System identification methods for dynamic models of brain activity

•System identification methods are explored for the analysis of EEG dynamics.•The resultant models yield an eigenmode decomposition of the emergent dynamics which capture the spatio-temporal dynamics elegantly.•The eigenmodes present as both traveling and standing waves.•This modal decomposition may...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 68; p. 102765
Main Authors Griffith, Tristan D., Hubbard, James E.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2021.102765

Cover

Loading…
Abstract •System identification methods are explored for the analysis of EEG dynamics.•The resultant models yield an eigenmode decomposition of the emergent dynamics which capture the spatio-temporal dynamics elegantly.•The eigenmodes present as both traveling and standing waves.•This modal decomposition may be used in a biosecurity subject identification task. There is a broad need to better understand the dynamics of neural activity in both space and time. Rigorous modeling methods are needed to improve the analysis of brainwave dynamics. Two system identification algorithms, Output Only Modal Analysis (OMA) and Dynamic Mode Decomposition (DMD), are modified for use on neural dynamics and compared. An example application is included. The system identification methods are applied to estimate state space models for neural dynamics. The modeling technique results in a reduced order modal decomposition of the behavior of the brain. The resultant eigenmodes can be non-orthogonal and complex, capturing the emergent space time dynamics. We apply the modeling method to the Database for Emotion Analysis using Physiological Signals (DEAP) and the EEG Motor Movement/Imagery Dataset (EEGMMI) in a biosecurity application. It is shown that there are common modes shared among all subjects, regardless of stimuli. Further, the modal decompositions may be used to distinguish subjects from one another in a subject identification biosecurity task. The accuracy of the OMA eigenmode model is 100%, while the accuracy of the DMD eigenmode model is 96%. Output only system identification techniques are an appropriate rigorous modeling method for EEG data. The structured modeling procedure offers new opportunities for cognitive modeling and affective computing.
AbstractList •System identification methods are explored for the analysis of EEG dynamics.•The resultant models yield an eigenmode decomposition of the emergent dynamics which capture the spatio-temporal dynamics elegantly.•The eigenmodes present as both traveling and standing waves.•This modal decomposition may be used in a biosecurity subject identification task. There is a broad need to better understand the dynamics of neural activity in both space and time. Rigorous modeling methods are needed to improve the analysis of brainwave dynamics. Two system identification algorithms, Output Only Modal Analysis (OMA) and Dynamic Mode Decomposition (DMD), are modified for use on neural dynamics and compared. An example application is included. The system identification methods are applied to estimate state space models for neural dynamics. The modeling technique results in a reduced order modal decomposition of the behavior of the brain. The resultant eigenmodes can be non-orthogonal and complex, capturing the emergent space time dynamics. We apply the modeling method to the Database for Emotion Analysis using Physiological Signals (DEAP) and the EEG Motor Movement/Imagery Dataset (EEGMMI) in a biosecurity application. It is shown that there are common modes shared among all subjects, regardless of stimuli. Further, the modal decompositions may be used to distinguish subjects from one another in a subject identification biosecurity task. The accuracy of the OMA eigenmode model is 100%, while the accuracy of the DMD eigenmode model is 96%. Output only system identification techniques are an appropriate rigorous modeling method for EEG data. The structured modeling procedure offers new opportunities for cognitive modeling and affective computing.
ArticleNumber 102765
Author Hubbard, James E.
Griffith, Tristan D.
Author_xml – sequence: 1
  givenname: Tristan D.
  surname: Griffith
  fullname: Griffith, Tristan D.
– sequence: 2
  givenname: James E.
  surname: Hubbard
  fullname: Hubbard, James E.
BookMark eNp9kE1LAzEQhoMo2Fb_gKf8ga2T_coueNHiFxQ8qOeQnUwwpbspSSjsv3dr9eKhpxkGnpd3njk7H_xAjN0IWAoQ9e1m2cUdLnPIxXTIZV2dsZmQZZ01Aprzvx3a8pLNY9wAlI0U5Yw9vI8xUc-doSE561An5wfeU_ryJnLrAzfjoHuHvPeGtpF7y7ug3cA1Jrd3abxiF1ZvI13_zgX7fHr8WL1k67fn19X9OsMCIGWIumpFDZXITVm1QFVZQ2FyJFkJIl1WHcjOoiHU1EJDhbRdoaUoGmk1dcWCNcdcDD7GQFahSz9109RnqwSogwu1UQcX6uBCHV1MaP4P3QXX6zCehu6O0PQ17R0FFdHRgGRcIEzKeHcK_wYpm3uK
CitedBy_id crossref_primary_10_1155_2022_1297274
crossref_primary_10_1016_j_bspc_2022_104083
crossref_primary_10_3390_biomimetics9110687
crossref_primary_10_1016_j_psep_2021_11_018
Cites_doi 10.1016/j.jneumeth.2015.10.010
10.1016/j.neuroimage.2009.12.011
10.1006/nimg.2002.1200
10.1016/j.neucom.2019.05.108
10.1109/ACCESS.2020.3037995
10.1109/SSD49366.2020.9364129
10.1097/00004691-199701000-00007
10.1038/nature11129
10.1089/brain.2016.0438
10.3390/info11020108
10.1016/j.neuroimage.2009.02.006
10.1038/ncomms9414
10.1109/TBME.2004.827072
10.1109/T-AFFC.2011.15
10.1002/hbm.24956
10.1016/j.bspc.2020.101989
10.1016/S0167-8760(01)00194-5
10.1109/TCDS.2019.2924648
10.1093/cercor/bhv086
10.1177/1073858417728032
10.1038/ncomms10340
10.1142/S0129065717500356
10.1007/s11831-012-9069-x
10.1016/j.acra.2019.09.015
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.102765
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_102765
S1746809421003621
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-cca59160512d4590e54603d2ce751eea45b07bfcdecae908e37fb3a71387faeb3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:10:09 EDT 2025
Tue Jul 01 01:34:10 EDT 2025
Fri Feb 23 02:43:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Modal decomposition
EEG dynamics
System identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-cca59160512d4590e54603d2ce751eea45b07bfcdecae908e37fb3a71387faeb3
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2021_102765
crossref_primary_10_1016_j_bspc_2021_102765
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ke, Xing, Di Caterina, Petropoulakis, Soraghan (bib0140) 2020
Tangsali, Krishnamurthy, Hasnain (bib0150) 2020
Leng, Xiang, Yang, Yu, Qi, Zhang, Wu, Wang (bib0125) 2020; 41
Kutz, Brunton, Brunton, Proctor (bib0100) 2016
Chang, Glover (bib0120) 2010; 50
Wilaiprasitporn, Ditthapron, Matchaparn, Tongbuasirilai, Banluesombatkul, Chuangsuwanich (bib0185) 2020; 12
Ribeiro, Singh, Guestrin (bib0175) 2016
T.D. Lagerlund, F.W. Sharbrough, N.E. Busacker, Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition, J. Clin. Neurophysiol. 14 (1).
Das Chakladar, Dey, Roy, Dogra (bib0050) 2020; 60
Debie, Rojas, Fidock, Barlow, Kasmarik, Anavatti, Garratt, Abbass (bib0200) 2019
DelPozo-Banos, Travieso, Alonso, John (bib0190) 2018; 28
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (bib0075) 2012; 3
Howard, Gugger (bib0170) 2020; 11
Li, Zhao, Tan, Liu, Fang (bib0195) 2017
Schalk, McFarland, Hinterberger, Birbaumer, Wolpaw (bib0080) 2004; 51
Makeig, Kothe, Mullen, Bigdely-Shamlo, Zhang, Kreutz-Delgado (bib0130) 2012
S. Koning, C. Greeven, E.O. Postma, Reducing artificial neural network complexity: a case study on exoplanet detection, CoRR abs/1902.10385. arXiv:1902.10385.
Atasoy, Donnelly, Pearson (bib0010) 2016; 7
Reynders (bib0115) 2012; 19
Bouallegue, Djemal (bib0045) 2020
Venugopal, Vaidhya, Murugavel, Chunduru, Mahajan, Vaidya, Mahra, Rangasai, Mahajan (bib0145) 2020; 27
Van Overschee, De Moor (bib0095) 2012
Saarimäki, Gotsopoulos, Jääskeläinen, Lampinen, Vuilleumier, Hari, Sams, Nummenmaa (bib0065) 2015; 26
Van Dongen, Maislin, Dinges (bib0205) 2004; 75
Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (bib0025) 2012; 487
Atasoy, Deco, Kringelbach, Pearson (bib0005) 2018; 24
Q. Dickinson, J.G. Meyer, Positional shape for interpretation of deep learning models trained from biological sequences, doi:10.1101/2021.03.04.433939.
He, Zhang, Ren, Sun (bib0155) 2016
Jiao, Deng, Luo, Lu (bib0055) 2020; 408
.
Schwarz, Richardson (bib0085) 1999; 35
Thomas, Harshman, Menon (bib0030) 2002; 17
Makeig, Bell, Jung, Sejnowski (bib0020) 1996
Brunton, Johnson, Ojemann, Kutz (bib0035) 2016; 258
Koessler, Maillard, Benhadid, Vignal, Felblinger, Vespignani, Braun (bib0105) 2009; 46
Mak, Minuzzi, MacQueen, Hall, Kennedy, Milev (bib0070) 2017; 7
Reddy (bib0110) 2017
Zhang, Benz, Argaw, Lee, Kim, Rameau, Bazin, Kweon (bib0160) 2021
Brincker, Ventura (bib0090) 2015
Bouallegue, Djemal, Alshebeili, Aldhalaan (bib0040) 2020; 8
Gu, Pasqualetti, Cieslak, Telesford, Yu, Kahn, Medaglia, Vettel, Miller, Grafton, Bassett (bib0060) 2015; 6
Aftanas, Varlamov, Pavlov, Makhnev, Reva (bib0135) 2002; 44
Bouallegue (10.1016/j.bspc.2021.102765_bib0040) 2020; 8
Howard (10.1016/j.bspc.2021.102765_bib0170) 2020; 11
Chang (10.1016/j.bspc.2021.102765_bib0120) 2010; 50
Jiao (10.1016/j.bspc.2021.102765_bib0055) 2020; 408
Ke (10.1016/j.bspc.2021.102765_bib0140) 2020
Schalk (10.1016/j.bspc.2021.102765_bib0080) 2004; 51
Gu (10.1016/j.bspc.2021.102765_bib0060) 2015; 6
Zhang (10.1016/j.bspc.2021.102765_bib0160) 2021
Thomas (10.1016/j.bspc.2021.102765_bib0030) 2002; 17
Kutz (10.1016/j.bspc.2021.102765_bib0100) 2016
Koelstra (10.1016/j.bspc.2021.102765_bib0075) 2012; 3
Reynders (10.1016/j.bspc.2021.102765_bib0115) 2012; 19
Saarimäki (10.1016/j.bspc.2021.102765_bib0065) 2015; 26
Ribeiro (10.1016/j.bspc.2021.102765_bib0175) 2016
10.1016/j.bspc.2021.102765_bib0165
Brincker (10.1016/j.bspc.2021.102765_bib0090) 2015
Leng (10.1016/j.bspc.2021.102765_bib0125) 2020; 41
DelPozo-Banos (10.1016/j.bspc.2021.102765_bib0190) 2018; 28
Wilaiprasitporn (10.1016/j.bspc.2021.102765_bib0185) 2020; 12
Atasoy (10.1016/j.bspc.2021.102765_bib0005) 2018; 24
Van Overschee (10.1016/j.bspc.2021.102765_bib0095) 2012
Makeig (10.1016/j.bspc.2021.102765_bib0130) 2012
Bouallegue (10.1016/j.bspc.2021.102765_bib0045) 2020
Koessler (10.1016/j.bspc.2021.102765_bib0105) 2009; 46
Mak (10.1016/j.bspc.2021.102765_bib0070) 2017; 7
Venugopal (10.1016/j.bspc.2021.102765_bib0145) 2020; 27
Reddy (10.1016/j.bspc.2021.102765_bib0110) 2017
Tangsali (10.1016/j.bspc.2021.102765_bib0150) 2020
10.1016/j.bspc.2021.102765_bib0180
Debie (10.1016/j.bspc.2021.102765_bib0200) 2019
Brunton (10.1016/j.bspc.2021.102765_bib0035) 2016; 258
Li (10.1016/j.bspc.2021.102765_bib0195) 2017
Atasoy (10.1016/j.bspc.2021.102765_bib0010) 2016; 7
10.1016/j.bspc.2021.102765_bib0015
Aftanas (10.1016/j.bspc.2021.102765_bib0135) 2002; 44
Makeig (10.1016/j.bspc.2021.102765_bib0020) 1996
Schwarz (10.1016/j.bspc.2021.102765_bib0085) 1999; 35
Das Chakladar (10.1016/j.bspc.2021.102765_bib0050) 2020; 60
Churchland (10.1016/j.bspc.2021.102765_bib0025) 2012; 487
Van Dongen (10.1016/j.bspc.2021.102765_bib0205) 2004; 75
He (10.1016/j.bspc.2021.102765_bib0155) 2016
References_xml – volume: 26
  start-page: 2563
  year: 2015
  end-page: 2573
  ident: bib0065
  article-title: Discrete neural signatures of basic emotions
  publication-title: Cereb. Cortex
– start-page: 73
  year: 2020
  end-page: 78
  ident: bib0140
  article-title: Intersected EMG heatmaps and deep learning based gesture recognition
  publication-title: Proceedings of the 2020 12th International Conference on Machine Learning and Computing, ICMLC 2020
– start-page: 145
  year: 1996
  end-page: 151
  ident: bib0020
  article-title: Independent component analysis of electroencephalographic data
  publication-title: Advances in Neural Information Processing Systems 8
– reference: Q. Dickinson, J.G. Meyer, Positional shape for interpretation of deep learning models trained from biological sequences, doi:10.1101/2021.03.04.433939.
– volume: 17
  start-page: 1521
  year: 2002
  end-page: 1537
  ident: bib0030
  article-title: Noise reduction in bold-based fMRI using component analysis
  publication-title: NeuroImage
– volume: 35
  start-page: 1
  year: 1999
  end-page: 12
  ident: bib0085
  article-title: Experimental modal analysis
  publication-title: CSI Reliabil. Week
– start-page: 22
  year: 2020
  end-page: 28
  ident: bib0045
  article-title: EEG person identification using facenet, LSTM-RNN and SVM
  publication-title: 2020 17th International Multi-Conference on Systems, Signals Devices (SSD)
– year: 2012
  ident: bib0095
  article-title: Subspace Identification for Linear Systems: Theory-Implementation-Applications
– volume: 41
  start-page: 2447
  year: 2020
  end-page: 2459
  ident: bib0125
  article-title: Frequency-specific changes in the default mode network in patients with cingulate gyrus epilepsy
  publication-title: Hum. Brain Mapp.
– volume: 75
  start-page: A147
  year: 2004
  end-page: A154
  ident: bib0205
  article-title: Dealing with inter-individual differences in the temporal dynamics of fatigue and performance: importance and techniques
  publication-title: Aviation Space Environ. Med.
– volume: 28
  start-page: 1750035
  year: 2018
  ident: bib0190
  article-title: Evidence of a task-independent neural signature in the spectral shape of the electroencephalogram
  publication-title: Int. J. Neural Syst.
– volume: 19
  start-page: 51
  year: 2012
  end-page: 124
  ident: bib0115
  article-title: System identification methods for (operational) modal analysis: review and comparison
  publication-title: Arch. Comput. Methods Eng.
– volume: 50
  start-page: 81
  year: 2010
  end-page: 98
  ident: bib0120
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: NeuroImage
– reference: S. Koning, C. Greeven, E.O. Postma, Reducing artificial neural network complexity: a case study on exoplanet detection, CoRR abs/1902.10385. arXiv:1902.10385.
– year: 2016
  ident: bib0155
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 51
  start-page: 1034
  year: 2004
  end-page: 1043
  ident: bib0080
  article-title: Bci2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 27
  start-page: 88
  year: 2020
  end-page: 95
  ident: bib0145
  article-title: Unboxing AI - radiological insights into a deep neural network for lung nodule characterization
  publication-title: Acad. Radiol.
– start-page: 1
  year: 2019
  end-page: 14
  ident: bib0200
  article-title: Multimodal fusion for objective assessment of cognitive workload: a review
  publication-title: IEEE Trans. Cybern.
– volume: 46
  start-page: 64
  year: 2009
  end-page: 72
  ident: bib0105
  article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system
  publication-title: NeuroImage
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: bib0175
  article-title: “Why should I trust you?”: explaining the predictions of any classifier
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16
– volume: 487
  start-page: 51
  year: 2012
  end-page: 56
  ident: bib0025
  article-title: Neural population dynamics during reaching
  publication-title: Nature
– volume: 408
  start-page: 100
  year: 2020
  end-page: 111
  ident: bib0055
  article-title: Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks
  publication-title: Neurocomputing
– start-page: 1
  year: 2020
  end-page: 32
  ident: bib0150
  article-title: Generalizability of convolutional encoder-decoder networks for aerodynamic flow-field prediction across geometric and physical-fluidic variations
  publication-title: J. Mech. Des.
– start-page: 3550
  year: 2021
  end-page: 3559
  ident: bib0160
  article-title: Resnet or densenet?. introducing dense shortcuts to resnet
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
– volume: 6
  start-page: 8414
  year: 2015
  ident: bib0060
  article-title: Controllability of structural brain networks
  publication-title: Nat. Commun.
– volume: 12
  start-page: 486
  year: 2020
  end-page: 496
  ident: bib0185
  article-title: Affective EEG-based person identification using the deep learning approach
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 11
  start-page: 108
  year: 2020
  ident: bib0170
  article-title: fastai: a layered API for deep learning
  publication-title: Information
– start-page: 1567
  year: 2012
  end-page: 1584
  ident: bib0130
  article-title: Evolving signal processing for brain-computer interfaces
  publication-title: Proceedings of the IEEE 100 (Special Centennial Issue)
– year: 2016
  ident: bib0100
  article-title: Dynamic Mode Decomposition
– start-page: 537
  year: 2017
  end-page: 544
  ident: bib0195
  article-title: Personal identification based on content-independent eeg signal analysis
  publication-title: Biometric Recognition
– reference: T.D. Lagerlund, F.W. Sharbrough, N.E. Busacker, Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition, J. Clin. Neurophysiol. 14 (1).
– reference: .
– volume: 258
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib0035
  article-title: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
  publication-title: J. Neurosci. Methods
– volume: 24
  start-page: 277
  year: 2018
  end-page: 293
  ident: bib0005
  article-title: Harmonic brain modes: a unifying framework for linking space and time in brain dynamics
  publication-title: Neuroscientist
– year: 2017
  ident: bib0110
  article-title: Energy Principles and Variational Methods in Applied Mechanics
– volume: 8
  start-page: 206992
  year: 2020
  end-page: 207007
  ident: bib0040
  article-title: A dynamic filtering DF-RNN deep-learning-based approach for eeg-based neurological disorders diagnosis
  publication-title: IEEE Access
– volume: 44
  start-page: 67
  year: 2002
  end-page: 82
  ident: bib0135
  article-title: Time-dependent cortical asymmetries induced by emotional arousal: EEG analysis of event-related synchronization and desynchronization in individually defined frequency bands
  publication-title: Int. J. Psychophysiol.
– volume: 7
  start-page: 10340
  year: 2016
  ident: bib0010
  article-title: Human brain networks function in connectome-specific harmonic waves
  publication-title: Nat. Commun.
– volume: 7
  start-page: 25
  year: 2017
  end-page: 33
  ident: bib0070
  article-title: The default mode network in healthy individuals: a systematic review and meta-analysis
  publication-title: Brain Connect.
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: bib0075
  article-title: DEAP: a database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– year: 2015
  ident: bib0090
  article-title: Introduction to Operational Modal Analysis
– volume: 60
  start-page: 101989
  year: 2020
  ident: bib0050
  article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 258
  start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2021.102765_bib0035
  article-title: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.10.010
– volume: 50
  start-page: 81
  issue: 1
  year: 2010
  ident: 10.1016/j.bspc.2021.102765_bib0120
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.011
– volume: 17
  start-page: 1521
  issue: 3
  year: 2002
  ident: 10.1016/j.bspc.2021.102765_bib0030
  article-title: Noise reduction in bold-based fMRI using component analysis
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1200
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.102765_bib0200
  article-title: Multimodal fusion for objective assessment of cognitive workload: a review
  publication-title: IEEE Trans. Cybern.
– start-page: 1567
  year: 2012
  ident: 10.1016/j.bspc.2021.102765_bib0130
  article-title: Evolving signal processing for brain-computer interfaces
  publication-title: Proceedings of the IEEE 100 (Special Centennial Issue)
– volume: 408
  start-page: 100
  year: 2020
  ident: 10.1016/j.bspc.2021.102765_bib0055
  article-title: Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.108
– volume: 8
  start-page: 206992
  year: 2020
  ident: 10.1016/j.bspc.2021.102765_bib0040
  article-title: A dynamic filtering DF-RNN deep-learning-based approach for eeg-based neurological disorders diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037995
– year: 2012
  ident: 10.1016/j.bspc.2021.102765_bib0095
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102765_bib0150
  article-title: Generalizability of convolutional encoder-decoder networks for aerodynamic flow-field prediction across geometric and physical-fluidic variations
  publication-title: J. Mech. Des.
– start-page: 22
  year: 2020
  ident: 10.1016/j.bspc.2021.102765_bib0045
  article-title: EEG person identification using facenet, LSTM-RNN and SVM
  publication-title: 2020 17th International Multi-Conference on Systems, Signals Devices (SSD)
  doi: 10.1109/SSD49366.2020.9364129
– ident: 10.1016/j.bspc.2021.102765_bib0015
  doi: 10.1097/00004691-199701000-00007
– year: 2015
  ident: 10.1016/j.bspc.2021.102765_bib0090
– volume: 487
  start-page: 51
  issue: 7405
  year: 2012
  ident: 10.1016/j.bspc.2021.102765_bib0025
  article-title: Neural population dynamics during reaching
  publication-title: Nature
  doi: 10.1038/nature11129
– ident: 10.1016/j.bspc.2021.102765_bib0180
– volume: 7
  start-page: 25
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2021.102765_bib0070
  article-title: The default mode network in healthy individuals: a systematic review and meta-analysis
  publication-title: Brain Connect.
  doi: 10.1089/brain.2016.0438
– ident: 10.1016/j.bspc.2021.102765_bib0165
– year: 2016
  ident: 10.1016/j.bspc.2021.102765_bib0155
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 11
  start-page: 108
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2021.102765_bib0170
  article-title: fastai: a layered API for deep learning
  publication-title: Information
  doi: 10.3390/info11020108
– start-page: 537
  year: 2017
  ident: 10.1016/j.bspc.2021.102765_bib0195
  article-title: Personal identification based on content-independent eeg signal analysis
– volume: 46
  start-page: 64
  issue: 1
  year: 2009
  ident: 10.1016/j.bspc.2021.102765_bib0105
  article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.006
– volume: 6
  start-page: 8414
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.102765_bib0060
  article-title: Controllability of structural brain networks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9414
– volume: 51
  start-page: 1034
  issue: 6
  year: 2004
  ident: 10.1016/j.bspc.2021.102765_bib0080
  article-title: Bci2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827072
– start-page: 1135
  year: 2016
  ident: 10.1016/j.bspc.2021.102765_bib0175
  article-title: “Why should I trust you?”: explaining the predictions of any classifier
– year: 2016
  ident: 10.1016/j.bspc.2021.102765_bib0100
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.bspc.2021.102765_bib0075
  article-title: DEAP: a database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 41
  start-page: 2447
  issue: 9
  year: 2020
  ident: 10.1016/j.bspc.2021.102765_bib0125
  article-title: Frequency-specific changes in the default mode network in patients with cingulate gyrus epilepsy
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24956
– start-page: 73
  year: 2020
  ident: 10.1016/j.bspc.2021.102765_bib0140
  article-title: Intersected EMG heatmaps and deep learning based gesture recognition
– volume: 60
  start-page: 101989
  year: 2020
  ident: 10.1016/j.bspc.2021.102765_bib0050
  article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101989
– volume: 44
  start-page: 67
  issue: 1
  year: 2002
  ident: 10.1016/j.bspc.2021.102765_bib0135
  article-title: Time-dependent cortical asymmetries induced by emotional arousal: EEG analysis of event-related synchronization and desynchronization in individually defined frequency bands
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(01)00194-5
– volume: 12
  start-page: 486
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2021.102765_bib0185
  article-title: Affective EEG-based person identification using the deep learning approach
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2019.2924648
– volume: 26
  start-page: 2563
  issue: 6
  year: 2015
  ident: 10.1016/j.bspc.2021.102765_bib0065
  article-title: Discrete neural signatures of basic emotions
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhv086
– volume: 24
  start-page: 277
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2021.102765_bib0005
  article-title: Harmonic brain modes: a unifying framework for linking space and time in brain dynamics
  publication-title: Neuroscientist
  doi: 10.1177/1073858417728032
– volume: 7
  start-page: 10340
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2021.102765_bib0010
  article-title: Human brain networks function in connectome-specific harmonic waves
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10340
– volume: 28
  start-page: 1750035
  issue: 01
  year: 2018
  ident: 10.1016/j.bspc.2021.102765_bib0190
  article-title: Evidence of a task-independent neural signature in the spectral shape of the electroencephalogram
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500356
– volume: 75
  start-page: A147
  issue: 3
  year: 2004
  ident: 10.1016/j.bspc.2021.102765_bib0205
  article-title: Dealing with inter-individual differences in the temporal dynamics of fatigue and performance: importance and techniques
  publication-title: Aviation Space Environ. Med.
– volume: 19
  start-page: 51
  issue: 1
  year: 2012
  ident: 10.1016/j.bspc.2021.102765_bib0115
  article-title: System identification methods for (operational) modal analysis: review and comparison
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-012-9069-x
– start-page: 145
  year: 1996
  ident: 10.1016/j.bspc.2021.102765_bib0020
  article-title: Independent component analysis of electroencephalographic data
– volume: 27
  start-page: 88
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102765_bib0145
  article-title: Unboxing AI - radiological insights into a deep neural network for lung nodule characterization
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2019.09.015
– start-page: 3550
  year: 2021
  ident: 10.1016/j.bspc.2021.102765_bib0160
  article-title: Resnet or densenet?. introducing dense shortcuts to resnet
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
– volume: 35
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.bspc.2021.102765_bib0085
  article-title: Experimental modal analysis
  publication-title: CSI Reliabil. Week
– year: 2017
  ident: 10.1016/j.bspc.2021.102765_bib0110
SSID ssj0048714
Score 2.281226
Snippet •System identification methods are explored for the analysis of EEG dynamics.•The resultant models yield an eigenmode decomposition of the emergent dynamics...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102765
SubjectTerms EEG dynamics
Modal decomposition
System identification
Title System identification methods for dynamic models of brain activity
URI https://dx.doi.org/10.1016/j.bspc.2021.102765
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KvehB_MT6UfbgTWI32Ww-jrVYqmIvWugt7G42UJFabL36253JbkoF6cFjwk4IL5vZN_DmDcA1MthKkVQnqpIsiJWJgtyYMDCxkao0Wc4FdSM_j5PRJH6cymkLBk0vDMkqfe53Ob3O1v5Oz6PZW8xmvRfk0kmG1QkWLZSG6w72OKVdfvu9lnkgH6_9vWlxQKt944zTeOnlgmwMo5AcDFI6YP46nDYOnOEB7HumyPruZQ6hZedHsLfhH3gMd85vnM1Kr_mpYWZuKvSSIR9lpZs4z-qJN0v2UTFNQyEY9TPQ2IgTmAzvXwejwA9FCIzgfBUg4hIpHf5LURnLnFsZJ1yUkbGpDK1VsdQ81ZUprVE255kVaaWFwlo0SyuFpfMptOcfc3sGLJM5RiFjTDQWaUpkGh8jLDIGI7mRogNhg0ZhvGM4Da54Lxpp2FtBCBaEYOEQ7MDNOmbh_DK2rpYNyMWvr15gQt8Sd_7PuAvYpSsnt72E9urzy14hqVjpbr1rurDTf3gajX8A3KzLTw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhObQ9lK40XXXorZjYluXlmIYGp1kuTSA3IckypJQkNOn_d8aSSwolh15tjTFP9ugNzLxHyCMw2FJiq05YxqkXSR16mdaBpyPNZaHTzGc4jTyexPksep3zeYP06lkYbKt0ud_m9Cpbuysdh2ZnvVh03oBLxylUJ1C0YBqGEqiF6lS8SVrdwTCf1AkZKHkl8Y3rPQxwszO2zUtt1qhkGAYoYpDgGfPX-bRz5vRPyLEji7Rr3-eUNMzyjBztSAiek2crOU4XhWv7qZCm1hh6Q4GS0sKaztPK9GZDVyVV6AtBcaQBnSMuyKz_Mu3lnvNF8DTz_a0HoHNgdfA7hUXEM9_wKPZZEWqT8MAYGXHlJ6rUhdHSZH5qWFIqJqEcTZNSQvV8SZrL1dJcEZryDKKANMYK6jTJUgWPYQZIg-a-5qxNghoNoZ1oOHpXfIi6O-xdIIICERQWwTZ5-olZW8mMvat5DbL4tfECcvqeuOt_xj2Qg3w6HonRYDK8IYd4x3bf3pLm9vPL3AHH2Kp79w19A-kUzgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+identification+methods+for+dynamic+models+of+brain+activity&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Griffith%2C+Tristan+D.&rft.au=Hubbard%2C+James+E.&rft.date=2021-07-01&rft.issn=1746-8094&rft.volume=68&rft.spage=102765&rft_id=info:doi/10.1016%2Fj.bspc.2021.102765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon