Beam dynamics and commissioning of CW RFQ for a compact deuteron–beryllium neutron source

The Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS) is building a compact neutron source using a superconducting linac. The injector RFQ will operate in continuous wave (CW) mode, accelerating a 10-mA deuteron beam from 20 keV/u to 1.5 MeV/u. To minimize the possibility of...

Full description

Saved in:
Bibliographic Details
Published inNuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 903; pp. 85 - 90
Main Authors Dou, Wei-Ping, Chen, Wei-Long, Wang, Feng-Feng, Wang, Zhi-Jun, Li, Chen-Xing, Wu, Qi, Wang, Chao, Wang, Wang-sheng, Jia, Huan, Zhang, Peng, Wu, Jian-Qiang, Yang, Xiao-Dong, He, Yuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 21.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS) is building a compact neutron source using a superconducting linac. The injector RFQ will operate in continuous wave (CW) mode, accelerating a 10-mA deuteron beam from 20 keV/u to 1.5 MeV/u. To minimize the possibility of beam loss in the downstream superconducting linac and maintain high acceleration efficiency, we take the 99.9% longitudinal beam emittance as the key optimization parameter for the beam dynamics design of the RFQ, and include an internal buncher to reduce the longitudinal beam emittance. This paper describes the design procedures, beam dynamics simulations and preliminary beam commissioning results for this RFQ. Simulation results show that 99.9% longitudinal beam emittance at the RFQ exit is optimized to 3.5 pi mm mrad, which is 0.13 times the longitudinal acceptance of the downstream superconducting linac. Beam commissioning results demonstrate that the RFQ can accelerate 7.8 mA H2+ to 3.11 MeV. The transmission efficiency from a Faraday cup before the RFQ to the beam dump after the RFQ is 97.6%. The measured transmission efficiency agrees well with simulation results at different values for the inter-vane voltage.
AbstractList The Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS) is building a compact neutron source using a superconducting linac. The injector RFQ will operate in continuous wave (CW) mode, accelerating a 10-mA deuteron beam from 20 keV/u to 1.5 MeV/u. To minimize the possibility of beam loss in the downstream superconducting linac and maintain high acceleration efficiency, we take the 99.9% longitudinal beam emittance as the key optimization parameter for the beam dynamics design of the RFQ, and include an internal buncher to reduce the longitudinal beam emittance. This paper describes the design procedures, beam dynamics simulations and preliminary beam commissioning results for this RFQ. Simulation results show that 99.9% longitudinal beam emittance at the RFQ exit is optimized to 3.5 pi mm mrad, which is 0.13 times the longitudinal acceptance of the downstream superconducting linac. Beam commissioning results demonstrate that the RFQ can accelerate 7.8 mA H2+ to 3.11 MeV. The transmission efficiency from a Faraday cup before the RFQ to the beam dump after the RFQ is 97.6%. The measured transmission efficiency agrees well with simulation results at different values for the inter-vane voltage.
Author Wang, Feng-Feng
Zhang, Peng
Chen, Wei-Long
Li, Chen-Xing
Jia, Huan
Yang, Xiao-Dong
Wang, Zhi-Jun
Wu, Jian-Qiang
Wu, Qi
Dou, Wei-Ping
Wang, Chao
He, Yuan
Wang, Wang-sheng
Author_xml – sequence: 1
  givenname: Wei-Ping
  surname: Dou
  fullname: Dou, Wei-Ping
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 2
  givenname: Wei-Long
  surname: Chen
  fullname: Chen, Wei-Long
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 3
  givenname: Feng-Feng
  surname: Wang
  fullname: Wang, Feng-Feng
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 4
  givenname: Zhi-Jun
  surname: Wang
  fullname: Wang, Zhi-Jun
  email: wangzj@impcas.ac.cn
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 5
  givenname: Chen-Xing
  surname: Li
  fullname: Li, Chen-Xing
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 6
  givenname: Qi
  surname: Wu
  fullname: Wu, Qi
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 7
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 8
  givenname: Wang-sheng
  surname: Wang
  fullname: Wang, Wang-sheng
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 9
  givenname: Huan
  surname: Jia
  fullname: Jia, Huan
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 10
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 11
  givenname: Jian-Qiang
  surname: Wu
  fullname: Wu, Jian-Qiang
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 12
  givenname: Xiao-Dong
  surname: Yang
  fullname: Yang, Xiao-Dong
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
– sequence: 13
  givenname: Yuan
  surname: He
  fullname: He, Yuan
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
BookMark eNp9kMFKAzEQhoNUsK2-gKe8wK6TbLu7AS9abBUKoigePIRsdiIp3aQkW6E338E39EnMUs_OZeCf_x9-vgkZOe-QkEsGOQNWXm1yZzuVc2B1DmUOs9kJGbO64pmYV-WIjJOpzgQAPyOTGDeQRlT1mLzfoupoe3CqszpS5VqqfdfZGK131n1Qb-jijT4vn6jxgarhulO6py3uewze_Xx9NxgO263dd9QlMWk0-n3QeE5OjdpGvPjbU_K6vHtZ3Gfrx9XD4mad6QKgzzQreFEpVSvRgGiMqLTWiuO84XVT1bpsuGEzUGzOkCWPKEAVjQEEwyomTDEl_PhXBx9jQCN3IdEIB8lADnjkRg545IBHQikTnhS6PoYwNfu0GGTUFp3G1gbUvWy9_S_-C_xwcmg
CitedBy_id crossref_primary_10_1103_PhysRevAccelBeams_22_030102
crossref_primary_10_1016_j_nima_2019_162401
crossref_primary_10_1016_j_nima_2021_165455
crossref_primary_10_1140_epjc_s10052_020_7643_1
crossref_primary_10_1142_S0218301319501118
crossref_primary_10_1007_s40042_023_00839_1
crossref_primary_10_3390_app12084031
crossref_primary_10_1016_j_nima_2023_168819
Cites_doi 10.1016/S0022-3115(98)00265-7
10.1016/j.nima.2017.06.045
10.1088/1674-1137/37/4/047003
10.1109/PAC.2007.4441210
10.1016/j.nima.2013.06.019
10.1016/j.nima.2013.11.079
10.1088/1748-0221/1/04/P04002
10.1016/j.nima.2015.05.012
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.nima.2018.06.044
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1872-9576
EndPage 90
ExternalDocumentID 10_1016_j_nima_2018_06_044
S0168900218307654
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Y736070GJ0
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation for Distinguished Yong Scholars of China
  grantid: Y636030GJ0
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HME
IHE
J1W
KOM
LZ4
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SHN
SPC
SPCBC
SPD
SSQ
T5K
TN5
~02
~G-
0SF
29N
3O-
53G
5VS
6TJ
8WZ
A6W
AAQFI
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ACNNM
ADMUD
ADVLN
AFJKZ
AGHFR
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
HX~
HZ~
H~9
R2-
SEW
SSZ
VOH
WUQ
ID FETCH-LOGICAL-c300t-c13237aa8a9b09bf97ccca2e5b28b78c6b2f140a151e1a9b930a3bf0e0f1719f3
IEDL.DBID .~1
ISSN 0168-9002
IngestDate Thu Sep 26 18:59:56 EDT 2024
Fri Feb 23 02:47:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Internal buncher
Beam commissioning
CW RFQ
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-c13237aa8a9b09bf97ccca2e5b28b78c6b2f140a151e1a9b930a3bf0e0f1719f3
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_nima_2018_06_044
elsevier_sciencedirect_doi_10_1016_j_nima_2018_06_044
PublicationCentury 2000
PublicationDate 2018-09-21
PublicationDateYYYYMMDD 2018-09-21
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-21
  day: 21
PublicationDecade 2010
PublicationTitle Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shannon, Jameson, Katsuta (b2) 1998; 258–263
C.F. Chan, J.W. Staples, Reducing RFQ longitudinal emittance, in: Proceedings of LINAC 1994, Tsukupa, Japan, 1994.
J.E. Leis, et al. Report on the international fusion irradiation facility, IEA Workshop, San Diego, USA, 1989.
D. Uriot, Tacewin documentation
R. Duperrier, R. Ferdinand, et al. Toutatis, the Cea-Saclay RFQ code, in: Proceedings of LINAC 2000, Monterey, Calofornia, USA, 2017.
Wang, He, Wang (b5) 2013; 37
C. Zhang, Beam dynamics design, simulation and benchmarking for the C-ADS injector-II RFQ, in: Proceedings of IPAC 2013, Shanghai, China, 2013.
J. Knaster, Y. Okumura, A. Kasugai, et al. Challenges of the high current prototype accel-erator of IFMIF/EVEDA, in: Proceedings of IPAC 2016, Busan, Korea, 2016.
.
Streh (b20) 2006
Y. He, Successful beam commissioning of Chinese ADS injector II and front-end demo linac, in: Proceedings of CSRF 2017, Lanzhou, China, 2017.
K.R. Crandall, LANL Internal Report LA-UR-96-1836, Revised December 7, 2005.
J.M. Lagniel, S. Nath, On energy equipartition induced by space charge in bunched beams, in: Proceedings of EPAC 1998, Stockholm, European, 1998.
Li, Sun, He (b17) 2013; 729
Nie, Lu, Gao (b14) 2014; 737
J. Holzbauer, W. Hartung, Felix Marti, et al. Electromagnetic design of a multi-harmonic buncher for the frib driver linac, in: Proceedings of PAC 2011, New York, NY, USA, 2011.
Zhu, Lu, Yin (b19) 2015; 794
Ostroumov, Aseev, Kolomiets (b18) 2006; 1
P.N. Ostroumov, V.N. Barcikowski, B. Clifft, et al. Beam test of a grid-less multi-harmonic buncher, in: Proceedings of PAC 2007, Albuquerque, New Mexico, USA, 2007.
J.C. Yang, H.W. Zhao, Status and challenges of HIAF project in China, in: Proceedings of HB 2016, Malmo, Sweden, 2016.
Li, He, Xu (b4) 2017; 869
10.1016/j.nima.2018.06.044_b10
10.1016/j.nima.2018.06.044_b11
10.1016/j.nima.2018.06.044_b12
Streh (10.1016/j.nima.2018.06.044_b20) 2006
10.1016/j.nima.2018.06.044_b13
Wang (10.1016/j.nima.2018.06.044_b5) 2013; 37
10.1016/j.nima.2018.06.044_b9
Li (10.1016/j.nima.2018.06.044_b17) 2013; 729
10.1016/j.nima.2018.06.044_b7
10.1016/j.nima.2018.06.044_b8
10.1016/j.nima.2018.06.044_b15
Li (10.1016/j.nima.2018.06.044_b4) 2017; 869
Nie (10.1016/j.nima.2018.06.044_b14) 2014; 737
10.1016/j.nima.2018.06.044_b16
10.1016/j.nima.2018.06.044_b6
Zhu (10.1016/j.nima.2018.06.044_b19) 2015; 794
Shannon (10.1016/j.nima.2018.06.044_b2) 1998; 258–263
10.1016/j.nima.2018.06.044_b3
10.1016/j.nima.2018.06.044_b1
Ostroumov (10.1016/j.nima.2018.06.044_b18) 2006; 1
References_xml – volume: 737
  start-page: 229
  year: 2014
  end-page: 236
  ident: b14
  publication-title: Nucl. Instrum. Methods A
  contributor:
    fullname: Gao
– volume: 258–263
  start-page: 106
  year: 1998
  end-page: 112
  ident: b2
  article-title: Conceptual design of the international fusion materials irradiation facility (IFMIF)
  publication-title: J. Nucl. Mater.
  contributor:
    fullname: Katsuta
– volume: 729
  start-page: 426
  year: 2013
  end-page: 433
  ident: b17
  publication-title: Nucl. Instrum. Methods A
  contributor:
    fullname: He
– year: 2006
  ident: b20
  article-title: Beam Instrumentation and Diagnostics
  contributor:
    fullname: Streh
– volume: 37
  year: 2013
  ident: b5
  publication-title: Chin. Phys. C
  contributor:
    fullname: Wang
– volume: 869
  start-page: 38
  year: 2017
  end-page: 45
  ident: b4
  publication-title: Nucl. Instrum. Methods A
  contributor:
    fullname: Xu
– volume: 1
  year: 2006
  ident: b18
  publication-title: J. Instrum.
  contributor:
    fullname: Kolomiets
– volume: 794
  start-page: 113
  year: 2015
  end-page: 121
  ident: b19
  publication-title: Nucl. Instrum. Methods A
  contributor:
    fullname: Yin
– volume: 258–263
  start-page: 106
  issue: Part 1
  year: 1998
  ident: 10.1016/j.nima.2018.06.044_b2
  article-title: Conceptual design of the international fusion materials irradiation facility (IFMIF)
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(98)00265-7
  contributor:
    fullname: Shannon
– volume: 869
  start-page: 38
  year: 2017
  ident: 10.1016/j.nima.2018.06.044_b4
  publication-title: Nucl. Instrum. Methods A
  doi: 10.1016/j.nima.2017.06.045
  contributor:
    fullname: Li
– volume: 37
  issue: 4
  year: 2013
  ident: 10.1016/j.nima.2018.06.044_b5
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/37/4/047003
  contributor:
    fullname: Wang
– ident: 10.1016/j.nima.2018.06.044_b12
– ident: 10.1016/j.nima.2018.06.044_b15
– ident: 10.1016/j.nima.2018.06.044_b16
  doi: 10.1109/PAC.2007.4441210
– ident: 10.1016/j.nima.2018.06.044_b13
– volume: 729
  start-page: 426
  year: 2013
  ident: 10.1016/j.nima.2018.06.044_b17
  publication-title: Nucl. Instrum. Methods A
  doi: 10.1016/j.nima.2013.06.019
  contributor:
    fullname: Li
– ident: 10.1016/j.nima.2018.06.044_b10
– ident: 10.1016/j.nima.2018.06.044_b11
– ident: 10.1016/j.nima.2018.06.044_b1
– year: 2006
  ident: 10.1016/j.nima.2018.06.044_b20
  contributor:
    fullname: Streh
– volume: 737
  start-page: 229
  year: 2014
  ident: 10.1016/j.nima.2018.06.044_b14
  publication-title: Nucl. Instrum. Methods A
  doi: 10.1016/j.nima.2013.11.079
  contributor:
    fullname: Nie
– volume: 1
  year: 2006
  ident: 10.1016/j.nima.2018.06.044_b18
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/1/04/P04002
  contributor:
    fullname: Ostroumov
– volume: 794
  start-page: 113
  year: 2015
  ident: 10.1016/j.nima.2018.06.044_b19
  publication-title: Nucl. Instrum. Methods A
  doi: 10.1016/j.nima.2015.05.012
  contributor:
    fullname: Zhu
– ident: 10.1016/j.nima.2018.06.044_b9
– ident: 10.1016/j.nima.2018.06.044_b3
– ident: 10.1016/j.nima.2018.06.044_b8
– ident: 10.1016/j.nima.2018.06.044_b6
– ident: 10.1016/j.nima.2018.06.044_b7
SSID ssj0000978
Score 2.3681052
Snippet The Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS) is building a compact neutron source using a superconducting linac. The injector...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 85
SubjectTerms Beam commissioning
CW RFQ
Internal buncher
Title Beam dynamics and commissioning of CW RFQ for a compact deuteron–beryllium neutron source
URI https://dx.doi.org/10.1016/j.nima.2018.06.044
Volume 903
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrFVyx68SWwem8cea7DUV9FqseAh7Ca7EGnT0qYHL-J_8B_6S5zNJlRBPHhKMmQhmZmdx_LNDEInLgGxMi82KNwZhAoH9pztGbHjCsYl6IhUtcO3fa83JFcjd1RDYVULo2CVpe3XNr2w1iWlXXKzPUvT9gMEKwHVPh6ScVf1BCXg_kCnz95WMA9Vp6D7e8PGNhWap7nCeGVp0XvI0j08CfndOX1zON0ttFlGirijP2Yb1US2g9YLxGa82EXP54JNcKIHyi8wyxIM_wBSW-gTVjyVOHzCg-49hrgUM1ygzeMcJ0JNcZhmn-8fXMxfx-N0OcEZEIGG9Vn-Hhp2Lx7DnlFOSgCemmZuxJBTOj5jAaPcpFxSPwbJ2MLldsD9IPa4LSGTYuDehQXvUMdkDpemMKXlW1Q6-6ieTTNxgLBHEy-hMrBZHJDAIxDWWr7vMcisHF_QpIFOKxZFM90QI6qQYi-RYmikGBopuBwhDeRWXIx-iDUCi_3HuuY_1x2iDfWkAB22dYTq-XwpjiFqyHmrUIsWWuuEg5s7db287vW_AM1qw6w
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRfQiPrH1tQdvEpvH5rFHLZaqbUFtseAh7Ca7EGnT0qYHL-J_8B_6S5zNJlRBPHgLk11IZmbnsXwzg9CZS0CszIsMCk8GocKBM2d7RuS4gnEJOiJV7XC357UH5HboDiuoWdbCKFhlYfu1Tc-tdUFpFNxsTJOk8QjBSkC1j4dk3CUraJWo-BiU-uJtifNQhQq6wTecbFPBeepLkFea5M2HLN3Ek5DfvdM3j9PaQptFqIgv9ddso4pId9BaDtmM5rvo-UqwMY71RPk5ZmmM4SdAbHN9xYonEjef8EPrHkNgihnO4eZRhmOhxjhM0s_3Dy5mr6NRshjjFIhAw_oyfw8NWtf9ZtsoRiUAU00zMyJIKh2fsYBRblIuqR-BaGzhcjvgfhB53JaQSjHw78KCNdQxmcOlKUxp-RaVzj6qppNUHCDs0diLqQxsFgUk8AjEtZbvewxSK8cXNK6h85JF4VR3xAhLqNhLqBgaKoaGCi9HSA25JRfDH3INwWT_sa_-z32naL3d73bCzk3v7hBtqDcK3WFbR6iazRbiGEKIjJ_kKvIFfETDsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beam+dynamics+and+commissioning+of+CW+RFQ+for+a+compact+deuteron%E2%80%93beryllium+neutron+source&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+A%2C+Accelerators%2C+spectrometers%2C+detectors+and+associated+equipment&rft.au=Dou%2C+Wei-Ping&rft.au=Chen%2C+Wei-Long&rft.au=Wang%2C+Feng-Feng&rft.au=Wang%2C+Zhi-Jun&rft.date=2018-09-21&rft.pub=Elsevier+B.V&rft.issn=0168-9002&rft.eissn=1872-9576&rft.volume=903&rft.spage=85&rft.epage=90&rft_id=info:doi/10.1016%2Fj.nima.2018.06.044&rft.externalDocID=S0168900218307654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9002&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9002&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9002&client=summon