Temporal Convolutional Networks with RNN approach for chaotic time series prediction

The prediction of chaotic time series, which constitutes many systems in the field of science and engineering, has recently become the focus of attention of researchers. Chaotic time series prediction is making future predictions about these systems using previously observed data for a nonlinear cha...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 133; p. 109945
Main Authors Dudukcu, Hatice Vildan, Taskiran, Murat, Cam Taskiran, Zehra Gulru, Yildirim, Tulay
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The prediction of chaotic time series, which constitutes many systems in the field of science and engineering, has recently become the focus of attention of researchers. Chaotic time series prediction is making future predictions about these systems using previously observed data for a nonlinear chaotic system with a known initial condition. Chaotic time series prediction can be applied in many fields such as weather forecasting, finance and stock markets. Many disciplines work on solving time series prediction problem, ranging from forecasting weather events days in advance to traders predicting the future of stocks. In recent studies, it has been observed that hybrid deep neural network methods give better performance in solving time series prediction problems and have gained popularity in order to benefit from the advantages of more than one method in solving such problems. In this study, a hybrid deep neural network architecture is proposed for chaotic time series prediction. The used hybrid approach includes both temporal convolutional network to extract low level features from input and recurrent neural network layers such as long short-term memory and gated recurrent units to capture temporal information. Simulations were carried out on nine different chaotic time series dataset which are obtained from Lorenz, Rössler and a Lorenz-like chaotic equation sets, and twenty-one electrocardiogram (ECG) recordings of patients with arrhythmias. In the benchmark study, in which twelve different methods, including classical machine learning, deep neural network and hybrid models were used, the proposed model achieved the best prediction performance with an average root-mean-square error (RMSE) value of 0.0022 for chaotic dataset and 0.0082 for ECG arrhythmia dataset. Performance evaluation metrics show that the proposed hybrid architecture can compete with the models in state-of-the-art studies in chaotic time series prediction. •Chaotic time series prediction using 30 different dataset.•Novel TCN with RNN architectures is used for chaotic time series prediction.•Benchmarking study with 12 different methods including TCN with RNNs, classical ML and DNNs.•Proposed method has obtained lowest average RMSE as 0.0022.
AbstractList The prediction of chaotic time series, which constitutes many systems in the field of science and engineering, has recently become the focus of attention of researchers. Chaotic time series prediction is making future predictions about these systems using previously observed data for a nonlinear chaotic system with a known initial condition. Chaotic time series prediction can be applied in many fields such as weather forecasting, finance and stock markets. Many disciplines work on solving time series prediction problem, ranging from forecasting weather events days in advance to traders predicting the future of stocks. In recent studies, it has been observed that hybrid deep neural network methods give better performance in solving time series prediction problems and have gained popularity in order to benefit from the advantages of more than one method in solving such problems. In this study, a hybrid deep neural network architecture is proposed for chaotic time series prediction. The used hybrid approach includes both temporal convolutional network to extract low level features from input and recurrent neural network layers such as long short-term memory and gated recurrent units to capture temporal information. Simulations were carried out on nine different chaotic time series dataset which are obtained from Lorenz, Rössler and a Lorenz-like chaotic equation sets, and twenty-one electrocardiogram (ECG) recordings of patients with arrhythmias. In the benchmark study, in which twelve different methods, including classical machine learning, deep neural network and hybrid models were used, the proposed model achieved the best prediction performance with an average root-mean-square error (RMSE) value of 0.0022 for chaotic dataset and 0.0082 for ECG arrhythmia dataset. Performance evaluation metrics show that the proposed hybrid architecture can compete with the models in state-of-the-art studies in chaotic time series prediction. •Chaotic time series prediction using 30 different dataset.•Novel TCN with RNN architectures is used for chaotic time series prediction.•Benchmarking study with 12 different methods including TCN with RNNs, classical ML and DNNs.•Proposed method has obtained lowest average RMSE as 0.0022.
ArticleNumber 109945
Author Taskiran, Murat
Yildirim, Tulay
Cam Taskiran, Zehra Gulru
Dudukcu, Hatice Vildan
Author_xml – sequence: 1
  givenname: Hatice Vildan
  orcidid: 0000-0002-0314-6262
  surname: Dudukcu
  fullname: Dudukcu, Hatice Vildan
  email: vdudukcu@yildiz.edu.tr
– sequence: 2
  givenname: Murat
  orcidid: 0000-0002-6436-6963
  surname: Taskiran
  fullname: Taskiran, Murat
  email: mrttskrn@yildiz.edu.tr
– sequence: 3
  givenname: Zehra Gulru
  orcidid: 0000-0002-7996-7948
  surname: Cam Taskiran
  fullname: Cam Taskiran, Zehra Gulru
  email: zgcam@yildiz.edu.tr
– sequence: 4
  givenname: Tulay
  orcidid: 0000-0001-9993-5583
  surname: Yildirim
  fullname: Yildirim, Tulay
  email: tulay@yildiz.edu.tr
BookMark eNp9kMtKAzEUhoNUsFZfwFVeYGqSmUkTcCPFG5QKUtchk5yhqdPJkMQW394MdeWiq3OB73D-7xpNet8DQneUzCmh_H4319GbOSOM5YWUVX2BplQsWCG5oJPc11wUlaz4FbqOcUcyJJmYos0G9oMPusNL3x98952c7_O0hnT04Svio0tb_LFeYz0MwWuzxa0P2Gy1T87g5PaAIwQHEQ8BrDMjf4MuW91FuP2rM_T5_LRZvhar95e35eOqMCUhqbDMcMusaKCE0oK2paXEtItcGZWkJMxKAGtqwdtKL2ijtWh4zVjZiqblTTlD4nTXBB9jgFYZl_T4QQradYoSNdpROzXaUaMddbKTUfYPHYLb6_BzHno4QZBDHRwEFY2D3uTcAUxS1rtz-C8i-4Lg
CitedBy_id crossref_primary_10_1142_S2196888824500234
crossref_primary_10_1016_j_engfailanal_2024_108696
crossref_primary_10_1111_exsy_13459
crossref_primary_10_1016_j_chaos_2023_114222
crossref_primary_10_1016_j_sbsr_2025_100749
crossref_primary_10_1109_ACCESS_2024_3514082
crossref_primary_10_3390_machines12120906
crossref_primary_10_1109_TKDE_2024_3490843
crossref_primary_10_1016_j_epsr_2023_109224
crossref_primary_10_1016_j_flowmeasinst_2024_102667
crossref_primary_10_1016_j_eswa_2025_126881
crossref_primary_10_1016_j_bspc_2024_106262
crossref_primary_10_3390_bioengineering11010089
crossref_primary_10_1109_ACCESS_2023_3285197
crossref_primary_10_1007_s00521_024_10606_3
crossref_primary_10_1371_journal_pone_0306520
crossref_primary_10_1016_j_isatra_2024_06_020
crossref_primary_10_1016_j_engappai_2024_109353
crossref_primary_10_3390_systems12050171
crossref_primary_10_12677_aam_2025_143124
crossref_primary_10_3390_en16207105
crossref_primary_10_1371_journal_pone_0298684
crossref_primary_10_1007_s11694_024_02616_5
crossref_primary_10_1016_j_jpse_2024_100220
crossref_primary_10_1007_s11581_024_05686_z
crossref_primary_10_1109_ACCESS_2024_3519438
crossref_primary_10_1109_ACCESS_2024_3404456
crossref_primary_10_1016_j_asoc_2024_112441
crossref_primary_10_1109_ACCESS_2024_3354702
crossref_primary_10_1007_s00607_024_01366_y
crossref_primary_10_3390_en17174322
crossref_primary_10_3390_math11183904
crossref_primary_10_1016_j_rineng_2025_104158
crossref_primary_10_3390_info15110709
crossref_primary_10_1109_ACCESS_2025_3536877
crossref_primary_10_1016_j_ijoes_2025_100988
crossref_primary_10_1371_journal_pone_0298451
crossref_primary_10_1080_17445302_2025_2478365
crossref_primary_10_1016_j_eswa_2024_126222
crossref_primary_10_23919_CSMS_2024_0015
crossref_primary_10_1016_j_eswa_2024_124555
crossref_primary_10_1063_5_0224768
crossref_primary_10_1007_s13177_024_00455_8
crossref_primary_10_1016_j_swevo_2024_101693
crossref_primary_10_1007_s00500_025_10437_x
crossref_primary_10_1016_j_asoc_2024_112390
crossref_primary_10_1016_j_epsr_2024_110275
crossref_primary_10_1109_ACCESS_2024_3371259
crossref_primary_10_1016_j_eswa_2024_123948
crossref_primary_10_1016_j_chaos_2024_115442
crossref_primary_10_1016_j_asoc_2024_111735
crossref_primary_10_1016_j_ins_2024_121244
crossref_primary_10_1016_j_asoc_2023_110469
crossref_primary_10_1016_j_oceaneng_2024_119227
crossref_primary_10_1007_s11071_023_08652_y
crossref_primary_10_1016_j_chaos_2024_115523
crossref_primary_10_3390_info14110598
crossref_primary_10_1109_OJCOMS_2024_3487847
crossref_primary_10_35377_saucis___1404116
Cites_doi 10.1016/j.asoc.2021.108321
10.1007/s00500-018-3566-2
10.1142/S0129065721300011
10.1109/51.932724
10.1016/j.eswa.2017.09.059
10.1016/j.enconman.2018.04.021
10.1016/j.neucom.2020.03.011
10.3390/en11071636
10.1016/j.eswa.2019.112896
10.1109/TNNLS.2012.2198074
10.1016/j.ijforecast.2019.03.017
10.3390/e23010112
10.7498/aps.54.2568
10.3390/en11123493
10.1016/j.ejor.2017.11.054
10.3390/en11010213
10.1007/s11063-017-9723-2
10.1016/j.trc.2015.03.014
10.21314/JCF.2019.358
10.5951/MT.93.3.0230
10.1177/0278364904045481
10.1016/S0169-7439(03)00111-4
10.5194/gmd-7-1247-2014
10.1016/j.apenergy.2018.12.042
10.1016/j.neucom.2012.01.014
10.1161/01.CIR.101.23.e215
10.1016/0167-2789(85)90011-9
10.3390/app10072322
10.1016/j.chaos.2021.111304
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1109/TNN.2007.896859
10.1007/s11220-020-0272-9
10.1007/s00500-015-1833-z
10.1016/0375-9601(76)90101-8
10.1016/j.irbm.2019.10.001
10.3390/electronics8080876
10.1162/neco.1997.9.8.1735
10.1016/j.eswa.2013.12.011
10.1016/j.chaos.2020.110045
10.1016/S0925-2312(01)00702-0
10.1080/01621459.1937.10503522
10.1016/j.neucom.2018.12.084
10.1016/j.neucom.2018.09.082
10.1109/ACCESS.2020.3021527
10.2307/1358
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.109945
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_109945
S1568494622009942
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-d2c6d2d8be3e3dead3d10cf7d3d2190302d9eedc586f4a71baa8b65223f8bf6b3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:59:39 EDT 2025
Tue Jul 01 01:50:18 EDT 2025
Fri Feb 23 02:37:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep neural network
Recurrent neural networks
Time series prediction
ECG recordings
Temporal convolutional neural network
Chaotic systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-d2c6d2d8be3e3dead3d10cf7d3d2190302d9eedc586f4a71baa8b65223f8bf6b3
ORCID 0000-0002-6436-6963
0000-0002-7996-7948
0000-0001-9993-5583
0000-0002-0314-6262
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2022_109945
crossref_primary_10_1016_j_asoc_2022_109945
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Borovykh, Bohte, Oosterlee (b32) 2018
Mohammadi, Talebpour, Safaee, Ghadimi, Abedinia (b20) 2018; 48
Ruiz, Rueda, Cuéllar, Pegalajar (b21) 2018; 92
Thissen, Van Brakel, De Weijer, Melssen, Buydens (b7) 2003; 69
Gupta, Mittal (b61) 2019; 100
Barrett (b65) 2000; 93
Moody, Mark (b49) 2001; 20
Gorshkov, Ombao (b58) 2021; 23
Pan, Tan, Feng, Li (b27) 2019
Ma, Tao, Wang, Yu, Wang (b22) 2015; 54
Ye, Wang, Zhang (b1) 2005; 54
Bai, Kolter, Koltun (b37) 2018
Friedman (b67) 1939; 34
Abd Hamid, Noorani (b3) 2017; 46
Abdulkadir, Yong (b4) 2015; 19
Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (b52) 2014
Liu, Mi, Li (b15) 2018; 166
Lea, Vidal, Reiter, Hager (b38) 2016
Koprinska, Wu, Wang (b13) 2018
Lara-Benítez, Carranza-García, Riquelme (b40) 2021; 31
Sagheer, Kotb (b28) 2019; 323
Hipel, McLeod (b41) 1994
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b50) 2000; 101
Xiaoyan, Bingjie, Jing, Hua, Guojing (b51) 2021
Xie, Zhang, Lim (b46) 2020; 8
Gupta, Mittal, Mittal (b59) 2019; 40
Meng, Wang, Zhang, Bao (b2) 2016; 18
Khair, Fahmi, Al Hakim, Rahim (b64) 2017; 930
Jiang, Song (b11) 2010; vol. 5
Cai, Pipattanasomporn, Rahman (b17) 2019; 236
Xu, Ren (b47) 2022; 116
Zhang, Kline (b8) 2007; 18
Cheng, Wang, Peng, Ren, Shuai, Zang, Liu, Cheng, Wu (b36) 2021; 152
Bandara, Bergmeir, Smyl (b26) 2020; 140
Smyl (b29) 2020; 36
Chen, Kang, Chen, Wang (b34) 2020; 399
Lorenz (b53) 1963; 20
Ntakaris, Magris, Kanniainen, Gabbouj, Iosifidis (b43) 2017
Wolf, Swift, Swinney, Vastano (b54) 1985; 16
Rössler (b55) 1976; 57
Chandra, Zhang (b19) 2012; 86
Lara-Benítez, Carranza-García, Luna-Romera, Riquelme (b35) 2020; 10
Yan (b9) 2012; 23
LaValle, Branicky, Lindemann (b62) 2004; 23
Kuo, Huang (b14) 2018; 11
Bouktif, Fiaz, Ouni, Serhani (b24) 2018; 11
Zhang (b6) 2003; 50
Friedman (b66) 1937; 32
Tian, Pan (b23) 2015
Sangiorgio, Dercole (b31) 2020; 139
Tian, Ma, Zhang, Zhan (b16) 2018; 11
Yanan, Xiaoqun, Bainian, Kecheng (b30) 2020; vol. 1617
Hochreiter, Schmidhuber (b39) 1997; 9
Van Den Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b45) 2016; 125
Nemenyi (b68) 1963
Rodriguez, Flores, Morales, Lara, Guerra, Manjarrez (b5) 2019; 23
Leon Glass
Wan, Mei, Wang, Liu, Yang (b33) 2019; 8
Bi, Zhang, Yuan, Zhang, Zhou (b48) 2021
Kourentzes, Barrow, Crone (b10) 2014; 41
Chai, Draxler (b63) 2014; 7
Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b44) 2016
Fischer, Krauss (b25) 2018; 270
Tsantekidis, Passalis, Tefas, Kanniainen, Gabbouj, Iosifidis (b12) 2017; vol. 1
Shen, Zhang, Lu, Xu, Xiao (b18) 2020; 396
Gupta, Mittal, Mittal (b57) 2020; 21
Elton, Nicholson (b42) 1942
Bocheng, Zhong, Jianping (b56) 2009; 20
Lara-Benítez (10.1016/j.asoc.2022.109945_b35) 2020; 10
Bi (10.1016/j.asoc.2022.109945_b48) 2021
Gupta (10.1016/j.asoc.2022.109945_b61) 2019; 100
Ye (10.1016/j.asoc.2022.109945_b1) 2005; 54
Ruiz (10.1016/j.asoc.2022.109945_b21) 2018; 92
Khair (10.1016/j.asoc.2022.109945_b64) 2017; 930
Gorshkov (10.1016/j.asoc.2022.109945_b58) 2021; 23
Tsantekidis (10.1016/j.asoc.2022.109945_b12) 2017; vol. 1
Barrett (10.1016/j.asoc.2022.109945_b65) 2000; 93
Hochreiter (10.1016/j.asoc.2022.109945_b39) 1997; 9
Mohammadi (10.1016/j.asoc.2022.109945_b20) 2018; 48
Pan (10.1016/j.asoc.2022.109945_b27) 2019
Goldberger (10.1016/j.asoc.2022.109945_b50) 2000; 101
Tian (10.1016/j.asoc.2022.109945_b23) 2015
10.1016/j.asoc.2022.109945_b60
Jiang (10.1016/j.asoc.2022.109945_b11) 2010; vol. 5
Lea (10.1016/j.asoc.2022.109945_b38) 2016
Shen (10.1016/j.asoc.2022.109945_b18) 2020; 396
Ma (10.1016/j.asoc.2022.109945_b22) 2015; 54
Sagheer (10.1016/j.asoc.2022.109945_b28) 2019; 323
Hipel (10.1016/j.asoc.2022.109945_b41) 1994
Cheng (10.1016/j.asoc.2022.109945_b36) 2021; 152
Friedman (10.1016/j.asoc.2022.109945_b67) 1939; 34
Xiaoyan (10.1016/j.asoc.2022.109945_b51) 2021
Tian (10.1016/j.asoc.2022.109945_b16) 2018; 11
Rodriguez (10.1016/j.asoc.2022.109945_b5) 2019; 23
Borovykh (10.1016/j.asoc.2022.109945_b32) 2018
Bouktif (10.1016/j.asoc.2022.109945_b24) 2018; 11
Bai (10.1016/j.asoc.2022.109945_b37) 2018
Zhang (10.1016/j.asoc.2022.109945_b6) 2003; 50
Lorenz (10.1016/j.asoc.2022.109945_b53) 1963; 20
Gupta (10.1016/j.asoc.2022.109945_b59) 2019; 40
Liu (10.1016/j.asoc.2022.109945_b15) 2018; 166
Moody (10.1016/j.asoc.2022.109945_b49) 2001; 20
Chai (10.1016/j.asoc.2022.109945_b63) 2014; 7
Rössler (10.1016/j.asoc.2022.109945_b55) 1976; 57
Oord (10.1016/j.asoc.2022.109945_b44) 2016
Abdulkadir (10.1016/j.asoc.2022.109945_b4) 2015; 19
Xie (10.1016/j.asoc.2022.109945_b46) 2020; 8
Cho (10.1016/j.asoc.2022.109945_b52) 2014
Abd Hamid (10.1016/j.asoc.2022.109945_b3) 2017; 46
Thissen (10.1016/j.asoc.2022.109945_b7) 2003; 69
Chandra (10.1016/j.asoc.2022.109945_b19) 2012; 86
LaValle (10.1016/j.asoc.2022.109945_b62) 2004; 23
Zhang (10.1016/j.asoc.2022.109945_b8) 2007; 18
Fischer (10.1016/j.asoc.2022.109945_b25) 2018; 270
Wolf (10.1016/j.asoc.2022.109945_b54) 1985; 16
Wan (10.1016/j.asoc.2022.109945_b33) 2019; 8
Chen (10.1016/j.asoc.2022.109945_b34) 2020; 399
Gupta (10.1016/j.asoc.2022.109945_b57) 2020; 21
Meng (10.1016/j.asoc.2022.109945_b2) 2016; 18
Sangiorgio (10.1016/j.asoc.2022.109945_b31) 2020; 139
Yanan (10.1016/j.asoc.2022.109945_b30) 2020; vol. 1617
Cai (10.1016/j.asoc.2022.109945_b17) 2019; 236
Koprinska (10.1016/j.asoc.2022.109945_b13) 2018
Bocheng (10.1016/j.asoc.2022.109945_b56) 2009; 20
Kuo (10.1016/j.asoc.2022.109945_b14) 2018; 11
Nemenyi (10.1016/j.asoc.2022.109945_b68) 1963
Elton (10.1016/j.asoc.2022.109945_b42) 1942
Friedman (10.1016/j.asoc.2022.109945_b66) 1937; 32
Bandara (10.1016/j.asoc.2022.109945_b26) 2020; 140
Kourentzes (10.1016/j.asoc.2022.109945_b10) 2014; 41
Yan (10.1016/j.asoc.2022.109945_b9) 2012; 23
Xu (10.1016/j.asoc.2022.109945_b47) 2022; 116
Ntakaris (10.1016/j.asoc.2022.109945_b43) 2017
Smyl (10.1016/j.asoc.2022.109945_b29) 2020; 36
Lara-Benítez (10.1016/j.asoc.2022.109945_b40) 2021; 31
Van Den Oord (10.1016/j.asoc.2022.109945_b45) 2016; 125
References_xml – volume: 20
  start-page: 130
  year: 1963
  end-page: 141
  ident: b53
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
– volume: 11
  start-page: 213
  year: 2018
  ident: b14
  article-title: A high precision artificial neural networks model for short-term energy load forecasting
  publication-title: Energies
– reference: Leon Glass,
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: b6
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
– volume: 36
  start-page: 75
  year: 2020
  end-page: 85
  ident: b29
  article-title: A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting
  publication-title: Int. J. Forecast.
– volume: 8
  start-page: 876
  year: 2019
  ident: b33
  article-title: Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting
  publication-title: Electronics
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b39
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 116
  year: 2022
  ident: b47
  article-title: A hybrid model of stacked autoencoder and modified particle swarm optimization for multivariate chaotic time series forecasting
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 161519
  year: 2020
  end-page: 161541
  ident: b46
  article-title: Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer
  publication-title: IEEE Access
– year: 2021
  ident: b48
  article-title: A hybrid prediction method for realistic network traffic with temporal convolutional network and lstm
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 11
  start-page: 3493
  year: 2018
  ident: b16
  article-title: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network
  publication-title: Energies
– volume: 323
  start-page: 203
  year: 2019
  end-page: 213
  ident: b28
  article-title: Time series forecasting of petroleum production using deep lstm recurrent networks
  publication-title: Neurocomputing
– year: 1994
  ident: b41
  article-title: Time Series Modelling of Water Resources and Environmental Systems
– volume: 57
  start-page: 397
  year: 1976
  end-page: 398
  ident: b55
  article-title: An equation for continuous chaos
  publication-title: Phys. Lett. A
– volume: 139
  year: 2020
  ident: b31
  article-title: Robustness of LSTM neural networks for multi-step forecasting of chaotic time series
  publication-title: Chaos Solitons Fractals
– volume: 10
  start-page: 2322
  year: 2020
  ident: b35
  article-title: Temporal convolutional networks applied to energy-related time series forecasting
  publication-title: Appl. Sci.
– volume: 23
  start-page: 112
  year: 2021
  ident: b58
  article-title: Multi-chaotic analysis of inter-beat (RR) intervals in cardiac signals for discrimination between normal and pathological classes
  publication-title: Entropy
– volume: 930
  year: 2017
  ident: b64
  article-title: Forecasting error calculation with mean absolute deviation and mean absolute percentage error
  publication-title: Journal of Physics: Conference Series
– volume: 399
  start-page: 491
  year: 2020
  end-page: 501
  ident: b34
  article-title: Probabilistic forecasting with temporal convolutional neural network
  publication-title: Neurocomputing
– volume: 152
  year: 2021
  ident: b36
  article-title: High-efficiency chaotic time series prediction based on time convolution neural network
  publication-title: Chaos Solitons Fractals
– volume: 46
  start-page: 1333
  year: 2017
  end-page: 1339
  ident: b3
  article-title: New improved chaotic approach model application on forecasting ozone concentration time series
  publication-title: Sains Malays.
– volume: 69
  start-page: 35
  year: 2003
  end-page: 49
  ident: b7
  article-title: Using support vector machines for time series prediction
  publication-title: Chemometr. Intell. Lab. Syst.
– year: 2017
  ident: b43
  article-title: Benchmark dataset for mid-price prediction of limit order book data
– year: 2016
  ident: b44
  article-title: WaveNet: A generative model for raw audio
– volume: 86
  start-page: 116
  year: 2012
  end-page: 123
  ident: b19
  article-title: Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction
  publication-title: Neurocomputing
– start-page: 215
  year: 1942
  end-page: 244
  ident: b42
  article-title: The ten-year cycle in numbers of the lynx in Canada
  publication-title: J. Anim. Ecol.
– volume: 166
  start-page: 120
  year: 2018
  end-page: 131
  ident: b15
  article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network
  publication-title: Energy Convers. Manage.
– start-page: 79
  year: 2021
  end-page: 83
  ident: b51
  article-title: A novel forecasting method for short-term load based on TCN-gru model
  publication-title: 2021 IEEE International Conference on Energy Internet
– volume: 31
  year: 2021
  ident: b40
  article-title: An experimental review on deep learning architectures for time series forecasting
  publication-title: Int. J. Neural Syst.
– volume: 18
  start-page: 1800
  year: 2007
  end-page: 1814
  ident: b8
  article-title: Quarterly time-series forecasting with neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 125
  start-page: 2
  year: 2016
  ident: b45
  article-title: WaveNet: A generative model for raw audio
  publication-title: SSW
– volume: 92
  start-page: 380
  year: 2018
  end-page: 389
  ident: b21
  article-title: Energy consumption forecasting based on Elman neural networks with evolutive optimization
  publication-title: Expert Syst. Appl.
– volume: 140
  year: 2020
  ident: b26
  article-title: Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 1636
  year: 2018
  ident: b24
  article-title: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches
  publication-title: Energies
– volume: 34
  start-page: 109
  year: 1939
  ident: b67
  article-title: A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Amer. Statist. Assoc.
– volume: 19
  start-page: 3479
  year: 2015
  end-page: 3496
  ident: b4
  article-title: Scaled UKF–NARX hybrid model for multi-step-ahead forecasting of chaotic time series data
  publication-title: Soft Comput.
– volume: 23
  start-page: 1028
  year: 2012
  end-page: 1039
  ident: b9
  article-title: Toward automatic time-series forecasting using neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 20
  start-page: 1179
  year: 2009
  end-page: 1187
  ident: b56
  article-title: New chaotic system and its hyperchaos generation
  publication-title: J. Syst. Eng. Electronics
– volume: 40
  start-page: 341
  year: 2019
  end-page: 354
  ident: b59
  article-title: R-peak detection using chaos analysis in standard and real time ECG databases
  publication-title: IRBM
– volume: 21
  start-page: 1
  year: 2020
  end-page: 22
  ident: b57
  article-title: Chaos theory: an emerging tool for arrhythmia detection
  publication-title: Sens. Imaging
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: b66
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Amer. Statist. Assoc.
– volume: vol. 1
  start-page: 7
  year: 2017
  end-page: 12
  ident: b12
  article-title: Forecasting stock prices from the limit order book using convolutional neural networks
  publication-title: 2017 IEEE 19th Conference on Business Informatics
– start-page: 267
  year: 2019
  end-page: 271
  ident: b27
  article-title: Very short-term solar generation forecasting based on LSTM with temporal attention mechanism
  publication-title: 2019 IEEE 5th International Conference on Computer and Communications
– year: 2018
  ident: b37
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b50
  article-title: PhysioBank, PhysioToolkit, PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 16
  start-page: 285
  year: 1985
  end-page: 317
  ident: b54
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D
– volume: 41
  start-page: 4235
  year: 2014
  end-page: 4244
  ident: b10
  article-title: Neural network ensemble operators for time series forecasting
  publication-title: Expert Syst. Appl.
– year: 1963
  ident: b68
  article-title: Distribution-Free Multiple Comparisons.
– volume: 93
  start-page: 230
  year: 2000
  end-page: 234
  ident: b65
  article-title: The Coefficient of Determination: Understanding r squared and R squared
  publication-title: Math. Teach.
– volume: 54
  start-page: 187
  year: 2015
  end-page: 197
  ident: b22
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transp. Res. C
– volume: 23
  start-page: 10119
  year: 2019
  end-page: 10127
  ident: b5
  article-title: Forecasting from incomplete and chaotic wind speed data
  publication-title: Soft Comput.
– volume: 270
  start-page: 654
  year: 2018
  end-page: 669
  ident: b25
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: European J. Oper. Res.
– volume: 23
  start-page: 673
  year: 2004
  end-page: 692
  ident: b62
  article-title: On the relationship between classical grid search and probabilistic roadmaps
  publication-title: Int. J. Robot. Res.
– start-page: 153
  year: 2015
  end-page: 158
  ident: b23
  article-title: Predicting short-term traffic flow by long short-term memory recurrent neural network
  publication-title: 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity)
– volume: 54
  start-page: 2568
  year: 2005
  end-page: 2573
  ident: b1
  article-title: Chaotic time series forecasting using online least squares support vector machine regression
  publication-title: Acta Phys. Sin.
– volume: 396
  start-page: 302
  year: 2020
  end-page: 313
  ident: b18
  article-title: A novel time series forecasting model with deep learning
  publication-title: Neurocomputing
– volume: 100
  start-page: 489
  year: 2019
  end-page: 497
  ident: b61
  article-title: QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases
  publication-title: J. Inst. Eng. (India): Ser. B
– volume: 236
  start-page: 1078
  year: 2019
  end-page: 1088
  ident: b17
  article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques
  publication-title: Appl. Energy
– year: 2014
  ident: b52
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  ident: b63
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
– volume: 18
  start-page: 562
  year: 2016
  end-page: 576
  ident: b2
  article-title: A novel chaotic time series prediction method and its application to carrier vibration interference attitude prediction of stabilized platform
  publication-title: J. Vibroeng.
– start-page: 47
  year: 2016
  end-page: 54
  ident: b38
  article-title: Temporal convolutional networks: A unified approach to action segmentation
  publication-title: European Conference on Computer Vision
– start-page: 1
  year: 2018
  end-page: 8
  ident: b13
  article-title: Convolutional neural networks for energy time series forecasting
  publication-title: 2018 International Joint Conference on Neural Networks
– volume: 48
  start-page: 329
  year: 2018
  end-page: 351
  ident: b20
  article-title: Small-scale building load forecast based on hybrid forecast engine
  publication-title: Neural Process. Lett.
– volume: vol. 1617
  year: 2020
  ident: b30
  article-title: Chaotic time series prediction using LSTM with CEEMDAN
  publication-title: Journal of Physics: Conference Series
– volume: vol. 5
  start-page: 238
  year: 2010
  end-page: 241
  ident: b11
  article-title: Forecasting chaotic time series of exchange rate based on nonlinear autoregressive model
  publication-title: 2010 2nd International Conference on Advanced Computer Control
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b49
  article-title: The impact of the MIT-bih arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– year: 2018
  ident: b32
  article-title: Dilated convolutional neural networks for time series forecasting
  publication-title: Journal of Computational Finance, Forthcoming
– volume: 116
  year: 2022
  ident: 10.1016/j.asoc.2022.109945_b47
  article-title: A hybrid model of stacked autoencoder and modified particle swarm optimization for multivariate chaotic time series forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108321
– volume: 23
  start-page: 10119
  issue: 20
  year: 2019
  ident: 10.1016/j.asoc.2022.109945_b5
  article-title: Forecasting from incomplete and chaotic wind speed data
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3566-2
– volume: 31
  issue: 03
  year: 2021
  ident: 10.1016/j.asoc.2022.109945_b40
  article-title: An experimental review on deep learning architectures for time series forecasting
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065721300011
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.asoc.2022.109945_b49
  article-title: The impact of the MIT-bih arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume: 92
  start-page: 380
  year: 2018
  ident: 10.1016/j.asoc.2022.109945_b21
  article-title: Energy consumption forecasting based on Elman neural networks with evolutive optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.059
– volume: 166
  start-page: 120
  year: 2018
  ident: 10.1016/j.asoc.2022.109945_b15
  article-title: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.04.021
– volume: 20
  start-page: 1179
  issue: 6
  year: 2009
  ident: 10.1016/j.asoc.2022.109945_b56
  article-title: New chaotic system and its hyperchaos generation
  publication-title: J. Syst. Eng. Electronics
– volume: 399
  start-page: 491
  year: 2020
  ident: 10.1016/j.asoc.2022.109945_b34
  article-title: Probabilistic forecasting with temporal convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.011
– year: 2021
  ident: 10.1016/j.asoc.2022.109945_b48
  article-title: A hybrid prediction method for realistic network traffic with temporal convolutional network and lstm
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: vol. 1
  start-page: 7
  year: 2017
  ident: 10.1016/j.asoc.2022.109945_b12
  article-title: Forecasting stock prices from the limit order book using convolutional neural networks
– volume: 11
  start-page: 1636
  issue: 7
  year: 2018
  ident: 10.1016/j.asoc.2022.109945_b24
  article-title: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches
  publication-title: Energies
  doi: 10.3390/en11071636
– volume: 140
  year: 2020
  ident: 10.1016/j.asoc.2022.109945_b26
  article-title: Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112896
– volume: 23
  start-page: 1028
  issue: 7
  year: 2012
  ident: 10.1016/j.asoc.2022.109945_b9
  article-title: Toward automatic time-series forecasting using neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2198074
– year: 2018
  ident: 10.1016/j.asoc.2022.109945_b37
– volume: 34
  start-page: 109
  issue: 205
  year: 1939
  ident: 10.1016/j.asoc.2022.109945_b67
  article-title: A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Amer. Statist. Assoc.
– volume: 36
  start-page: 75
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.109945_b29
  article-title: A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2019.03.017
– volume: 23
  start-page: 112
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2022.109945_b58
  article-title: Multi-chaotic analysis of inter-beat (RR) intervals in cardiac signals for discrimination between normal and pathological classes
  publication-title: Entropy
  doi: 10.3390/e23010112
– volume: 100
  start-page: 489
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2022.109945_b61
  article-title: QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases
  publication-title: J. Inst. Eng. (India): Ser. B
– volume: 54
  start-page: 2568
  issue: 6
  year: 2005
  ident: 10.1016/j.asoc.2022.109945_b1
  article-title: Chaotic time series forecasting using online least squares support vector machine regression
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.54.2568
– year: 2014
  ident: 10.1016/j.asoc.2022.109945_b52
– volume: 930
  year: 2017
  ident: 10.1016/j.asoc.2022.109945_b64
  article-title: Forecasting error calculation with mean absolute deviation and mean absolute percentage error
– volume: 11
  start-page: 3493
  issue: 12
  year: 2018
  ident: 10.1016/j.asoc.2022.109945_b16
  article-title: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network
  publication-title: Energies
  doi: 10.3390/en11123493
– volume: 270
  start-page: 654
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2022.109945_b25
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2017.11.054
– start-page: 267
  year: 2019
  ident: 10.1016/j.asoc.2022.109945_b27
  article-title: Very short-term solar generation forecasting based on LSTM with temporal attention mechanism
– volume: 46
  start-page: 1333
  issue: 8
  year: 2017
  ident: 10.1016/j.asoc.2022.109945_b3
  article-title: New improved chaotic approach model application on forecasting ozone concentration time series
  publication-title: Sains Malays.
– volume: 11
  start-page: 213
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2022.109945_b14
  article-title: A high precision artificial neural networks model for short-term energy load forecasting
  publication-title: Energies
  doi: 10.3390/en11010213
– year: 2016
  ident: 10.1016/j.asoc.2022.109945_b44
– volume: 48
  start-page: 329
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2022.109945_b20
  article-title: Small-scale building load forecast based on hybrid forecast engine
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-017-9723-2
– volume: 54
  start-page: 187
  year: 2015
  ident: 10.1016/j.asoc.2022.109945_b22
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.03.014
– year: 2018
  ident: 10.1016/j.asoc.2022.109945_b32
  article-title: Dilated convolutional neural networks for time series forecasting
  publication-title: Journal of Computational Finance, Forthcoming
  doi: 10.21314/JCF.2019.358
– volume: 93
  start-page: 230
  issue: 3
  year: 2000
  ident: 10.1016/j.asoc.2022.109945_b65
  article-title: The Coefficient of Determination: Understanding r squared and R squared
  publication-title: Math. Teach.
  doi: 10.5951/MT.93.3.0230
– volume: 23
  start-page: 673
  issue: 7–8
  year: 2004
  ident: 10.1016/j.asoc.2022.109945_b62
  article-title: On the relationship between classical grid search and probabilistic roadmaps
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364904045481
– volume: 69
  start-page: 35
  issue: 1–2
  year: 2003
  ident: 10.1016/j.asoc.2022.109945_b7
  article-title: Using support vector machines for time series prediction
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(03)00111-4
– volume: 7
  start-page: 1247
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2022.109945_b63
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– volume: 236
  start-page: 1078
  year: 2019
  ident: 10.1016/j.asoc.2022.109945_b17
  article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.042
– volume: vol. 1617
  year: 2020
  ident: 10.1016/j.asoc.2022.109945_b30
  article-title: Chaotic time series prediction using LSTM with CEEMDAN
– volume: 86
  start-page: 116
  year: 2012
  ident: 10.1016/j.asoc.2022.109945_b19
  article-title: Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.01.014
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.asoc.2022.109945_b50
  article-title: PhysioBank, PhysioToolkit, PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 16
  start-page: 285
  issue: 3
  year: 1985
  ident: 10.1016/j.asoc.2022.109945_b54
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D
  doi: 10.1016/0167-2789(85)90011-9
– volume: 10
  start-page: 2322
  issue: 7
  year: 2020
  ident: 10.1016/j.asoc.2022.109945_b35
  article-title: Temporal convolutional networks applied to energy-related time series forecasting
  publication-title: Appl. Sci.
  doi: 10.3390/app10072322
– volume: 152
  year: 2021
  ident: 10.1016/j.asoc.2022.109945_b36
  article-title: High-efficiency chaotic time series prediction based on time convolution neural network
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111304
– volume: 20
  start-page: 130
  issue: 2
  year: 1963
  ident: 10.1016/j.asoc.2022.109945_b53
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– ident: 10.1016/j.asoc.2022.109945_b60
– volume: 18
  start-page: 1800
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2022.109945_b8
  article-title: Quarterly time-series forecasting with neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.896859
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.109945_b57
  article-title: Chaos theory: an emerging tool for arrhythmia detection
  publication-title: Sens. Imaging
  doi: 10.1007/s11220-020-0272-9
– volume: 19
  start-page: 3479
  issue: 12
  year: 2015
  ident: 10.1016/j.asoc.2022.109945_b4
  article-title: Scaled UKF–NARX hybrid model for multi-step-ahead forecasting of chaotic time series data
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1833-z
– start-page: 79
  year: 2021
  ident: 10.1016/j.asoc.2022.109945_b51
  article-title: A novel forecasting method for short-term load based on TCN-gru model
– volume: 18
  start-page: 562
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2022.109945_b2
  article-title: A novel chaotic time series prediction method and its application to carrier vibration interference attitude prediction of stabilized platform
  publication-title: J. Vibroeng.
– start-page: 47
  year: 2016
  ident: 10.1016/j.asoc.2022.109945_b38
  article-title: Temporal convolutional networks: A unified approach to action segmentation
– volume: 57
  start-page: 397
  issue: 5
  year: 1976
  ident: 10.1016/j.asoc.2022.109945_b55
  article-title: An equation for continuous chaos
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(76)90101-8
– year: 2017
  ident: 10.1016/j.asoc.2022.109945_b43
– volume: 125
  start-page: 2
  year: 2016
  ident: 10.1016/j.asoc.2022.109945_b45
  article-title: WaveNet: A generative model for raw audio
  publication-title: SSW
– volume: 40
  start-page: 341
  issue: 6
  year: 2019
  ident: 10.1016/j.asoc.2022.109945_b59
  article-title: R-peak detection using chaos analysis in standard and real time ECG databases
  publication-title: IRBM
  doi: 10.1016/j.irbm.2019.10.001
– volume: vol. 5
  start-page: 238
  year: 2010
  ident: 10.1016/j.asoc.2022.109945_b11
  article-title: Forecasting chaotic time series of exchange rate based on nonlinear autoregressive model
– volume: 8
  start-page: 876
  issue: 8
  year: 2019
  ident: 10.1016/j.asoc.2022.109945_b33
  article-title: Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting
  publication-title: Electronics
  doi: 10.3390/electronics8080876
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.asoc.2022.109945_b39
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 41
  start-page: 4235
  issue: 9
  year: 2014
  ident: 10.1016/j.asoc.2022.109945_b10
  article-title: Neural network ensemble operators for time series forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.011
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2022.109945_b13
  article-title: Convolutional neural networks for energy time series forecasting
– start-page: 153
  year: 2015
  ident: 10.1016/j.asoc.2022.109945_b23
  article-title: Predicting short-term traffic flow by long short-term memory recurrent neural network
– volume: 139
  year: 2020
  ident: 10.1016/j.asoc.2022.109945_b31
  article-title: Robustness of LSTM neural networks for multi-step forecasting of chaotic time series
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110045
– year: 1963
  ident: 10.1016/j.asoc.2022.109945_b68
– volume: 50
  start-page: 159
  year: 2003
  ident: 10.1016/j.asoc.2022.109945_b6
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 10.1016/j.asoc.2022.109945_b66
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1937.10503522
– year: 1994
  ident: 10.1016/j.asoc.2022.109945_b41
– volume: 396
  start-page: 302
  year: 2020
  ident: 10.1016/j.asoc.2022.109945_b18
  article-title: A novel time series forecasting model with deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.084
– volume: 323
  start-page: 203
  year: 2019
  ident: 10.1016/j.asoc.2022.109945_b28
  article-title: Time series forecasting of petroleum production using deep lstm recurrent networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.082
– volume: 8
  start-page: 161519
  year: 2020
  ident: 10.1016/j.asoc.2022.109945_b46
  article-title: Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021527
– start-page: 215
  year: 1942
  ident: 10.1016/j.asoc.2022.109945_b42
  article-title: The ten-year cycle in numbers of the lynx in Canada
  publication-title: J. Anim. Ecol.
  doi: 10.2307/1358
SSID ssj0016928
Score 2.6505704
Snippet The prediction of chaotic time series, which constitutes many systems in the field of science and engineering, has recently become the focus of attention of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109945
SubjectTerms Chaotic systems
Deep neural network
ECG recordings
Recurrent neural networks
Temporal convolutional neural network
Time series prediction
Title Temporal Convolutional Networks with RNN approach for chaotic time series prediction
URI https://dx.doi.org/10.1016/j.asoc.2022.109945
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3ic1js8keS1DqgyC1hd7CJrvBSklLWz36253JboqC9OBpSZgJ4ctkdmZ2HoRcKxGD8-8qJ2Ju6bBCCyfWMnRk6WP_bx15ss62SPlgzB4n4aRFkqYWBtMqre43Or3W1vZOz6LZW0ynvVfwPGImGPcxwC8Y6mHGIpTy269NmofHRT1fFYkdpLaFMybHSwIC4CP6PnZVEljS9Nfm9GPDuT8ge9ZSpH3zMoekpasjst9MYaD2pzwmo5HpLjWjybz6tJIEV6lJ8F5RDLXSYZrSpn84BUOVFm9yDk-mOFyeohzqFV0s8dgG-U_I-P5ulAwcOyvBKQLXXTvKL7jyVZzrQAcKxCNQnluUEaygk-Br-ErAdliEMS-ZjLxcyjjnYHwFZZyXPA9OSbuaV_qMUPCYC-2BXcgRVZaLSHos0lx4KhTK5x3iNSBlhW0kjvMsZlmTMfaeIbAZApsZYDvkZsOzMG00tlKHDfbZL2HIQM9v4Tv_J98F2cUp8iayckna6-WHvgJbY513a2Hqkp1-Mnx-wfXhaZB-A2X51UU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4QwEJ74OOjFt_FtD3oyuFBKoQcPxkfWFwddE29YaIlrzO7GXTVe_FP-QWeWYjQxHkw8EQhDytdhHmU6H8CWUQkm_77xYuGXniis8hKrI0-XnPp_2zjQw2qLVDavxelNdDMC7_VeGCqrdLa_sulDa-2uNByajV673bjCzCMRSkhOC_xKcFdZeWZfXzBv6--dHOIkb3N-fNQ6aHqOWsArQt8feIYX0nCT5Da0oUE0QxP4RRnjET9hHDw3Cr1HESWyFDoOcq2TXGKsEpZJXso8xOeOwrhAc0G0Cbtvn3UlgVRDQlcanUfDczt1qqIyjZBjUso5tXFStIfqJ2_4xcMdz8CUC03ZfvX2szBiO3MwXdM-MGcF5qHVqtpZPbCDbufZqS6epVVFeZ_R2i67TFNWNyxnGBmz4k538cmM2OwZKb7ts94j_Sci-QW4_hcEF2Gs0-3YJWCYohc2wEBU0jSKXMU6ELGVKjCRMlwuQ1CDlBWuczkRaDxkdYnafUbAZgRsVgG7DDufMr2qb8evd0c19tk37cvQsfwit_JHuU2YaLYuzrPzk_RsFSaJwr5a1lmDscHjk13HQGeQbwwVi8Htf2vyB1pdEZc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Convolutional+Networks+with+RNN+approach+for+chaotic+time+series+prediction&rft.jtitle=Applied+soft+computing&rft.au=Dudukcu%2C+Hatice+Vildan&rft.au=Taskiran%2C+Murat&rft.au=Cam+Taskiran%2C+Zehra+Gulru&rft.au=Yildirim%2C+Tulay&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=133&rft_id=info:doi/10.1016%2Fj.asoc.2022.109945&rft.externalDocID=S1568494622009942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon