_id=info:doi/10.1016%2Fj.asoc.2022.109945&rft.externalDocID=S1568494622009942 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |