AGLNet: Towards real-time semantic segmentation of self-driving images via attention-guided lightweight network

The extensive computational burden limits the usage of convolutional neural networks (CNNs) in edge devices for image semantic segmentation, which plays a significant role in many real-world applications, such as augmented reality, robotics, and self-driving. To address this problem, this paper pres...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 96; p. 106682
Main Authors Zhou, Quan, Wang, Yu, Fan, Yawen, Wu, Xiaofu, Zhang, Suofei, Kang, Bin, Latecki, Longin Jan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2020
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2020.106682

Cover

Loading…
Abstract The extensive computational burden limits the usage of convolutional neural networks (CNNs) in edge devices for image semantic segmentation, which plays a significant role in many real-world applications, such as augmented reality, robotics, and self-driving. To address this problem, this paper presents an attention-guided lightweight network, namely AGLNet, which employs an encoder–decoder architecture for real-time semantic segmentation. Specifically, the encoder adopts a novel residual module to abstract feature representations, where two new operations, channel split and shuffle, are utilized to greatly reduce computation cost while maintaining higher segmentation accuracy. On the other hand, instead of using complicated dilated convolution and artificially designed architecture, two types of attention mechanism are subsequently employed in the decoder to upsample features to match input resolution. Specifically, a factorized attention pyramid module (FAPM) is used to explore hierarchical spatial attention from high-level output, still remaining fewer model parameters. To delineate object shapes and boundaries, a global attention upsample module (GAUM) is adopted as global guidance for high-level features. The comprehensive experiments demonstrate that our approach achieves state-of-the-art results in terms of speed and accuracy on three self-driving datasets: CityScapes, CamVid, and Mapillary Vistas. AGLNet achieves 71.3%, 69.4%, and 30.7% mean IoU on these datasets with only 1.12M model parameters. Our method also achieves 52 FPS, 90 FPS, and 53 FPS inference speed, respectively, using a single GTX 1080Ti GPU. Our code is open-source and available at https://github.com/xiaoyufenfei/Efficient-Segmentation-Networks. •AGLNet employs SS-nbt unit in encoder, and decoder is guided by attention mechanism.•The SS-nbt unit adopts an 1D factorized convolution with channel split and shuffle operation.•Two attention module, FAPM and GAUM, are employed to improve segmentation accuracy.•AGLNet achieves available state-of-theart results in terms of speed and accuracy.
AbstractList The extensive computational burden limits the usage of convolutional neural networks (CNNs) in edge devices for image semantic segmentation, which plays a significant role in many real-world applications, such as augmented reality, robotics, and self-driving. To address this problem, this paper presents an attention-guided lightweight network, namely AGLNet, which employs an encoder–decoder architecture for real-time semantic segmentation. Specifically, the encoder adopts a novel residual module to abstract feature representations, where two new operations, channel split and shuffle, are utilized to greatly reduce computation cost while maintaining higher segmentation accuracy. On the other hand, instead of using complicated dilated convolution and artificially designed architecture, two types of attention mechanism are subsequently employed in the decoder to upsample features to match input resolution. Specifically, a factorized attention pyramid module (FAPM) is used to explore hierarchical spatial attention from high-level output, still remaining fewer model parameters. To delineate object shapes and boundaries, a global attention upsample module (GAUM) is adopted as global guidance for high-level features. The comprehensive experiments demonstrate that our approach achieves state-of-the-art results in terms of speed and accuracy on three self-driving datasets: CityScapes, CamVid, and Mapillary Vistas. AGLNet achieves 71.3%, 69.4%, and 30.7% mean IoU on these datasets with only 1.12M model parameters. Our method also achieves 52 FPS, 90 FPS, and 53 FPS inference speed, respectively, using a single GTX 1080Ti GPU. Our code is open-source and available at https://github.com/xiaoyufenfei/Efficient-Segmentation-Networks. •AGLNet employs SS-nbt unit in encoder, and decoder is guided by attention mechanism.•The SS-nbt unit adopts an 1D factorized convolution with channel split and shuffle operation.•Two attention module, FAPM and GAUM, are employed to improve segmentation accuracy.•AGLNet achieves available state-of-theart results in terms of speed and accuracy.
ArticleNumber 106682
Author Zhou, Quan
Zhang, Suofei
Wang, Yu
Fan, Yawen
Latecki, Longin Jan
Wu, Xiaofu
Kang, Bin
Author_xml – sequence: 1
  givenname: Quan
  orcidid: 0000-0002-7894-7929
  surname: Zhou
  fullname: Zhou, Quan
  email: quan.zhou@njupt.edu.cn
  organization: National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China
– sequence: 2
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China
– sequence: 3
  givenname: Yawen
  surname: Fan
  fullname: Fan, Yawen
  organization: National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China
– sequence: 4
  givenname: Xiaofu
  surname: Wu
  fullname: Wu, Xiaofu
  organization: National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China
– sequence: 5
  givenname: Suofei
  surname: Zhang
  fullname: Zhang, Suofei
  organization: Department of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China
– sequence: 6
  givenname: Bin
  surname: Kang
  fullname: Kang, Bin
  organization: Department of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, 21003, China
– sequence: 7
  givenname: Longin Jan
  surname: Latecki
  fullname: Latecki, Longin Jan
  organization: Department of Computer and Information Science, Temple University, Philadelphia, USA
BookMark eNp9kM9OAyEQxonRxLb6Ap54ga2wu7JgvDSNVpNGL_VMKAwrdbsYwDa-vWzWk4de5l_mN5nvm6Lz3veA0A0lc0oou93NVfR6XpJyGDDGyzM0obwpC8E4Pc_1HeNFLWp2iaYx7kiGRMknyC9W61dI93jjjyqYiAOorkhuDzjCXvXJ6Vy0e-iTSs732Nvcd7YwwR1c32K3Vy1EfHAKq5TyWl4q2m9nwODOtR_pCEPEPaSjD59X6MKqLsL1X56h96fHzfK5WL-tXpaLdaErQlKhG6IY1EIYWjUVMNqIkihjtGioMVBrawUzlgpeMdbYmjLFGd0C3xK-NYJUM1SOd3XwMQaw8ivkV8OPpEQOlsmdHCyTg2VytCxD_B-k3Sg7BeW60-jDiEIWdXAQZNQOeg3GBdBJGu9O4b85fIu3
CitedBy_id crossref_primary_10_1007_s10489_022_03293_x
crossref_primary_10_1016_j_neucom_2022_11_062
crossref_primary_10_1109_TGRS_2023_3251659
crossref_primary_10_1109_JBHI_2021_3138986
crossref_primary_10_1109_TIV_2022_3176860
crossref_primary_10_1016_j_compeleceng_2022_107777
crossref_primary_10_1016_j_asoc_2024_112065
crossref_primary_10_1007_s40747_023_01054_y
crossref_primary_10_1016_j_patcog_2021_108372
crossref_primary_10_1016_j_compeleceng_2024_109996
crossref_primary_10_1007_s13735_024_00321_z
crossref_primary_10_1007_s10489_021_02446_8
crossref_primary_10_53941_ijndi_2025_100006
crossref_primary_10_1016_j_asoc_2021_107511
crossref_primary_10_1109_ACCESS_2021_3071866
crossref_primary_10_1016_j_neucom_2022_07_041
crossref_primary_10_1007_s10044_024_01237_4
crossref_primary_10_1016_j_knosys_2022_108368
crossref_primary_10_1109_TITS_2022_3165155
crossref_primary_10_1016_j_eswa_2024_124610
crossref_primary_10_1016_j_imavis_2021_104309
crossref_primary_10_1111_coin_12646
crossref_primary_10_1016_j_fuel_2021_121844
crossref_primary_10_1155_2022_8417295
crossref_primary_10_1016_j_eswa_2024_123249
crossref_primary_10_1016_j_neucom_2021_01_002
crossref_primary_10_1155_2022_6100292
crossref_primary_10_1109_TITS_2023_3348631
crossref_primary_10_1007_s11280_021_00938_8
crossref_primary_10_1049_ipr2_12816
crossref_primary_10_1007_s40747_024_01582_1
crossref_primary_10_1016_j_asoc_2022_109005
crossref_primary_10_1016_j_eswa_2021_115090
crossref_primary_10_3390_electronics13173361
crossref_primary_10_3390_ma16072811
crossref_primary_10_1016_j_neucom_2024_128991
crossref_primary_10_1016_j_asoc_2021_107445
crossref_primary_10_1155_2021_1333250
crossref_primary_10_1016_j_jksuci_2024_102226
crossref_primary_10_1007_s11063_023_11145_z
crossref_primary_10_1109_TSMC_2021_3132026
crossref_primary_10_1007_s10044_023_01207_2
crossref_primary_10_1016_j_neucom_2022_11_084
crossref_primary_10_1109_ACCESS_2025_3540454
crossref_primary_10_1016_j_neucom_2021_03_044
crossref_primary_10_1155_2021_5563875
crossref_primary_10_3390_app122111040
crossref_primary_10_1007_s00371_021_02115_4
crossref_primary_10_1109_LSP_2021_3070472
crossref_primary_10_11834_jig_230605
crossref_primary_10_1016_j_neunet_2021_08_008
crossref_primary_10_1002_rob_22438
crossref_primary_10_1007_s13042_023_02077_0
crossref_primary_10_1007_s13369_022_06964_6
crossref_primary_10_1109_TITS_2024_3492383
crossref_primary_10_1016_j_neucom_2021_12_003
crossref_primary_10_1007_s00371_024_03569_y
crossref_primary_10_1080_0952813X_2021_1908432
crossref_primary_10_1109_TIP_2024_3425048
crossref_primary_10_3390_app14167291
crossref_primary_10_1016_j_neucom_2022_06_065
crossref_primary_10_1109_TITS_2023_3313982
crossref_primary_10_1007_s11042_023_17659_x
crossref_primary_10_1109_TNNLS_2022_3176493
crossref_primary_10_3390_f13122170
crossref_primary_10_1007_s00500_021_05950_8
crossref_primary_10_1063_5_0129324
crossref_primary_10_3233_AIC_210266
crossref_primary_10_3390_s23146382
crossref_primary_10_1007_s12555_021_0930_2
crossref_primary_10_1109_TITS_2024_3519162
crossref_primary_10_3390_s24010095
crossref_primary_10_1007_s12239_024_00179_4
crossref_primary_10_1109_TPAMI_2022_3162528
crossref_primary_10_1117_1_JEI_33_1_013008
crossref_primary_10_1155_2022_2056662
crossref_primary_10_1016_j_eswa_2021_115673
crossref_primary_10_1016_j_neucom_2021_10_087
crossref_primary_10_3390_electronics11193238
crossref_primary_10_1016_j_asoc_2023_110663
crossref_primary_10_1016_j_asoc_2024_112422
crossref_primary_10_1109_JBHI_2022_3192277
Cites_doi 10.1109/TPAMI.2016.2572683
10.1109/CVPR.2016.396
10.1109/TITS.2017.2750080
10.1109/TCYB.2019.2928180
10.1109/CVPR.2016.91
10.1109/CVPR.2018.00474
10.1109/CVPR.2016.89
10.1109/CVPR.2017.634
10.1109/CVPR.2016.521
10.1109/ICCV.2017.534
10.1109/CVPR.2018.00291
10.1007/978-3-319-46493-0_32
10.1109/CVPR.2015.7298594
10.1007/978-3-030-01249-6_17
10.1007/978-3-540-88682-2_5
10.1109/ICCV.2015.169
10.1109/TPAMI.2017.2699184
10.1109/MWC.2019.1800325
10.1109/ICIP.2019.8803154
10.1007/978-3-030-01264-9_8
10.1109/TPAMI.2016.2644615
10.1109/CVPR.2016.90
10.1109/CVPR.2017.189
10.1109/LRA.2019.2894915
10.1109/CVPR.2016.308
10.1109/CVPR.2017.683
10.1109/CVPR.2018.00716
10.1109/CVPR.2017.660
10.1109/CVPR.2014.81
10.1109/CVPR.2016.350
10.1007/978-3-319-24574-4_28
10.1109/ACCESS.2019.2933479
10.1109/CVPR.2009.5206848
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106682
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106682
S1568494620306207
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-c70a6e499d1373e617920addc971dde4cff96df1983667f416a861be8b08bd903
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:02:06 EDT 2025
Tue Jul 01 01:50:07 EDT 2025
Fri Feb 23 02:43:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Self-driving
Encoder–decoder networks
Convolutional neural networks
Robot vision
Real-time semantic segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-c70a6e499d1373e617920addc971dde4cff96df1983667f416a861be8b08bd903
ORCID 0000-0002-7894-7929
ParticipantIDs crossref_primary_10_1016_j_asoc_2020_106682
crossref_citationtrail_10_1016_j_asoc_2020_106682
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106682
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References J.K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio, Attention-based models for speech recognition, in: Annual Conference on Neural Information Processing Systems, 2015, pp. 577–585.
L. Guosheng, M. Anton, S. Chunhua, I. Reid, RefineNet: multi-Path Refinement Networks for High-Resolution Semantic Segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 5168–5177.
Poudel, Liwicki (b61) 2019
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Annual Conference on Neural Information Processing Systems, 2012, pp. 1097–1105.
Zhang, Dana, Shi, Zhang, Wan, Tyagi, Agrawal (b52) 2018
C.Q. Yu, J.B. Wang, C. Peng, C.X. Gao, G. Yu, N. Sang, Learning a discriminative feature network for semantic segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 325–341.
F. Wang, M.Q. Jiang, C. Qian, S. Yang, C. Li, H.Q. Zhang, X.G. Wang, X.O. Tang, Residual attention network for image classification, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 6450–6458.
Chen, Papandreou, Kokkinos, Murphy, Yuille (b9) 2018; 40
N. Ma, X.Y. Zhang, H.T. Zheng, J. Sun, Shufflenet v2: Practical guidelines for efficient cnn architecture design, in: European Conference on Computer Vision, 2018, pp. 116–131.
Chen, Cho, Kira (b15) 2019; 4
W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural networks with the hashing trick, in: International Conference on Machine Learning, 2015, pp. 2285–2294.
C.Q. Yu, J.B. Wang, C. Peng, C.X. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: European Conference on Computer Vision, 2018, pp. 325–341.
Mehta, Rastegari, Caspi, Shapiro, Hajishirzi (b30) 2018
Li, Yun, Kim, Kim (b33) 2019
M. Zhang, J. Lucas, J. Ba, G.E. Hinton, Lookahead Optimizer: k steps forward, 1 step back, in: Annual Conference on Neural Information Processing Systems, 2019, pp. 9593–9604.
Romera, Alvarez, Bergasa, Arroyo (b22) 2018; 19
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The scapes dataset for semantic urban scene understanding, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 3213–3223.
W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning structured sparsity in deep neural networks, in: Annual Conference on Neural Information Processing Systems, 2016, pp. 2074–2082.
Li, Tao, Liu (b16) 2019; 7
R. Girshick, Fast R-CNN, in: IEEE International Conference on Computer Vision, 2015, pp. 1440–1448.
Z.L. Zhang, X.Y. Zhang, C. Peng, X.Y. Xue, J. Sun, Exfuse: Enhancing feature fusion for semantic segmentation, in: European Conference on Computer Vision, 2018, pp. 269–284.
Liu, Jiang, He, Chen, Liu, Gao, Han (b64) 2019
G.J. Brostow, J. Shotton, J. Fauqueur, R. Cipolla, Segmentation and recognition using structure from motion point clouds, in: European Conference on Computer Vision, 2008, pp. 44–57.
Xu, Lu, Song, Yang, Shen, Li (b49) 2020; 50
O. Ronneberger, F. Philipp, B. Thomas, U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical Image Computing and Computer Assisted Intervention, 2015, pp. 225–233.
Liu, Yin (b32) 2019
Liu, Yin (b39) 2019
S.R.B. G. Neuhold, P. Kontschieder, The mapillary vistas dataset for semantic understanding of street scenes, in: IEEE International Conference on Computer Vision, 2017, pp. 4990–4999.
Hu, Shen, Sun (b47) 2017
F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, in: International Conference on Learning Representations, 2016, pp. 1–10.
S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, in: International Conference on Learning Representations, 2016, pp. 1–14.
Paszke, Chaurasia, Kim, Culurciello (b21) 2016
Li, Xiong, An, Wang (b57) 2018
X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856.
K. Xu, B. Jimmy, K. Ryan, Show attend and tell: Neural image caption generation with visual attention, in: International Conference on Machine Learning, 2015, pp. 2048–2057.
Y. Wang, Q. Zhou, J. Liu, J. Xiong, G.W. Gao, X.F. Wu, L.J. Latecki, LEDNet: A lightweight encoder-decoder network for real-time semantic segmentation, in: IEEE International Conference on Image Processing, 2019, pp. 177–186.
V. Mnih, N. Heess, A. Graves, Recurrent models of visual attention, in: Annual Conference on Neural Information Processing Systems, 2014, pp. 1–9.
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
H. Zhao, J. Shi, X. Qi, X. Wang, J.Y. Jia, Pyramid scene parsing network, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 6230–6239.
M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet classification using binary convolutional neural networks, in: European Conference on Computer Vision, 2016, pp. 525–542.
G. Huang, S.C. Liu, L.V. der Maaten, K.Q. Weinberger, Condensenet: An efficient densenet using learned group convolutions, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 2752–2761.
L.-C. Chen, Y. Yang, J. Wang, W. Xu, A.L. Yuille, Attention to scale: Scale-aware semantic image segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 3640–3649.
S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 5987–5995.
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b23) 2017
Jonathan, Evan, Trevor (b8) 2017; 39
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical image database, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You nly look once: unified, real-time object detection, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in: Annual Conference on Neural Information Processing Systems, 2015, pp. 91–99.
C. Peng, Z. Xiangyu, Y. Gang, L. Guiming, S. Jian, Large kernel matters: Improve semantic segmentation by global convolutional network, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 1743–1751.
A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detectors with online hard example mining, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769.
Yuan, Wang (b62) 2018
B. Liu, M. Wang, H. Foroosh, M. Tappen, M. Pensky, Sparse convolutional neural networks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2015, pp. 806–814.
J. Wu, C. Leng, Y. Wang, Q. Hu, J. Cheng, Quantized convolutional neural networks for mobile devices, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 5168–5177.
Zhao, Qi, Shen, Shi, Jia (b29) 2018
R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.
Vijay, Kendall, Cipolla (b13) 2017; 39
Poudel, Liwicki, Zach (b38) 2018
M. Sandler, A. Howard, M.L. Zhu, A. Zhmoginov, L.C. Chen, Mobilenet V2: Inverted residuals and linear bottlenecks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2019, pp. 4510–4520.
Wu, Tang, Zhang, Zhang (b41) 2018
Lu, Wang, Li, Li, Li, Kim, Serikawa, Humar (b48) 2019; 26
Lo, Hang, Chan, Lin (b34) 2018
Mehta, Rastegari, Shapiro, Hajishirzi (b31) 2019
Yuan (10.1016/j.asoc.2020.106682_b62) 2018
Romera (10.1016/j.asoc.2020.106682_b22) 2018; 19
Xu (10.1016/j.asoc.2020.106682_b49) 2020; 50
10.1016/j.asoc.2020.106682_b37
10.1016/j.asoc.2020.106682_b36
10.1016/j.asoc.2020.106682_b35
Liu (10.1016/j.asoc.2020.106682_b64) 2019
Howard (10.1016/j.asoc.2020.106682_b23) 2017
Li (10.1016/j.asoc.2020.106682_b33) 2019
Mehta (10.1016/j.asoc.2020.106682_b31) 2019
10.1016/j.asoc.2020.106682_b45
10.1016/j.asoc.2020.106682_b44
10.1016/j.asoc.2020.106682_b43
10.1016/j.asoc.2020.106682_b42
Vijay (10.1016/j.asoc.2020.106682_b13) 2017; 39
10.1016/j.asoc.2020.106682_b40
Hu (10.1016/j.asoc.2020.106682_b47) 2017
Chen (10.1016/j.asoc.2020.106682_b15) 2019; 4
10.1016/j.asoc.2020.106682_b46
Poudel (10.1016/j.asoc.2020.106682_b61) 2019
Mehta (10.1016/j.asoc.2020.106682_b30) 2018
Zhao (10.1016/j.asoc.2020.106682_b29) 2018
Lu (10.1016/j.asoc.2020.106682_b48) 2019; 26
Wu (10.1016/j.asoc.2020.106682_b41) 2018
10.1016/j.asoc.2020.106682_b12
10.1016/j.asoc.2020.106682_b56
10.1016/j.asoc.2020.106682_b11
10.1016/j.asoc.2020.106682_b55
10.1016/j.asoc.2020.106682_b10
10.1016/j.asoc.2020.106682_b54
10.1016/j.asoc.2020.106682_b53
Liu (10.1016/j.asoc.2020.106682_b32) 2019
10.1016/j.asoc.2020.106682_b51
10.1016/j.asoc.2020.106682_b50
Zhang (10.1016/j.asoc.2020.106682_b52) 2018
10.1016/j.asoc.2020.106682_b19
10.1016/j.asoc.2020.106682_b18
10.1016/j.asoc.2020.106682_b17
10.1016/j.asoc.2020.106682_b59
10.1016/j.asoc.2020.106682_b14
10.1016/j.asoc.2020.106682_b58
Poudel (10.1016/j.asoc.2020.106682_b38) 2018
Liu (10.1016/j.asoc.2020.106682_b39) 2019
Chen (10.1016/j.asoc.2020.106682_b9) 2018; 40
10.1016/j.asoc.2020.106682_b65
Li (10.1016/j.asoc.2020.106682_b16) 2019; 7
10.1016/j.asoc.2020.106682_b20
10.1016/j.asoc.2020.106682_b63
Li (10.1016/j.asoc.2020.106682_b57) 2018
10.1016/j.asoc.2020.106682_b60
Jonathan (10.1016/j.asoc.2020.106682_b8) 2017; 39
10.1016/j.asoc.2020.106682_b1
10.1016/j.asoc.2020.106682_b28
10.1016/j.asoc.2020.106682_b3
10.1016/j.asoc.2020.106682_b27
10.1016/j.asoc.2020.106682_b2
10.1016/j.asoc.2020.106682_b26
10.1016/j.asoc.2020.106682_b5
10.1016/j.asoc.2020.106682_b25
10.1016/j.asoc.2020.106682_b4
Paszke (10.1016/j.asoc.2020.106682_b21) 2016
10.1016/j.asoc.2020.106682_b24
10.1016/j.asoc.2020.106682_b7
10.1016/j.asoc.2020.106682_b6
Lo (10.1016/j.asoc.2020.106682_b34) 2018
References_xml – year: 2019
  ident: b32
  article-title: Feature pyramid encoding network for real-time semantic segmentation
– year: 2018
  ident: b57
  article-title: Pyramid attention network for semantic segmentation
– year: 2019
  ident: b33
  article-title: DABNet: depth-wise asymmetric bottleneck for real-time semantic segmentation
– reference: A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detectors with online hard example mining, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769.
– year: 2018
  ident: b29
  article-title: Icnet for real-time semantic segmentation on high-resolution images
– reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You nly look once: unified, real-time object detection, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b13
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: b8
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2019
  ident: b61
  article-title: Fast-scnn: fast semantic segmentation network
– reference: M. Zhang, J. Lucas, J. Ba, G.E. Hinton, Lookahead Optimizer: k steps forward, 1 step back, in: Annual Conference on Neural Information Processing Systems, 2019, pp. 9593–9604.
– reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
– reference: W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning structured sparsity in deep neural networks, in: Annual Conference on Neural Information Processing Systems, 2016, pp. 2074–2082.
– reference: C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
– reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Annual Conference on Neural Information Processing Systems, 2012, pp. 1097–1105.
– volume: 19
  start-page: 263
  year: 2018
  end-page: 272
  ident: b22
  article-title: ERFNet: Efficient residual factorized convnet for real-time semantic segmentation
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: G. Huang, S.C. Liu, L.V. der Maaten, K.Q. Weinberger, Condensenet: An efficient densenet using learned group convolutions, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 2752–2761.
– reference: M. Sandler, A. Howard, M.L. Zhu, A. Zhmoginov, L.C. Chen, Mobilenet V2: Inverted residuals and linear bottlenecks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2019, pp. 4510–4520.
– reference: S.R.B. G. Neuhold, P. Kontschieder, The mapillary vistas dataset for semantic understanding of street scenes, in: IEEE International Conference on Computer Vision, 2017, pp. 4990–4999.
– reference: W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural networks with the hashing trick, in: International Conference on Machine Learning, 2015, pp. 2285–2294.
– reference: C.Q. Yu, J.B. Wang, C. Peng, C.X. Gao, G. Yu, N. Sang, Learning a discriminative feature network for semantic segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 325–341.
– reference: J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical image database, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– reference: L. Guosheng, M. Anton, S. Chunhua, I. Reid, RefineNet: multi-Path Refinement Networks for High-Resolution Semantic Segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 5168–5177.
– reference: O. Ronneberger, F. Philipp, B. Thomas, U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical Image Computing and Computer Assisted Intervention, 2015, pp. 225–233.
– reference: M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet classification using binary convolutional neural networks, in: European Conference on Computer Vision, 2016, pp. 525–542.
– year: 2019
  ident: b64
  article-title: On the variance of the adaptive learning rate and beyond
– year: 2018
  ident: b62
  article-title: OCNet: Object context network for scene parsing
– reference: J. Wu, C. Leng, Y. Wang, Q. Hu, J. Cheng, Quantized convolutional neural networks for mobile devices, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 5168–5177.
– reference: B. Liu, M. Wang, H. Foroosh, M. Tappen, M. Pensky, Sparse convolutional neural networks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2015, pp. 806–814.
– year: 2018
  ident: b34
  article-title: Efficient dense modules of asymmetric convolution for real-time semantic segmentation
– reference: F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, in: International Conference on Learning Representations, 2016, pp. 1–10.
– year: 2019
  ident: b39
  article-title: Feature pyramid encoding network for real-time semantic segmentation
– reference: K. Xu, B. Jimmy, K. Ryan, Show attend and tell: Neural image caption generation with visual attention, in: International Conference on Machine Learning, 2015, pp. 2048–2057.
– reference: N. Ma, X.Y. Zhang, H.T. Zheng, J. Sun, Shufflenet v2: Practical guidelines for efficient cnn architecture design, in: European Conference on Computer Vision, 2018, pp. 116–131.
– reference: C.Q. Yu, J.B. Wang, C. Peng, C.X. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: European Conference on Computer Vision, 2018, pp. 325–341.
– reference: S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, in: International Conference on Learning Representations, 2016, pp. 1–14.
– reference: V. Mnih, N. Heess, A. Graves, Recurrent models of visual attention, in: Annual Conference on Neural Information Processing Systems, 2014, pp. 1–9.
– reference: Z.L. Zhang, X.Y. Zhang, C. Peng, X.Y. Xue, J. Sun, Exfuse: Enhancing feature fusion for semantic segmentation, in: European Conference on Computer Vision, 2018, pp. 269–284.
– reference: L.-C. Chen, Y. Yang, J. Wang, W. Xu, A.L. Yuille, Attention to scale: Scale-aware semantic image segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 3640–3649.
– volume: 26
  start-page: 90
  year: 2019
  end-page: 96
  ident: b48
  article-title: CONet: A cognitive ocean network
  publication-title: IEEE Wirel. Commun.
– reference: S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 5987–5995.
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: b9
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: H. Zhao, J. Shi, X. Qi, X. Wang, J.Y. Jia, Pyramid scene parsing network, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 6230–6239.
– year: 2019
  ident: b31
  article-title: ESPNet V2: A light-weight, power efficient, and general purpose convolutional neural network
– volume: 4
  start-page: 1240
  year: 2019
  end-page: 1246
  ident: b15
  article-title: Multi-view incremental segmentation of 3-D point clouds for mobile robots
  publication-title: IEEE Robot. Autom. Lett.
– reference: F. Wang, M.Q. Jiang, C. Qian, S. Yang, C. Li, H.Q. Zhang, X.G. Wang, X.O. Tang, Residual attention network for image classification, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 6450–6458.
– reference: X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856.
– year: 2018
  ident: b30
  article-title: ESPNet: Efficient spatial pyramid of dilated convolutions for semantic segmentation
– year: 2017
  ident: b47
  article-title: Squeeze-and-excitation networks
– reference: J.K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio, Attention-based models for speech recognition, in: Annual Conference on Neural Information Processing Systems, 2015, pp. 577–585.
– reference: G.J. Brostow, J. Shotton, J. Fauqueur, R. Cipolla, Segmentation and recognition using structure from motion point clouds, in: European Conference on Computer Vision, 2008, pp. 44–57.
– year: 2018
  ident: b38
  article-title: Contextnet: Exploring context and detail for semantic segmentation in real-time
– reference: R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.
– reference: R. Girshick, Fast R-CNN, in: IEEE International Conference on Computer Vision, 2015, pp. 1440–1448.
– year: 2017
  ident: b23
  article-title: MobileNets: efficient convolutional neural networks for mobile vision applications
– reference: S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in: Annual Conference on Neural Information Processing Systems, 2015, pp. 91–99.
– reference: C. Peng, Z. Xiangyu, Y. Gang, L. Guiming, S. Jian, Large kernel matters: Improve semantic segmentation by global convolutional network, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2017, pp. 1743–1751.
– year: 2016
  ident: b21
  article-title: Enet: A deep neural network architecture for real-time semantic segmentation
– volume: 50
  start-page: 2400
  year: 2020
  end-page: 2413
  ident: b49
  article-title: Ternary adversarial networks with self-supervision for zero-shot cross-modal retrieval
  publication-title: IEEE Trans. Cybern.
– year: 2018
  ident: b41
  article-title: CGNet: A light-weight context guided network for semantic segmentation
– reference: M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The scapes dataset for semantic urban scene understanding, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 3213–3223.
– reference: Y. Wang, Q. Zhou, J. Liu, J. Xiong, G.W. Gao, X.F. Wu, L.J. Latecki, LEDNet: A lightweight encoder-decoder network for real-time semantic segmentation, in: IEEE International Conference on Image Processing, 2019, pp. 177–186.
– volume: 7
  start-page: 107602
  year: 2019
  end-page: 107615
  ident: b16
  article-title: Online semantic object segmentation for vision robot collected video
  publication-title: IEEE Access
– year: 2018
  ident: b52
  article-title: Context encoding for semantic segmentation
– ident: 10.1016/j.asoc.2020.106682_b24
– volume: 39
  start-page: 640
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2020.106682_b8
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– ident: 10.1016/j.asoc.2020.106682_b45
  doi: 10.1109/CVPR.2016.396
– volume: 19
  start-page: 263
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106682_b22
  article-title: ERFNet: Efficient residual factorized convnet for real-time semantic segmentation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2750080
– volume: 50
  start-page: 2400
  issue: 6
  year: 2020
  ident: 10.1016/j.asoc.2020.106682_b49
  article-title: Ternary adversarial networks with self-supervision for zero-shot cross-modal retrieval
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2928180
– year: 2019
  ident: 10.1016/j.asoc.2020.106682_b64
– ident: 10.1016/j.asoc.2020.106682_b43
– year: 2019
  ident: 10.1016/j.asoc.2020.106682_b39
– ident: 10.1016/j.asoc.2020.106682_b5
  doi: 10.1109/CVPR.2016.91
– year: 2019
  ident: 10.1016/j.asoc.2020.106682_b31
– ident: 10.1016/j.asoc.2020.106682_b27
  doi: 10.1109/CVPR.2018.00474
– ident: 10.1016/j.asoc.2020.106682_b60
  doi: 10.1109/CVPR.2016.89
– ident: 10.1016/j.asoc.2020.106682_b11
  doi: 10.1109/CVPR.2017.634
– ident: 10.1016/j.asoc.2020.106682_b19
  doi: 10.1109/CVPR.2016.521
– ident: 10.1016/j.asoc.2020.106682_b37
  doi: 10.1109/ICCV.2017.534
– ident: 10.1016/j.asoc.2020.106682_b3
– year: 2018
  ident: 10.1016/j.asoc.2020.106682_b38
– ident: 10.1016/j.asoc.2020.106682_b44
– ident: 10.1016/j.asoc.2020.106682_b42
  doi: 10.1109/CVPR.2018.00291
– ident: 10.1016/j.asoc.2020.106682_b20
  doi: 10.1007/978-3-319-46493-0_32
– ident: 10.1016/j.asoc.2020.106682_b2
  doi: 10.1109/CVPR.2015.7298594
– ident: 10.1016/j.asoc.2020.106682_b58
  doi: 10.1007/978-3-030-01249-6_17
– ident: 10.1016/j.asoc.2020.106682_b65
– ident: 10.1016/j.asoc.2020.106682_b40
– year: 2018
  ident: 10.1016/j.asoc.2020.106682_b52
– ident: 10.1016/j.asoc.2020.106682_b36
  doi: 10.1007/978-3-540-88682-2_5
– ident: 10.1016/j.asoc.2020.106682_b6
  doi: 10.1109/ICCV.2015.169
– year: 2016
  ident: 10.1016/j.asoc.2020.106682_b21
– year: 2018
  ident: 10.1016/j.asoc.2020.106682_b30
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2020.106682_b9
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: 10.1016/j.asoc.2020.106682_b50
– ident: 10.1016/j.asoc.2020.106682_b12
– year: 2019
  ident: 10.1016/j.asoc.2020.106682_b32
– year: 2018
  ident: 10.1016/j.asoc.2020.106682_b41
– volume: 26
  start-page: 90
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2020.106682_b48
  article-title: CONet: A cognitive ocean network
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2019.1800325
– ident: 10.1016/j.asoc.2020.106682_b53
  doi: 10.1109/ICIP.2019.8803154
– ident: 10.1016/j.asoc.2020.106682_b28
  doi: 10.1007/978-3-030-01264-9_8
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2020.106682_b13
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– year: 2018
  ident: 10.1016/j.asoc.2020.106682_b34
– ident: 10.1016/j.asoc.2020.106682_b1
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.asoc.2020.106682_b56
  doi: 10.1109/CVPR.2017.189
– year: 2018
  ident: 10.1016/j.asoc.2020.106682_b57
– volume: 4
  start-page: 1240
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2020.106682_b15
  article-title: Multi-view incremental segmentation of 3-D point clouds for mobile robots
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2894915
– year: 2019
  ident: 10.1016/j.asoc.2020.106682_b61
– ident: 10.1016/j.asoc.2020.106682_b10
  doi: 10.1109/CVPR.2016.308
– ident: 10.1016/j.asoc.2020.106682_b59
– ident: 10.1016/j.asoc.2020.106682_b17
– ident: 10.1016/j.asoc.2020.106682_b51
– ident: 10.1016/j.asoc.2020.106682_b46
  doi: 10.1109/CVPR.2017.683
– year: 2017
  ident: 10.1016/j.asoc.2020.106682_b23
– ident: 10.1016/j.asoc.2020.106682_b26
  doi: 10.1109/CVPR.2018.00716
– year: 2019
  ident: 10.1016/j.asoc.2020.106682_b33
– ident: 10.1016/j.asoc.2020.106682_b55
  doi: 10.1109/CVPR.2017.660
– ident: 10.1016/j.asoc.2020.106682_b7
  doi: 10.1109/CVPR.2014.81
– ident: 10.1016/j.asoc.2020.106682_b35
  doi: 10.1109/CVPR.2016.350
– ident: 10.1016/j.asoc.2020.106682_b25
– ident: 10.1016/j.asoc.2020.106682_b54
  doi: 10.1007/978-3-319-24574-4_28
– year: 2018
  ident: 10.1016/j.asoc.2020.106682_b62
– volume: 7
  start-page: 107602
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2020.106682_b16
  article-title: Online semantic object segmentation for vision robot collected video
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933479
– year: 2017
  ident: 10.1016/j.asoc.2020.106682_b47
– year: 2018
  ident: 10.1016/j.asoc.2020.106682_b29
– ident: 10.1016/j.asoc.2020.106682_b4
– ident: 10.1016/j.asoc.2020.106682_b18
– ident: 10.1016/j.asoc.2020.106682_b14
  doi: 10.1109/CVPR.2017.660
– ident: 10.1016/j.asoc.2020.106682_b63
  doi: 10.1109/CVPR.2009.5206848
SSID ssj0016928
Score 2.5902548
Snippet The extensive computational burden limits the usage of convolutional neural networks (CNNs) in edge devices for image semantic segmentation, which plays a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106682
SubjectTerms Convolutional neural networks
Encoder–decoder networks
Real-time semantic segmentation
Robot vision
Self-driving
Title AGLNet: Towards real-time semantic segmentation of self-driving images via attention-guided lightweight network
URI https://dx.doi.org/10.1016/j.asoc.2020.106682
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yL178FucXOXiTuH6mjbcx1KlziG6wW2mTdFS6bmxTb_7tvtemoiA7eGoTklJ-Sd5H-L33CDn3FReaezGTtnKZBx4Kw9pWLHRSOOagEQKFjuJjn3eH3v3IH62RTh0Lg7RKI_srmV5Ka9PTMmi2ZlnWegHPI_SExx00e50yohyz18Gevvz8pnnYXJT1VXEww9EmcKbieMWAAPiIDnZwHjp_K6cfCudmm2waS5G2q5_ZIWu62CVbdRUGag7lHpm2b3t9vbyig5IBu6BgBuYMa8bThZ4AcJmEl_HEBBkVdJpCO0-Zmmd4m0CzCciUBX3PYorJNkv6Ixu_ZUormqPv_lFen9KiYozvk-HN9aDTZaaMApOuZS2ZDKyYa_BslO0GrgaTRTgWiDUpAhuEmyfTVHCV2iJ0YWlSsNDikNuJDhMrTJSw3APSKKaFPiRUai_0U6l8K0m8IOBx7PuBSFSM3xa-1SR2jV8kTY5xLHWRRzWZ7DVCzCPEPKowb5KL7zmzKsPGytF-vSzRr30SgQpYMe_on_OOyQa2qujDE9JYzt_0KZghy-Ss3GdnZL3dee494fPuodv_AoX_3uU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZQGWDhRpTTAxuymsNxYrYKUVooXWgltiixHRTUplUP-Pu8lzgVSIiBLT5eFH223-G8g5DrQAtpBE-YcrXPOFgoDGtbscjL4JiDRAg1GorPA9Ed8cfX4HWD3NWxMOhWaXl_xdNLbm17WhbN1izPWy9geURccuGh2uthRPkmZqfiDbLZ7j11B-ufCUKWJVZxPkMCGztTuXklAAKYiR52CBF5v8unbzKns0d2rLJI29X37JMNUxyQ3boQA7Xn8pBM2w_9gVne0mHpBLugoAmOGZaNpwszAexyBQ9vExtnVNBpBu1xxvQ8xwsFmk-ArSzoR55QzLdZekCyt1WujaZjNN8_yxtUWlRO40dk1Lkf3nWZraTAlO84S6ZCJxEGjBvt-qFvQGuRngOcTcnQBf7GVZZJoTNXRj6sTgZKWhIJNzVR6kSplo5_TBrFtDAnhCrDoyBTOnDSlIehSJIgCGWqE3y3DJwmcWv8YmXTjGO1i3Fc-5O9x4h5jJjHFeZNcrOmmVVJNv6cHdTLEv_YKjFIgT_oTv9Jd0W2usPnftzvDZ7OyDaOVMGI56SxnK_MBWgly_TS7rovM2rgAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AGLNet%3A+Towards+real-time+semantic+segmentation+of+self-driving+images+via+attention-guided+lightweight+network&rft.jtitle=Applied+soft+computing&rft.au=Zhou%2C+Quan&rft.au=Wang%2C+Yu&rft.au=Fan%2C+Yawen&rft.au=Wu%2C+Xiaofu&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=96&rft_id=info:doi/10.1016%2Fj.asoc.2020.106682&rft.externalDocID=S1568494620306207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon