Multisource Wasserstein Adaptation Coding Network for EEG emotion recognition
•A novel model is proposed to adapt multisource domain distribution.•The proposed model obtains better results than existing methods.•The model shows good performance on the most challenging domain adaptation tasks. Emotion recognition has an important application in human–computer interaction (HCI)...
Saved in:
Published in | Biomedical signal processing and control Vol. 76; p. 103687 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel model is proposed to adapt multisource domain distribution.•The proposed model obtains better results than existing methods.•The model shows good performance on the most challenging domain adaptation tasks.
Emotion recognition has an important application in human–computer interaction (HCI). Electroencephalogram (EEG) is a reliable method in emotion recognition and is widely studied. However, since the individual variability of EEG, it is difficult to build a generic model between different subjects. In addition, the EEG signals will change in different periods, which has a great impact on the model. Therefore, building an effective model for cross-sessions, cross-subjects, cross- subjects and sessions has become challenging. In order to solve this problem, we propose a new emotion recognition method called Multisource Wasserstein Adaptation Coding Network (MWACN). MWACN can simplify output data and retain important information of input data by Autoencoder. It also uses Wasserstein distance and Association Reinforcement to adapt marginal distribution and conditional distribution. We validated the effectiveness of the model on SEED dataset and SEED-IV dataset. In cross-sessions experiment, the accuracy of our model achieves 92.08% in SEED and 76.04% in SEED-IV. In cross-subjects experiment, the accuracy of our model achieves 87.59% in SEED and 74.38% in SEED-IV. In cross-subjects and sessions experiment, the accuracy of the MWACN is improved by 3.72% in SEED and 5.88% in SEED-IV. The results show that our proposed MWACN outperforms recent domain adaptation algorithms. |
---|---|
AbstractList | •A novel model is proposed to adapt multisource domain distribution.•The proposed model obtains better results than existing methods.•The model shows good performance on the most challenging domain adaptation tasks.
Emotion recognition has an important application in human–computer interaction (HCI). Electroencephalogram (EEG) is a reliable method in emotion recognition and is widely studied. However, since the individual variability of EEG, it is difficult to build a generic model between different subjects. In addition, the EEG signals will change in different periods, which has a great impact on the model. Therefore, building an effective model for cross-sessions, cross-subjects, cross- subjects and sessions has become challenging. In order to solve this problem, we propose a new emotion recognition method called Multisource Wasserstein Adaptation Coding Network (MWACN). MWACN can simplify output data and retain important information of input data by Autoencoder. It also uses Wasserstein distance and Association Reinforcement to adapt marginal distribution and conditional distribution. We validated the effectiveness of the model on SEED dataset and SEED-IV dataset. In cross-sessions experiment, the accuracy of our model achieves 92.08% in SEED and 76.04% in SEED-IV. In cross-subjects experiment, the accuracy of our model achieves 87.59% in SEED and 74.38% in SEED-IV. In cross-subjects and sessions experiment, the accuracy of the MWACN is improved by 3.72% in SEED and 5.88% in SEED-IV. The results show that our proposed MWACN outperforms recent domain adaptation algorithms. |
ArticleNumber | 103687 |
Author | Zhu, Lei Zhang, Jianhai Yan, Ming Xu, Ping Zhu, Jieping Liu, Yian Ding, Wangpan |
Author_xml | – sequence: 1 givenname: Lei surname: Zhu fullname: Zhu, Lei email: zhulei@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China – sequence: 2 givenname: Wangpan surname: Ding fullname: Ding, Wangpan email: dwp1997@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China – sequence: 3 givenname: Jieping surname: Zhu fullname: Zhu, Jieping email: 202060333@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China – sequence: 4 givenname: Ping surname: Xu fullname: Xu, Ping email: xuping@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China – sequence: 5 givenname: Yian surname: Liu fullname: Liu, Yian email: yaliu@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China – sequence: 6 givenname: Ming surname: Yan fullname: Yan, Ming email: yanming@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China – sequence: 7 givenname: Jianhai surname: Zhang fullname: Zhang, Jianhai email: jhzhang@hdu.edu.cn organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou 310000, China |
BookMark | eNp9kM9OAjEQhxuDiYC-gKe-wOK0lG438UIIggnoReOxKf1DirAlbdH49u66evHAaSYz-Sbz-waoV4faInRLYESA8LvdaJOOekSB0mYw5qK8QH1SMl4IAqL310PFrtAgpR0AEyVhfbRen_bZp3CK2uI3lZKNKVtf46lRx6yyDzWeBePrLX6y-TPEd-xCxPP5AttD-FlHq8O29m1_jS6d2id781uH6PVh_jJbFqvnxeNsuir0GCAXGytY8wFXzpWUOdBuooTmFRiuGK0E15pvmCm5IbTSQoEuKSVqUk7AGQNkPES0u6tjSClaJ4_RH1T8kgRkK0TuZCtEtkJkJ6SBxD9I-y5hjsrvz6P3HWqbUB_eRpm0t7W2xjfpszTBn8O_AbZjftY |
CitedBy_id | crossref_primary_10_1109_TIM_2022_3204314 crossref_primary_10_1109_JSEN_2024_3358400 crossref_primary_10_3389_fnhum_2024_1464431 crossref_primary_10_1016_j_engappai_2023_106971 crossref_primary_10_1109_TAFFC_2024_3433613 crossref_primary_10_1016_j_bspc_2023_105138 crossref_primary_10_1016_j_bspc_2024_107337 crossref_primary_10_1016_j_jvcir_2025_104415 crossref_primary_10_1109_TAFFC_2024_3371540 crossref_primary_10_1109_TAFFC_2024_3394873 crossref_primary_10_1038_s41598_024_84532_8 crossref_primary_10_1109_TAFFC_2024_3357656 crossref_primary_10_1109_ACCESS_2024_3387357 crossref_primary_10_1109_TAFFC_2024_3349770 crossref_primary_10_3389_fnins_2024_1293962 crossref_primary_10_1109_JBHI_2024_3384816 crossref_primary_10_1109_TIM_2023_3302938 crossref_primary_10_1016_j_neucom_2024_128445 crossref_primary_10_1145_3712259 crossref_primary_10_1109_ACCESS_2024_3375393 crossref_primary_10_1109_TNSRE_2022_3225948 crossref_primary_10_1109_TIM_2025_3544334 |
Cites_doi | 10.1016/j.compind.2017.04.005 10.3390/s140813361 10.1023/A:1009715923555 10.1371/journal.pone.0002967 10.1109/ACCESS.2019.2939288 10.1109/LSP.2020.2989663 10.1007/978-3-030-04221-9_25 10.1109/TBME.2018.2889705 10.1109/TCDS.2019.2949306 10.3389/fnsys.2020.00043 10.1109/TCDS.2018.2868121 10.1016/S0950-7051(00)00070-8 10.1109/JSEN.2021.3101684 10.3389/fnhum.2020.605246 10.1016/j.patcog.2018.03.005 10.1155/2021/4123254 10.1109/TAMD.2015.2431497 10.1038/323533a0 10.1109/TBME.2017.2742541 10.1016/j.neuroimage.2015.02.015 10.1016/j.neucom.2014.08.092 10.1109/ICASSP.2010.5495183 10.1109/TNN.2010.2091281 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2022.103687 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2022_103687 S1746809422002099 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-be840046aff724f0cf5a8c690d6a42986cc6b4d76d129c8a0c7221a5750fdd013 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:14 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Fri Feb 23 02:40:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Domain adaptation Emotion recognition Transfer learning EEG |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-be840046aff724f0cf5a8c690d6a42986cc6b4d76d129c8a0c7221a5750fdd013 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2022_103687 crossref_citationtrail_10_1016_j_bspc_2022_103687 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103687 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jiménez-Guarneros, Gómez-Gil (b0155) 2020; 27 Krauledat, Tangermann, Blankertz, Müller, Sporns (b0060) 2008; 3 Zheng, Liu, Lu, Lu (b0190) 2018; 99 Li, Qiu, Du, Wang, He (b0150) 2019; 12 Yosinski, Clune, Bengio (b0105) 2014 Liu, Wu, Luo, Qiu, Yang, Li, Bi (b0170) 2020; 14 Li, Hu, Zhu, Yan, Zheng (b0030) 2009 Gani, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b0130) 2016; 17 Chen, Cui, Wang (b0035) 2017; 13 Hang, Feng, Du, Liang, Chen, Wang, Liu (b0080) 2019; 7 E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep domain confusion: maximizing for domain invariance, 2014. Bao, Zhuang, Tong, Yan, Shen (b0165) 2021; 14 Sourina, Liu, Nguyen (b0025) 2012; 5 Nakatsu, Nicholson, Tosa (b0010) 2000; 13 Sangineto, Zen, Ricci, Sebe (b0085) 2014 Zhang, Chen, Zhan, Yang (b0175) 2017; 92 Dalgleish, Power (b0005) 2000 Bousmalis, Silberman, Dohan, Erhan, Krishnan (b0135) 2017 Rumelhart, Hinton, Williams (b0195) 1986; 323 Liu, Xie, Wu, Cao, Li, Li (b0223) 2019; 11 Heimberg, Gur, Erwin, Shtasel, Gur (b0020) 1992; 42 Lotte, Guan (b0045) 2010 Long, Cao, Wang, Jordan (b0115) 2015 Cedric (b0205) 2009 Liu, Wu, Cheng, Hsiao, Chen, Teng (b0015) 2014; 14 Pan, Tsang, Kwok, Yang (b0075) 2011; 22 Collobert, Sinz, Weston, Bottou (b0095) 2006; 7 Li, Struzik, Zhang, Cichocki (b0180) 2015; 165 I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved training of Wasserstein GANS, in: Advances in Neural Information Processing Systems, Neural Information Processing Systems, 2017, pp. 5767–5777. Morioka, Kanemura, Hirayama, Shikauchi, Ogawa, Ikeda, Kawanabe, Ishii (b0065) 2015; 111 Luo, Zhang, Zheng, Lu Wgan (b0140) 2018 Haeusser (b0210) 2017 S. Mika, B. Scholkopf, A. Smola, K.R. Muller, M. Scholz, G. Ratsch, Kernel PCA and de-noising in feature spaces, Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, 1999, pp. 536–542. Haeusser, Mordvintsev, Cremers (b0145) 2017 Zheng, Lu (b0185) 2015; 7 A. Radford, L. Metz, S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks, International Conference on Learning Representations, 2016. Maaten, Hinton (b0215) 2008; 9 Christopher J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 2 (1998) 121-167. Zanini, Congedo, Jutten, Said, Berthoumieu (b0070) 2017; 65 Li, Wang, Shi, Hou, Liu (b0160) 2018; 80 Goodfellow (b0125) 2014 Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell (b0100) 2014 Zhu, Hu, Yang, Zhang, Xu, Ying, Schwenker (b0050) 2021; 2021 Rodrigues, Jutten, Congedo (b0055) 2019; 66 Zhu, Yang, Ding, Zhu (b0040) 2021; 21 Li (10.1016/j.bspc.2022.103687_b0160) 2018; 80 Long (10.1016/j.bspc.2022.103687_b0115) 2015 Zhang (10.1016/j.bspc.2022.103687_b0175) 2017; 92 Bao (10.1016/j.bspc.2022.103687_b0165) 2021; 14 Gani (10.1016/j.bspc.2022.103687_b0130) 2016; 17 Yosinski (10.1016/j.bspc.2022.103687_b0105) 2014 Lotte (10.1016/j.bspc.2022.103687_b0045) 2010 Donahue (10.1016/j.bspc.2022.103687_b0100) 2014 Bousmalis (10.1016/j.bspc.2022.103687_b0135) 2017 Sangineto (10.1016/j.bspc.2022.103687_b0085) 2014 Li (10.1016/j.bspc.2022.103687_b0150) 2019; 12 Sourina (10.1016/j.bspc.2022.103687_b0025) 2012; 5 10.1016/j.bspc.2022.103687_b0110 Zhu (10.1016/j.bspc.2022.103687_b0040) 2021; 21 Rumelhart (10.1016/j.bspc.2022.103687_b0195) 1986; 323 Haeusser (10.1016/j.bspc.2022.103687_b0145) 2017 10.1016/j.bspc.2022.103687_b0090 Liu (10.1016/j.bspc.2022.103687_b0223) 2019; 11 Haeusser (10.1016/j.bspc.2022.103687_b0210) 2017 Maaten (10.1016/j.bspc.2022.103687_b0215) 2008; 9 Zhu (10.1016/j.bspc.2022.103687_b0050) 2021; 2021 Rodrigues (10.1016/j.bspc.2022.103687_b0055) 2019; 66 Li (10.1016/j.bspc.2022.103687_b0180) 2015; 165 Dalgleish (10.1016/j.bspc.2022.103687_b0005) 2000 Zheng (10.1016/j.bspc.2022.103687_b0190) 2018; 99 Li (10.1016/j.bspc.2022.103687_b0030) 2009 Pan (10.1016/j.bspc.2022.103687_b0075) 2011; 22 Goodfellow (10.1016/j.bspc.2022.103687_b0125) 2014 Luo (10.1016/j.bspc.2022.103687_b0140) 2018 Morioka (10.1016/j.bspc.2022.103687_b0065) 2015; 111 Chen (10.1016/j.bspc.2022.103687_b0035) 2017; 13 Collobert (10.1016/j.bspc.2022.103687_b0095) 2006; 7 Jiménez-Guarneros (10.1016/j.bspc.2022.103687_b0155) 2020; 27 Liu (10.1016/j.bspc.2022.103687_b0170) 2020; 14 Liu (10.1016/j.bspc.2022.103687_b0015) 2014; 14 Zanini (10.1016/j.bspc.2022.103687_b0070) 2017; 65 Krauledat (10.1016/j.bspc.2022.103687_b0060) 2008; 3 10.1016/j.bspc.2022.103687_b0200 Nakatsu (10.1016/j.bspc.2022.103687_b0010) 2000; 13 10.1016/j.bspc.2022.103687_b0220 10.1016/j.bspc.2022.103687_b0120 Zheng (10.1016/j.bspc.2022.103687_b0185) 2015; 7 Hang (10.1016/j.bspc.2022.103687_b0080) 2019; 7 Cedric (10.1016/j.bspc.2022.103687_b0205) 2009 Heimberg (10.1016/j.bspc.2022.103687_b0020) 1992; 42 |
References_xml | – volume: 17 start-page: 1 year: 2016 end-page: 35 ident: b0130 article-title: Domain-adversarial training of neural networks publication-title: Journal of Machine Learning Research – start-page: 626 year: 2017 end-page: 635 ident: b0145 article-title: Learning by association a versatile semi-supervised training method for neural networks publication-title: Computer Vision and Pattern Recognition – start-page: 33 year: 2009 end-page: 38 ident: b0030 article-title: Towards affective learning with an EEG feedback approach publication-title: Proceedings of the first ACM international workshop on Multimedia technologies for distance learning – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b0215 article-title: Visualizing data using t-sne publication-title: Journal of Machine Learning Research – start-page: 275 year: 2018 end-page: 286 ident: b0140 article-title: Domain Adaptation for EEG-Based Emotion Recognition publication-title: International Conference on Neural Information Processing – volume: 22 start-page: 199 year: 2011 end-page: 210 ident: b0075 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Networks – volume: 2021 start-page: 1 year: 2021 end-page: 12 ident: b0050 article-title: EEG signal classification using manifold learning and matrix-variate Gaussian model publication-title: Computational Intelligence and Neuroscience – volume: 3 start-page: e2967 year: 2008 ident: b0060 article-title: Towards zero training for brain-computer interfacing publication-title: PLoS ONE – start-page: 647 year: 2014 end-page: 655 ident: b0100 article-title: DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition publication-title: Proceedings of Machine Learning Research – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b0185 article-title: Investigating Critical Frequency Bands and Channels for EEG-based Emotion Recognition with Deep Neural Networks publication-title: IEEE Trans. Auton. Ment. Dev. – year: 2000 ident: b0005 article-title: Handbook of cognition and emotion – start-page: 3722 year: 2017 end-page: 3731 ident: b0135 article-title: Unsupervised pixel-level domain adaptation with generative adversarial networks publication-title: Computer Vision and Pattern Recognition – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b0195 article-title: Learning representations by back-propagating errors publication-title: Nature – start-page: 3320 year: 2014 end-page: 3328 ident: b0105 article-title: How transferable are features in deep neural networks publication-title: Neural Information Processing Systems – volume: 42 start-page: 253 year: 1992 end-page: 265 ident: b0020 article-title: Facial emotion discrimination: III publication-title: Behavioral findings in schizophrenia, Psychiatry Research – start-page: 53 year: 2009 end-page: 55 ident: b0205 article-title: Optimal Transport: Old and New – start-page: 2672 year: 2014 end-page: 2680 ident: b0125 article-title: Generative Adversarial Networks publication-title: Neural Information Processing Systems – reference: I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved training of Wasserstein GANS, in: Advances in Neural Information Processing Systems, Neural Information Processing Systems, 2017, pp. 5767–5777. – start-page: 97 year: 2015 end-page: 105 ident: b0115 article-title: Learning transferable features with deep adaptation networks publication-title: International Conference on Machine Learning – start-page: 614 year: 2010 end-page: 617 ident: b0045 article-title: Learning from other subjects helps reducing Brain Computer Interface calibration time publication-title: IEEE International Conference on Acoustics Speech and Signal Processing – volume: 12 start-page: 344 year: 2019 end-page: 353 ident: b0150 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 27 start-page: 750 year: 2020 end-page: 754 ident: b0155 article-title: Custom domain adaptation: a new method for cross-subject, EEG-based cognitive load recognition publication-title: IEEE Signal Process Lett. – volume: 65 start-page: 1107 year: 2017 end-page: 1116 ident: b0070 article-title: Transfer learning: A riemannian geometry framework with applications to brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 165 start-page: 23 year: 2015 end-page: 31 ident: b0180 article-title: Feature learning from incomplete EEG with denoising Autoencoder publication-title: Neurocomputing – start-page: 2784 year: 2017 end-page: 2792 ident: b0210 article-title: Associative domain adaptation publication-title: International Conference on Computer Vision – volume: 21 start-page: 21772 year: 2021 end-page: 21781 ident: b0040 article-title: Multi-source fusion domain adaptation using resting-state knowledge for motor imagery classification tasks publication-title: IEEE Sens. J. – volume: 14 year: 2021 ident: b0165 article-title: Two-Level Domain Adaptation Neural Network for EEG-based emotion recognition publication-title: Front. Hum. Neurosci. – volume: 13 start-page: 497 year: 2000 end-page: 504 ident: b0010 article-title: Emotion recognition and its application to computer agents with spontaneous interactive capabilities publication-title: Knowl.-Based Syst. – start-page: 357 year: 2014 end-page: 366 ident: b0085 article-title: we are not all equal: Personalizing models for facial expression analysis with transductive parameter transfer publication-title: Proceedings of the 22nd ACM international conference on Multimedia – volume: 99 start-page: 1 year: 2018 end-page: 13 ident: b0190 article-title: Cichocki A, EmotionMeter: A Multimodal Framework for Recognizing Human Emotions publication-title: IEEE Trans. Cybern. – reference: A. Radford, L. Metz, S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks, International Conference on Learning Representations, 2016. – volume: 7 start-page: 128273 year: 2019 end-page: 128282 ident: b0080 article-title: Cross-subject EEG signal recognition using deep domain adaptation network publication-title: IEEE Access – volume: 7 start-page: 1687 year: 2006 end-page: 1712 ident: b0095 article-title: Large scale transductive svms publication-title: Journal of Machine Learning Research – reference: E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep domain confusion: maximizing for domain invariance, 2014. – volume: 80 start-page: 109 year: 2018 end-page: 117 ident: b0160 article-title: Adaptive batch normalization for practical domain adaptation publication-title: Pattern Recogn. – volume: 5 start-page: 27 year: 2012 end-page: 35 ident: b0025 article-title: Real-time EEG-based emotion recognition for music therapy, Multimodal User publication-title: Interfaces – volume: 13 start-page: 1 year: 2017 end-page: 5 ident: b0035 article-title: Review of Emotion Recognition Based on Physiological Signals publication-title: System Simulation Technology – volume: 14 start-page: 00043 year: 2020 ident: b0170 article-title: EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder publication-title: Front. Syst. Neurosci. – volume: 92 start-page: 84 year: 2017 end-page: 90 ident: b0175 article-title: Respiration-based emotion recognition with deep learning publication-title: Comput. Ind. – reference: Christopher J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 2 (1998) 121-167. – reference: S. Mika, B. Scholkopf, A. Smola, K.R. Muller, M. Scholz, G. Ratsch, Kernel PCA and de-noising in feature spaces, Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, 1999, pp. 536–542. – volume: 14 start-page: 13361 year: 2014 end-page: 13388 ident: b0015 article-title: Emotion recognition from single-trial eeg based on kernel fisher’s emotion 380 pattern and imbalanced quasiconformal kernel support vector machine publication-title: Sensors – volume: 66 start-page: 2390 year: 2019 end-page: 2401 ident: b0055 article-title: Riemannian procrustes analysis: transfer learning for brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 111 start-page: 167 year: 2015 end-page: 178 ident: b0065 article-title: Learning a common dictionary for subject-transfer decoding with resting calibration publication-title: NeuroImage – volume: 11 start-page: 517 year: 2019 end-page: 526 ident: b0223 article-title: Electroencephalogram Emotion Recognition Based on Empirical Mode Decomposition and Optimal Feature Selection publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.bspc.2022.103687_b0130 article-title: Domain-adversarial training of neural networks publication-title: Journal of Machine Learning Research – volume: 92 start-page: 84 year: 2017 ident: 10.1016/j.bspc.2022.103687_b0175 article-title: Respiration-based emotion recognition with deep learning publication-title: Comput. Ind. doi: 10.1016/j.compind.2017.04.005 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.bspc.2022.103687_b0215 article-title: Visualizing data using t-sne publication-title: Journal of Machine Learning Research – start-page: 3320 year: 2014 ident: 10.1016/j.bspc.2022.103687_b0105 article-title: How transferable are features in deep neural networks publication-title: Neural Information Processing Systems – volume: 14 start-page: 13361 year: 2014 ident: 10.1016/j.bspc.2022.103687_b0015 article-title: Emotion recognition from single-trial eeg based on kernel fisher’s emotion 380 pattern and imbalanced quasiconformal kernel support vector machine publication-title: Sensors doi: 10.3390/s140813361 – ident: 10.1016/j.bspc.2022.103687_b0090 – ident: 10.1016/j.bspc.2022.103687_b0220 doi: 10.1023/A:1009715923555 – volume: 3 start-page: e2967 issue: 8 year: 2008 ident: 10.1016/j.bspc.2022.103687_b0060 article-title: Towards zero training for brain-computer interfacing publication-title: PLoS ONE doi: 10.1371/journal.pone.0002967 – volume: 7 start-page: 128273 year: 2019 ident: 10.1016/j.bspc.2022.103687_b0080 article-title: Cross-subject EEG signal recognition using deep domain adaptation network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939288 – start-page: 53 year: 2009 ident: 10.1016/j.bspc.2022.103687_b0205 – start-page: 626 year: 2017 ident: 10.1016/j.bspc.2022.103687_b0145 article-title: Learning by association a versatile semi-supervised training method for neural networks publication-title: Computer Vision and Pattern Recognition – volume: 27 start-page: 750 year: 2020 ident: 10.1016/j.bspc.2022.103687_b0155 article-title: Custom domain adaptation: a new method for cross-subject, EEG-based cognitive load recognition publication-title: IEEE Signal Process Lett. doi: 10.1109/LSP.2020.2989663 – start-page: 275 year: 2018 ident: 10.1016/j.bspc.2022.103687_b0140 article-title: Domain Adaptation for EEG-Based Emotion Recognition publication-title: International Conference on Neural Information Processing doi: 10.1007/978-3-030-04221-9_25 – start-page: 2672 year: 2014 ident: 10.1016/j.bspc.2022.103687_b0125 article-title: Generative Adversarial Networks publication-title: Neural Information Processing Systems – volume: 66 start-page: 2390 issue: 8 year: 2019 ident: 10.1016/j.bspc.2022.103687_b0055 article-title: Riemannian procrustes analysis: transfer learning for brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2889705 – start-page: 2784 year: 2017 ident: 10.1016/j.bspc.2022.103687_b0210 article-title: Associative domain adaptation publication-title: International Conference on Computer Vision – volume: 12 start-page: 344 year: 2019 ident: 10.1016/j.bspc.2022.103687_b0150 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2019.2949306 – volume: 13 start-page: 1 year: 2017 ident: 10.1016/j.bspc.2022.103687_b0035 article-title: Review of Emotion Recognition Based on Physiological Signals publication-title: System Simulation Technology – start-page: 97 year: 2015 ident: 10.1016/j.bspc.2022.103687_b0115 article-title: Learning transferable features with deep adaptation networks publication-title: International Conference on Machine Learning – start-page: 3722 year: 2017 ident: 10.1016/j.bspc.2022.103687_b0135 article-title: Unsupervised pixel-level domain adaptation with generative adversarial networks publication-title: Computer Vision and Pattern Recognition – volume: 42 start-page: 253 issue: 3 year: 1992 ident: 10.1016/j.bspc.2022.103687_b0020 article-title: Facial emotion discrimination: III publication-title: Behavioral findings in schizophrenia, Psychiatry Research – volume: 14 start-page: 00043 year: 2020 ident: 10.1016/j.bspc.2022.103687_b0170 article-title: EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2020.00043 – volume: 11 start-page: 517 year: 2019 ident: 10.1016/j.bspc.2022.103687_b0223 article-title: Electroencephalogram Emotion Recognition Based on Empirical Mode Decomposition and Optimal Feature Selection publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2018.2868121 – volume: 13 start-page: 497 issue: 7-8 year: 2000 ident: 10.1016/j.bspc.2022.103687_b0010 article-title: Emotion recognition and its application to computer agents with spontaneous interactive capabilities publication-title: Knowl.-Based Syst. doi: 10.1016/S0950-7051(00)00070-8 – volume: 21 start-page: 21772 year: 2021 ident: 10.1016/j.bspc.2022.103687_b0040 article-title: Multi-source fusion domain adaptation using resting-state knowledge for motor imagery classification tasks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3101684 – volume: 14 year: 2021 ident: 10.1016/j.bspc.2022.103687_b0165 article-title: Two-Level Domain Adaptation Neural Network for EEG-based emotion recognition publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2020.605246 – volume: 80 start-page: 109 year: 2018 ident: 10.1016/j.bspc.2022.103687_b0160 article-title: Adaptive batch normalization for practical domain adaptation publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2018.03.005 – ident: 10.1016/j.bspc.2022.103687_b0110 – volume: 5 start-page: 27 issue: 1-2 year: 2012 ident: 10.1016/j.bspc.2022.103687_b0025 article-title: Real-time EEG-based emotion recognition for music therapy, Multimodal User publication-title: Interfaces – ident: 10.1016/j.bspc.2022.103687_b0200 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.bspc.2022.103687_b0050 article-title: EEG signal classification using manifold learning and matrix-variate Gaussian model publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2021/4123254 – start-page: 647 year: 2014 ident: 10.1016/j.bspc.2022.103687_b0100 article-title: DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition publication-title: Proceedings of Machine Learning Research – volume: 7 start-page: 162 year: 2015 ident: 10.1016/j.bspc.2022.103687_b0185 article-title: Investigating Critical Frequency Bands and Channels for EEG-based Emotion Recognition with Deep Neural Networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – ident: 10.1016/j.bspc.2022.103687_b0120 – volume: 99 start-page: 1 year: 2018 ident: 10.1016/j.bspc.2022.103687_b0190 article-title: Cichocki A, EmotionMeter: A Multimodal Framework for Recognizing Human Emotions publication-title: IEEE Trans. Cybern. – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.bspc.2022.103687_b0195 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – start-page: 33 year: 2009 ident: 10.1016/j.bspc.2022.103687_b0030 article-title: Towards affective learning with an EEG feedback approach – start-page: 357 year: 2014 ident: 10.1016/j.bspc.2022.103687_b0085 article-title: we are not all equal: Personalizing models for facial expression analysis with transductive parameter transfer – volume: 65 start-page: 1107 year: 2017 ident: 10.1016/j.bspc.2022.103687_b0070 article-title: Transfer learning: A riemannian geometry framework with applications to brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2742541 – volume: 7 start-page: 1687 year: 2006 ident: 10.1016/j.bspc.2022.103687_b0095 article-title: Large scale transductive svms publication-title: Journal of Machine Learning Research – year: 2000 ident: 10.1016/j.bspc.2022.103687_b0005 – volume: 111 start-page: 167 year: 2015 ident: 10.1016/j.bspc.2022.103687_b0065 article-title: Learning a common dictionary for subject-transfer decoding with resting calibration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.015 – volume: 165 start-page: 23 year: 2015 ident: 10.1016/j.bspc.2022.103687_b0180 article-title: Feature learning from incomplete EEG with denoising Autoencoder publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.092 – start-page: 614 year: 2010 ident: 10.1016/j.bspc.2022.103687_b0045 article-title: Learning from other subjects helps reducing Brain Computer Interface calibration time publication-title: IEEE International Conference on Acoustics Speech and Signal Processing doi: 10.1109/ICASSP.2010.5495183 – volume: 22 start-page: 199 year: 2011 ident: 10.1016/j.bspc.2022.103687_b0075 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2010.2091281 |
SSID | ssj0048714 |
Score | 2.4559093 |
Snippet | •A novel model is proposed to adapt multisource domain distribution.•The proposed model obtains better results than existing methods.•The model shows good... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103687 |
SubjectTerms | Deep learning Domain adaptation EEG Emotion recognition Transfer learning |
Title | Multisource Wasserstein Adaptation Coding Network for EEG emotion recognition |
URI | https://dx.doi.org/10.1016/j.bspc.2022.103687 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGbrE2Tze7mWEprVdqLFnsL-4SKpEHr1d_uTjYpFaQHjwk7ECazM98m3zeD0I3iqROOJ8TKhBFqMklUFkkiqOROKEd1BuLkyZSNZ_Rxns5baNBoYYBWWef-kNOrbF3f6dbe7JaLRffZY2km_OkkBp6BBzqgYKccovzue03z8Hi86u8NiwmsroUzgeOlPktoYxjHoD1nQKv7qzhtFJzRAdqvkSLuh4c5RC1bHKG9jf6Bx2hSyWfD93f8KivlJEyvxH0jy_CPHQ-WUJ3wNNC9sceoeDi8xzaM78FrAtGyOEGz0fBlMCb1fASikyhaEWUF7EAmneMxdZF2qRTaH3cNk77MCKY1U9RwZnxR10JGmsdxT3qAFjljPPY7Re1iWdgzhF3qDPOvh6lUUac8jJRcJNo619NGZOYc9RrH5LpuHg4zLN7zhiX2loMzc3BmHpx5jm7XNmVonbF1ddr4O_8VALnP7VvsLv5pd4l24Sowb69Qe_XxZa89vlipThVAHbTTf3gaT38AtdnQVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQdvpqH0sd0eCQGLQC9C5LbZRzfBGGgU_7-73a3BxHDw2naSZrqd-bb9vm8AHngSK6KS0CtYiL1Ipszjqc88ErFEEa4ikRpx8jTH2Tx6XsSLBvRrLYyhVbrab2t6Va3dkY7LZqdcLjsvGktjoncngeEZaKCzBy3jThU3odUbjbO8LsgaklcW3-Z6zwQ47YylefHP0jgZBoGRn2PDrPurP231nOExHDmwiHr2fk6gUaxO4XDLQvAMppWC1n6CR6-sEk-aAZaoJ1lpf7Oj_to0KJRbxjfSMBUNBk-osBN80A-HaL06h_lwMOtnnhuR4InQ9zceL4h5CTFTKgki5QsVMyL0jldipjsNwUJgHskES93XBWG-SIKgyzRG85WUGv5dQHO1XhWXgFSsJNZPCPOYR4prJMkSEopCqa6QJJVt6NaJocL5h5sxFu-0Joq9UZNMapJJbTLb8PgTU1r3jJ1Xx3W-6a81QHV53xF39c-4e9jPZtMJnYzy8TUcmDOWiHsDzc3HV3Gr4caG37nl9A3qa9MI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisource+Wasserstein+Adaptation+Coding+Network+for+EEG+emotion+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhu%2C+Lei&rft.au=Ding%2C+Wangpan&rft.au=Zhu%2C+Jieping&rft.au=Xu%2C+Ping&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=76&rft_id=info:doi/10.1016%2Fj.bspc.2022.103687&rft.externalDocID=S1746809422002099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |