Discrete evolutionary multi-objective optimization for energy-efficient blocking flow shop scheduling with setup time
Sustainable scheduling problems have been attracted great attention from researchers. For the flow shop scheduling problems, researches mainly focus on reducing economic costs, and the energy consumption has not yet been well studied up to date especially in the blocking flow shop scheduling problem...
Saved in:
Published in | Applied soft computing Vol. 93; p. 106343 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sustainable scheduling problems have been attracted great attention from researchers. For the flow shop scheduling problems, researches mainly focus on reducing economic costs, and the energy consumption has not yet been well studied up to date especially in the blocking flow shop scheduling problem. Thus, we construct a multi-objective optimization model of the blocking flow shop scheduling problem with makespan and energy consumption criteria. Then a discrete evolutionary multi-objective optimization (DEMO) algorithm is proposed. The three contributions of DEMO are as follows. First, a variable single-objective heuristic is proposed to initialize the population. Second, the self-adaptive exploitation evolution and self-adaptive exploration evolution operators are proposed respectively to obtain high quality solutions. Third, a penalty-based boundary interstation based on the local search, called by PBI-based-local search, is designed to further improve the exploitation capability of the algorithm. Simulation results show that DEMO outperforms the three state-of-the-art algorithms with respect to hypervolume, coverage rate and distance metrics.
[Display omitted]
•A multi-objective model of BFS scheduling problem with makespan and energy consumption criteria is proposed.•A variant of single-heuristic is incorporated in population initialization.•Two self-adaptive exploitation and exploration evolution strategies are proposed respectively.•A PBI-based-local search is adopted to enhance the exploitation capability of the algorithm.•It contributes to enhance the capacity of the algorithm in convergence and spread. |
---|---|
AbstractList | Sustainable scheduling problems have been attracted great attention from researchers. For the flow shop scheduling problems, researches mainly focus on reducing economic costs, and the energy consumption has not yet been well studied up to date especially in the blocking flow shop scheduling problem. Thus, we construct a multi-objective optimization model of the blocking flow shop scheduling problem with makespan and energy consumption criteria. Then a discrete evolutionary multi-objective optimization (DEMO) algorithm is proposed. The three contributions of DEMO are as follows. First, a variable single-objective heuristic is proposed to initialize the population. Second, the self-adaptive exploitation evolution and self-adaptive exploration evolution operators are proposed respectively to obtain high quality solutions. Third, a penalty-based boundary interstation based on the local search, called by PBI-based-local search, is designed to further improve the exploitation capability of the algorithm. Simulation results show that DEMO outperforms the three state-of-the-art algorithms with respect to hypervolume, coverage rate and distance metrics.
[Display omitted]
•A multi-objective model of BFS scheduling problem with makespan and energy consumption criteria is proposed.•A variant of single-heuristic is incorporated in population initialization.•Two self-adaptive exploitation and exploration evolution strategies are proposed respectively.•A PBI-based-local search is adopted to enhance the exploitation capability of the algorithm.•It contributes to enhance the capacity of the algorithm in convergence and spread. |
ArticleNumber | 106343 |
Author | Han, Yuyan Gao, Kaizhou Pan, Quanke Sang, Hongyan Li, Junqing Liu, Yiping |
Author_xml | – sequence: 1 givenname: Yuyan surname: Han fullname: Han, Yuyan email: hanyuyan@lcu-cs.com organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China – sequence: 2 givenname: Junqing orcidid: 0000-0002-3617-6708 surname: Li fullname: Li, Junqing email: lijunqing@lcu-cs.com organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China – sequence: 3 givenname: Hongyan surname: Sang fullname: Sang, Hongyan email: sanghongyan@lcu-cs.com organization: School of Computer Science, Liaocheng University, Liaocheng, 252059, China – sequence: 4 givenname: Yiping orcidid: 0000-0001-7340-2551 surname: Liu fullname: Liu, Yiping email: yiping0liu@gmail.com organization: The College of Computer Science and Electronic Engineering, Hunan University, 410082, China – sequence: 5 givenname: Kaizhou surname: Gao fullname: Gao, Kaizhou email: gaokaizhou@lcu-cs.com organization: Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China – sequence: 6 givenname: Quanke surname: Pan fullname: Pan, Quanke email: panquanke@mail.neu.edu.cn organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China |
BookMark | eNp9kE1OwzAQRi1UJNrCBVj5AimxncauxAaVX6kSG1hbiT1uHdK4sp1W5fQ4lBWLzmZG3-iNNG-CRp3rAKFbks9ITsq7ZlYFp2Y0p0NQsoJdoDERnGaLUpBRmuelyIpFUV6hSQhNnqAFFWPUP9qgPETAsHdtH63rKn_E276NNnN1AyraPWC3i3Zrv6thj43zGDrw62MGxlhloYu4bp36st0am9YdcNi4HQ5qA7pvh_Bg4wYHiP0Op0NwjS5N1Qa4-etT9Pn89LF8zVbvL2_Lh1WmWJ7HTPG5EkIzzlhFhTKs5IIAT6Xn2nBtaqKhgNIYkRZGEappxTmhhTK1qRWbInG6q7wLwYORysbfJ6KvbCtJLgd9spGDPjnokyd9CaX_0J232-TmPHR_giA9tbfgZRjsKNDWJ5NSO3sO_wGaWo_e |
CitedBy_id | crossref_primary_10_1007_s00500_024_09893_8 crossref_primary_10_1016_j_cie_2023_109325 crossref_primary_10_1016_j_asoc_2021_107349 crossref_primary_10_3390_app12063049 crossref_primary_10_1016_j_eswa_2025_126600 crossref_primary_10_3390_app12031491 crossref_primary_10_1016_j_eswa_2021_115827 crossref_primary_10_1016_j_swevo_2024_101484 crossref_primary_10_1080_0305215X_2021_2010727 crossref_primary_10_1080_21681015_2024_2337029 crossref_primary_10_1109_TCYB_2022_3192112 crossref_primary_10_1080_0305215X_2021_1961763 crossref_primary_10_1016_j_eswa_2022_117256 crossref_primary_10_1111_itor_13108 crossref_primary_10_1016_j_cie_2025_111000 crossref_primary_10_23919_CSMS_2022_0025 crossref_primary_10_1109_TEVC_2023_3239546 crossref_primary_10_1016_j_swevo_2023_101355 crossref_primary_10_3390_app11167366 crossref_primary_10_1109_TITS_2023_3315785 crossref_primary_10_1016_j_asoc_2022_109777 crossref_primary_10_1007_s10489_022_04090_2 crossref_primary_10_1016_j_swevo_2020_100785 crossref_primary_10_3390_a14040108 crossref_primary_10_1016_j_asoc_2021_107834 crossref_primary_10_1016_j_ijepes_2020_106343 crossref_primary_10_1016_j_swevo_2022_101070 crossref_primary_10_1016_j_swevo_2022_101195 crossref_primary_10_1016_j_knosys_2022_108328 crossref_primary_10_1016_j_cie_2022_108445 crossref_primary_10_23919_CSMS_2023_0016 crossref_primary_10_1016_j_eswa_2021_115535 crossref_primary_10_1016_j_cor_2022_105733 crossref_primary_10_1016_j_asoc_2023_110491 crossref_primary_10_1109_TCYB_2021_3081805 crossref_primary_10_1109_TCYB_2021_3086181 crossref_primary_10_1016_j_eswa_2022_117246 crossref_primary_10_1016_j_swevo_2021_100874 crossref_primary_10_1016_j_swevo_2024_101549 crossref_primary_10_1016_j_cor_2024_106863 crossref_primary_10_1016_j_eswa_2022_117602 crossref_primary_10_1016_j_mlwa_2022_100445 crossref_primary_10_1109_ACCESS_2021_3112742 crossref_primary_10_1109_TCYB_2022_3151855 crossref_primary_10_1016_j_swevo_2024_101545 crossref_primary_10_1080_00207543_2022_2127959 crossref_primary_10_1007_s11081_024_09911_6 crossref_primary_10_1016_j_cie_2025_110863 crossref_primary_10_1109_TCYB_2022_3164165 crossref_primary_10_1109_ACCESS_2020_3032548 crossref_primary_10_1016_j_jii_2022_100387 crossref_primary_10_1016_j_swevo_2021_100872 crossref_primary_10_1155_2022_9924163 crossref_primary_10_1016_j_swevo_2022_101140 crossref_primary_10_1016_j_asoc_2022_109504 crossref_primary_10_1016_j_swevo_2020_100804 crossref_primary_10_1016_j_jmsy_2023_09_002 crossref_primary_10_1080_0305215X_2023_2296538 crossref_primary_10_1109_ACCESS_2020_3041369 crossref_primary_10_3390_machines10030210 crossref_primary_10_1016_j_engappai_2024_108572 crossref_primary_10_1109_TCYB_2021_3128075 crossref_primary_10_1016_j_energy_2022_124542 crossref_primary_10_1016_j_jmsy_2024_10_018 crossref_primary_10_1016_j_jii_2024_100598 crossref_primary_10_1016_j_jii_2021_100233 crossref_primary_10_1016_j_swevo_2021_101016 crossref_primary_10_1016_j_swevo_2024_101498 crossref_primary_10_1016_j_swevo_2024_101499 crossref_primary_10_1016_j_swevo_2024_101774 crossref_primary_10_1016_j_swevo_2022_101170 crossref_primary_10_1109_TII_2022_3220860 crossref_primary_10_1016_j_cie_2023_109217 crossref_primary_10_1016_j_engappai_2022_105443 crossref_primary_10_1007_s00500_023_08505_1 crossref_primary_10_3390_axioms11070306 crossref_primary_10_1016_j_engappai_2024_108634 crossref_primary_10_1134_S0361768821080223 crossref_primary_10_1007_s10479_024_05940_7 crossref_primary_10_1016_j_eswa_2022_117269 crossref_primary_10_1080_00207543_2022_2070786 crossref_primary_10_3390_machines9120344 crossref_primary_10_1016_j_asoc_2023_110585 crossref_primary_10_32604_cmes_2022_019730 crossref_primary_10_1016_j_asoc_2022_109263 crossref_primary_10_1016_j_swevo_2022_101129 crossref_primary_10_3233_JIFS_212258 crossref_primary_10_1016_j_eswa_2023_121667 crossref_primary_10_1016_j_swevo_2021_100858 crossref_primary_10_3390_pr11092737 crossref_primary_10_1080_0305215X_2022_2032017 crossref_primary_10_1051_e3sconf_202233600028 crossref_primary_10_1016_j_asoc_2022_109502 crossref_primary_10_1080_0305215X_2024_2372633 crossref_primary_10_1016_j_asoc_2022_108770 crossref_primary_10_3390_a14110323 |
Cites_doi | 10.1016/j.rcim.2019.04.006 10.1109/ACCESS.2018.2889373 10.1109/TEVC.2007.892759 10.1109/TSMC.2019.2916088 10.1016/j.eswa.2010.04.042 10.1109/ACCESS.2018.2879600 10.1016/j.asoc.2019.04.027 10.1016/j.cie.2019.06.048 10.1016/j.knosys.2018.02.029 10.1109/TCYB.2016.2638902 10.1016/S0925-5273(03)00065-3 10.1016/j.swevo.2017.12.005 10.1016/j.asoc.2014.02.009 10.1016/j.jclepro.2019.06.078 10.1080/0305215X.2014.928817 10.1016/j.eswa.2019.06.069 10.1016/j.knosys.2018.11.021 10.1016/j.jclepro.2019.06.151 10.1016/j.jclepro.2019.04.046 10.1016/j.jclepro.2018.06.137 10.1016/j.eswa.2018.12.039 10.1016/j.asoc.2016.01.033 10.1016/S0925-5273(99)00104-8 10.1016/j.engappai.2018.11.005 10.1007/s10586-019-03022-z 10.1016/j.jclepro.2018.11.231 10.1109/TCYB.2017.2771213 10.1109/TEM.2017.2774281 10.1007/s00170-012-4493-5 10.1016/j.asoc.2018.12.028 10.1007/s00170-011-3680-0 10.1080/00207543.2016.1177671 10.1016/0377-2217(93)90182-M 10.1016/j.swevo.2019.100557 10.1016/j.ejor.2008.04.033 10.1016/j.cor.2008.12.004 10.1016/j.asoc.2011.09.021 10.1504/IJMOR.2017.080743 10.1177/1729881419862164 10.1109/TEVC.2013.2281535 10.1504/EJIE.2013.058392 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106343 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106343 S1568494620302830 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-c75c88d3733a28cf36781e7777d5df7dfb1de4e6ff8781fc12d2a77124cfbfbc3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:13:07 EDT 2025 Tue Jul 01 01:50:06 EDT 2025 Thu Jun 13 14:30:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Self-adaptive Energy consumption Blocking flow shop Multi-objective evolutionary optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-c75c88d3733a28cf36781e7777d5df7dfb1de4e6ff8781fc12d2a77124cfbfbc3 |
ORCID | 0000-0002-3617-6708 0000-0001-7340-2551 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106343 crossref_primary_10_1016_j_asoc_2020_106343 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106343 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Han, Liang, Pan (b6) 2013; 67 Gong, Han, Sun (b23) 2018; 148 Luo, Zhang, Fan (b31) 2019; 234 Vcrepinsek, Liu, Mernik (b41) 2014; 19 Wang, Tang (b3) 2012; 12 Li, Tao, Jia, Han, Liu, Duan, Zheng, Sang (b19) 2019 Han, Gong, Li, Zhang (b10) 2016; 54 Lu, Gao, Li (b27) 2018; 196 Peng, Wen, Tseng (b28) 2019; 80 Zhang, Pan, Gao, Meng, Li, Peng (b34) 2019 Ruíz, Capel, Pegalajar (b29) 2019; 76 Shao, Pi, Shao (b15) 2018; 40 Wu, Shen, Li (b33) 2019; 135 Tasgetiren, Kizilay, Pan, Suganthan (b12) 2017; 130–134 Han, Gong, Sun (b9) 2015; 47 Caraffa, Ianes, Bagchi, Sriskandarajah (b1) 2001; 70 Fu, Tian, Fathollahi-Fard (b26) 2019; 226 Han, Pan, Li (b5) 2012; 60 Zhang, Li, Wang (b36) 2009; 196 Han, Gong, Jin (b37) 2019; 49 Han, Li, Gong (b24) 2019; 7 Han, Gong, Jin (b22) 2016; 42 He, Wang, Liu (b17) 2019; 16 Zhang, Li (b38) 2007; 11 Ribas, Companys (b8) 2013; 7 Li, Han (b20) 2020 Chen, Wang, Peng (b25) 2019; 50 Dai, Tang, Giret, Salido (b30) 2019; 59 Wang, Pan, Tasgetiren (b7) 2010; 37 Taillard (b42) 1993; 64 Glover (b4) 1990; 2 He, Shao, Wang, Gu, Bai (b18) 2019; 233 Ribas, Companys, Tort-Martorell (b14) 2019; 121 Deb, Jain (b39) 2013; 18 Miyata, Nagano (b13) 2019; 137 Shao, Pi, Shao (b21) 2019; 165 Shao, Pi, Shao (b16) 2019; 78 Liu, Gong, Sun (b40) 2017; 47 Wang, Pan, Suganthan, Wang, Wang (b2) 2010; 37 Lei, Gao, Zheng (b43) 2018; 65 Wang, Deng, Jiang (b44) 2018; 6 Liu, Guo, Wang (b32) 2019; 211 Ronconi (b35) 2004; 87 Toumi, Jarboui, Eddaly, Rebaï (b11) 2017; 10 Glover (10.1016/j.asoc.2020.106343_b4) 1990; 2 Han (10.1016/j.asoc.2020.106343_b9) 2015; 47 Ruíz (10.1016/j.asoc.2020.106343_b29) 2019; 76 Wang (10.1016/j.asoc.2020.106343_b7) 2010; 37 Tasgetiren (10.1016/j.asoc.2020.106343_b12) 2017; 130–134 Toumi (10.1016/j.asoc.2020.106343_b11) 2017; 10 Wu (10.1016/j.asoc.2020.106343_b33) 2019; 135 Han (10.1016/j.asoc.2020.106343_b6) 2013; 67 Taillard (10.1016/j.asoc.2020.106343_b42) 1993; 64 Zhang (10.1016/j.asoc.2020.106343_b38) 2007; 11 Caraffa (10.1016/j.asoc.2020.106343_b1) 2001; 70 Liu (10.1016/j.asoc.2020.106343_b32) 2019; 211 Ronconi (10.1016/j.asoc.2020.106343_b35) 2004; 87 Shao (10.1016/j.asoc.2020.106343_b21) 2019; 165 Ribas (10.1016/j.asoc.2020.106343_b14) 2019; 121 Peng (10.1016/j.asoc.2020.106343_b28) 2019; 80 Liu (10.1016/j.asoc.2020.106343_b40) 2017; 47 Han (10.1016/j.asoc.2020.106343_b5) 2012; 60 He (10.1016/j.asoc.2020.106343_b18) 2019; 233 Shao (10.1016/j.asoc.2020.106343_b16) 2019; 78 Vcrepinsek (10.1016/j.asoc.2020.106343_b41) 2014; 19 Li (10.1016/j.asoc.2020.106343_b19) 2019 Fu (10.1016/j.asoc.2020.106343_b26) 2019; 226 Deb (10.1016/j.asoc.2020.106343_b39) 2013; 18 Ribas (10.1016/j.asoc.2020.106343_b8) 2013; 7 Han (10.1016/j.asoc.2020.106343_b24) 2019; 7 Zhang (10.1016/j.asoc.2020.106343_b34) 2019 Zhang (10.1016/j.asoc.2020.106343_b36) 2009; 196 He (10.1016/j.asoc.2020.106343_b17) 2019; 16 Wang (10.1016/j.asoc.2020.106343_b3) 2012; 12 Li (10.1016/j.asoc.2020.106343_b20) 2020 Luo (10.1016/j.asoc.2020.106343_b31) 2019; 234 Gong (10.1016/j.asoc.2020.106343_b23) 2018; 148 Wang (10.1016/j.asoc.2020.106343_b2) 2010; 37 Lei (10.1016/j.asoc.2020.106343_b43) 2018; 65 Han (10.1016/j.asoc.2020.106343_b22) 2016; 42 Chen (10.1016/j.asoc.2020.106343_b25) 2019; 50 Miyata (10.1016/j.asoc.2020.106343_b13) 2019; 137 Wang (10.1016/j.asoc.2020.106343_b44) 2018; 6 Shao (10.1016/j.asoc.2020.106343_b15) 2018; 40 Han (10.1016/j.asoc.2020.106343_b10) 2016; 54 Dai (10.1016/j.asoc.2020.106343_b30) 2019; 59 Han (10.1016/j.asoc.2020.106343_b37) 2019; 49 Lu (10.1016/j.asoc.2020.106343_b27) 2018; 196 |
References_xml | – volume: 67 start-page: 397 year: 2013 end-page: 414 ident: b6 article-title: Effective hybrid discrete artificial bee colony algorithms for the total flowtime minimization in the blocking flowshop problem publication-title: Int. J. Adv. Manuf. Technol. – volume: 42 start-page: 229 year: 2016 end-page: 245 ident: b22 article-title: Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time publication-title: Appl. Soft Comput. – volume: 137 start-page: 130 year: 2019 end-page: 156 ident: b13 article-title: The blocking flow shop scheduling problem: A comprehensive and conceptual review publication-title: Expert Syst. Appl. – volume: 70 start-page: 102 year: 2001 end-page: 115 ident: b1 article-title: Minimizing makespan in a blocking flowshop using genetic algorithms publication-title: Int. J. Prod. Econ. – volume: 12 start-page: 652 year: 2012 end-page: 662 ident: b3 article-title: A discrete particle swarm optimization algorithm with self-adaptive diversity control for the permutation flowshop problem with blocking publication-title: Appl. Soft Comput. – volume: 87 start-page: 39 year: 2004 end-page: 48 ident: b35 article-title: A note on constructive heuristics for the flowshop problem with blocking publication-title: Int. J. Prod. Econ. – volume: 7 start-page: 729 year: 2013 end-page: 754 ident: b8 article-title: A competitive variable neighbourhood search algorithm for the blocking flow shop problem publication-title: Eur. J. Ind. Eng. – volume: 226 start-page: 515 year: 2019 end-page: 525 ident: b26 article-title: Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint publication-title: J. Clean. Prod. – volume: 40 start-page: 53 year: 2018 end-page: 75 ident: b15 article-title: A novel discrete water wave optimization algorithm for blocking flow-shop scheduling problem with sequence-dependent setup times publication-title: Swarm Evol. Comput. – volume: 47 start-page: 2689 year: 2017 end-page: 2702 ident: b40 article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy publication-title: IEEE Trans. Cybern. – volume: 65 start-page: 330 year: 2018 end-page: 340 ident: b43 article-title: A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop publication-title: IEEE Trans. Eng. Manage – volume: 196 start-page: 869 year: 2009 end-page: 876 ident: b36 article-title: Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization publication-title: European J. Oper. Res. – volume: 50 year: 2019 ident: b25 article-title: A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling publication-title: Swarm Evol. Comput. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b38 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 7 start-page: 5946 year: 2019 end-page: 5962 ident: b24 article-title: Multi-objective migrating birds optimization algorithm for stochastic lot-streaming flow shop scheduling with blocking publication-title: IEEE Access – volume: 165 start-page: 110 year: 2019 end-page: 131 ident: b21 article-title: A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem publication-title: Knowl.-Based Syst. – volume: 211 start-page: 765 year: 2019 end-page: 786 ident: b32 article-title: Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption publication-title: J. Clean. Prod. – volume: 78 start-page: 124 year: 2019 end-page: 141 ident: b16 article-title: An efficient discrete invasive weed optimization for blocking flow-shop scheduling problem publication-title: Eng. Appl. Artif. Intell. – volume: 54 start-page: 6782 year: 2016 end-page: 6797 ident: b10 article-title: Solving the blocking flow shop scheduling problem with makespan using a modified fruit fly optimisation algorithm publication-title: Int. J. Prod. Res. – volume: 49 start-page: 184 year: 2019 end-page: 197 ident: b37 article-title: Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns publication-title: IEEE Trans. Cybern. – volume: 2 start-page: 4 year: 1990 end-page: 32 ident: b4 article-title: Tabu search. Part II. ORSA publication-title: J. Comput. – volume: 234 start-page: 1365 year: 2019 end-page: 1384 ident: b31 article-title: Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds by grey wolf optimization publication-title: J. Cleaner Prod. – volume: 37 start-page: 509 year: 2010 end-page: 520 ident: b2 article-title: A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems publication-title: Comput. Oper. Res. – volume: 37 start-page: 7929 year: 2010 end-page: 7936 ident: b7 article-title: Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms publication-title: Expert Syst. Appl. – volume: 233 start-page: 446 year: 2019 end-page: 460 ident: b18 article-title: Product environmental footprints assessment for product life cycle publication-title: J. Cleaner Prod. – volume: 60 start-page: 1149 year: 2012 end-page: 1159 ident: b5 article-title: An improved artificial bee colony algorithm for the blocking flow shop scheduling problem publication-title: Int. J. Adv. Manuf. Technol. – volume: 148 start-page: 115 year: 2018 end-page: 130 ident: b23 article-title: A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems publication-title: Knowl.-Based Syst. – volume: 196 start-page: 773 year: 2018 end-page: 787 ident: b27 article-title: A multi-objective approach to welding shop scheduling for makespan, noise pollution and energy consumption publication-title: J. Clean. Prod. – volume: 135 start-page: 1004 year: 2019 end-page: 1024 ident: b33 article-title: The flexible job-shop scheduling problem considering deterioration effect and energy consumption simultaneously publication-title: Comput. Ind. Eng. – year: 2019 ident: b19 article-title: Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots publication-title: Swarm Evol. Comput. – volume: 76 start-page: 356 year: 2019 end-page: 368 ident: b29 article-title: Parallel memetic algorithm for training recurrent neural networks for the energy efficiency problem publication-title: Appl. Soft Comput. – volume: 64 start-page: 278 year: 1993 end-page: 285 ident: b42 article-title: Benchmarks for basic scheduling problems publication-title: European J. Oper. Res. – volume: 130–134 start-page: 2504 year: 2017 end-page: 2507 ident: b12 article-title: Iterated greedy scheduling flowshop with sequence-independent setup time publication-title: Appl. Mech. Mater. – volume: 59 start-page: 143 year: 2019 end-page: 157 ident: b30 article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints publication-title: Robot. Comput. Integr. Manuf. – volume: 10 start-page: 34 year: 2017 end-page: 48 ident: b11 article-title: Branch-and-bound algorithm for solving blocking flowshop scheduling problems with makespan criterion publication-title: Int. J. Math. Oper. Res. – volume: 47 start-page: 927 year: 2015 end-page: 946 ident: b9 article-title: A discrete artificial bee colony algorithm incorporating differential evolution for flow shop scheduling problem with blocking publication-title: Eng. Optim. – volume: 6 start-page: 68686 year: 2018 end-page: 68700 ident: b44 article-title: Multi-objective parallel variable neighborhood search for energy consumption scheduling in blocking flow shops publication-title: IEEE Access – volume: 121 start-page: 347 year: 2019 end-page: 361 ident: b14 article-title: An iterated greedy algorithm for solving the total tardiness parallel blocking flow shop scheduling problem publication-title: Expert Syst. Appl. – volume: 80 start-page: 534 year: 2019 end-page: 545 ident: b28 article-title: Joint optimization method for task scheduling time and energy consumption in mobile cloud computing environment publication-title: Appl. Soft Comput. – volume: 19 start-page: 161 year: 2014 end-page: 170 ident: b41 article-title: Replication and comparison of computational experiments in applied evolutionary computing: Common pitfalls and guidelines to avoid them publication-title: Appl. Soft Comput. – volume: 18 start-page: 577 year: 2013 end-page: 601 ident: b39 article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part i: Solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – year: 2020 ident: b20 article-title: A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system publication-title: Cluster Comput. – volume: 16 start-page: 1 year: 2019 end-page: 29 ident: b17 article-title: Underactuated robotics: A review publication-title: Int. J. Adv. Robot. Syst. – year: 2019 ident: b34 article-title: A three-stage multi-objective approach based on decomposition for an energy-efficient hybrid flowshop scheduling problem publication-title: IEEE Trans. Syst. Man Cybern. – volume: 59 start-page: 143 year: 2019 ident: 10.1016/j.asoc.2020.106343_b30 article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.04.006 – volume: 7 start-page: 5946 year: 2019 ident: 10.1016/j.asoc.2020.106343_b24 article-title: Multi-objective migrating birds optimization algorithm for stochastic lot-streaming flow shop scheduling with blocking publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2889373 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.asoc.2020.106343_b38 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – year: 2019 ident: 10.1016/j.asoc.2020.106343_b34 article-title: A three-stage multi-objective approach based on decomposition for an energy-efficient hybrid flowshop scheduling problem publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.2019.2916088 – volume: 37 start-page: 7929 year: 2010 ident: 10.1016/j.asoc.2020.106343_b7 article-title: Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.04.042 – volume: 6 start-page: 68686 year: 2018 ident: 10.1016/j.asoc.2020.106343_b44 article-title: Multi-objective parallel variable neighborhood search for energy consumption scheduling in blocking flow shops publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879600 – volume: 80 start-page: 534 year: 2019 ident: 10.1016/j.asoc.2020.106343_b28 article-title: Joint optimization method for task scheduling time and energy consumption in mobile cloud computing environment publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.04.027 – volume: 135 start-page: 1004 year: 2019 ident: 10.1016/j.asoc.2020.106343_b33 article-title: The flexible job-shop scheduling problem considering deterioration effect and energy consumption simultaneously publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.06.048 – volume: 148 start-page: 115 year: 2018 ident: 10.1016/j.asoc.2020.106343_b23 article-title: A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.02.029 – volume: 47 start-page: 2689 issue: 9 year: 2017 ident: 10.1016/j.asoc.2020.106343_b40 article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2638902 – volume: 87 start-page: 39 year: 2004 ident: 10.1016/j.asoc.2020.106343_b35 article-title: A note on constructive heuristics for the flowshop problem with blocking publication-title: Int. J. Prod. Econ. doi: 10.1016/S0925-5273(03)00065-3 – volume: 40 start-page: 53 year: 2018 ident: 10.1016/j.asoc.2020.106343_b15 article-title: A novel discrete water wave optimization algorithm for blocking flow-shop scheduling problem with sequence-dependent setup times publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.12.005 – volume: 19 start-page: 161 year: 2014 ident: 10.1016/j.asoc.2020.106343_b41 article-title: Replication and comparison of computational experiments in applied evolutionary computing: Common pitfalls and guidelines to avoid them publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.009 – volume: 233 start-page: 446 year: 2019 ident: 10.1016/j.asoc.2020.106343_b18 article-title: Product environmental footprints assessment for product life cycle publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.06.078 – volume: 47 start-page: 927 issue: 7 year: 2015 ident: 10.1016/j.asoc.2020.106343_b9 article-title: A discrete artificial bee colony algorithm incorporating differential evolution for flow shop scheduling problem with blocking publication-title: Eng. Optim. doi: 10.1080/0305215X.2014.928817 – volume: 137 start-page: 130 year: 2019 ident: 10.1016/j.asoc.2020.106343_b13 article-title: The blocking flow shop scheduling problem: A comprehensive and conceptual review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.06.069 – year: 2019 ident: 10.1016/j.asoc.2020.106343_b19 article-title: Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots publication-title: Swarm Evol. Comput. – volume: 165 start-page: 110 year: 2019 ident: 10.1016/j.asoc.2020.106343_b21 article-title: A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.021 – volume: 234 start-page: 1365 year: 2019 ident: 10.1016/j.asoc.2020.106343_b31 article-title: Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds by grey wolf optimization publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.06.151 – volume: 226 start-page: 515 year: 2019 ident: 10.1016/j.asoc.2020.106343_b26 article-title: Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.046 – volume: 196 start-page: 773 year: 2018 ident: 10.1016/j.asoc.2020.106343_b27 article-title: A multi-objective approach to welding shop scheduling for makespan, noise pollution and energy consumption publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.06.137 – volume: 121 start-page: 347 year: 2019 ident: 10.1016/j.asoc.2020.106343_b14 article-title: An iterated greedy algorithm for solving the total tardiness parallel blocking flow shop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.039 – volume: 42 start-page: 229 year: 2016 ident: 10.1016/j.asoc.2020.106343_b22 article-title: Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.01.033 – volume: 70 start-page: 102 year: 2001 ident: 10.1016/j.asoc.2020.106343_b1 article-title: Minimizing makespan in a blocking flowshop using genetic algorithms publication-title: Int. J. Prod. Econ. doi: 10.1016/S0925-5273(99)00104-8 – volume: 2 start-page: 4 year: 1990 ident: 10.1016/j.asoc.2020.106343_b4 article-title: Tabu search. Part II. ORSA publication-title: J. Comput. – volume: 78 start-page: 124 year: 2019 ident: 10.1016/j.asoc.2020.106343_b16 article-title: An efficient discrete invasive weed optimization for blocking flow-shop scheduling problem publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.11.005 – year: 2020 ident: 10.1016/j.asoc.2020.106343_b20 article-title: A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system publication-title: Cluster Comput. doi: 10.1007/s10586-019-03022-z – volume: 130–134 start-page: 2504 year: 2017 ident: 10.1016/j.asoc.2020.106343_b12 article-title: Iterated greedy scheduling flowshop with sequence-independent setup time publication-title: Appl. Mech. Mater. – volume: 211 start-page: 765 year: 2019 ident: 10.1016/j.asoc.2020.106343_b32 article-title: Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.11.231 – volume: 49 start-page: 184 issue: 1 year: 2019 ident: 10.1016/j.asoc.2020.106343_b37 article-title: Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2771213 – volume: 65 start-page: 330 year: 2018 ident: 10.1016/j.asoc.2020.106343_b43 article-title: A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop publication-title: IEEE Trans. Eng. Manage doi: 10.1109/TEM.2017.2774281 – volume: 67 start-page: 397 issue: 1–4 year: 2013 ident: 10.1016/j.asoc.2020.106343_b6 article-title: Effective hybrid discrete artificial bee colony algorithms for the total flowtime minimization in the blocking flowshop problem publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4493-5 – volume: 76 start-page: 356 year: 2019 ident: 10.1016/j.asoc.2020.106343_b29 article-title: Parallel memetic algorithm for training recurrent neural networks for the energy efficiency problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.12.028 – volume: 60 start-page: 1149 year: 2012 ident: 10.1016/j.asoc.2020.106343_b5 article-title: An improved artificial bee colony algorithm for the blocking flow shop scheduling problem publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3680-0 – volume: 54 start-page: 6782 year: 2016 ident: 10.1016/j.asoc.2020.106343_b10 article-title: Solving the blocking flow shop scheduling problem with makespan using a modified fruit fly optimisation algorithm publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1177671 – volume: 64 start-page: 278 year: 1993 ident: 10.1016/j.asoc.2020.106343_b42 article-title: Benchmarks for basic scheduling problems publication-title: European J. Oper. Res. doi: 10.1016/0377-2217(93)90182-M – volume: 50 year: 2019 ident: 10.1016/j.asoc.2020.106343_b25 article-title: A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.100557 – volume: 196 start-page: 869 issue: 3 year: 2009 ident: 10.1016/j.asoc.2020.106343_b36 article-title: Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2008.04.033 – volume: 37 start-page: 509 year: 2010 ident: 10.1016/j.asoc.2020.106343_b2 article-title: A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2008.12.004 – volume: 12 start-page: 652 issue: 2 year: 2012 ident: 10.1016/j.asoc.2020.106343_b3 article-title: A discrete particle swarm optimization algorithm with self-adaptive diversity control for the permutation flowshop problem with blocking publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.09.021 – volume: 10 start-page: 34 issue: 1 year: 2017 ident: 10.1016/j.asoc.2020.106343_b11 article-title: Branch-and-bound algorithm for solving blocking flowshop scheduling problems with makespan criterion publication-title: Int. J. Math. Oper. Res. doi: 10.1504/IJMOR.2017.080743 – volume: 16 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.asoc.2020.106343_b17 article-title: Underactuated robotics: A review publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881419862164 – volume: 18 start-page: 577 issue: 4 year: 2013 ident: 10.1016/j.asoc.2020.106343_b39 article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part i: Solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 7 start-page: 729 issue: 6 year: 2013 ident: 10.1016/j.asoc.2020.106343_b8 article-title: A competitive variable neighbourhood search algorithm for the blocking flow shop problem publication-title: Eur. J. Ind. Eng. doi: 10.1504/EJIE.2013.058392 |
SSID | ssj0016928 |
Score | 2.5759068 |
Snippet | Sustainable scheduling problems have been attracted great attention from researchers. For the flow shop scheduling problems, researches mainly focus on... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106343 |
SubjectTerms | Blocking flow shop Energy consumption Multi-objective evolutionary optimization Self-adaptive |
Title | Discrete evolutionary multi-objective optimization for energy-efficient blocking flow shop scheduling with setup time |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106343 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fp9lD95kbbK7efQo1VKfiA_wFrIvbKlNqa3ixd_uTLIpCuLBXEI2MxAms_PNLPMg5NAGoeXCSOaSOGIYfzEVhjGzKbcAV0rlERYKX9_EvUd58RQ9NUinroXBtEpv-yubXlprv9Ly0myN-_3WPUQeqWzLmIOeYhsrrGCXCWr58ec8zSOM2-V8VSRmSO0LZ6ocrxwkADEix4VYSPE7OH0DnO4qWfaeIj2pPmaNNOxonazUUxio35QbZHbah60Pvi-1b16P8skHLTMFWaEGlUWjBdiGF190ScFTpbas-mO27CEB0EMV4BoenFM3LN7p63MxphD6AhRhxTrFA1v6aqezMcV59JvksXv20OkxP0yBaREEU6aTSKepEYkQOU-1E4BSoU3gMpFxiXEqNFba2LkUXjgdcsPzJAH41045pcUWWRgVI7tNKASywigdayCRwqWKWx6k7Ui1pZE2D3ZIWEsx077TOA68GGZ1StkgQ8lnKPmskvwOOZrzjKs-G39SR_XPyX5oSwZA8Aff7j_59sgSPlWJf_tkYTqZ2QNwRqaqWWpbkyyedO6ubvF-ftm7-QL5MOL1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHODCG_EmB24oWpukjx2nwTReuwDSblXzEpvGOo0NxL_HaVMEEuJAj4ktVa7jz079ADg3QWgY14LaJI6oi7-oDMOYmpQZhCsp88gVCt_3496TuBlEgyXo1LUwLq3S2_7KppfW2q80vTSb0-Gw-YCRRypaImaop66N1TKsuO5UUQNW2te3vf7Xz4S4VY5YdfTUMfjamSrNK0chYJjI3ELMBf8dn75hTncT1r2zSNrV-2zBkplsw0Y9iIH4c7kDi8shnn50f4l586qUzz5ImSxICzmqjBop0Dy8-LpLgs4qMWXhHzVlGwlEHyIR2tzdObHj4p28PhdTgtEvopErWifuzpa8mvliStxI-l146l49dnrUz1OgigfBnKokUmmqecJ5zlJlOQJVaBJ8dKRtoq0MtREmtjbFDatCplmeJOgBKCutVHwPGpNiYvaBYCzLtVSxQhLBbSqZYUHaimRLaGHy4ADCWoqZ8s3G3cyLcVZnlY0yJ_nMST6rJH8AF18806rVxp_UUf1xsh8KkyEW_MF3-E--M1jtPd7fZXfX_dsjWHM7VR7gMTTms4U5Qd9kLk-97n0Coz_kEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+evolutionary+multi-objective+optimization+for+energy-efficient+blocking+flow+shop+scheduling+with+setup+time&rft.jtitle=Applied+soft+computing&rft.au=Han%2C+Yuyan&rft.au=Li%2C+Junqing&rft.au=Sang%2C+Hongyan&rft.au=Liu%2C+Yiping&rft.date=2020-08-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=93&rft_id=info:doi/10.1016%2Fj.asoc.2020.106343&rft.externalDocID=S1568494620302830 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |