System identification methods for dynamic models of brain activity
•System identification methods are explored for the analysis of EEG dynamics.•The resultant models yield an eigenmode decomposition of the emergent dynamics which capture the spatio-temporal dynamics elegantly.•The eigenmodes present as both traveling and standing waves.•This modal decomposition may...
Saved in:
Published in | Biomedical signal processing and control Vol. 68; p. 102765 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2021.102765 |
Cover
Loading…
Abstract | •System identification methods are explored for the analysis of EEG dynamics.•The resultant models yield an eigenmode decomposition of the emergent dynamics which capture the spatio-temporal dynamics elegantly.•The eigenmodes present as both traveling and standing waves.•This modal decomposition may be used in a biosecurity subject identification task.
There is a broad need to better understand the dynamics of neural activity in both space and time. Rigorous modeling methods are needed to improve the analysis of brainwave dynamics. Two system identification algorithms, Output Only Modal Analysis (OMA) and Dynamic Mode Decomposition (DMD), are modified for use on neural dynamics and compared. An example application is included.
The system identification methods are applied to estimate state space models for neural dynamics. The modeling technique results in a reduced order modal decomposition of the behavior of the brain. The resultant eigenmodes can be non-orthogonal and complex, capturing the emergent space time dynamics. We apply the modeling method to the Database for Emotion Analysis using Physiological Signals (DEAP) and the EEG Motor Movement/Imagery Dataset (EEGMMI) in a biosecurity application.
It is shown that there are common modes shared among all subjects, regardless of stimuli. Further, the modal decompositions may be used to distinguish subjects from one another in a subject identification biosecurity task. The accuracy of the OMA eigenmode model is 100%, while the accuracy of the DMD eigenmode model is 96%.
Output only system identification techniques are an appropriate rigorous modeling method for EEG data. The structured modeling procedure offers new opportunities for cognitive modeling and affective computing. |
---|---|
AbstractList | •System identification methods are explored for the analysis of EEG dynamics.•The resultant models yield an eigenmode decomposition of the emergent dynamics which capture the spatio-temporal dynamics elegantly.•The eigenmodes present as both traveling and standing waves.•This modal decomposition may be used in a biosecurity subject identification task.
There is a broad need to better understand the dynamics of neural activity in both space and time. Rigorous modeling methods are needed to improve the analysis of brainwave dynamics. Two system identification algorithms, Output Only Modal Analysis (OMA) and Dynamic Mode Decomposition (DMD), are modified for use on neural dynamics and compared. An example application is included.
The system identification methods are applied to estimate state space models for neural dynamics. The modeling technique results in a reduced order modal decomposition of the behavior of the brain. The resultant eigenmodes can be non-orthogonal and complex, capturing the emergent space time dynamics. We apply the modeling method to the Database for Emotion Analysis using Physiological Signals (DEAP) and the EEG Motor Movement/Imagery Dataset (EEGMMI) in a biosecurity application.
It is shown that there are common modes shared among all subjects, regardless of stimuli. Further, the modal decompositions may be used to distinguish subjects from one another in a subject identification biosecurity task. The accuracy of the OMA eigenmode model is 100%, while the accuracy of the DMD eigenmode model is 96%.
Output only system identification techniques are an appropriate rigorous modeling method for EEG data. The structured modeling procedure offers new opportunities for cognitive modeling and affective computing. |
ArticleNumber | 102765 |
Author | Hubbard, James E. Griffith, Tristan D. |
Author_xml | – sequence: 1 givenname: Tristan D. surname: Griffith fullname: Griffith, Tristan D. – sequence: 2 givenname: James E. surname: Hubbard fullname: Hubbard, James E. |
BookMark | eNp9kE1LAzEQhoMo2Fb_gKf8ga2T_coueNHiFxQ8qOeQnUwwpbspSSjsv3dr9eKhpxkGnpd3njk7H_xAjN0IWAoQ9e1m2cUdLnPIxXTIZV2dsZmQZZ01Aprzvx3a8pLNY9wAlI0U5Yw9vI8xUc-doSE561An5wfeU_ryJnLrAzfjoHuHvPeGtpF7y7ug3cA1Jrd3abxiF1ZvI13_zgX7fHr8WL1k67fn19X9OsMCIGWIumpFDZXITVm1QFVZQ2FyJFkJIl1WHcjOoiHU1EJDhbRdoaUoGmk1dcWCNcdcDD7GQFahSz9109RnqwSogwu1UQcX6uBCHV1MaP4P3QXX6zCehu6O0PQ17R0FFdHRgGRcIEzKeHcK_wYpm3uK |
CitedBy_id | crossref_primary_10_1155_2022_1297274 crossref_primary_10_1016_j_bspc_2022_104083 crossref_primary_10_3390_biomimetics9110687 crossref_primary_10_1016_j_psep_2021_11_018 |
Cites_doi | 10.1016/j.jneumeth.2015.10.010 10.1016/j.neuroimage.2009.12.011 10.1006/nimg.2002.1200 10.1016/j.neucom.2019.05.108 10.1109/ACCESS.2020.3037995 10.1109/SSD49366.2020.9364129 10.1097/00004691-199701000-00007 10.1038/nature11129 10.1089/brain.2016.0438 10.3390/info11020108 10.1016/j.neuroimage.2009.02.006 10.1038/ncomms9414 10.1109/TBME.2004.827072 10.1109/T-AFFC.2011.15 10.1002/hbm.24956 10.1016/j.bspc.2020.101989 10.1016/S0167-8760(01)00194-5 10.1109/TCDS.2019.2924648 10.1093/cercor/bhv086 10.1177/1073858417728032 10.1038/ncomms10340 10.1142/S0129065717500356 10.1007/s11831-012-9069-x 10.1016/j.acra.2019.09.015 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2021.102765 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2021_102765 S1746809421003621 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-cca59160512d4590e54603d2ce751eea45b07bfcdecae908e37fb3a71387faeb3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:10:09 EDT 2025 Tue Jul 01 01:34:10 EDT 2025 Fri Feb 23 02:43:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Modal decomposition EEG dynamics System identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-cca59160512d4590e54603d2ce751eea45b07bfcdecae908e37fb3a71387faeb3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2021_102765 crossref_primary_10_1016_j_bspc_2021_102765 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102765 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ke, Xing, Di Caterina, Petropoulakis, Soraghan (bib0140) 2020 Tangsali, Krishnamurthy, Hasnain (bib0150) 2020 Leng, Xiang, Yang, Yu, Qi, Zhang, Wu, Wang (bib0125) 2020; 41 Kutz, Brunton, Brunton, Proctor (bib0100) 2016 Chang, Glover (bib0120) 2010; 50 Wilaiprasitporn, Ditthapron, Matchaparn, Tongbuasirilai, Banluesombatkul, Chuangsuwanich (bib0185) 2020; 12 Ribeiro, Singh, Guestrin (bib0175) 2016 T.D. Lagerlund, F.W. Sharbrough, N.E. Busacker, Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition, J. Clin. Neurophysiol. 14 (1). Das Chakladar, Dey, Roy, Dogra (bib0050) 2020; 60 Debie, Rojas, Fidock, Barlow, Kasmarik, Anavatti, Garratt, Abbass (bib0200) 2019 DelPozo-Banos, Travieso, Alonso, John (bib0190) 2018; 28 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (bib0075) 2012; 3 Howard, Gugger (bib0170) 2020; 11 Li, Zhao, Tan, Liu, Fang (bib0195) 2017 Schalk, McFarland, Hinterberger, Birbaumer, Wolpaw (bib0080) 2004; 51 Makeig, Kothe, Mullen, Bigdely-Shamlo, Zhang, Kreutz-Delgado (bib0130) 2012 S. Koning, C. Greeven, E.O. Postma, Reducing artificial neural network complexity: a case study on exoplanet detection, CoRR abs/1902.10385. arXiv:1902.10385. Atasoy, Donnelly, Pearson (bib0010) 2016; 7 Reynders (bib0115) 2012; 19 Bouallegue, Djemal (bib0045) 2020 Venugopal, Vaidhya, Murugavel, Chunduru, Mahajan, Vaidya, Mahra, Rangasai, Mahajan (bib0145) 2020; 27 Van Overschee, De Moor (bib0095) 2012 Saarimäki, Gotsopoulos, Jääskeläinen, Lampinen, Vuilleumier, Hari, Sams, Nummenmaa (bib0065) 2015; 26 Van Dongen, Maislin, Dinges (bib0205) 2004; 75 Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (bib0025) 2012; 487 Atasoy, Deco, Kringelbach, Pearson (bib0005) 2018; 24 Q. Dickinson, J.G. Meyer, Positional shape for interpretation of deep learning models trained from biological sequences, doi:10.1101/2021.03.04.433939. He, Zhang, Ren, Sun (bib0155) 2016 Jiao, Deng, Luo, Lu (bib0055) 2020; 408 . Schwarz, Richardson (bib0085) 1999; 35 Thomas, Harshman, Menon (bib0030) 2002; 17 Makeig, Bell, Jung, Sejnowski (bib0020) 1996 Brunton, Johnson, Ojemann, Kutz (bib0035) 2016; 258 Koessler, Maillard, Benhadid, Vignal, Felblinger, Vespignani, Braun (bib0105) 2009; 46 Mak, Minuzzi, MacQueen, Hall, Kennedy, Milev (bib0070) 2017; 7 Reddy (bib0110) 2017 Zhang, Benz, Argaw, Lee, Kim, Rameau, Bazin, Kweon (bib0160) 2021 Brincker, Ventura (bib0090) 2015 Bouallegue, Djemal, Alshebeili, Aldhalaan (bib0040) 2020; 8 Gu, Pasqualetti, Cieslak, Telesford, Yu, Kahn, Medaglia, Vettel, Miller, Grafton, Bassett (bib0060) 2015; 6 Aftanas, Varlamov, Pavlov, Makhnev, Reva (bib0135) 2002; 44 Bouallegue (10.1016/j.bspc.2021.102765_bib0040) 2020; 8 Howard (10.1016/j.bspc.2021.102765_bib0170) 2020; 11 Chang (10.1016/j.bspc.2021.102765_bib0120) 2010; 50 Jiao (10.1016/j.bspc.2021.102765_bib0055) 2020; 408 Ke (10.1016/j.bspc.2021.102765_bib0140) 2020 Schalk (10.1016/j.bspc.2021.102765_bib0080) 2004; 51 Gu (10.1016/j.bspc.2021.102765_bib0060) 2015; 6 Zhang (10.1016/j.bspc.2021.102765_bib0160) 2021 Thomas (10.1016/j.bspc.2021.102765_bib0030) 2002; 17 Kutz (10.1016/j.bspc.2021.102765_bib0100) 2016 Koelstra (10.1016/j.bspc.2021.102765_bib0075) 2012; 3 Reynders (10.1016/j.bspc.2021.102765_bib0115) 2012; 19 Saarimäki (10.1016/j.bspc.2021.102765_bib0065) 2015; 26 Ribeiro (10.1016/j.bspc.2021.102765_bib0175) 2016 10.1016/j.bspc.2021.102765_bib0165 Brincker (10.1016/j.bspc.2021.102765_bib0090) 2015 Leng (10.1016/j.bspc.2021.102765_bib0125) 2020; 41 DelPozo-Banos (10.1016/j.bspc.2021.102765_bib0190) 2018; 28 Wilaiprasitporn (10.1016/j.bspc.2021.102765_bib0185) 2020; 12 Atasoy (10.1016/j.bspc.2021.102765_bib0005) 2018; 24 Van Overschee (10.1016/j.bspc.2021.102765_bib0095) 2012 Makeig (10.1016/j.bspc.2021.102765_bib0130) 2012 Bouallegue (10.1016/j.bspc.2021.102765_bib0045) 2020 Koessler (10.1016/j.bspc.2021.102765_bib0105) 2009; 46 Mak (10.1016/j.bspc.2021.102765_bib0070) 2017; 7 Venugopal (10.1016/j.bspc.2021.102765_bib0145) 2020; 27 Reddy (10.1016/j.bspc.2021.102765_bib0110) 2017 Tangsali (10.1016/j.bspc.2021.102765_bib0150) 2020 10.1016/j.bspc.2021.102765_bib0180 Debie (10.1016/j.bspc.2021.102765_bib0200) 2019 Brunton (10.1016/j.bspc.2021.102765_bib0035) 2016; 258 Li (10.1016/j.bspc.2021.102765_bib0195) 2017 Atasoy (10.1016/j.bspc.2021.102765_bib0010) 2016; 7 10.1016/j.bspc.2021.102765_bib0015 Aftanas (10.1016/j.bspc.2021.102765_bib0135) 2002; 44 Makeig (10.1016/j.bspc.2021.102765_bib0020) 1996 Schwarz (10.1016/j.bspc.2021.102765_bib0085) 1999; 35 Das Chakladar (10.1016/j.bspc.2021.102765_bib0050) 2020; 60 Churchland (10.1016/j.bspc.2021.102765_bib0025) 2012; 487 Van Dongen (10.1016/j.bspc.2021.102765_bib0205) 2004; 75 He (10.1016/j.bspc.2021.102765_bib0155) 2016 |
References_xml | – volume: 26 start-page: 2563 year: 2015 end-page: 2573 ident: bib0065 article-title: Discrete neural signatures of basic emotions publication-title: Cereb. Cortex – start-page: 73 year: 2020 end-page: 78 ident: bib0140 article-title: Intersected EMG heatmaps and deep learning based gesture recognition publication-title: Proceedings of the 2020 12th International Conference on Machine Learning and Computing, ICMLC 2020 – start-page: 145 year: 1996 end-page: 151 ident: bib0020 article-title: Independent component analysis of electroencephalographic data publication-title: Advances in Neural Information Processing Systems 8 – reference: Q. Dickinson, J.G. Meyer, Positional shape for interpretation of deep learning models trained from biological sequences, doi:10.1101/2021.03.04.433939. – volume: 17 start-page: 1521 year: 2002 end-page: 1537 ident: bib0030 article-title: Noise reduction in bold-based fMRI using component analysis publication-title: NeuroImage – volume: 35 start-page: 1 year: 1999 end-page: 12 ident: bib0085 article-title: Experimental modal analysis publication-title: CSI Reliabil. Week – start-page: 22 year: 2020 end-page: 28 ident: bib0045 article-title: EEG person identification using facenet, LSTM-RNN and SVM publication-title: 2020 17th International Multi-Conference on Systems, Signals Devices (SSD) – year: 2012 ident: bib0095 article-title: Subspace Identification for Linear Systems: Theory-Implementation-Applications – volume: 41 start-page: 2447 year: 2020 end-page: 2459 ident: bib0125 article-title: Frequency-specific changes in the default mode network in patients with cingulate gyrus epilepsy publication-title: Hum. Brain Mapp. – volume: 75 start-page: A147 year: 2004 end-page: A154 ident: bib0205 article-title: Dealing with inter-individual differences in the temporal dynamics of fatigue and performance: importance and techniques publication-title: Aviation Space Environ. Med. – volume: 28 start-page: 1750035 year: 2018 ident: bib0190 article-title: Evidence of a task-independent neural signature in the spectral shape of the electroencephalogram publication-title: Int. J. Neural Syst. – volume: 19 start-page: 51 year: 2012 end-page: 124 ident: bib0115 article-title: System identification methods for (operational) modal analysis: review and comparison publication-title: Arch. Comput. Methods Eng. – volume: 50 start-page: 81 year: 2010 end-page: 98 ident: bib0120 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: NeuroImage – reference: S. Koning, C. Greeven, E.O. Postma, Reducing artificial neural network complexity: a case study on exoplanet detection, CoRR abs/1902.10385. arXiv:1902.10385. – year: 2016 ident: bib0155 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 51 start-page: 1034 year: 2004 end-page: 1043 ident: bib0080 article-title: Bci2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Trans. Biomed. Eng. – volume: 27 start-page: 88 year: 2020 end-page: 95 ident: bib0145 article-title: Unboxing AI - radiological insights into a deep neural network for lung nodule characterization publication-title: Acad. Radiol. – start-page: 1 year: 2019 end-page: 14 ident: bib0200 article-title: Multimodal fusion for objective assessment of cognitive workload: a review publication-title: IEEE Trans. Cybern. – volume: 46 start-page: 64 year: 2009 end-page: 72 ident: bib0105 article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system publication-title: NeuroImage – start-page: 1135 year: 2016 end-page: 1144 ident: bib0175 article-title: “Why should I trust you?”: explaining the predictions of any classifier publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16 – volume: 487 start-page: 51 year: 2012 end-page: 56 ident: bib0025 article-title: Neural population dynamics during reaching publication-title: Nature – volume: 408 start-page: 100 year: 2020 end-page: 111 ident: bib0055 article-title: Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks publication-title: Neurocomputing – start-page: 1 year: 2020 end-page: 32 ident: bib0150 article-title: Generalizability of convolutional encoder-decoder networks for aerodynamic flow-field prediction across geometric and physical-fluidic variations publication-title: J. Mech. Des. – start-page: 3550 year: 2021 end-page: 3559 ident: bib0160 article-title: Resnet or densenet?. introducing dense shortcuts to resnet publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) – volume: 6 start-page: 8414 year: 2015 ident: bib0060 article-title: Controllability of structural brain networks publication-title: Nat. Commun. – volume: 12 start-page: 486 year: 2020 end-page: 496 ident: bib0185 article-title: Affective EEG-based person identification using the deep learning approach publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 11 start-page: 108 year: 2020 ident: bib0170 article-title: fastai: a layered API for deep learning publication-title: Information – start-page: 1567 year: 2012 end-page: 1584 ident: bib0130 article-title: Evolving signal processing for brain-computer interfaces publication-title: Proceedings of the IEEE 100 (Special Centennial Issue) – year: 2016 ident: bib0100 article-title: Dynamic Mode Decomposition – start-page: 537 year: 2017 end-page: 544 ident: bib0195 article-title: Personal identification based on content-independent eeg signal analysis publication-title: Biometric Recognition – reference: T.D. Lagerlund, F.W. Sharbrough, N.E. Busacker, Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition, J. Clin. Neurophysiol. 14 (1). – reference: . – volume: 258 start-page: 1 year: 2016 end-page: 15 ident: bib0035 article-title: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition publication-title: J. Neurosci. Methods – volume: 24 start-page: 277 year: 2018 end-page: 293 ident: bib0005 article-title: Harmonic brain modes: a unifying framework for linking space and time in brain dynamics publication-title: Neuroscientist – year: 2017 ident: bib0110 article-title: Energy Principles and Variational Methods in Applied Mechanics – volume: 8 start-page: 206992 year: 2020 end-page: 207007 ident: bib0040 article-title: A dynamic filtering DF-RNN deep-learning-based approach for eeg-based neurological disorders diagnosis publication-title: IEEE Access – volume: 44 start-page: 67 year: 2002 end-page: 82 ident: bib0135 article-title: Time-dependent cortical asymmetries induced by emotional arousal: EEG analysis of event-related synchronization and desynchronization in individually defined frequency bands publication-title: Int. J. Psychophysiol. – volume: 7 start-page: 10340 year: 2016 ident: bib0010 article-title: Human brain networks function in connectome-specific harmonic waves publication-title: Nat. Commun. – volume: 7 start-page: 25 year: 2017 end-page: 33 ident: bib0070 article-title: The default mode network in healthy individuals: a systematic review and meta-analysis publication-title: Brain Connect. – volume: 3 start-page: 18 year: 2012 end-page: 31 ident: bib0075 article-title: DEAP: a database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. – year: 2015 ident: bib0090 article-title: Introduction to Operational Modal Analysis – volume: 60 start-page: 101989 year: 2020 ident: bib0050 article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm publication-title: Biomed. Signal Process. Control – volume: 258 start-page: 1 year: 2016 ident: 10.1016/j.bspc.2021.102765_bib0035 article-title: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.10.010 – volume: 50 start-page: 81 issue: 1 year: 2010 ident: 10.1016/j.bspc.2021.102765_bib0120 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.011 – volume: 17 start-page: 1521 issue: 3 year: 2002 ident: 10.1016/j.bspc.2021.102765_bib0030 article-title: Noise reduction in bold-based fMRI using component analysis publication-title: NeuroImage doi: 10.1006/nimg.2002.1200 – start-page: 1 year: 2019 ident: 10.1016/j.bspc.2021.102765_bib0200 article-title: Multimodal fusion for objective assessment of cognitive workload: a review publication-title: IEEE Trans. Cybern. – start-page: 1567 year: 2012 ident: 10.1016/j.bspc.2021.102765_bib0130 article-title: Evolving signal processing for brain-computer interfaces publication-title: Proceedings of the IEEE 100 (Special Centennial Issue) – volume: 408 start-page: 100 year: 2020 ident: 10.1016/j.bspc.2021.102765_bib0055 article-title: Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.108 – volume: 8 start-page: 206992 year: 2020 ident: 10.1016/j.bspc.2021.102765_bib0040 article-title: A dynamic filtering DF-RNN deep-learning-based approach for eeg-based neurological disorders diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037995 – year: 2012 ident: 10.1016/j.bspc.2021.102765_bib0095 – start-page: 1 year: 2020 ident: 10.1016/j.bspc.2021.102765_bib0150 article-title: Generalizability of convolutional encoder-decoder networks for aerodynamic flow-field prediction across geometric and physical-fluidic variations publication-title: J. Mech. Des. – start-page: 22 year: 2020 ident: 10.1016/j.bspc.2021.102765_bib0045 article-title: EEG person identification using facenet, LSTM-RNN and SVM publication-title: 2020 17th International Multi-Conference on Systems, Signals Devices (SSD) doi: 10.1109/SSD49366.2020.9364129 – ident: 10.1016/j.bspc.2021.102765_bib0015 doi: 10.1097/00004691-199701000-00007 – year: 2015 ident: 10.1016/j.bspc.2021.102765_bib0090 – volume: 487 start-page: 51 issue: 7405 year: 2012 ident: 10.1016/j.bspc.2021.102765_bib0025 article-title: Neural population dynamics during reaching publication-title: Nature doi: 10.1038/nature11129 – ident: 10.1016/j.bspc.2021.102765_bib0180 – volume: 7 start-page: 25 issue: 1 year: 2017 ident: 10.1016/j.bspc.2021.102765_bib0070 article-title: The default mode network in healthy individuals: a systematic review and meta-analysis publication-title: Brain Connect. doi: 10.1089/brain.2016.0438 – ident: 10.1016/j.bspc.2021.102765_bib0165 – year: 2016 ident: 10.1016/j.bspc.2021.102765_bib0155 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 11 start-page: 108 issue: 2 year: 2020 ident: 10.1016/j.bspc.2021.102765_bib0170 article-title: fastai: a layered API for deep learning publication-title: Information doi: 10.3390/info11020108 – start-page: 537 year: 2017 ident: 10.1016/j.bspc.2021.102765_bib0195 article-title: Personal identification based on content-independent eeg signal analysis – volume: 46 start-page: 64 issue: 1 year: 2009 ident: 10.1016/j.bspc.2021.102765_bib0105 article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.006 – volume: 6 start-page: 8414 issue: 1 year: 2015 ident: 10.1016/j.bspc.2021.102765_bib0060 article-title: Controllability of structural brain networks publication-title: Nat. Commun. doi: 10.1038/ncomms9414 – volume: 51 start-page: 1034 issue: 6 year: 2004 ident: 10.1016/j.bspc.2021.102765_bib0080 article-title: Bci2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827072 – start-page: 1135 year: 2016 ident: 10.1016/j.bspc.2021.102765_bib0175 article-title: “Why should I trust you?”: explaining the predictions of any classifier – year: 2016 ident: 10.1016/j.bspc.2021.102765_bib0100 – volume: 3 start-page: 18 issue: 1 year: 2012 ident: 10.1016/j.bspc.2021.102765_bib0075 article-title: DEAP: a database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 41 start-page: 2447 issue: 9 year: 2020 ident: 10.1016/j.bspc.2021.102765_bib0125 article-title: Frequency-specific changes in the default mode network in patients with cingulate gyrus epilepsy publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24956 – start-page: 73 year: 2020 ident: 10.1016/j.bspc.2021.102765_bib0140 article-title: Intersected EMG heatmaps and deep learning based gesture recognition – volume: 60 start-page: 101989 year: 2020 ident: 10.1016/j.bspc.2021.102765_bib0050 article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101989 – volume: 44 start-page: 67 issue: 1 year: 2002 ident: 10.1016/j.bspc.2021.102765_bib0135 article-title: Time-dependent cortical asymmetries induced by emotional arousal: EEG analysis of event-related synchronization and desynchronization in individually defined frequency bands publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(01)00194-5 – volume: 12 start-page: 486 issue: 3 year: 2020 ident: 10.1016/j.bspc.2021.102765_bib0185 article-title: Affective EEG-based person identification using the deep learning approach publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2019.2924648 – volume: 26 start-page: 2563 issue: 6 year: 2015 ident: 10.1016/j.bspc.2021.102765_bib0065 article-title: Discrete neural signatures of basic emotions publication-title: Cereb. Cortex doi: 10.1093/cercor/bhv086 – volume: 24 start-page: 277 issue: 3 year: 2018 ident: 10.1016/j.bspc.2021.102765_bib0005 article-title: Harmonic brain modes: a unifying framework for linking space and time in brain dynamics publication-title: Neuroscientist doi: 10.1177/1073858417728032 – volume: 7 start-page: 10340 issue: 1 year: 2016 ident: 10.1016/j.bspc.2021.102765_bib0010 article-title: Human brain networks function in connectome-specific harmonic waves publication-title: Nat. Commun. doi: 10.1038/ncomms10340 – volume: 28 start-page: 1750035 issue: 01 year: 2018 ident: 10.1016/j.bspc.2021.102765_bib0190 article-title: Evidence of a task-independent neural signature in the spectral shape of the electroencephalogram publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500356 – volume: 75 start-page: A147 issue: 3 year: 2004 ident: 10.1016/j.bspc.2021.102765_bib0205 article-title: Dealing with inter-individual differences in the temporal dynamics of fatigue and performance: importance and techniques publication-title: Aviation Space Environ. Med. – volume: 19 start-page: 51 issue: 1 year: 2012 ident: 10.1016/j.bspc.2021.102765_bib0115 article-title: System identification methods for (operational) modal analysis: review and comparison publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-012-9069-x – start-page: 145 year: 1996 ident: 10.1016/j.bspc.2021.102765_bib0020 article-title: Independent component analysis of electroencephalographic data – volume: 27 start-page: 88 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.102765_bib0145 article-title: Unboxing AI - radiological insights into a deep neural network for lung nodule characterization publication-title: Acad. Radiol. doi: 10.1016/j.acra.2019.09.015 – start-page: 3550 year: 2021 ident: 10.1016/j.bspc.2021.102765_bib0160 article-title: Resnet or densenet?. introducing dense shortcuts to resnet publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) – volume: 35 start-page: 1 issue: 1 year: 1999 ident: 10.1016/j.bspc.2021.102765_bib0085 article-title: Experimental modal analysis publication-title: CSI Reliabil. Week – year: 2017 ident: 10.1016/j.bspc.2021.102765_bib0110 |
SSID | ssj0048714 |
Score | 2.281226 |
Snippet | •System identification methods are explored for the analysis of EEG dynamics.•The resultant models yield an eigenmode decomposition of the emergent dynamics... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102765 |
SubjectTerms | EEG dynamics Modal decomposition System identification |
Title | System identification methods for dynamic models of brain activity |
URI | https://dx.doi.org/10.1016/j.bspc.2021.102765 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KvehB_MT6UfbgTWI32Ww-jrVYqmIvWugt7G42UJFabL36253JbkoF6cFjwk4IL5vZN_DmDcA1MthKkVQnqpIsiJWJgtyYMDCxkao0Wc4FdSM_j5PRJH6cymkLBk0vDMkqfe53Ob3O1v5Oz6PZW8xmvRfk0kmG1QkWLZSG6w72OKVdfvu9lnkgH6_9vWlxQKt944zTeOnlgmwMo5AcDFI6YP46nDYOnOEB7HumyPruZQ6hZedHsLfhH3gMd85vnM1Kr_mpYWZuKvSSIR9lpZs4z-qJN0v2UTFNQyEY9TPQ2IgTmAzvXwejwA9FCIzgfBUg4hIpHf5LURnLnFsZJ1yUkbGpDK1VsdQ81ZUprVE255kVaaWFwlo0SyuFpfMptOcfc3sGLJM5RiFjTDQWaUpkGh8jLDIGI7mRogNhg0ZhvGM4Da54Lxpp2FtBCBaEYOEQ7MDNOmbh_DK2rpYNyMWvr15gQt8Sd_7PuAvYpSsnt72E9urzy14hqVjpbr1rurDTf3gajX8A3KzLTw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhObQ9lK40XXXorZjYluXlmIYGp1kuTSA3IckypJQkNOn_d8aSSwolh15tjTFP9ugNzLxHyCMw2FJiq05YxqkXSR16mdaBpyPNZaHTzGc4jTyexPksep3zeYP06lkYbKt0ud_m9Cpbuysdh2ZnvVh03oBLxylUJ1C0YBqGEqiF6lS8SVrdwTCf1AkZKHkl8Y3rPQxwszO2zUtt1qhkGAYoYpDgGfPX-bRz5vRPyLEji7Rr3-eUNMzyjBztSAiek2crOU4XhWv7qZCm1hh6Q4GS0sKaztPK9GZDVyVV6AtBcaQBnSMuyKz_Mu3lnvNF8DTz_a0HoHNgdfA7hUXEM9_wKPZZEWqT8MAYGXHlJ6rUhdHSZH5qWFIqJqEcTZNSQvV8SZrL1dJcEZryDKKANMYK6jTJUgWPYQZIg-a-5qxNghoNoZ1oOHpXfIi6O-xdIIICERQWwTZ5-olZW8mMvat5DbL4tfECcvqeuOt_xj2Qg3w6HonRYDK8IYd4x3bf3pLm9vPL3AHH2Kp79w19A-kUzgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+identification+methods+for+dynamic+models+of+brain+activity&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Griffith%2C+Tristan+D.&rft.au=Hubbard%2C+James+E.&rft.date=2021-07-01&rft.issn=1746-8094&rft.volume=68&rft.spage=102765&rft_id=info:doi/10.1016%2Fj.bspc.2021.102765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102765 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |