AGLNet: Towards real-time semantic segmentation of self-driving images via attention-guided lightweight network
The extensive computational burden limits the usage of convolutional neural networks (CNNs) in edge devices for image semantic segmentation, which plays a significant role in many real-world applications, such as augmented reality, robotics, and self-driving. To address this problem, this paper pres...
Saved in:
Published in | Applied soft computing Vol. 96; p. 106682 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2020.106682 |
Cover
Loading…
Abstract | The extensive computational burden limits the usage of convolutional neural networks (CNNs) in edge devices for image semantic segmentation, which plays a significant role in many real-world applications, such as augmented reality, robotics, and self-driving. To address this problem, this paper presents an attention-guided lightweight network, namely AGLNet, which employs an encoder–decoder architecture for real-time semantic segmentation. Specifically, the encoder adopts a novel residual module to abstract feature representations, where two new operations, channel split and shuffle, are utilized to greatly reduce computation cost while maintaining higher segmentation accuracy. On the other hand, instead of using complicated dilated convolution and artificially designed architecture, two types of attention mechanism are subsequently employed in the decoder to upsample features to match input resolution. Specifically, a factorized attention pyramid module (FAPM) is used to explore hierarchical spatial attention from high-level output, still remaining fewer model parameters. To delineate object shapes and boundaries, a global attention upsample module (GAUM) is adopted as global guidance for high-level features. The comprehensive experiments demonstrate that our approach achieves state-of-the-art results in terms of speed and accuracy on three self-driving datasets: CityScapes, CamVid, and Mapillary Vistas. AGLNet achieves 71.3%, 69.4%, and 30.7% mean IoU on these datasets with only 1.12M model parameters. Our method also achieves 52 FPS, 90 FPS, and 53 FPS inference speed, respectively, using a single GTX 1080Ti GPU. Our code is open-source and available at https://github.com/xiaoyufenfei/Efficient-Segmentation-Networks.
•AGLNet employs SS-nbt unit in encoder, and decoder is guided by attention mechanism.•The SS-nbt unit adopts an 1D factorized convolution with channel split and shuffle operation.•Two attention module, FAPM and GAUM, are employed to improve segmentation accuracy.•AGLNet achieves available state-of-theart results in terms of speed and accuracy. |
---|---|
AbstractList | The extensive computational burden limits the usage of convolutional neural networks (CNNs) in edge devices for image semantic segmentation, which plays a significant role in many real-world applications, such as augmented reality, robotics, and self-driving. To address this problem, this paper presents an attention-guided lightweight network, namely AGLNet, which employs an encoder–decoder architecture for real-time semantic segmentation. Specifically, the encoder adopts a novel residual module to abstract feature representations, where two new operations, channel split and shuffle, are utilized to greatly reduce computation cost while maintaining higher segmentation accuracy. On the other hand, instead of using complicated dilated convolution and artificially designed architecture, two types of attention mechanism are subsequently employed in the decoder to upsample features to match input resolution. Specifically, a factorized attention pyramid module (FAPM) is used to explore hierarchical spatial attention from high-level output, still remaining fewer model parameters. To delineate object shapes and boundaries, a global attention upsample module (GAUM) is adopted as global guidance for high-level features. The comprehensive experiments demonstrate that our approach achieves state-of-the-art results in terms of speed and accuracy on three self-driving datasets: CityScapes, CamVid, and Mapillary Vistas. AGLNet achieves 71.3%, 69.4%, and 30.7% mean IoU on these datasets with only 1.12M model parameters. Our method also achieves 52 FPS, 90 FPS, and 53 FPS inference speed, respectively, using a single GTX 1080Ti GPU. Our code is open-source and available at https://github.com/xiaoyufenfei/Efficient-Segmentation-Networks.
•AGLNet employs SS-nbt unit in encoder, and decoder is guided by attention mechanism.•The SS-nbt unit adopts an 1D factorized convolution with channel split and shuffle operation.•Two attention module, FAPM and GAUM, are employed to improve segmentation accuracy.•AGLNet achieves available state-of-theart results in terms of speed and accuracy. |
ArticleNumber | 106682 |
Author | Zhou, Quan Zhang, Suofei Wang, Yu Fan, Yawen Latecki, Longin Jan Wu, Xiaofu Kang, Bin |
Author_xml | – sequence: 1 givenname: Quan orcidid: 0000-0002-7894-7929 surname: Zhou fullname: Zhou, Quan email: quan.zhou@njupt.edu.cn organization: National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China – sequence: 2 givenname: Yu surname: Wang fullname: Wang, Yu organization: National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China – sequence: 3 givenname: Yawen surname: Fan fullname: Fan, Yawen organization: National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China – sequence: 4 givenname: Xiaofu surname: Wu fullname: Wu, Xiaofu organization: National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China – sequence: 5 givenname: Suofei surname: Zhang fullname: Zhang, Suofei organization: Department of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China – sequence: 6 givenname: Bin surname: Kang fullname: Kang, Bin organization: Department of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China – sequence: 7 givenname: Longin Jan surname: Latecki fullname: Latecki, Longin Jan organization: Department of Computer and Information Science, Temple University, Philadelphia, USA |
BookMark | eNp9kM9OAyEQxonRxLb6Ap54ga2wu7JgvDSNVpNGL_VMKAwrdbsYwDa-vWzWk4de5l_mN5nvm6Lz3veA0A0lc0oou93NVfR6XpJyGDDGyzM0obwpC8E4Pc_1HeNFLWp2iaYx7kiGRMknyC9W61dI93jjjyqYiAOorkhuDzjCXvXJ6Vy0e-iTSs732Nvcd7YwwR1c32K3Vy1EfHAKq5TyWl4q2m9nwODOtR_pCEPEPaSjD59X6MKqLsL1X56h96fHzfK5WL-tXpaLdaErQlKhG6IY1EIYWjUVMNqIkihjtGioMVBrawUzlgpeMdbYmjLFGd0C3xK-NYJUM1SOd3XwMQaw8ivkV8OPpEQOlsmdHCyTg2VytCxD_B-k3Sg7BeW60-jDiEIWdXAQZNQOeg3GBdBJGu9O4b85fIu3 |
CitedBy_id | crossref_primary_10_1007_s10489_022_03293_x crossref_primary_10_1016_j_neucom_2022_11_062 crossref_primary_10_1109_TGRS_2023_3251659 crossref_primary_10_1109_JBHI_2021_3138986 crossref_primary_10_1109_TIV_2022_3176860 crossref_primary_10_1016_j_compeleceng_2022_107777 crossref_primary_10_1016_j_asoc_2024_112065 crossref_primary_10_1007_s40747_023_01054_y crossref_primary_10_1016_j_patcog_2021_108372 crossref_primary_10_1016_j_compeleceng_2024_109996 crossref_primary_10_1007_s13735_024_00321_z crossref_primary_10_1007_s10489_021_02446_8 crossref_primary_10_53941_ijndi_2025_100006 crossref_primary_10_1016_j_asoc_2021_107511 crossref_primary_10_1109_ACCESS_2021_3071866 crossref_primary_10_1016_j_neucom_2022_07_041 crossref_primary_10_1007_s10044_024_01237_4 crossref_primary_10_1016_j_knosys_2022_108368 crossref_primary_10_1109_TITS_2022_3165155 crossref_primary_10_1016_j_eswa_2024_124610 crossref_primary_10_1016_j_imavis_2021_104309 crossref_primary_10_1111_coin_12646 crossref_primary_10_1016_j_fuel_2021_121844 crossref_primary_10_1155_2022_8417295 crossref_primary_10_1016_j_eswa_2024_123249 crossref_primary_10_1016_j_neucom_2021_01_002 crossref_primary_10_1155_2022_6100292 crossref_primary_10_1109_TITS_2023_3348631 crossref_primary_10_1007_s11280_021_00938_8 crossref_primary_10_1049_ipr2_12816 crossref_primary_10_1007_s40747_024_01582_1 crossref_primary_10_1016_j_asoc_2022_109005 crossref_primary_10_1016_j_eswa_2021_115090 crossref_primary_10_3390_electronics13173361 crossref_primary_10_3390_ma16072811 crossref_primary_10_1016_j_neucom_2024_128991 crossref_primary_10_1016_j_asoc_2021_107445 crossref_primary_10_1155_2021_1333250 crossref_primary_10_1016_j_jksuci_2024_102226 crossref_primary_10_1007_s11063_023_11145_z crossref_primary_10_1109_TSMC_2021_3132026 crossref_primary_10_1007_s10044_023_01207_2 crossref_primary_10_1016_j_neucom_2022_11_084 crossref_primary_10_1109_ACCESS_2025_3540454 crossref_primary_10_1016_j_neucom_2021_03_044 crossref_primary_10_1155_2021_5563875 crossref_primary_10_3390_app122111040 crossref_primary_10_1007_s00371_021_02115_4 crossref_primary_10_1109_LSP_2021_3070472 crossref_primary_10_11834_jig_230605 crossref_primary_10_1016_j_neunet_2021_08_008 crossref_primary_10_1002_rob_22438 crossref_primary_10_1007_s13042_023_02077_0 crossref_primary_10_1007_s13369_022_06964_6 crossref_primary_10_1109_TITS_2024_3492383 crossref_primary_10_1016_j_neucom_2021_12_003 crossref_primary_10_1007_s00371_024_03569_y crossref_primary_10_1080_0952813X_2021_1908432 crossref_primary_10_1109_TIP_2024_3425048 crossref_primary_10_3390_app14167291 crossref_primary_10_1016_j_neucom_2022_06_065 crossref_primary_10_1109_TITS_2023_3313982 crossref_primary_10_1007_s11042_023_17659_x crossref_primary_10_1109_TNNLS_2022_3176493 crossref_primary_10_3390_f13122170 crossref_primary_10_1007_s00500_021_05950_8 crossref_primary_10_1063_5_0129324 crossref_primary_10_3233_AIC_210266 crossref_primary_10_3390_s23146382 crossref_primary_10_1007_s12555_021_0930_2 crossref_primary_10_1109_TITS_2024_3519162 crossref_primary_10_3390_s24010095 crossref_primary_10_1007_s12239_024_00179_4 crossref_primary_10_1109_TPAMI_2022_3162528 crossref_primary_10_1117_1_JEI_33_1_013008 crossref_primary_10_1155_2022_2056662 crossref_primary_10_1016_j_eswa_2021_115673 crossref_primary_10_1016_j_neucom_2021_10_087 crossref_primary_10_3390_electronics11193238 crossref_primary_10_1016_j_asoc_2023_110663 crossref_primary_10_1016_j_asoc_2024_112422 crossref_primary_10_1109_JBHI_2022_3192277 |
Cites_doi | 10.1109/TPAMI.2016.2572683 10.1109/CVPR.2016.396 10.1109/TITS.2017.2750080 10.1109/TCYB.2019.2928180 10.1109/CVPR.2016.91 10.1109/CVPR.2018.00474 10.1109/CVPR.2016.89 10.1109/CVPR.2017.634 10.1109/CVPR.2016.521 10.1109/ICCV.2017.534 10.1109/CVPR.2018.00291 10.1007/978-3-319-46493-0_32 10.1109/CVPR.2015.7298594 10.1007/978-3-030-01249-6_17 10.1007/978-3-540-88682-2_5 10.1109/ICCV.2015.169 10.1109/TPAMI.2017.2699184 10.1109/MWC.2019.1800325 10.1109/ICIP.2019.8803154 10.1007/978-3-030-01264-9_8 10.1109/TPAMI.2016.2644615 10.1109/CVPR.2016.90 10.1109/CVPR.2017.189 10.1109/LRA.2019.2894915 10.1109/CVPR.2016.308 10.1109/CVPR.2017.683 10.1109/CVPR.2018.00716 10.1109/CVPR.2017.660 10.1109/CVPR.2014.81 10.1109/CVPR.2016.350 10.1007/978-3-319-24574-4_28 10.1109/ACCESS.2019.2933479 10.1109/CVPR.2009.5206848 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106682 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106682 S1568494620306207 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-c70a6e499d1373e617920addc971dde4cff96df1983667f416a861be8b08bd903 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:02:06 EDT 2025 Tue Jul 01 01:50:07 EDT 2025 Fri Feb 23 02:43:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Self-driving Encoder–decoder networks Convolutional neural networks Robot vision Real-time semantic segmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-c70a6e499d1373e617920addc971dde4cff96df1983667f416a861be8b08bd903 |
ORCID | 0000-0002-7894-7929 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2020_106682 crossref_citationtrail_10_1016_j_asoc_2020_106682 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106682 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | J.K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio, Attention-based models for speech recognition, in: Annual Conference on Neural Information Processing Systems, 2015, pp. 577–585. L. Guosheng, M. Anton, S. Chunhua, I. Reid, RefineNet: multi-Path Refinement Networks for High-Resolution Semantic Segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 5168–5177. Poudel, Liwicki (b61) 2019 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Annual Conference on Neural Information Processing Systems, 2012, pp. 1097–1105. Zhang, Dana, Shi, Zhang, Wan, Tyagi, Agrawal (b52) 2018 C.Q. Yu, J.B. Wang, C. Peng, C.X. Gao, G. Yu, N. Sang, Learning a discriminative feature network for semantic segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 325–341. F. Wang, M.Q. Jiang, C. Qian, S. Yang, C. Li, H.Q. Zhang, X.G. Wang, X.O. Tang, Residual attention network for image classification, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 6450–6458. Chen, Papandreou, Kokkinos, Murphy, Yuille (b9) 2018; 40 N. Ma, X.Y. Zhang, H.T. Zheng, J. Sun, Shufflenet v2: Practical guidelines for efficient cnn architecture design, in: European Conference on Computer Vision, 2018, pp. 116–131. Chen, Cho, Kira (b15) 2019; 4 W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural networks with the hashing trick, in: International Conference on Machine Learning, 2015, pp. 2285–2294. C.Q. Yu, J.B. Wang, C. Peng, C.X. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: European Conference on Computer Vision, 2018, pp. 325–341. Mehta, Rastegari, Caspi, Shapiro, Hajishirzi (b30) 2018 Li, Yun, Kim, Kim (b33) 2019 M. Zhang, J. Lucas, J. Ba, G.E. Hinton, Lookahead Optimizer: k steps forward, 1 step back, in: Annual Conference on Neural Information Processing Systems, 2019, pp. 9593–9604. Romera, Alvarez, Bergasa, Arroyo (b22) 2018; 19 M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The scapes dataset for semantic urban scene understanding, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 3213–3223. W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning structured sparsity in deep neural networks, in: Annual Conference on Neural Information Processing Systems, 2016, pp. 2074–2082. Li, Tao, Liu (b16) 2019; 7 R. Girshick, Fast R-CNN, in: IEEE International Conference on Computer Vision, 2015, pp. 1440–1448. Z.L. Zhang, X.Y. Zhang, C. Peng, X.Y. Xue, J. Sun, Exfuse: Enhancing feature fusion for semantic segmentation, in: European Conference on Computer Vision, 2018, pp. 269–284. Liu, Jiang, He, Chen, Liu, Gao, Han (b64) 2019 G.J. Brostow, J. Shotton, J. Fauqueur, R. Cipolla, Segmentation and recognition using structure from motion point clouds, in: European Conference on Computer Vision, 2008, pp. 44–57. Xu, Lu, Song, Yang, Shen, Li (b49) 2020; 50 O. Ronneberger, F. Philipp, B. Thomas, U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical Image Computing and Computer Assisted Intervention, 2015, pp. 225–233. Liu, Yin (b32) 2019 Liu, Yin (b39) 2019 S.R.B. G. Neuhold, P. Kontschieder, The mapillary vistas dataset for semantic understanding of street scenes, in: IEEE International Conference on Computer Vision, 2017, pp. 4990–4999. Hu, Shen, Sun (b47) 2017 F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, in: International Conference on Learning Representations, 2016, pp. 1–10. S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, in: International Conference on Learning Representations, 2016, pp. 1–14. Paszke, Chaurasia, Kim, Culurciello (b21) 2016 Li, Xiong, An, Wang (b57) 2018 X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856. K. Xu, B. Jimmy, K. Ryan, Show attend and tell: Neural image caption generation with visual attention, in: International Conference on Machine Learning, 2015, pp. 2048–2057. Y. Wang, Q. Zhou, J. Liu, J. Xiong, G.W. Gao, X.F. Wu, L.J. Latecki, LEDNet: A lightweight encoder-decoder network for real-time semantic segmentation, in: IEEE International Conference on Image Processing, 2019, pp. 177–186. V. Mnih, N. Heess, A. Graves, Recurrent models of visual attention, in: Annual Conference on Neural Information Processing Systems, 2014, pp. 1–9. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. H. Zhao, J. Shi, X. Qi, X. Wang, J.Y. Jia, Pyramid scene parsing network, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 6230–6239. M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet classification using binary convolutional neural networks, in: European Conference on Computer Vision, 2016, pp. 525–542. G. Huang, S.C. Liu, L.V. der Maaten, K.Q. Weinberger, Condensenet: An efficient densenet using learned group convolutions, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 2752–2761. L.-C. Chen, Y. Yang, J. Wang, W. Xu, A.L. Yuille, Attention to scale: Scale-aware semantic image segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 3640–3649. S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 5987–5995. Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b23) 2017 Jonathan, Evan, Trevor (b8) 2017; 39 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical image database, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You nly look once: unified, real-time object detection, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in: Annual Conference on Neural Information Processing Systems, 2015, pp. 91–99. C. Peng, Z. Xiangyu, Y. Gang, L. Guiming, S. Jian, Large kernel matters: Improve semantic segmentation by global convolutional network, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 1743–1751. A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detectors with online hard example mining, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769. Yuan, Wang (b62) 2018 B. Liu, M. Wang, H. Foroosh, M. Tappen, M. Pensky, Sparse convolutional neural networks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2015, pp. 806–814. J. Wu, C. Leng, Y. Wang, Q. Hu, J. Cheng, Quantized convolutional neural networks for mobile devices, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 5168–5177. Zhao, Qi, Shen, Shi, Jia (b29) 2018 R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587. Vijay, Kendall, Cipolla (b13) 2017; 39 Poudel, Liwicki, Zach (b38) 2018 M. Sandler, A. Howard, M.L. Zhu, A. Zhmoginov, L.C. Chen, Mobilenet V2: Inverted residuals and linear bottlenecks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2019, pp. 4510–4520. Wu, Tang, Zhang, Zhang (b41) 2018 Lu, Wang, Li, Li, Li, Kim, Serikawa, Humar (b48) 2019; 26 Lo, Hang, Chan, Lin (b34) 2018 Mehta, Rastegari, Shapiro, Hajishirzi (b31) 2019 Yuan (10.1016/j.asoc.2020.106682_b62) 2018 Romera (10.1016/j.asoc.2020.106682_b22) 2018; 19 Xu (10.1016/j.asoc.2020.106682_b49) 2020; 50 10.1016/j.asoc.2020.106682_b37 10.1016/j.asoc.2020.106682_b36 10.1016/j.asoc.2020.106682_b35 Liu (10.1016/j.asoc.2020.106682_b64) 2019 Howard (10.1016/j.asoc.2020.106682_b23) 2017 Li (10.1016/j.asoc.2020.106682_b33) 2019 Mehta (10.1016/j.asoc.2020.106682_b31) 2019 10.1016/j.asoc.2020.106682_b45 10.1016/j.asoc.2020.106682_b44 10.1016/j.asoc.2020.106682_b43 10.1016/j.asoc.2020.106682_b42 Vijay (10.1016/j.asoc.2020.106682_b13) 2017; 39 10.1016/j.asoc.2020.106682_b40 Hu (10.1016/j.asoc.2020.106682_b47) 2017 Chen (10.1016/j.asoc.2020.106682_b15) 2019; 4 10.1016/j.asoc.2020.106682_b46 Poudel (10.1016/j.asoc.2020.106682_b61) 2019 Mehta (10.1016/j.asoc.2020.106682_b30) 2018 Zhao (10.1016/j.asoc.2020.106682_b29) 2018 Lu (10.1016/j.asoc.2020.106682_b48) 2019; 26 Wu (10.1016/j.asoc.2020.106682_b41) 2018 10.1016/j.asoc.2020.106682_b12 10.1016/j.asoc.2020.106682_b56 10.1016/j.asoc.2020.106682_b11 10.1016/j.asoc.2020.106682_b55 10.1016/j.asoc.2020.106682_b10 10.1016/j.asoc.2020.106682_b54 10.1016/j.asoc.2020.106682_b53 Liu (10.1016/j.asoc.2020.106682_b32) 2019 10.1016/j.asoc.2020.106682_b51 10.1016/j.asoc.2020.106682_b50 Zhang (10.1016/j.asoc.2020.106682_b52) 2018 10.1016/j.asoc.2020.106682_b19 10.1016/j.asoc.2020.106682_b18 10.1016/j.asoc.2020.106682_b17 10.1016/j.asoc.2020.106682_b59 10.1016/j.asoc.2020.106682_b14 10.1016/j.asoc.2020.106682_b58 Poudel (10.1016/j.asoc.2020.106682_b38) 2018 Liu (10.1016/j.asoc.2020.106682_b39) 2019 Chen (10.1016/j.asoc.2020.106682_b9) 2018; 40 10.1016/j.asoc.2020.106682_b65 Li (10.1016/j.asoc.2020.106682_b16) 2019; 7 10.1016/j.asoc.2020.106682_b20 10.1016/j.asoc.2020.106682_b63 Li (10.1016/j.asoc.2020.106682_b57) 2018 10.1016/j.asoc.2020.106682_b60 Jonathan (10.1016/j.asoc.2020.106682_b8) 2017; 39 10.1016/j.asoc.2020.106682_b1 10.1016/j.asoc.2020.106682_b28 10.1016/j.asoc.2020.106682_b3 10.1016/j.asoc.2020.106682_b27 10.1016/j.asoc.2020.106682_b2 10.1016/j.asoc.2020.106682_b26 10.1016/j.asoc.2020.106682_b5 10.1016/j.asoc.2020.106682_b25 10.1016/j.asoc.2020.106682_b4 Paszke (10.1016/j.asoc.2020.106682_b21) 2016 10.1016/j.asoc.2020.106682_b24 10.1016/j.asoc.2020.106682_b7 10.1016/j.asoc.2020.106682_b6 Lo (10.1016/j.asoc.2020.106682_b34) 2018 |
References_xml | – year: 2019 ident: b32 article-title: Feature pyramid encoding network for real-time semantic segmentation – year: 2018 ident: b57 article-title: Pyramid attention network for semantic segmentation – year: 2019 ident: b33 article-title: DABNet: depth-wise asymmetric bottleneck for real-time semantic segmentation – reference: A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detectors with online hard example mining, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769. – year: 2018 ident: b29 article-title: Icnet for real-time semantic segmentation on high-resolution images – reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You nly look once: unified, real-time object detection, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b13 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 640 year: 2017 end-page: 651 ident: b8 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2019 ident: b61 article-title: Fast-scnn: fast semantic segmentation network – reference: M. Zhang, J. Lucas, J. Ba, G.E. Hinton, Lookahead Optimizer: k steps forward, 1 step back, in: Annual Conference on Neural Information Processing Systems, 2019, pp. 9593–9604. – reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9. – reference: W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning structured sparsity in deep neural networks, in: Annual Conference on Neural Information Processing Systems, 2016, pp. 2074–2082. – reference: C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826. – reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Annual Conference on Neural Information Processing Systems, 2012, pp. 1097–1105. – volume: 19 start-page: 263 year: 2018 end-page: 272 ident: b22 article-title: ERFNet: Efficient residual factorized convnet for real-time semantic segmentation publication-title: IEEE Trans. Intell. Transp. Syst. – reference: G. Huang, S.C. Liu, L.V. der Maaten, K.Q. Weinberger, Condensenet: An efficient densenet using learned group convolutions, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 2752–2761. – reference: M. Sandler, A. Howard, M.L. Zhu, A. Zhmoginov, L.C. Chen, Mobilenet V2: Inverted residuals and linear bottlenecks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2019, pp. 4510–4520. – reference: S.R.B. G. Neuhold, P. Kontschieder, The mapillary vistas dataset for semantic understanding of street scenes, in: IEEE International Conference on Computer Vision, 2017, pp. 4990–4999. – reference: W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural networks with the hashing trick, in: International Conference on Machine Learning, 2015, pp. 2285–2294. – reference: C.Q. Yu, J.B. Wang, C. Peng, C.X. Gao, G. Yu, N. Sang, Learning a discriminative feature network for semantic segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 325–341. – reference: J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical image database, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – reference: L. Guosheng, M. Anton, S. Chunhua, I. Reid, RefineNet: multi-Path Refinement Networks for High-Resolution Semantic Segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 5168–5177. – reference: O. Ronneberger, F. Philipp, B. Thomas, U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical Image Computing and Computer Assisted Intervention, 2015, pp. 225–233. – reference: M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet classification using binary convolutional neural networks, in: European Conference on Computer Vision, 2016, pp. 525–542. – year: 2019 ident: b64 article-title: On the variance of the adaptive learning rate and beyond – year: 2018 ident: b62 article-title: OCNet: Object context network for scene parsing – reference: J. Wu, C. Leng, Y. Wang, Q. Hu, J. Cheng, Quantized convolutional neural networks for mobile devices, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 5168–5177. – reference: B. Liu, M. Wang, H. Foroosh, M. Tappen, M. Pensky, Sparse convolutional neural networks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2015, pp. 806–814. – year: 2018 ident: b34 article-title: Efficient dense modules of asymmetric convolution for real-time semantic segmentation – reference: F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, in: International Conference on Learning Representations, 2016, pp. 1–10. – year: 2019 ident: b39 article-title: Feature pyramid encoding network for real-time semantic segmentation – reference: K. Xu, B. Jimmy, K. Ryan, Show attend and tell: Neural image caption generation with visual attention, in: International Conference on Machine Learning, 2015, pp. 2048–2057. – reference: N. Ma, X.Y. Zhang, H.T. Zheng, J. Sun, Shufflenet v2: Practical guidelines for efficient cnn architecture design, in: European Conference on Computer Vision, 2018, pp. 116–131. – reference: C.Q. Yu, J.B. Wang, C. Peng, C.X. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: European Conference on Computer Vision, 2018, pp. 325–341. – reference: S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, in: International Conference on Learning Representations, 2016, pp. 1–14. – reference: V. Mnih, N. Heess, A. Graves, Recurrent models of visual attention, in: Annual Conference on Neural Information Processing Systems, 2014, pp. 1–9. – reference: Z.L. Zhang, X.Y. Zhang, C. Peng, X.Y. Xue, J. Sun, Exfuse: Enhancing feature fusion for semantic segmentation, in: European Conference on Computer Vision, 2018, pp. 269–284. – reference: L.-C. Chen, Y. Yang, J. Wang, W. Xu, A.L. Yuille, Attention to scale: Scale-aware semantic image segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 3640–3649. – volume: 26 start-page: 90 year: 2019 end-page: 96 ident: b48 article-title: CONet: A cognitive ocean network publication-title: IEEE Wirel. Commun. – reference: S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 5987–5995. – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: b9 article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: H. Zhao, J. Shi, X. Qi, X. Wang, J.Y. Jia, Pyramid scene parsing network, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 6230–6239. – year: 2019 ident: b31 article-title: ESPNet V2: A light-weight, power efficient, and general purpose convolutional neural network – volume: 4 start-page: 1240 year: 2019 end-page: 1246 ident: b15 article-title: Multi-view incremental segmentation of 3-D point clouds for mobile robots publication-title: IEEE Robot. Autom. Lett. – reference: F. Wang, M.Q. Jiang, C. Qian, S. Yang, C. Li, H.Q. Zhang, X.G. Wang, X.O. Tang, Residual attention network for image classification, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 6450–6458. – reference: X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856. – year: 2018 ident: b30 article-title: ESPNet: Efficient spatial pyramid of dilated convolutions for semantic segmentation – year: 2017 ident: b47 article-title: Squeeze-and-excitation networks – reference: J.K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio, Attention-based models for speech recognition, in: Annual Conference on Neural Information Processing Systems, 2015, pp. 577–585. – reference: G.J. Brostow, J. Shotton, J. Fauqueur, R. Cipolla, Segmentation and recognition using structure from motion point clouds, in: European Conference on Computer Vision, 2008, pp. 44–57. – year: 2018 ident: b38 article-title: Contextnet: Exploring context and detail for semantic segmentation in real-time – reference: R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587. – reference: R. Girshick, Fast R-CNN, in: IEEE International Conference on Computer Vision, 2015, pp. 1440–1448. – year: 2017 ident: b23 article-title: MobileNets: efficient convolutional neural networks for mobile vision applications – reference: S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in: Annual Conference on Neural Information Processing Systems, 2015, pp. 91–99. – reference: C. Peng, Z. Xiangyu, Y. Gang, L. Guiming, S. Jian, Large kernel matters: Improve semantic segmentation by global convolutional network, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 1743–1751. – year: 2016 ident: b21 article-title: Enet: A deep neural network architecture for real-time semantic segmentation – volume: 50 start-page: 2400 year: 2020 end-page: 2413 ident: b49 article-title: Ternary adversarial networks with self-supervision for zero-shot cross-modal retrieval publication-title: IEEE Trans. Cybern. – year: 2018 ident: b41 article-title: CGNet: A light-weight context guided network for semantic segmentation – reference: M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The scapes dataset for semantic urban scene understanding, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 3213–3223. – reference: Y. Wang, Q. Zhou, J. Liu, J. Xiong, G.W. Gao, X.F. Wu, L.J. Latecki, LEDNet: A lightweight encoder-decoder network for real-time semantic segmentation, in: IEEE International Conference on Image Processing, 2019, pp. 177–186. – volume: 7 start-page: 107602 year: 2019 end-page: 107615 ident: b16 article-title: Online semantic object segmentation for vision robot collected video publication-title: IEEE Access – year: 2018 ident: b52 article-title: Context encoding for semantic segmentation – ident: 10.1016/j.asoc.2020.106682_b24 – volume: 39 start-page: 640 issue: 4 year: 2017 ident: 10.1016/j.asoc.2020.106682_b8 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2572683 – ident: 10.1016/j.asoc.2020.106682_b45 doi: 10.1109/CVPR.2016.396 – volume: 19 start-page: 263 issue: 1 year: 2018 ident: 10.1016/j.asoc.2020.106682_b22 article-title: ERFNet: Efficient residual factorized convnet for real-time semantic segmentation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2750080 – volume: 50 start-page: 2400 issue: 6 year: 2020 ident: 10.1016/j.asoc.2020.106682_b49 article-title: Ternary adversarial networks with self-supervision for zero-shot cross-modal retrieval publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2928180 – year: 2019 ident: 10.1016/j.asoc.2020.106682_b64 – ident: 10.1016/j.asoc.2020.106682_b43 – year: 2019 ident: 10.1016/j.asoc.2020.106682_b39 – ident: 10.1016/j.asoc.2020.106682_b5 doi: 10.1109/CVPR.2016.91 – year: 2019 ident: 10.1016/j.asoc.2020.106682_b31 – ident: 10.1016/j.asoc.2020.106682_b27 doi: 10.1109/CVPR.2018.00474 – ident: 10.1016/j.asoc.2020.106682_b60 doi: 10.1109/CVPR.2016.89 – ident: 10.1016/j.asoc.2020.106682_b11 doi: 10.1109/CVPR.2017.634 – ident: 10.1016/j.asoc.2020.106682_b19 doi: 10.1109/CVPR.2016.521 – ident: 10.1016/j.asoc.2020.106682_b37 doi: 10.1109/ICCV.2017.534 – ident: 10.1016/j.asoc.2020.106682_b3 – year: 2018 ident: 10.1016/j.asoc.2020.106682_b38 – ident: 10.1016/j.asoc.2020.106682_b44 – ident: 10.1016/j.asoc.2020.106682_b42 doi: 10.1109/CVPR.2018.00291 – ident: 10.1016/j.asoc.2020.106682_b20 doi: 10.1007/978-3-319-46493-0_32 – ident: 10.1016/j.asoc.2020.106682_b2 doi: 10.1109/CVPR.2015.7298594 – ident: 10.1016/j.asoc.2020.106682_b58 doi: 10.1007/978-3-030-01249-6_17 – ident: 10.1016/j.asoc.2020.106682_b65 – ident: 10.1016/j.asoc.2020.106682_b40 – year: 2018 ident: 10.1016/j.asoc.2020.106682_b52 – ident: 10.1016/j.asoc.2020.106682_b36 doi: 10.1007/978-3-540-88682-2_5 – ident: 10.1016/j.asoc.2020.106682_b6 doi: 10.1109/ICCV.2015.169 – year: 2016 ident: 10.1016/j.asoc.2020.106682_b21 – year: 2018 ident: 10.1016/j.asoc.2020.106682_b30 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 10.1016/j.asoc.2020.106682_b9 article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: 10.1016/j.asoc.2020.106682_b50 – ident: 10.1016/j.asoc.2020.106682_b12 – year: 2019 ident: 10.1016/j.asoc.2020.106682_b32 – year: 2018 ident: 10.1016/j.asoc.2020.106682_b41 – volume: 26 start-page: 90 issue: 3 year: 2019 ident: 10.1016/j.asoc.2020.106682_b48 article-title: CONet: A cognitive ocean network publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2019.1800325 – ident: 10.1016/j.asoc.2020.106682_b53 doi: 10.1109/ICIP.2019.8803154 – ident: 10.1016/j.asoc.2020.106682_b28 doi: 10.1007/978-3-030-01264-9_8 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.asoc.2020.106682_b13 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – year: 2018 ident: 10.1016/j.asoc.2020.106682_b34 – ident: 10.1016/j.asoc.2020.106682_b1 doi: 10.1109/CVPR.2016.90 – ident: 10.1016/j.asoc.2020.106682_b56 doi: 10.1109/CVPR.2017.189 – year: 2018 ident: 10.1016/j.asoc.2020.106682_b57 – volume: 4 start-page: 1240 issue: 2 year: 2019 ident: 10.1016/j.asoc.2020.106682_b15 article-title: Multi-view incremental segmentation of 3-D point clouds for mobile robots publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2894915 – year: 2019 ident: 10.1016/j.asoc.2020.106682_b61 – ident: 10.1016/j.asoc.2020.106682_b10 doi: 10.1109/CVPR.2016.308 – ident: 10.1016/j.asoc.2020.106682_b59 – ident: 10.1016/j.asoc.2020.106682_b17 – ident: 10.1016/j.asoc.2020.106682_b51 – ident: 10.1016/j.asoc.2020.106682_b46 doi: 10.1109/CVPR.2017.683 – year: 2017 ident: 10.1016/j.asoc.2020.106682_b23 – ident: 10.1016/j.asoc.2020.106682_b26 doi: 10.1109/CVPR.2018.00716 – year: 2019 ident: 10.1016/j.asoc.2020.106682_b33 – ident: 10.1016/j.asoc.2020.106682_b55 doi: 10.1109/CVPR.2017.660 – ident: 10.1016/j.asoc.2020.106682_b7 doi: 10.1109/CVPR.2014.81 – ident: 10.1016/j.asoc.2020.106682_b35 doi: 10.1109/CVPR.2016.350 – ident: 10.1016/j.asoc.2020.106682_b25 – ident: 10.1016/j.asoc.2020.106682_b54 doi: 10.1007/978-3-319-24574-4_28 – year: 2018 ident: 10.1016/j.asoc.2020.106682_b62 – volume: 7 start-page: 107602 issue: 2 year: 2019 ident: 10.1016/j.asoc.2020.106682_b16 article-title: Online semantic object segmentation for vision robot collected video publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933479 – year: 2017 ident: 10.1016/j.asoc.2020.106682_b47 – year: 2018 ident: 10.1016/j.asoc.2020.106682_b29 – ident: 10.1016/j.asoc.2020.106682_b4 – ident: 10.1016/j.asoc.2020.106682_b18 – ident: 10.1016/j.asoc.2020.106682_b14 doi: 10.1109/CVPR.2017.660 – ident: 10.1016/j.asoc.2020.106682_b63 doi: 10.1109/CVPR.2009.5206848 |
SSID | ssj0016928 |
Score | 2.5902548 |
Snippet | The extensive computational burden limits the usage of convolutional neural networks (CNNs) in edge devices for image semantic segmentation, which plays a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106682 |
SubjectTerms | Convolutional neural networks Encoder–decoder networks Real-time semantic segmentation Robot vision Self-driving |
Title | AGLNet: Towards real-time semantic segmentation of self-driving images via attention-guided lightweight network |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106682 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yL178FucXOXiTuH6mjbcx1KlziG6wW2mTdFS6bmxTb_7tvtemoiA7eGoTklJ-Sd5H-L33CDn3FReaezGTtnKZBx4Kw9pWLHRSOOagEQKFjuJjn3eH3v3IH62RTh0Lg7RKI_srmV5Ka9PTMmi2ZlnWegHPI_SExx00e50yohyz18Gevvz8pnnYXJT1VXEww9EmcKbieMWAAPiIDnZwHjp_K6cfCudmm2waS5G2q5_ZIWu62CVbdRUGag7lHpm2b3t9vbyig5IBu6BgBuYMa8bThZ4AcJmEl_HEBBkVdJpCO0-Zmmd4m0CzCciUBX3PYorJNkv6Ixu_ZUormqPv_lFen9KiYozvk-HN9aDTZaaMApOuZS2ZDKyYa_BslO0GrgaTRTgWiDUpAhuEmyfTVHCV2iJ0YWlSsNDikNuJDhMrTJSw3APSKKaFPiRUai_0U6l8K0m8IOBx7PuBSFSM3xa-1SR2jV8kTY5xLHWRRzWZ7DVCzCPEPKowb5KL7zmzKsPGytF-vSzRr30SgQpYMe_on_OOyQa2qujDE9JYzt_0KZghy-Ss3GdnZL3dee494fPuodv_AoX_3uU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZQGWDhRpTTAxuymsNxYrYKUVooXWgltiixHRTUplUP-Pu8lzgVSIiBLT5eFH223-G8g5DrQAtpBE-YcrXPOFgoDGtbscjL4JiDRAg1GorPA9Ed8cfX4HWD3NWxMOhWaXl_xdNLbm17WhbN1izPWy9geURccuGh2uthRPkmZqfiDbLZ7j11B-ufCUKWJVZxPkMCGztTuXklAAKYiR52CBF5v8unbzKns0d2rLJI29X37JMNUxyQ3boQA7Xn8pBM2w_9gVne0mHpBLugoAmOGZaNpwszAexyBQ9vExtnVNBpBu1xxvQ8xwsFmk-ArSzoR55QzLdZekCyt1WujaZjNN8_yxtUWlRO40dk1Lkf3nWZraTAlO84S6ZCJxEGjBvt-qFvQGuRngOcTcnQBf7GVZZJoTNXRj6sTgZKWhIJNzVR6kSplo5_TBrFtDAnhCrDoyBTOnDSlIehSJIgCGWqE3y3DJwmcWv8YmXTjGO1i3Fc-5O9x4h5jJjHFeZNcrOmmVVJNv6cHdTLEv_YKjFIgT_oTv9Jd0W2usPnftzvDZ7OyDaOVMGI56SxnK_MBWgly_TS7rovM2rgAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AGLNet%3A+Towards+real-time+semantic+segmentation+of+self-driving+images+via+attention-guided+lightweight+network&rft.jtitle=Applied+soft+computing&rft.au=Zhou%2C+Quan&rft.au=Wang%2C+Yu&rft.au=Fan%2C+Yawen&rft.au=Wu%2C+Xiaofu&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=96&rft_id=info:doi/10.1016%2Fj.asoc.2020.106682&rft.externalDocID=S1568494620306207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |