Discrete evolutionary multi-objective optimization for energy-efficient blocking flow shop scheduling with setup time

Sustainable scheduling problems have been attracted great attention from researchers. For the flow shop scheduling problems, researches mainly focus on reducing economic costs, and the energy consumption has not yet been well studied up to date especially in the blocking flow shop scheduling problem...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 93; p. 106343
Main Authors Han, Yuyan, Li, Junqing, Sang, Hongyan, Liu, Yiping, Gao, Kaizhou, Pan, Quanke
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sustainable scheduling problems have been attracted great attention from researchers. For the flow shop scheduling problems, researches mainly focus on reducing economic costs, and the energy consumption has not yet been well studied up to date especially in the blocking flow shop scheduling problem. Thus, we construct a multi-objective optimization model of the blocking flow shop scheduling problem with makespan and energy consumption criteria. Then a discrete evolutionary multi-objective optimization (DEMO) algorithm is proposed. The three contributions of DEMO are as follows. First, a variable single-objective heuristic is proposed to initialize the population. Second, the self-adaptive exploitation evolution and self-adaptive exploration evolution operators are proposed respectively to obtain high quality solutions. Third, a penalty-based boundary interstation based on the local search, called by PBI-based-local search, is designed to further improve the exploitation capability of the algorithm. Simulation results show that DEMO outperforms the three state-of-the-art algorithms with respect to hypervolume, coverage rate and distance metrics. [Display omitted] •A multi-objective model of BFS scheduling problem with makespan and energy consumption criteria is proposed.•A variant of single-heuristic is incorporated in population initialization.•Two self-adaptive exploitation and exploration evolution strategies are proposed respectively.•A PBI-based-local search is adopted to enhance the exploitation capability of the algorithm.•It contributes to enhance the capacity of the algorithm in convergence and spread.
AbstractList Sustainable scheduling problems have been attracted great attention from researchers. For the flow shop scheduling problems, researches mainly focus on reducing economic costs, and the energy consumption has not yet been well studied up to date especially in the blocking flow shop scheduling problem. Thus, we construct a multi-objective optimization model of the blocking flow shop scheduling problem with makespan and energy consumption criteria. Then a discrete evolutionary multi-objective optimization (DEMO) algorithm is proposed. The three contributions of DEMO are as follows. First, a variable single-objective heuristic is proposed to initialize the population. Second, the self-adaptive exploitation evolution and self-adaptive exploration evolution operators are proposed respectively to obtain high quality solutions. Third, a penalty-based boundary interstation based on the local search, called by PBI-based-local search, is designed to further improve the exploitation capability of the algorithm. Simulation results show that DEMO outperforms the three state-of-the-art algorithms with respect to hypervolume, coverage rate and distance metrics. [Display omitted] •A multi-objective model of BFS scheduling problem with makespan and energy consumption criteria is proposed.•A variant of single-heuristic is incorporated in population initialization.•Two self-adaptive exploitation and exploration evolution strategies are proposed respectively.•A PBI-based-local search is adopted to enhance the exploitation capability of the algorithm.•It contributes to enhance the capacity of the algorithm in convergence and spread.
ArticleNumber 106343
Author Han, Yuyan
Gao, Kaizhou
Pan, Quanke
Sang, Hongyan
Li, Junqing
Liu, Yiping
Author_xml – sequence: 1
  givenname: Yuyan
  surname: Han
  fullname: Han, Yuyan
  email: hanyuyan@lcu-cs.com
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China
– sequence: 2
  givenname: Junqing
  orcidid: 0000-0002-3617-6708
  surname: Li
  fullname: Li, Junqing
  email: lijunqing@lcu-cs.com
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China
– sequence: 3
  givenname: Hongyan
  surname: Sang
  fullname: Sang, Hongyan
  email: sanghongyan@lcu-cs.com
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China
– sequence: 4
  givenname: Yiping
  orcidid: 0000-0001-7340-2551
  surname: Liu
  fullname: Liu, Yiping
  email: yiping0liu@gmail.com
  organization: The College of Computer Science and Electronic Engineering, Hunan University, 410082, China
– sequence: 5
  givenname: Kaizhou
  surname: Gao
  fullname: Gao, Kaizhou
  email: gaokaizhou@lcu-cs.com
  organization: Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
– sequence: 6
  givenname: Quanke
  surname: Pan
  fullname: Pan, Quanke
  email: panquanke@mail.neu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
BookMark eNp9kE1OwzAQRi1UJNrCBVj5AimxncauxAaVX6kSG1hbiT1uHdK4sp1W5fQ4lBWLzmZG3-iNNG-CRp3rAKFbks9ITsq7ZlYFp2Y0p0NQsoJdoDERnGaLUpBRmuelyIpFUV6hSQhNnqAFFWPUP9qgPETAsHdtH63rKn_E276NNnN1AyraPWC3i3Zrv6thj43zGDrw62MGxlhloYu4bp36st0am9YdcNi4HQ5qA7pvh_Bg4wYHiP0Op0NwjS5N1Qa4-etT9Pn89LF8zVbvL2_Lh1WmWJ7HTPG5EkIzzlhFhTKs5IIAT6Xn2nBtaqKhgNIYkRZGEappxTmhhTK1qRWbInG6q7wLwYORysbfJ6KvbCtJLgd9spGDPjnokyd9CaX_0J232-TmPHR_giA9tbfgZRjsKNDWJ5NSO3sO_wGaWo_e
CitedBy_id crossref_primary_10_1007_s00500_024_09893_8
crossref_primary_10_1016_j_cie_2023_109325
crossref_primary_10_1016_j_asoc_2021_107349
crossref_primary_10_3390_app12063049
crossref_primary_10_1016_j_eswa_2025_126600
crossref_primary_10_3390_app12031491
crossref_primary_10_1016_j_eswa_2021_115827
crossref_primary_10_1016_j_swevo_2024_101484
crossref_primary_10_1080_0305215X_2021_2010727
crossref_primary_10_1080_21681015_2024_2337029
crossref_primary_10_1109_TCYB_2022_3192112
crossref_primary_10_1080_0305215X_2021_1961763
crossref_primary_10_1016_j_eswa_2022_117256
crossref_primary_10_1111_itor_13108
crossref_primary_10_1016_j_cie_2025_111000
crossref_primary_10_23919_CSMS_2022_0025
crossref_primary_10_1109_TEVC_2023_3239546
crossref_primary_10_1016_j_swevo_2023_101355
crossref_primary_10_3390_app11167366
crossref_primary_10_1109_TITS_2023_3315785
crossref_primary_10_1016_j_asoc_2022_109777
crossref_primary_10_1007_s10489_022_04090_2
crossref_primary_10_1016_j_swevo_2020_100785
crossref_primary_10_3390_a14040108
crossref_primary_10_1016_j_asoc_2021_107834
crossref_primary_10_1016_j_ijepes_2020_106343
crossref_primary_10_1016_j_swevo_2022_101070
crossref_primary_10_1016_j_swevo_2022_101195
crossref_primary_10_1016_j_knosys_2022_108328
crossref_primary_10_1016_j_cie_2022_108445
crossref_primary_10_23919_CSMS_2023_0016
crossref_primary_10_1016_j_eswa_2021_115535
crossref_primary_10_1016_j_cor_2022_105733
crossref_primary_10_1016_j_asoc_2023_110491
crossref_primary_10_1109_TCYB_2021_3081805
crossref_primary_10_1109_TCYB_2021_3086181
crossref_primary_10_1016_j_eswa_2022_117246
crossref_primary_10_1016_j_swevo_2021_100874
crossref_primary_10_1016_j_swevo_2024_101549
crossref_primary_10_1016_j_cor_2024_106863
crossref_primary_10_1016_j_eswa_2022_117602
crossref_primary_10_1016_j_mlwa_2022_100445
crossref_primary_10_1109_ACCESS_2021_3112742
crossref_primary_10_1109_TCYB_2022_3151855
crossref_primary_10_1016_j_swevo_2024_101545
crossref_primary_10_1080_00207543_2022_2127959
crossref_primary_10_1007_s11081_024_09911_6
crossref_primary_10_1016_j_cie_2025_110863
crossref_primary_10_1109_TCYB_2022_3164165
crossref_primary_10_1109_ACCESS_2020_3032548
crossref_primary_10_1016_j_jii_2022_100387
crossref_primary_10_1016_j_swevo_2021_100872
crossref_primary_10_1155_2022_9924163
crossref_primary_10_1016_j_swevo_2022_101140
crossref_primary_10_1016_j_asoc_2022_109504
crossref_primary_10_1016_j_swevo_2020_100804
crossref_primary_10_1016_j_jmsy_2023_09_002
crossref_primary_10_1080_0305215X_2023_2296538
crossref_primary_10_1109_ACCESS_2020_3041369
crossref_primary_10_3390_machines10030210
crossref_primary_10_1016_j_engappai_2024_108572
crossref_primary_10_1109_TCYB_2021_3128075
crossref_primary_10_1016_j_energy_2022_124542
crossref_primary_10_1016_j_jmsy_2024_10_018
crossref_primary_10_1016_j_jii_2024_100598
crossref_primary_10_1016_j_jii_2021_100233
crossref_primary_10_1016_j_swevo_2021_101016
crossref_primary_10_1016_j_swevo_2024_101498
crossref_primary_10_1016_j_swevo_2024_101499
crossref_primary_10_1016_j_swevo_2024_101774
crossref_primary_10_1016_j_swevo_2022_101170
crossref_primary_10_1109_TII_2022_3220860
crossref_primary_10_1016_j_cie_2023_109217
crossref_primary_10_1016_j_engappai_2022_105443
crossref_primary_10_1007_s00500_023_08505_1
crossref_primary_10_3390_axioms11070306
crossref_primary_10_1016_j_engappai_2024_108634
crossref_primary_10_1134_S0361768821080223
crossref_primary_10_1007_s10479_024_05940_7
crossref_primary_10_1016_j_eswa_2022_117269
crossref_primary_10_1080_00207543_2022_2070786
crossref_primary_10_3390_machines9120344
crossref_primary_10_1016_j_asoc_2023_110585
crossref_primary_10_32604_cmes_2022_019730
crossref_primary_10_1016_j_asoc_2022_109263
crossref_primary_10_1016_j_swevo_2022_101129
crossref_primary_10_3233_JIFS_212258
crossref_primary_10_1016_j_eswa_2023_121667
crossref_primary_10_1016_j_swevo_2021_100858
crossref_primary_10_3390_pr11092737
crossref_primary_10_1080_0305215X_2022_2032017
crossref_primary_10_1051_e3sconf_202233600028
crossref_primary_10_1016_j_asoc_2022_109502
crossref_primary_10_1080_0305215X_2024_2372633
crossref_primary_10_1016_j_asoc_2022_108770
crossref_primary_10_3390_a14110323
Cites_doi 10.1016/j.rcim.2019.04.006
10.1109/ACCESS.2018.2889373
10.1109/TEVC.2007.892759
10.1109/TSMC.2019.2916088
10.1016/j.eswa.2010.04.042
10.1109/ACCESS.2018.2879600
10.1016/j.asoc.2019.04.027
10.1016/j.cie.2019.06.048
10.1016/j.knosys.2018.02.029
10.1109/TCYB.2016.2638902
10.1016/S0925-5273(03)00065-3
10.1016/j.swevo.2017.12.005
10.1016/j.asoc.2014.02.009
10.1016/j.jclepro.2019.06.078
10.1080/0305215X.2014.928817
10.1016/j.eswa.2019.06.069
10.1016/j.knosys.2018.11.021
10.1016/j.jclepro.2019.06.151
10.1016/j.jclepro.2019.04.046
10.1016/j.jclepro.2018.06.137
10.1016/j.eswa.2018.12.039
10.1016/j.asoc.2016.01.033
10.1016/S0925-5273(99)00104-8
10.1016/j.engappai.2018.11.005
10.1007/s10586-019-03022-z
10.1016/j.jclepro.2018.11.231
10.1109/TCYB.2017.2771213
10.1109/TEM.2017.2774281
10.1007/s00170-012-4493-5
10.1016/j.asoc.2018.12.028
10.1007/s00170-011-3680-0
10.1080/00207543.2016.1177671
10.1016/0377-2217(93)90182-M
10.1016/j.swevo.2019.100557
10.1016/j.ejor.2008.04.033
10.1016/j.cor.2008.12.004
10.1016/j.asoc.2011.09.021
10.1504/IJMOR.2017.080743
10.1177/1729881419862164
10.1109/TEVC.2013.2281535
10.1504/EJIE.2013.058392
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106343
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106343
S1568494620302830
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-c75c88d3733a28cf36781e7777d5df7dfb1de4e6ff8781fc12d2a77124cfbfbc3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:13:07 EDT 2025
Tue Jul 01 01:50:06 EDT 2025
Thu Jun 13 14:30:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Self-adaptive
Energy consumption
Blocking flow shop
Multi-objective evolutionary optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-c75c88d3733a28cf36781e7777d5df7dfb1de4e6ff8781fc12d2a77124cfbfbc3
ORCID 0000-0002-3617-6708
0000-0001-7340-2551
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106343
crossref_primary_10_1016_j_asoc_2020_106343
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106343
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Han, Liang, Pan (b6) 2013; 67
Gong, Han, Sun (b23) 2018; 148
Luo, Zhang, Fan (b31) 2019; 234
Vcrepinsek, Liu, Mernik (b41) 2014; 19
Wang, Tang (b3) 2012; 12
Li, Tao, Jia, Han, Liu, Duan, Zheng, Sang (b19) 2019
Han, Gong, Li, Zhang (b10) 2016; 54
Lu, Gao, Li (b27) 2018; 196
Peng, Wen, Tseng (b28) 2019; 80
Zhang, Pan, Gao, Meng, Li, Peng (b34) 2019
Ruíz, Capel, Pegalajar (b29) 2019; 76
Shao, Pi, Shao (b15) 2018; 40
Wu, Shen, Li (b33) 2019; 135
Tasgetiren, Kizilay, Pan, Suganthan (b12) 2017; 130–134
Han, Gong, Sun (b9) 2015; 47
Caraffa, Ianes, Bagchi, Sriskandarajah (b1) 2001; 70
Fu, Tian, Fathollahi-Fard (b26) 2019; 226
Han, Pan, Li (b5) 2012; 60
Zhang, Li, Wang (b36) 2009; 196
Han, Gong, Jin (b37) 2019; 49
Han, Li, Gong (b24) 2019; 7
Han, Gong, Jin (b22) 2016; 42
He, Wang, Liu (b17) 2019; 16
Zhang, Li (b38) 2007; 11
Ribas, Companys (b8) 2013; 7
Li, Han (b20) 2020
Chen, Wang, Peng (b25) 2019; 50
Dai, Tang, Giret, Salido (b30) 2019; 59
Wang, Pan, Tasgetiren (b7) 2010; 37
Taillard (b42) 1993; 64
Glover (b4) 1990; 2
He, Shao, Wang, Gu, Bai (b18) 2019; 233
Ribas, Companys, Tort-Martorell (b14) 2019; 121
Deb, Jain (b39) 2013; 18
Miyata, Nagano (b13) 2019; 137
Shao, Pi, Shao (b21) 2019; 165
Shao, Pi, Shao (b16) 2019; 78
Liu, Gong, Sun (b40) 2017; 47
Wang, Pan, Suganthan, Wang, Wang (b2) 2010; 37
Lei, Gao, Zheng (b43) 2018; 65
Wang, Deng, Jiang (b44) 2018; 6
Liu, Guo, Wang (b32) 2019; 211
Ronconi (b35) 2004; 87
Toumi, Jarboui, Eddaly, Rebaï (b11) 2017; 10
Glover (10.1016/j.asoc.2020.106343_b4) 1990; 2
Han (10.1016/j.asoc.2020.106343_b9) 2015; 47
Ruíz (10.1016/j.asoc.2020.106343_b29) 2019; 76
Wang (10.1016/j.asoc.2020.106343_b7) 2010; 37
Tasgetiren (10.1016/j.asoc.2020.106343_b12) 2017; 130–134
Toumi (10.1016/j.asoc.2020.106343_b11) 2017; 10
Wu (10.1016/j.asoc.2020.106343_b33) 2019; 135
Han (10.1016/j.asoc.2020.106343_b6) 2013; 67
Taillard (10.1016/j.asoc.2020.106343_b42) 1993; 64
Zhang (10.1016/j.asoc.2020.106343_b38) 2007; 11
Caraffa (10.1016/j.asoc.2020.106343_b1) 2001; 70
Liu (10.1016/j.asoc.2020.106343_b32) 2019; 211
Ronconi (10.1016/j.asoc.2020.106343_b35) 2004; 87
Shao (10.1016/j.asoc.2020.106343_b21) 2019; 165
Ribas (10.1016/j.asoc.2020.106343_b14) 2019; 121
Peng (10.1016/j.asoc.2020.106343_b28) 2019; 80
Liu (10.1016/j.asoc.2020.106343_b40) 2017; 47
Han (10.1016/j.asoc.2020.106343_b5) 2012; 60
He (10.1016/j.asoc.2020.106343_b18) 2019; 233
Shao (10.1016/j.asoc.2020.106343_b16) 2019; 78
Vcrepinsek (10.1016/j.asoc.2020.106343_b41) 2014; 19
Li (10.1016/j.asoc.2020.106343_b19) 2019
Fu (10.1016/j.asoc.2020.106343_b26) 2019; 226
Deb (10.1016/j.asoc.2020.106343_b39) 2013; 18
Ribas (10.1016/j.asoc.2020.106343_b8) 2013; 7
Han (10.1016/j.asoc.2020.106343_b24) 2019; 7
Zhang (10.1016/j.asoc.2020.106343_b34) 2019
Zhang (10.1016/j.asoc.2020.106343_b36) 2009; 196
He (10.1016/j.asoc.2020.106343_b17) 2019; 16
Wang (10.1016/j.asoc.2020.106343_b3) 2012; 12
Li (10.1016/j.asoc.2020.106343_b20) 2020
Luo (10.1016/j.asoc.2020.106343_b31) 2019; 234
Gong (10.1016/j.asoc.2020.106343_b23) 2018; 148
Wang (10.1016/j.asoc.2020.106343_b2) 2010; 37
Lei (10.1016/j.asoc.2020.106343_b43) 2018; 65
Han (10.1016/j.asoc.2020.106343_b22) 2016; 42
Chen (10.1016/j.asoc.2020.106343_b25) 2019; 50
Miyata (10.1016/j.asoc.2020.106343_b13) 2019; 137
Wang (10.1016/j.asoc.2020.106343_b44) 2018; 6
Shao (10.1016/j.asoc.2020.106343_b15) 2018; 40
Han (10.1016/j.asoc.2020.106343_b10) 2016; 54
Dai (10.1016/j.asoc.2020.106343_b30) 2019; 59
Han (10.1016/j.asoc.2020.106343_b37) 2019; 49
Lu (10.1016/j.asoc.2020.106343_b27) 2018; 196
References_xml – volume: 67
  start-page: 397
  year: 2013
  end-page: 414
  ident: b6
  article-title: Effective hybrid discrete artificial bee colony algorithms for the total flowtime minimization in the blocking flowshop problem
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 42
  start-page: 229
  year: 2016
  end-page: 245
  ident: b22
  article-title: Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time
  publication-title: Appl. Soft Comput.
– volume: 137
  start-page: 130
  year: 2019
  end-page: 156
  ident: b13
  article-title: The blocking flow shop scheduling problem: A comprehensive and conceptual review
  publication-title: Expert Syst. Appl.
– volume: 70
  start-page: 102
  year: 2001
  end-page: 115
  ident: b1
  article-title: Minimizing makespan in a blocking flowshop using genetic algorithms
  publication-title: Int. J. Prod. Econ.
– volume: 12
  start-page: 652
  year: 2012
  end-page: 662
  ident: b3
  article-title: A discrete particle swarm optimization algorithm with self-adaptive diversity control for the permutation flowshop problem with blocking
  publication-title: Appl. Soft Comput.
– volume: 87
  start-page: 39
  year: 2004
  end-page: 48
  ident: b35
  article-title: A note on constructive heuristics for the flowshop problem with blocking
  publication-title: Int. J. Prod. Econ.
– volume: 7
  start-page: 729
  year: 2013
  end-page: 754
  ident: b8
  article-title: A competitive variable neighbourhood search algorithm for the blocking flow shop problem
  publication-title: Eur. J. Ind. Eng.
– volume: 226
  start-page: 515
  year: 2019
  end-page: 525
  ident: b26
  article-title: Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint
  publication-title: J. Clean. Prod.
– volume: 40
  start-page: 53
  year: 2018
  end-page: 75
  ident: b15
  article-title: A novel discrete water wave optimization algorithm for blocking flow-shop scheduling problem with sequence-dependent setup times
  publication-title: Swarm Evol. Comput.
– volume: 47
  start-page: 2689
  year: 2017
  end-page: 2702
  ident: b40
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
– volume: 65
  start-page: 330
  year: 2018
  end-page: 340
  ident: b43
  article-title: A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop
  publication-title: IEEE Trans. Eng. Manage
– volume: 196
  start-page: 869
  year: 2009
  end-page: 876
  ident: b36
  article-title: Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization
  publication-title: European J. Oper. Res.
– volume: 50
  year: 2019
  ident: b25
  article-title: A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling
  publication-title: Swarm Evol. Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b38
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 7
  start-page: 5946
  year: 2019
  end-page: 5962
  ident: b24
  article-title: Multi-objective migrating birds optimization algorithm for stochastic lot-streaming flow shop scheduling with blocking
  publication-title: IEEE Access
– volume: 165
  start-page: 110
  year: 2019
  end-page: 131
  ident: b21
  article-title: A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem
  publication-title: Knowl.-Based Syst.
– volume: 211
  start-page: 765
  year: 2019
  end-page: 786
  ident: b32
  article-title: Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption
  publication-title: J. Clean. Prod.
– volume: 78
  start-page: 124
  year: 2019
  end-page: 141
  ident: b16
  article-title: An efficient discrete invasive weed optimization for blocking flow-shop scheduling problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 54
  start-page: 6782
  year: 2016
  end-page: 6797
  ident: b10
  article-title: Solving the blocking flow shop scheduling problem with makespan using a modified fruit fly optimisation algorithm
  publication-title: Int. J. Prod. Res.
– volume: 49
  start-page: 184
  year: 2019
  end-page: 197
  ident: b37
  article-title: Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns
  publication-title: IEEE Trans. Cybern.
– volume: 2
  start-page: 4
  year: 1990
  end-page: 32
  ident: b4
  article-title: Tabu search. Part II. ORSA
  publication-title: J. Comput.
– volume: 234
  start-page: 1365
  year: 2019
  end-page: 1384
  ident: b31
  article-title: Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds by grey wolf optimization
  publication-title: J. Cleaner Prod.
– volume: 37
  start-page: 509
  year: 2010
  end-page: 520
  ident: b2
  article-title: A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems
  publication-title: Comput. Oper. Res.
– volume: 37
  start-page: 7929
  year: 2010
  end-page: 7936
  ident: b7
  article-title: Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms
  publication-title: Expert Syst. Appl.
– volume: 233
  start-page: 446
  year: 2019
  end-page: 460
  ident: b18
  article-title: Product environmental footprints assessment for product life cycle
  publication-title: J. Cleaner Prod.
– volume: 60
  start-page: 1149
  year: 2012
  end-page: 1159
  ident: b5
  article-title: An improved artificial bee colony algorithm for the blocking flow shop scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 148
  start-page: 115
  year: 2018
  end-page: 130
  ident: b23
  article-title: A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems
  publication-title: Knowl.-Based Syst.
– volume: 196
  start-page: 773
  year: 2018
  end-page: 787
  ident: b27
  article-title: A multi-objective approach to welding shop scheduling for makespan, noise pollution and energy consumption
  publication-title: J. Clean. Prod.
– volume: 135
  start-page: 1004
  year: 2019
  end-page: 1024
  ident: b33
  article-title: The flexible job-shop scheduling problem considering deterioration effect and energy consumption simultaneously
  publication-title: Comput. Ind. Eng.
– year: 2019
  ident: b19
  article-title: Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots
  publication-title: Swarm Evol. Comput.
– volume: 76
  start-page: 356
  year: 2019
  end-page: 368
  ident: b29
  article-title: Parallel memetic algorithm for training recurrent neural networks for the energy efficiency problem
  publication-title: Appl. Soft Comput.
– volume: 64
  start-page: 278
  year: 1993
  end-page: 285
  ident: b42
  article-title: Benchmarks for basic scheduling problems
  publication-title: European J. Oper. Res.
– volume: 130–134
  start-page: 2504
  year: 2017
  end-page: 2507
  ident: b12
  article-title: Iterated greedy scheduling flowshop with sequence-independent setup time
  publication-title: Appl. Mech. Mater.
– volume: 59
  start-page: 143
  year: 2019
  end-page: 157
  ident: b30
  article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 10
  start-page: 34
  year: 2017
  end-page: 48
  ident: b11
  article-title: Branch-and-bound algorithm for solving blocking flowshop scheduling problems with makespan criterion
  publication-title: Int. J. Math. Oper. Res.
– volume: 47
  start-page: 927
  year: 2015
  end-page: 946
  ident: b9
  article-title: A discrete artificial bee colony algorithm incorporating differential evolution for flow shop scheduling problem with blocking
  publication-title: Eng. Optim.
– volume: 6
  start-page: 68686
  year: 2018
  end-page: 68700
  ident: b44
  article-title: Multi-objective parallel variable neighborhood search for energy consumption scheduling in blocking flow shops
  publication-title: IEEE Access
– volume: 121
  start-page: 347
  year: 2019
  end-page: 361
  ident: b14
  article-title: An iterated greedy algorithm for solving the total tardiness parallel blocking flow shop scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 80
  start-page: 534
  year: 2019
  end-page: 545
  ident: b28
  article-title: Joint optimization method for task scheduling time and energy consumption in mobile cloud computing environment
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 161
  year: 2014
  end-page: 170
  ident: b41
  article-title: Replication and comparison of computational experiments in applied evolutionary computing: Common pitfalls and guidelines to avoid them
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 577
  year: 2013
  end-page: 601
  ident: b39
  article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part i: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– year: 2020
  ident: b20
  article-title: A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system
  publication-title: Cluster Comput.
– volume: 16
  start-page: 1
  year: 2019
  end-page: 29
  ident: b17
  article-title: Underactuated robotics: A review
  publication-title: Int. J. Adv. Robot. Syst.
– year: 2019
  ident: b34
  article-title: A three-stage multi-objective approach based on decomposition for an energy-efficient hybrid flowshop scheduling problem
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 59
  start-page: 143
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b30
  article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.04.006
– volume: 7
  start-page: 5946
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b24
  article-title: Multi-objective migrating birds optimization algorithm for stochastic lot-streaming flow shop scheduling with blocking
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2889373
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2020.106343_b38
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– year: 2019
  ident: 10.1016/j.asoc.2020.106343_b34
  article-title: A three-stage multi-objective approach based on decomposition for an energy-efficient hybrid flowshop scheduling problem
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.2019.2916088
– volume: 37
  start-page: 7929
  year: 2010
  ident: 10.1016/j.asoc.2020.106343_b7
  article-title: Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.04.042
– volume: 6
  start-page: 68686
  year: 2018
  ident: 10.1016/j.asoc.2020.106343_b44
  article-title: Multi-objective parallel variable neighborhood search for energy consumption scheduling in blocking flow shops
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879600
– volume: 80
  start-page: 534
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b28
  article-title: Joint optimization method for task scheduling time and energy consumption in mobile cloud computing environment
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.04.027
– volume: 135
  start-page: 1004
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b33
  article-title: The flexible job-shop scheduling problem considering deterioration effect and energy consumption simultaneously
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.06.048
– volume: 148
  start-page: 115
  year: 2018
  ident: 10.1016/j.asoc.2020.106343_b23
  article-title: A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.02.029
– volume: 47
  start-page: 2689
  issue: 9
  year: 2017
  ident: 10.1016/j.asoc.2020.106343_b40
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2638902
– volume: 87
  start-page: 39
  year: 2004
  ident: 10.1016/j.asoc.2020.106343_b35
  article-title: A note on constructive heuristics for the flowshop problem with blocking
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/S0925-5273(03)00065-3
– volume: 40
  start-page: 53
  year: 2018
  ident: 10.1016/j.asoc.2020.106343_b15
  article-title: A novel discrete water wave optimization algorithm for blocking flow-shop scheduling problem with sequence-dependent setup times
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.12.005
– volume: 19
  start-page: 161
  year: 2014
  ident: 10.1016/j.asoc.2020.106343_b41
  article-title: Replication and comparison of computational experiments in applied evolutionary computing: Common pitfalls and guidelines to avoid them
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.009
– volume: 233
  start-page: 446
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b18
  article-title: Product environmental footprints assessment for product life cycle
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.06.078
– volume: 47
  start-page: 927
  issue: 7
  year: 2015
  ident: 10.1016/j.asoc.2020.106343_b9
  article-title: A discrete artificial bee colony algorithm incorporating differential evolution for flow shop scheduling problem with blocking
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2014.928817
– volume: 137
  start-page: 130
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b13
  article-title: The blocking flow shop scheduling problem: A comprehensive and conceptual review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.06.069
– year: 2019
  ident: 10.1016/j.asoc.2020.106343_b19
  article-title: Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots
  publication-title: Swarm Evol. Comput.
– volume: 165
  start-page: 110
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b21
  article-title: A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.021
– volume: 234
  start-page: 1365
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b31
  article-title: Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds by grey wolf optimization
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.06.151
– volume: 226
  start-page: 515
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b26
  article-title: Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.046
– volume: 196
  start-page: 773
  year: 2018
  ident: 10.1016/j.asoc.2020.106343_b27
  article-title: A multi-objective approach to welding shop scheduling for makespan, noise pollution and energy consumption
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.06.137
– volume: 121
  start-page: 347
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b14
  article-title: An iterated greedy algorithm for solving the total tardiness parallel blocking flow shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.039
– volume: 42
  start-page: 229
  year: 2016
  ident: 10.1016/j.asoc.2020.106343_b22
  article-title: Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.01.033
– volume: 70
  start-page: 102
  year: 2001
  ident: 10.1016/j.asoc.2020.106343_b1
  article-title: Minimizing makespan in a blocking flowshop using genetic algorithms
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/S0925-5273(99)00104-8
– volume: 2
  start-page: 4
  year: 1990
  ident: 10.1016/j.asoc.2020.106343_b4
  article-title: Tabu search. Part II. ORSA
  publication-title: J. Comput.
– volume: 78
  start-page: 124
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b16
  article-title: An efficient discrete invasive weed optimization for blocking flow-shop scheduling problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.11.005
– year: 2020
  ident: 10.1016/j.asoc.2020.106343_b20
  article-title: A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-019-03022-z
– volume: 130–134
  start-page: 2504
  year: 2017
  ident: 10.1016/j.asoc.2020.106343_b12
  article-title: Iterated greedy scheduling flowshop with sequence-independent setup time
  publication-title: Appl. Mech. Mater.
– volume: 211
  start-page: 765
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b32
  article-title: Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.11.231
– volume: 49
  start-page: 184
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b37
  article-title: Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2771213
– volume: 65
  start-page: 330
  year: 2018
  ident: 10.1016/j.asoc.2020.106343_b43
  article-title: A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop
  publication-title: IEEE Trans. Eng. Manage
  doi: 10.1109/TEM.2017.2774281
– volume: 67
  start-page: 397
  issue: 1–4
  year: 2013
  ident: 10.1016/j.asoc.2020.106343_b6
  article-title: Effective hybrid discrete artificial bee colony algorithms for the total flowtime minimization in the blocking flowshop problem
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4493-5
– volume: 76
  start-page: 356
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b29
  article-title: Parallel memetic algorithm for training recurrent neural networks for the energy efficiency problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.12.028
– volume: 60
  start-page: 1149
  year: 2012
  ident: 10.1016/j.asoc.2020.106343_b5
  article-title: An improved artificial bee colony algorithm for the blocking flow shop scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3680-0
– volume: 54
  start-page: 6782
  year: 2016
  ident: 10.1016/j.asoc.2020.106343_b10
  article-title: Solving the blocking flow shop scheduling problem with makespan using a modified fruit fly optimisation algorithm
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2016.1177671
– volume: 64
  start-page: 278
  year: 1993
  ident: 10.1016/j.asoc.2020.106343_b42
  article-title: Benchmarks for basic scheduling problems
  publication-title: European J. Oper. Res.
  doi: 10.1016/0377-2217(93)90182-M
– volume: 50
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b25
  article-title: A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.100557
– volume: 196
  start-page: 869
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2020.106343_b36
  article-title: Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2008.04.033
– volume: 37
  start-page: 509
  year: 2010
  ident: 10.1016/j.asoc.2020.106343_b2
  article-title: A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2008.12.004
– volume: 12
  start-page: 652
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2020.106343_b3
  article-title: A discrete particle swarm optimization algorithm with self-adaptive diversity control for the permutation flowshop problem with blocking
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.09.021
– volume: 10
  start-page: 34
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106343_b11
  article-title: Branch-and-bound algorithm for solving blocking flowshop scheduling problems with makespan criterion
  publication-title: Int. J. Math. Oper. Res.
  doi: 10.1504/IJMOR.2017.080743
– volume: 16
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2020.106343_b17
  article-title: Underactuated robotics: A review
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/1729881419862164
– volume: 18
  start-page: 577
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2020.106343_b39
  article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part i: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 7
  start-page: 729
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2020.106343_b8
  article-title: A competitive variable neighbourhood search algorithm for the blocking flow shop problem
  publication-title: Eur. J. Ind. Eng.
  doi: 10.1504/EJIE.2013.058392
SSID ssj0016928
Score 2.5759068
Snippet Sustainable scheduling problems have been attracted great attention from researchers. For the flow shop scheduling problems, researches mainly focus on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106343
SubjectTerms Blocking flow shop
Energy consumption
Multi-objective evolutionary optimization
Self-adaptive
Title Discrete evolutionary multi-objective optimization for energy-efficient blocking flow shop scheduling with setup time
URI https://dx.doi.org/10.1016/j.asoc.2020.106343
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fp9lD95kbbK7efQo1VKfiA_wFrIvbKlNqa3ixd_uTLIpCuLBXEI2MxAms_PNLPMg5NAGoeXCSOaSOGIYfzEVhjGzKbcAV0rlERYKX9_EvUd58RQ9NUinroXBtEpv-yubXlprv9Ly0myN-_3WPUQeqWzLmIOeYhsrrGCXCWr58ec8zSOM2-V8VSRmSO0LZ6ocrxwkADEix4VYSPE7OH0DnO4qWfaeIj2pPmaNNOxonazUUxio35QbZHbah60Pvi-1b16P8skHLTMFWaEGlUWjBdiGF190ScFTpbas-mO27CEB0EMV4BoenFM3LN7p63MxphD6AhRhxTrFA1v6aqezMcV59JvksXv20OkxP0yBaREEU6aTSKepEYkQOU-1E4BSoU3gMpFxiXEqNFba2LkUXjgdcsPzJAH41045pcUWWRgVI7tNKASywigdayCRwqWKWx6k7Ui1pZE2D3ZIWEsx077TOA68GGZ1StkgQ8lnKPmskvwOOZrzjKs-G39SR_XPyX5oSwZA8Aff7j_59sgSPlWJf_tkYTqZ2QNwRqaqWWpbkyyedO6ubvF-ftm7-QL5MOL1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHODCG_EmB24oWpukjx2nwTReuwDSblXzEpvGOo0NxL_HaVMEEuJAj4ktVa7jz079ADg3QWgY14LaJI6oi7-oDMOYmpQZhCsp88gVCt_3496TuBlEgyXo1LUwLq3S2_7KppfW2q80vTSb0-Gw-YCRRypaImaop66N1TKsuO5UUQNW2te3vf7Xz4S4VY5YdfTUMfjamSrNK0chYJjI3ELMBf8dn75hTncT1r2zSNrV-2zBkplsw0Y9iIH4c7kDi8shnn50f4l586qUzz5ImSxICzmqjBop0Dy8-LpLgs4qMWXhHzVlGwlEHyIR2tzdObHj4p28PhdTgtEvopErWifuzpa8mvliStxI-l146l49dnrUz1OgigfBnKokUmmqecJ5zlJlOQJVaBJ8dKRtoq0MtREmtjbFDatCplmeJOgBKCutVHwPGpNiYvaBYCzLtVSxQhLBbSqZYUHaimRLaGHy4ADCWoqZ8s3G3cyLcVZnlY0yJ_nMST6rJH8AF18806rVxp_UUf1xsh8KkyEW_MF3-E--M1jtPd7fZXfX_dsjWHM7VR7gMTTms4U5Qd9kLk-97n0Coz_kEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+evolutionary+multi-objective+optimization+for+energy-efficient+blocking+flow+shop+scheduling+with+setup+time&rft.jtitle=Applied+soft+computing&rft.au=Han%2C+Yuyan&rft.au=Li%2C+Junqing&rft.au=Sang%2C+Hongyan&rft.au=Liu%2C+Yiping&rft.date=2020-08-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=93&rft_id=info:doi/10.1016%2Fj.asoc.2020.106343&rft.externalDocID=S1568494620302830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon