Multisource Wasserstein Adaptation Coding Network for EEG emotion recognition

•A novel model is proposed to adapt multisource domain distribution.•The proposed model obtains better results than existing methods.•The model shows good performance on the most challenging domain adaptation tasks. Emotion recognition has an important application in human–computer interaction (HCI)...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 76; p. 103687
Main Authors Zhu, Lei, Ding, Wangpan, Zhu, Jieping, Xu, Ping, Liu, Yian, Yan, Ming, Zhang, Jianhai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A novel model is proposed to adapt multisource domain distribution.•The proposed model obtains better results than existing methods.•The model shows good performance on the most challenging domain adaptation tasks. Emotion recognition has an important application in human–computer interaction (HCI). Electroencephalogram (EEG) is a reliable method in emotion recognition and is widely studied. However, since the individual variability of EEG, it is difficult to build a generic model between different subjects. In addition, the EEG signals will change in different periods, which has a great impact on the model. Therefore, building an effective model for cross-sessions, cross-subjects, cross- subjects and sessions has become challenging. In order to solve this problem, we propose a new emotion recognition method called Multisource Wasserstein Adaptation Coding Network (MWACN). MWACN can simplify output data and retain important information of input data by Autoencoder. It also uses Wasserstein distance and Association Reinforcement to adapt marginal distribution and conditional distribution. We validated the effectiveness of the model on SEED dataset and SEED-IV dataset. In cross-sessions experiment, the accuracy of our model achieves 92.08% in SEED and 76.04% in SEED-IV. In cross-subjects experiment, the accuracy of our model achieves 87.59% in SEED and 74.38% in SEED-IV. In cross-subjects and sessions experiment, the accuracy of the MWACN is improved by 3.72% in SEED and 5.88% in SEED-IV. The results show that our proposed MWACN outperforms recent domain adaptation algorithms.
AbstractList •A novel model is proposed to adapt multisource domain distribution.•The proposed model obtains better results than existing methods.•The model shows good performance on the most challenging domain adaptation tasks. Emotion recognition has an important application in human–computer interaction (HCI). Electroencephalogram (EEG) is a reliable method in emotion recognition and is widely studied. However, since the individual variability of EEG, it is difficult to build a generic model between different subjects. In addition, the EEG signals will change in different periods, which has a great impact on the model. Therefore, building an effective model for cross-sessions, cross-subjects, cross- subjects and sessions has become challenging. In order to solve this problem, we propose a new emotion recognition method called Multisource Wasserstein Adaptation Coding Network (MWACN). MWACN can simplify output data and retain important information of input data by Autoencoder. It also uses Wasserstein distance and Association Reinforcement to adapt marginal distribution and conditional distribution. We validated the effectiveness of the model on SEED dataset and SEED-IV dataset. In cross-sessions experiment, the accuracy of our model achieves 92.08% in SEED and 76.04% in SEED-IV. In cross-subjects experiment, the accuracy of our model achieves 87.59% in SEED and 74.38% in SEED-IV. In cross-subjects and sessions experiment, the accuracy of the MWACN is improved by 3.72% in SEED and 5.88% in SEED-IV. The results show that our proposed MWACN outperforms recent domain adaptation algorithms.
ArticleNumber 103687
Author Zhu, Lei
Zhang, Jianhai
Yan, Ming
Xu, Ping
Zhu, Jieping
Liu, Yian
Ding, Wangpan
Author_xml – sequence: 1
  givenname: Lei
  surname: Zhu
  fullname: Zhu, Lei
  email: zhulei@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China
– sequence: 2
  givenname: Wangpan
  surname: Ding
  fullname: Ding, Wangpan
  email: dwp1997@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China
– sequence: 3
  givenname: Jieping
  surname: Zhu
  fullname: Zhu, Jieping
  email: 202060333@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China
– sequence: 4
  givenname: Ping
  surname: Xu
  fullname: Xu, Ping
  email: xuping@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China
– sequence: 5
  givenname: Yian
  surname: Liu
  fullname: Liu, Yian
  email: yaliu@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China
– sequence: 6
  givenname: Ming
  surname: Yan
  fullname: Yan, Ming
  email: yanming@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China
– sequence: 7
  givenname: Jianhai
  surname: Zhang
  fullname: Zhang, Jianhai
  email: jhzhang@hdu.edu.cn
  organization: School of Computer Science, Hangzhou Dianzi University, Hangzhou 310000, China
BookMark eNp9kM9OAjEQhxuDiYC-gKe-wOK0lG438UIIggnoReOxKf1DirAlbdH49u66evHAaSYz-Sbz-waoV4faInRLYESA8LvdaJOOekSB0mYw5qK8QH1SMl4IAqL310PFrtAgpR0AEyVhfbRen_bZp3CK2uI3lZKNKVtf46lRx6yyDzWeBePrLX6y-TPEd-xCxPP5AttD-FlHq8O29m1_jS6d2id781uH6PVh_jJbFqvnxeNsuir0GCAXGytY8wFXzpWUOdBuooTmFRiuGK0E15pvmCm5IbTSQoEuKSVqUk7AGQNkPES0u6tjSClaJ4_RH1T8kgRkK0TuZCtEtkJkJ6SBxD9I-y5hjsrvz6P3HWqbUB_eRpm0t7W2xjfpszTBn8O_AbZjftY
CitedBy_id crossref_primary_10_1109_TIM_2022_3204314
crossref_primary_10_1109_JSEN_2024_3358400
crossref_primary_10_3389_fnhum_2024_1464431
crossref_primary_10_1016_j_engappai_2023_106971
crossref_primary_10_1109_TAFFC_2024_3433613
crossref_primary_10_1016_j_bspc_2023_105138
crossref_primary_10_1016_j_bspc_2024_107337
crossref_primary_10_1016_j_jvcir_2025_104415
crossref_primary_10_1109_TAFFC_2024_3371540
crossref_primary_10_1109_TAFFC_2024_3394873
crossref_primary_10_1038_s41598_024_84532_8
crossref_primary_10_1109_TAFFC_2024_3357656
crossref_primary_10_1109_ACCESS_2024_3387357
crossref_primary_10_1109_TAFFC_2024_3349770
crossref_primary_10_3389_fnins_2024_1293962
crossref_primary_10_1109_JBHI_2024_3384816
crossref_primary_10_1109_TIM_2023_3302938
crossref_primary_10_1016_j_neucom_2024_128445
crossref_primary_10_1145_3712259
crossref_primary_10_1109_ACCESS_2024_3375393
crossref_primary_10_1109_TNSRE_2022_3225948
crossref_primary_10_1109_TIM_2025_3544334
Cites_doi 10.1016/j.compind.2017.04.005
10.3390/s140813361
10.1023/A:1009715923555
10.1371/journal.pone.0002967
10.1109/ACCESS.2019.2939288
10.1109/LSP.2020.2989663
10.1007/978-3-030-04221-9_25
10.1109/TBME.2018.2889705
10.1109/TCDS.2019.2949306
10.3389/fnsys.2020.00043
10.1109/TCDS.2018.2868121
10.1016/S0950-7051(00)00070-8
10.1109/JSEN.2021.3101684
10.3389/fnhum.2020.605246
10.1016/j.patcog.2018.03.005
10.1155/2021/4123254
10.1109/TAMD.2015.2431497
10.1038/323533a0
10.1109/TBME.2017.2742541
10.1016/j.neuroimage.2015.02.015
10.1016/j.neucom.2014.08.092
10.1109/ICASSP.2010.5495183
10.1109/TNN.2010.2091281
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103687
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103687
S1746809422002099
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-be840046aff724f0cf5a8c690d6a42986cc6b4d76d129c8a0c7221a5750fdd013
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:14 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Fri Feb 23 02:40:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Domain adaptation
Emotion recognition
Transfer learning
EEG
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-be840046aff724f0cf5a8c690d6a42986cc6b4d76d129c8a0c7221a5750fdd013
ParticipantIDs crossref_primary_10_1016_j_bspc_2022_103687
crossref_citationtrail_10_1016_j_bspc_2022_103687
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103687
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jiménez-Guarneros, Gómez-Gil (b0155) 2020; 27
Krauledat, Tangermann, Blankertz, Müller, Sporns (b0060) 2008; 3
Zheng, Liu, Lu, Lu (b0190) 2018; 99
Li, Qiu, Du, Wang, He (b0150) 2019; 12
Yosinski, Clune, Bengio (b0105) 2014
Liu, Wu, Luo, Qiu, Yang, Li, Bi (b0170) 2020; 14
Li, Hu, Zhu, Yan, Zheng (b0030) 2009
Gani, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b0130) 2016; 17
Chen, Cui, Wang (b0035) 2017; 13
Hang, Feng, Du, Liang, Chen, Wang, Liu (b0080) 2019; 7
E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep domain confusion: maximizing for domain invariance, 2014.
Bao, Zhuang, Tong, Yan, Shen (b0165) 2021; 14
Sourina, Liu, Nguyen (b0025) 2012; 5
Nakatsu, Nicholson, Tosa (b0010) 2000; 13
Sangineto, Zen, Ricci, Sebe (b0085) 2014
Zhang, Chen, Zhan, Yang (b0175) 2017; 92
Dalgleish, Power (b0005) 2000
Bousmalis, Silberman, Dohan, Erhan, Krishnan (b0135) 2017
Rumelhart, Hinton, Williams (b0195) 1986; 323
Liu, Xie, Wu, Cao, Li, Li (b0223) 2019; 11
Heimberg, Gur, Erwin, Shtasel, Gur (b0020) 1992; 42
Lotte, Guan (b0045) 2010
Long, Cao, Wang, Jordan (b0115) 2015
Cedric (b0205) 2009
Liu, Wu, Cheng, Hsiao, Chen, Teng (b0015) 2014; 14
Pan, Tsang, Kwok, Yang (b0075) 2011; 22
Collobert, Sinz, Weston, Bottou (b0095) 2006; 7
Li, Struzik, Zhang, Cichocki (b0180) 2015; 165
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved training of Wasserstein GANS, in: Advances in Neural Information Processing Systems, Neural Information Processing Systems, 2017, pp. 5767–5777.
Morioka, Kanemura, Hirayama, Shikauchi, Ogawa, Ikeda, Kawanabe, Ishii (b0065) 2015; 111
Luo, Zhang, Zheng, Lu Wgan (b0140) 2018
Haeusser (b0210) 2017
S. Mika, B. Scholkopf, A. Smola, K.R. Muller, M. Scholz, G. Ratsch, Kernel PCA and de-noising in feature spaces, Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, 1999, pp. 536–542.
Haeusser, Mordvintsev, Cremers (b0145) 2017
Zheng, Lu (b0185) 2015; 7
A. Radford, L. Metz, S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks, International Conference on Learning Representations, 2016.
Maaten, Hinton (b0215) 2008; 9
Christopher J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 2 (1998) 121-167.
Zanini, Congedo, Jutten, Said, Berthoumieu (b0070) 2017; 65
Li, Wang, Shi, Hou, Liu (b0160) 2018; 80
Goodfellow (b0125) 2014
Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell (b0100) 2014
Zhu, Hu, Yang, Zhang, Xu, Ying, Schwenker (b0050) 2021; 2021
Rodrigues, Jutten, Congedo (b0055) 2019; 66
Zhu, Yang, Ding, Zhu (b0040) 2021; 21
Li (10.1016/j.bspc.2022.103687_b0160) 2018; 80
Long (10.1016/j.bspc.2022.103687_b0115) 2015
Zhang (10.1016/j.bspc.2022.103687_b0175) 2017; 92
Bao (10.1016/j.bspc.2022.103687_b0165) 2021; 14
Gani (10.1016/j.bspc.2022.103687_b0130) 2016; 17
Yosinski (10.1016/j.bspc.2022.103687_b0105) 2014
Lotte (10.1016/j.bspc.2022.103687_b0045) 2010
Donahue (10.1016/j.bspc.2022.103687_b0100) 2014
Bousmalis (10.1016/j.bspc.2022.103687_b0135) 2017
Sangineto (10.1016/j.bspc.2022.103687_b0085) 2014
Li (10.1016/j.bspc.2022.103687_b0150) 2019; 12
Sourina (10.1016/j.bspc.2022.103687_b0025) 2012; 5
10.1016/j.bspc.2022.103687_b0110
Zhu (10.1016/j.bspc.2022.103687_b0040) 2021; 21
Rumelhart (10.1016/j.bspc.2022.103687_b0195) 1986; 323
Haeusser (10.1016/j.bspc.2022.103687_b0145) 2017
10.1016/j.bspc.2022.103687_b0090
Liu (10.1016/j.bspc.2022.103687_b0223) 2019; 11
Haeusser (10.1016/j.bspc.2022.103687_b0210) 2017
Maaten (10.1016/j.bspc.2022.103687_b0215) 2008; 9
Zhu (10.1016/j.bspc.2022.103687_b0050) 2021; 2021
Rodrigues (10.1016/j.bspc.2022.103687_b0055) 2019; 66
Li (10.1016/j.bspc.2022.103687_b0180) 2015; 165
Dalgleish (10.1016/j.bspc.2022.103687_b0005) 2000
Zheng (10.1016/j.bspc.2022.103687_b0190) 2018; 99
Li (10.1016/j.bspc.2022.103687_b0030) 2009
Pan (10.1016/j.bspc.2022.103687_b0075) 2011; 22
Goodfellow (10.1016/j.bspc.2022.103687_b0125) 2014
Luo (10.1016/j.bspc.2022.103687_b0140) 2018
Morioka (10.1016/j.bspc.2022.103687_b0065) 2015; 111
Chen (10.1016/j.bspc.2022.103687_b0035) 2017; 13
Collobert (10.1016/j.bspc.2022.103687_b0095) 2006; 7
Jiménez-Guarneros (10.1016/j.bspc.2022.103687_b0155) 2020; 27
Liu (10.1016/j.bspc.2022.103687_b0170) 2020; 14
Liu (10.1016/j.bspc.2022.103687_b0015) 2014; 14
Zanini (10.1016/j.bspc.2022.103687_b0070) 2017; 65
Krauledat (10.1016/j.bspc.2022.103687_b0060) 2008; 3
10.1016/j.bspc.2022.103687_b0200
Nakatsu (10.1016/j.bspc.2022.103687_b0010) 2000; 13
10.1016/j.bspc.2022.103687_b0220
10.1016/j.bspc.2022.103687_b0120
Zheng (10.1016/j.bspc.2022.103687_b0185) 2015; 7
Hang (10.1016/j.bspc.2022.103687_b0080) 2019; 7
Cedric (10.1016/j.bspc.2022.103687_b0205) 2009
Heimberg (10.1016/j.bspc.2022.103687_b0020) 1992; 42
References_xml – volume: 17
  start-page: 1
  year: 2016
  end-page: 35
  ident: b0130
  article-title: Domain-adversarial training of neural networks
  publication-title: Journal of Machine Learning Research
– start-page: 626
  year: 2017
  end-page: 635
  ident: b0145
  article-title: Learning by association a versatile semi-supervised training method for neural networks
  publication-title: Computer Vision and Pattern Recognition
– start-page: 33
  year: 2009
  end-page: 38
  ident: b0030
  article-title: Towards affective learning with an EEG feedback approach
  publication-title: Proceedings of the first ACM international workshop on Multimedia technologies for distance learning
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0215
  article-title: Visualizing data using t-sne
  publication-title: Journal of Machine Learning Research
– start-page: 275
  year: 2018
  end-page: 286
  ident: b0140
  article-title: Domain Adaptation for EEG-Based Emotion Recognition
  publication-title: International Conference on Neural Information Processing
– volume: 22
  start-page: 199
  year: 2011
  end-page: 210
  ident: b0075
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Networks
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 12
  ident: b0050
  article-title: EEG signal classification using manifold learning and matrix-variate Gaussian model
  publication-title: Computational Intelligence and Neuroscience
– volume: 3
  start-page: e2967
  year: 2008
  ident: b0060
  article-title: Towards zero training for brain-computer interfacing
  publication-title: PLoS ONE
– start-page: 647
  year: 2014
  end-page: 655
  ident: b0100
  article-title: DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
  publication-title: Proceedings of Machine Learning Research
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b0185
  article-title: Investigating Critical Frequency Bands and Channels for EEG-based Emotion Recognition with Deep Neural Networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– year: 2000
  ident: b0005
  article-title: Handbook of cognition and emotion
– start-page: 3722
  year: 2017
  end-page: 3731
  ident: b0135
  article-title: Unsupervised pixel-level domain adaptation with generative adversarial networks
  publication-title: Computer Vision and Pattern Recognition
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b0195
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– start-page: 3320
  year: 2014
  end-page: 3328
  ident: b0105
  article-title: How transferable are features in deep neural networks
  publication-title: Neural Information Processing Systems
– volume: 42
  start-page: 253
  year: 1992
  end-page: 265
  ident: b0020
  article-title: Facial emotion discrimination: III
  publication-title: Behavioral findings in schizophrenia, Psychiatry Research
– start-page: 53
  year: 2009
  end-page: 55
  ident: b0205
  article-title: Optimal Transport: Old and New
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: b0125
  article-title: Generative Adversarial Networks
  publication-title: Neural Information Processing Systems
– reference: I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved training of Wasserstein GANS, in: Advances in Neural Information Processing Systems, Neural Information Processing Systems, 2017, pp. 5767–5777.
– start-page: 97
  year: 2015
  end-page: 105
  ident: b0115
  article-title: Learning transferable features with deep adaptation networks
  publication-title: International Conference on Machine Learning
– start-page: 614
  year: 2010
  end-page: 617
  ident: b0045
  article-title: Learning from other subjects helps reducing Brain Computer Interface calibration time
  publication-title: IEEE International Conference on Acoustics Speech and Signal Processing
– volume: 12
  start-page: 344
  year: 2019
  end-page: 353
  ident: b0150
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 27
  start-page: 750
  year: 2020
  end-page: 754
  ident: b0155
  article-title: Custom domain adaptation: a new method for cross-subject, EEG-based cognitive load recognition
  publication-title: IEEE Signal Process Lett.
– volume: 65
  start-page: 1107
  year: 2017
  end-page: 1116
  ident: b0070
  article-title: Transfer learning: A riemannian geometry framework with applications to brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 165
  start-page: 23
  year: 2015
  end-page: 31
  ident: b0180
  article-title: Feature learning from incomplete EEG with denoising Autoencoder
  publication-title: Neurocomputing
– start-page: 2784
  year: 2017
  end-page: 2792
  ident: b0210
  article-title: Associative domain adaptation
  publication-title: International Conference on Computer Vision
– volume: 21
  start-page: 21772
  year: 2021
  end-page: 21781
  ident: b0040
  article-title: Multi-source fusion domain adaptation using resting-state knowledge for motor imagery classification tasks
  publication-title: IEEE Sens. J.
– volume: 14
  year: 2021
  ident: b0165
  article-title: Two-Level Domain Adaptation Neural Network for EEG-based emotion recognition
  publication-title: Front. Hum. Neurosci.
– volume: 13
  start-page: 497
  year: 2000
  end-page: 504
  ident: b0010
  article-title: Emotion recognition and its application to computer agents with spontaneous interactive capabilities
  publication-title: Knowl.-Based Syst.
– start-page: 357
  year: 2014
  end-page: 366
  ident: b0085
  article-title: we are not all equal: Personalizing models for facial expression analysis with transductive parameter transfer
  publication-title: Proceedings of the 22nd ACM international conference on Multimedia
– volume: 99
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0190
  article-title: Cichocki A, EmotionMeter: A Multimodal Framework for Recognizing Human Emotions
  publication-title: IEEE Trans. Cybern.
– reference: A. Radford, L. Metz, S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks, International Conference on Learning Representations, 2016.
– volume: 7
  start-page: 128273
  year: 2019
  end-page: 128282
  ident: b0080
  article-title: Cross-subject EEG signal recognition using deep domain adaptation network
  publication-title: IEEE Access
– volume: 7
  start-page: 1687
  year: 2006
  end-page: 1712
  ident: b0095
  article-title: Large scale transductive svms
  publication-title: Journal of Machine Learning Research
– reference: E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep domain confusion: maximizing for domain invariance, 2014.
– volume: 80
  start-page: 109
  year: 2018
  end-page: 117
  ident: b0160
  article-title: Adaptive batch normalization for practical domain adaptation
  publication-title: Pattern Recogn.
– volume: 5
  start-page: 27
  year: 2012
  end-page: 35
  ident: b0025
  article-title: Real-time EEG-based emotion recognition for music therapy, Multimodal User
  publication-title: Interfaces
– volume: 13
  start-page: 1
  year: 2017
  end-page: 5
  ident: b0035
  article-title: Review of Emotion Recognition Based on Physiological Signals
  publication-title: System Simulation Technology
– volume: 14
  start-page: 00043
  year: 2020
  ident: b0170
  article-title: EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
  publication-title: Front. Syst. Neurosci.
– volume: 92
  start-page: 84
  year: 2017
  end-page: 90
  ident: b0175
  article-title: Respiration-based emotion recognition with deep learning
  publication-title: Comput. Ind.
– reference: Christopher J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 2 (1998) 121-167.
– reference: S. Mika, B. Scholkopf, A. Smola, K.R. Muller, M. Scholz, G. Ratsch, Kernel PCA and de-noising in feature spaces, Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, 1999, pp. 536–542.
– volume: 14
  start-page: 13361
  year: 2014
  end-page: 13388
  ident: b0015
  article-title: Emotion recognition from single-trial eeg based on kernel fisher’s emotion 380 pattern and imbalanced quasiconformal kernel support vector machine
  publication-title: Sensors
– volume: 66
  start-page: 2390
  year: 2019
  end-page: 2401
  ident: b0055
  article-title: Riemannian procrustes analysis: transfer learning for brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 111
  start-page: 167
  year: 2015
  end-page: 178
  ident: b0065
  article-title: Learning a common dictionary for subject-transfer decoding with resting calibration
  publication-title: NeuroImage
– volume: 11
  start-page: 517
  year: 2019
  end-page: 526
  ident: b0223
  article-title: Electroencephalogram Emotion Recognition Based on Empirical Mode Decomposition and Optimal Feature Selection
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2022.103687_b0130
  article-title: Domain-adversarial training of neural networks
  publication-title: Journal of Machine Learning Research
– volume: 92
  start-page: 84
  year: 2017
  ident: 10.1016/j.bspc.2022.103687_b0175
  article-title: Respiration-based emotion recognition with deep learning
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2017.04.005
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.bspc.2022.103687_b0215
  article-title: Visualizing data using t-sne
  publication-title: Journal of Machine Learning Research
– start-page: 3320
  year: 2014
  ident: 10.1016/j.bspc.2022.103687_b0105
  article-title: How transferable are features in deep neural networks
  publication-title: Neural Information Processing Systems
– volume: 14
  start-page: 13361
  year: 2014
  ident: 10.1016/j.bspc.2022.103687_b0015
  article-title: Emotion recognition from single-trial eeg based on kernel fisher’s emotion 380 pattern and imbalanced quasiconformal kernel support vector machine
  publication-title: Sensors
  doi: 10.3390/s140813361
– ident: 10.1016/j.bspc.2022.103687_b0090
– ident: 10.1016/j.bspc.2022.103687_b0220
  doi: 10.1023/A:1009715923555
– volume: 3
  start-page: e2967
  issue: 8
  year: 2008
  ident: 10.1016/j.bspc.2022.103687_b0060
  article-title: Towards zero training for brain-computer interfacing
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002967
– volume: 7
  start-page: 128273
  year: 2019
  ident: 10.1016/j.bspc.2022.103687_b0080
  article-title: Cross-subject EEG signal recognition using deep domain adaptation network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939288
– start-page: 53
  year: 2009
  ident: 10.1016/j.bspc.2022.103687_b0205
– start-page: 626
  year: 2017
  ident: 10.1016/j.bspc.2022.103687_b0145
  article-title: Learning by association a versatile semi-supervised training method for neural networks
  publication-title: Computer Vision and Pattern Recognition
– volume: 27
  start-page: 750
  year: 2020
  ident: 10.1016/j.bspc.2022.103687_b0155
  article-title: Custom domain adaptation: a new method for cross-subject, EEG-based cognitive load recognition
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2020.2989663
– start-page: 275
  year: 2018
  ident: 10.1016/j.bspc.2022.103687_b0140
  article-title: Domain Adaptation for EEG-Based Emotion Recognition
  publication-title: International Conference on Neural Information Processing
  doi: 10.1007/978-3-030-04221-9_25
– start-page: 2672
  year: 2014
  ident: 10.1016/j.bspc.2022.103687_b0125
  article-title: Generative Adversarial Networks
  publication-title: Neural Information Processing Systems
– volume: 66
  start-page: 2390
  issue: 8
  year: 2019
  ident: 10.1016/j.bspc.2022.103687_b0055
  article-title: Riemannian procrustes analysis: transfer learning for brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2889705
– start-page: 2784
  year: 2017
  ident: 10.1016/j.bspc.2022.103687_b0210
  article-title: Associative domain adaptation
  publication-title: International Conference on Computer Vision
– volume: 12
  start-page: 344
  year: 2019
  ident: 10.1016/j.bspc.2022.103687_b0150
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2019.2949306
– volume: 13
  start-page: 1
  year: 2017
  ident: 10.1016/j.bspc.2022.103687_b0035
  article-title: Review of Emotion Recognition Based on Physiological Signals
  publication-title: System Simulation Technology
– start-page: 97
  year: 2015
  ident: 10.1016/j.bspc.2022.103687_b0115
  article-title: Learning transferable features with deep adaptation networks
  publication-title: International Conference on Machine Learning
– start-page: 3722
  year: 2017
  ident: 10.1016/j.bspc.2022.103687_b0135
  article-title: Unsupervised pixel-level domain adaptation with generative adversarial networks
  publication-title: Computer Vision and Pattern Recognition
– volume: 42
  start-page: 253
  issue: 3
  year: 1992
  ident: 10.1016/j.bspc.2022.103687_b0020
  article-title: Facial emotion discrimination: III
  publication-title: Behavioral findings in schizophrenia, Psychiatry Research
– volume: 14
  start-page: 00043
  year: 2020
  ident: 10.1016/j.bspc.2022.103687_b0170
  article-title: EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2020.00043
– volume: 11
  start-page: 517
  year: 2019
  ident: 10.1016/j.bspc.2022.103687_b0223
  article-title: Electroencephalogram Emotion Recognition Based on Empirical Mode Decomposition and Optimal Feature Selection
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2018.2868121
– volume: 13
  start-page: 497
  issue: 7-8
  year: 2000
  ident: 10.1016/j.bspc.2022.103687_b0010
  article-title: Emotion recognition and its application to computer agents with spontaneous interactive capabilities
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/S0950-7051(00)00070-8
– volume: 21
  start-page: 21772
  year: 2021
  ident: 10.1016/j.bspc.2022.103687_b0040
  article-title: Multi-source fusion domain adaptation using resting-state knowledge for motor imagery classification tasks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3101684
– volume: 14
  year: 2021
  ident: 10.1016/j.bspc.2022.103687_b0165
  article-title: Two-Level Domain Adaptation Neural Network for EEG-based emotion recognition
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.605246
– volume: 80
  start-page: 109
  year: 2018
  ident: 10.1016/j.bspc.2022.103687_b0160
  article-title: Adaptive batch normalization for practical domain adaptation
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.03.005
– ident: 10.1016/j.bspc.2022.103687_b0110
– volume: 5
  start-page: 27
  issue: 1-2
  year: 2012
  ident: 10.1016/j.bspc.2022.103687_b0025
  article-title: Real-time EEG-based emotion recognition for music therapy, Multimodal User
  publication-title: Interfaces
– ident: 10.1016/j.bspc.2022.103687_b0200
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2022.103687_b0050
  article-title: EEG signal classification using manifold learning and matrix-variate Gaussian model
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2021/4123254
– start-page: 647
  year: 2014
  ident: 10.1016/j.bspc.2022.103687_b0100
  article-title: DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
  publication-title: Proceedings of Machine Learning Research
– volume: 7
  start-page: 162
  year: 2015
  ident: 10.1016/j.bspc.2022.103687_b0185
  article-title: Investigating Critical Frequency Bands and Channels for EEG-based Emotion Recognition with Deep Neural Networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– ident: 10.1016/j.bspc.2022.103687_b0120
– volume: 99
  start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103687_b0190
  article-title: Cichocki A, EmotionMeter: A Multimodal Framework for Recognizing Human Emotions
  publication-title: IEEE Trans. Cybern.
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.bspc.2022.103687_b0195
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– start-page: 33
  year: 2009
  ident: 10.1016/j.bspc.2022.103687_b0030
  article-title: Towards affective learning with an EEG feedback approach
– start-page: 357
  year: 2014
  ident: 10.1016/j.bspc.2022.103687_b0085
  article-title: we are not all equal: Personalizing models for facial expression analysis with transductive parameter transfer
– volume: 65
  start-page: 1107
  year: 2017
  ident: 10.1016/j.bspc.2022.103687_b0070
  article-title: Transfer learning: A riemannian geometry framework with applications to brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2742541
– volume: 7
  start-page: 1687
  year: 2006
  ident: 10.1016/j.bspc.2022.103687_b0095
  article-title: Large scale transductive svms
  publication-title: Journal of Machine Learning Research
– year: 2000
  ident: 10.1016/j.bspc.2022.103687_b0005
– volume: 111
  start-page: 167
  year: 2015
  ident: 10.1016/j.bspc.2022.103687_b0065
  article-title: Learning a common dictionary for subject-transfer decoding with resting calibration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.015
– volume: 165
  start-page: 23
  year: 2015
  ident: 10.1016/j.bspc.2022.103687_b0180
  article-title: Feature learning from incomplete EEG with denoising Autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.092
– start-page: 614
  year: 2010
  ident: 10.1016/j.bspc.2022.103687_b0045
  article-title: Learning from other subjects helps reducing Brain Computer Interface calibration time
  publication-title: IEEE International Conference on Acoustics Speech and Signal Processing
  doi: 10.1109/ICASSP.2010.5495183
– volume: 22
  start-page: 199
  year: 2011
  ident: 10.1016/j.bspc.2022.103687_b0075
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2010.2091281
SSID ssj0048714
Score 2.4559093
Snippet •A novel model is proposed to adapt multisource domain distribution.•The proposed model obtains better results than existing methods.•The model shows good...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103687
SubjectTerms Deep learning
Domain adaptation
EEG
Emotion recognition
Transfer learning
Title Multisource Wasserstein Adaptation Coding Network for EEG emotion recognition
URI https://dx.doi.org/10.1016/j.bspc.2022.103687
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGbrE2Tze7mWEprVdqLFnsL-4SKpEHr1d_uTjYpFaQHjwk7ECazM98m3zeD0I3iqROOJ8TKhBFqMklUFkkiqOROKEd1BuLkyZSNZ_Rxns5baNBoYYBWWef-kNOrbF3f6dbe7JaLRffZY2km_OkkBp6BBzqgYKccovzue03z8Hi86u8NiwmsroUzgeOlPktoYxjHoD1nQKv7qzhtFJzRAdqvkSLuh4c5RC1bHKG9jf6Bx2hSyWfD93f8KivlJEyvxH0jy_CPHQ-WUJ3wNNC9sceoeDi8xzaM78FrAtGyOEGz0fBlMCb1fASikyhaEWUF7EAmneMxdZF2qRTaH3cNk77MCKY1U9RwZnxR10JGmsdxT3qAFjljPPY7Re1iWdgzhF3qDPOvh6lUUac8jJRcJNo619NGZOYc9RrH5LpuHg4zLN7zhiX2loMzc3BmHpx5jm7XNmVonbF1ddr4O_8VALnP7VvsLv5pd4l24Sowb69Qe_XxZa89vlipThVAHbTTf3gaT38AtdnQVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQdvpqH0sd0eCQGLQC9C5LbZRzfBGGgU_7-73a3BxHDw2naSZrqd-bb9vm8AHngSK6KS0CtYiL1Ipszjqc88ErFEEa4ikRpx8jTH2Tx6XsSLBvRrLYyhVbrab2t6Va3dkY7LZqdcLjsvGktjoncngeEZaKCzBy3jThU3odUbjbO8LsgaklcW3-Z6zwQ47YylefHP0jgZBoGRn2PDrPurP231nOExHDmwiHr2fk6gUaxO4XDLQvAMppWC1n6CR6-sEk-aAZaoJ1lpf7Oj_to0KJRbxjfSMBUNBk-osBN80A-HaL06h_lwMOtnnhuR4InQ9zceL4h5CTFTKgki5QsVMyL0jldipjsNwUJgHskES93XBWG-SIKgyzRG85WUGv5dQHO1XhWXgFSsJNZPCPOYR4prJMkSEopCqa6QJJVt6NaJocL5h5sxFu-0Joq9UZNMapJJbTLb8PgTU1r3jJ1Xx3W-6a81QHV53xF39c-4e9jPZtMJnYzy8TUcmDOWiHsDzc3HV3Gr4caG37nl9A3qa9MI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisource+Wasserstein+Adaptation+Coding+Network+for+EEG+emotion+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhu%2C+Lei&rft.au=Ding%2C+Wangpan&rft.au=Zhu%2C+Jieping&rft.au=Xu%2C+Ping&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=76&rft_id=info:doi/10.1016%2Fj.bspc.2022.103687&rft.externalDocID=S1746809422002099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon