Comparative analysis of photovoltaic technologies for high efficiency solar cell design
Sun is the provenance of all kinds of energy prevailing on earth since ages. Being renewable and pollution free, solar energy has paved the way to compensate the exploitation of non-renewable sources of energy through the discovery of solar/photovoltaic cells. Considerable developments have been wit...
Saved in:
Published in | Superlattices and microstructures Vol. 153; p. 106861 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sun is the provenance of all kinds of energy prevailing on earth since ages. Being renewable and pollution free, solar energy has paved the way to compensate the exploitation of non-renewable sources of energy through the discovery of solar/photovoltaic cells. Considerable developments have been witnessed in solar cells with the passage of time which not only resulted in their compact sizes but also resulted in increased power conversion rate. This paper presents comparative analysis of photovoltaic through a detailed study of constructions, applications and efficiencies of the solar cells of third generation including their future trends and aspects. Among all types of solar cells, till date concentrated solar cells have shown maximum efficiency of 38.9%.
•Being renewable and pollution free, solar energy has paved the way to compensate the exploitation of non-renewable sources of energy through discovery of solar cells.•Developments have been witnessed in solar cells with the passage of time which not only resulted in their compact sizes but also resulted in increased power conversion rate.•This paper presents detailed study of constructions, applications and efficiencies of the solar cells of third generation including their future trends and aspects.•Among all types of solar cells, till date concentrated solar cells have shown maximum efficiency of 38.9%. |
---|---|
AbstractList | Sun is the provenance of all kinds of energy prevailing on earth since ages. Being renewable and pollution free, solar energy has paved the way to compensate the exploitation of non-renewable sources of energy through the discovery of solar/photovoltaic cells. Considerable developments have been witnessed in solar cells with the passage of time which not only resulted in their compact sizes but also resulted in increased power conversion rate. This paper presents comparative analysis of photovoltaic through a detailed study of constructions, applications and efficiencies of the solar cells of third generation including their future trends and aspects. Among all types of solar cells, till date concentrated solar cells have shown maximum efficiency of 38.9%.
•Being renewable and pollution free, solar energy has paved the way to compensate the exploitation of non-renewable sources of energy through discovery of solar cells.•Developments have been witnessed in solar cells with the passage of time which not only resulted in their compact sizes but also resulted in increased power conversion rate.•This paper presents detailed study of constructions, applications and efficiencies of the solar cells of third generation including their future trends and aspects.•Among all types of solar cells, till date concentrated solar cells have shown maximum efficiency of 38.9%. |
ArticleNumber | 106861 |
Author | Mehra, Rajesh Raj, Balwinder Sharma, Divya |
Author_xml | – sequence: 1 givenname: Divya surname: Sharma fullname: Sharma, Divya email: divya13jan@gmail.com – sequence: 2 givenname: Rajesh surname: Mehra fullname: Mehra, Rajesh email: rajeshmehra@nitttrchd.ac.in – sequence: 3 givenname: Balwinder surname: Raj fullname: Raj, Balwinder email: balwinderraj@gmail.com |
BookMark | eNp9kM1KAzEUhYNUsK2-gKu8wNRkZppJwY0U_6DgRnEZMpmbzi3pZEhCoW9val256OrAge9w7zcjk8EPQMg9ZwvOuHjYLeK4x0XJSp4LIQW_IlPOVqKoRNNMyJQ19aoQrBI3ZBbjjjG2qnkzJd9rvx910AkPQPWg3TFipN7SsffJH7xLGg1NYPrBO79FiNT6QHvc9hSsRYMwmCON3ulADThHO4i4HW7JtdUuwt1fzsnXy_Pn-q3YfLy-r582hakYS0ULy1oYI1veySXIJl-lS6gZcN7Kmgutpc1poGW2bK1p2q6VupOsM02Z22pOyvOuCT7GAFaNAfc6HBVn6qRG7dRJjTqpUWc1GZL_IIMpK_BDChrdZfTxjEJ-6oAQVPxVAB0GMEl1Hi_hPzS1hH0 |
CitedBy_id | crossref_primary_10_3390_ma15165542 crossref_primary_10_1142_S1793292023500388 crossref_primary_10_3390_en15103801 crossref_primary_10_1002_adom_202300908 crossref_primary_10_1016_j_scca_2022_100010 crossref_primary_10_3390_en15228578 crossref_primary_10_1002_eng2_12600 crossref_primary_10_1016_j_mser_2025_100934 crossref_primary_10_1016_j_optmat_2022_112221 crossref_primary_10_3390_en14206535 crossref_primary_10_1007_s10853_022_07958_3 crossref_primary_10_1142_S1793292023501096 crossref_primary_10_1002_cphc_202400800 crossref_primary_10_1016_j_applthermaleng_2024_122474 crossref_primary_10_1016_j_optmat_2022_113060 crossref_primary_10_1021_acsaelm_3c01386 crossref_primary_10_1016_j_solmat_2024_113374 crossref_primary_10_1016_j_apenergy_2024_123936 crossref_primary_10_1016_j_mseb_2022_116207 crossref_primary_10_18502_kss_v9i13_16073 crossref_primary_10_1007_s40095_022_00512_6 crossref_primary_10_1016_j_inoche_2024_113773 crossref_primary_10_3390_asi5040067 crossref_primary_10_1021_acs_energyfuels_1c02122 crossref_primary_10_3390_buildings15071028 crossref_primary_10_3390_en14133974 crossref_primary_10_1039_D3RA00431G crossref_primary_10_1002_ese3_1815 crossref_primary_10_1007_s10825_022_01940_7 crossref_primary_10_1109_TEM_2022_3204629 crossref_primary_10_1016_j_solener_2024_112965 crossref_primary_10_1007_s10825_024_02222_0 crossref_primary_10_26565_2312_4334_2024_2_57 crossref_primary_10_1016_j_mtcomm_2022_104083 crossref_primary_10_1080_09593330_2024_2316669 |
Cites_doi | 10.1021/ja809598r 10.1002/adma.201402076 10.1002/adma.201102712 10.1038/srep35091 10.1016/j.solmat.2017.04.029 10.1039/C8TC06476H 10.1021/acs.chemmater.5b03864 10.1109/TED.2020.2996570 10.1088/1674-1056/25/10/108802 10.1002/adma.201900593 10.1007/s10853-018-03265-y 10.1016/S0301-4215(00)00086-0 10.1007/978-3-319-50144-4_9 10.1016/j.solener.2019.12.016 10.1002/adfm.200900081 10.1021/nn3029327 10.1007/s12274-017-1812-z 10.1021/nl102122x 10.1080/02726351.2013.769470 10.1002/aenm.201301989 10.1063/1.1721711 10.1016/S1369-7021(07)70278-X 10.1016/j.scib.2020.01.001 10.1038/nphoton.2013.276 10.1038/nmat3984 10.1021/acsaem.9b00565 10.1021/acs.jpclett.6b02864 10.1016/j.solmat.2012.07.006 10.1016/S0261-3069(01)00019-X 10.1016/j.rser.2018.06.031 10.1007/s11664-018-6620-z 10.1021/acsami.8b02403 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2021.106861 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2021_106861 S0749603621000598 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-be546cc8b1d85e87094a2e40e11b8416aa8f841ceb0f2bfc7bdb8ad80dc72ceb3 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:16 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Fri Feb 23 02:45:41 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Solar cells Recent photovoltaic technologies And overall energy efficiency Efficiency |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-be546cc8b1d85e87094a2e40e11b8416aa8f841ceb0f2bfc7bdb8ad80dc72ceb3 |
ParticipantIDs | crossref_primary_10_1016_j_spmi_2021_106861 crossref_citationtrail_10_1016_j_spmi_2021_106861 elsevier_sciencedirect_doi_10_1016_j_spmi_2021_106861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fraas, Knechtli (bib6) 1978 Zhang, Yang, Yang, Guo, Liu, Ren, Liu (bib14) 2016; 6 Ren, Wang, Pan, Zhao, Zhang, Li, Zhao, Sero, Bisquert, Zhong (bib22) 2015; 27 Jiao, Du, Du, Long, Jiang, Pan, Li, Zhong (bib23) 2017; 8 Freiburg (bib30) Nov 2019; 14 Raghvendra, Pathak, Pandey (bib7) 2020; 67 Gomez, Pastorelli, Perez, Mariano, Otero, Elias, Betancur, Martorell (bib31) 2015; 5 Zhai, Li, Chen, Wang, Shi, Wang, Sun (bib37) 2018; 11 Chapin, Fuller, Pearson (bib5) 1954; 25 Liu, Lee, Sun (bib13) 2014; 26 Devi, Mehra (bib45) 2019; 54 Avasthi, Lee, Loo, Sturm (bib12) 2011; 23 Chen, Dou, Zhu, Chung, Song, Zheng, Hawks, Li, Weiss, Yang (bib34) 2012; 6 Chuang, Brown, Bulovic, Bawendi (bib21) 2014; 13 Liu, Jiang, Jin, Qin, Xu, Li, Xiong, Liu, Xiao, Sun, Yang, Zhang, Ding (bib17) 2020; 65 (bib27) 2009 Thakur, Mehra, Devi (bib44) 2018; 47 Srinivas, Balaji, Babu, Reddy (bib3) 2015; 3 (bib38) 2017 Chen, Wei, Hsiao, Hung (bib16) 2019; 2 Lee, Leventis, Moon, Chen, Ito, Haque, Torres, Nueesch, Geiger, Zakeeruddin, Graetzel, Nazeeruddin (bib20) 2009; 19 Ohl (bib4) 1941; 27 Nozik (bib26) 2010; 10 Syafiq, Ataollahi, Scardia (bib39) 2020; 196 Husain, Hasan, Shafie, Hamidon, Pandey (bib32) 2018; 94 Betancur, Gomez, Otero, Elias, Maymo, Martorell (bib35) 2013; 7 Ahmad, He, Liu, Xu, Chen, Yang, Li, Xia, Zhang, Chen (bib24) 2019; 31 National Renewable Energy Laboratory, Best research-cell efficiencies. Wright, Uddin (bib9) 2012; 107 Yusoff, Seungjoo, Shneider, Silva, Jang (bib36) 2014; 4 Gavin (bib10) 2007; 10 . Zheng, Zhang, Lau, Deng, Kim, Ma, Chen, Green, Huang, Baillie (bib40) 2017; 168 Green (bib1) 2000; 28 Chebrolu, Kim (bib18) 2019; 7 (bib19) 2019 Ullattil, Periyat (bib33) 2017 Henderson, Mu, Ueda, Wu, Gordon, Tung, Huang, Keay, Feldman, Hollingsworth, Buhro (bib42) 2001; 22 (bib8) 2019; vol. 23 Abdulrazzaq, Saini, Bourdo, Dervishi, Biris (bib11) 2013; 31 (bib29) 2019 Becquerel (bib2) 1939; 9 Du, Wang, Zhu (bib43) 2016; 25 Xia, Gao, Sun, Wu, Tan, Song, Lee, Sun (bib15) 2018; 10 (bib28) 2008 Kojima, Teshima, Shirai, Miyasaka (bib41) 2009; 131 (10.1016/j.spmi.2021.106861_bib28) 2008 (10.1016/j.spmi.2021.106861_bib19) 2019 (10.1016/j.spmi.2021.106861_bib29) 2019 Fraas (10.1016/j.spmi.2021.106861_bib6) 1978 Zheng (10.1016/j.spmi.2021.106861_bib40) 2017; 168 Ullattil (10.1016/j.spmi.2021.106861_bib33) 2017 Betancur (10.1016/j.spmi.2021.106861_bib35) 2013; 7 Avasthi (10.1016/j.spmi.2021.106861_bib12) 2011; 23 Yusoff (10.1016/j.spmi.2021.106861_bib36) 2014; 4 Chapin (10.1016/j.spmi.2021.106861_bib5) 1954; 25 Jiao (10.1016/j.spmi.2021.106861_bib23) 2017; 8 Zhai (10.1016/j.spmi.2021.106861_bib37) 2018; 11 Abdulrazzaq (10.1016/j.spmi.2021.106861_bib11) 2013; 31 (10.1016/j.spmi.2021.106861_bib8) 2019; vol. 23 Xia (10.1016/j.spmi.2021.106861_bib15) 2018; 10 Lee (10.1016/j.spmi.2021.106861_bib20) 2009; 19 Devi (10.1016/j.spmi.2021.106861_bib45) 2019; 54 Ren (10.1016/j.spmi.2021.106861_bib22) 2015; 27 Gomez (10.1016/j.spmi.2021.106861_bib31) 2015; 5 Freiburg (10.1016/j.spmi.2021.106861_bib30) 2019; 14 Thakur (10.1016/j.spmi.2021.106861_bib44) 2018; 47 Ohl (10.1016/j.spmi.2021.106861_bib4) 1941; 27 (10.1016/j.spmi.2021.106861_bib38) 2017 Chen (10.1016/j.spmi.2021.106861_bib16) 2019; 2 Green (10.1016/j.spmi.2021.106861_bib1) 2000; 28 Raghvendra (10.1016/j.spmi.2021.106861_bib7) 2020; 67 Nozik (10.1016/j.spmi.2021.106861_bib26) 2010; 10 Husain (10.1016/j.spmi.2021.106861_bib32) 2018; 94 Chen (10.1016/j.spmi.2021.106861_bib34) 2012; 6 (10.1016/j.spmi.2021.106861_bib27) 2009 Gavin (10.1016/j.spmi.2021.106861_bib10) 2007; 10 Ahmad (10.1016/j.spmi.2021.106861_bib24) 2019; 31 Zhang (10.1016/j.spmi.2021.106861_bib14) 2016; 6 Liu (10.1016/j.spmi.2021.106861_bib13) 2014; 26 Wright (10.1016/j.spmi.2021.106861_bib9) 2012; 107 Henderson (10.1016/j.spmi.2021.106861_bib42) 2001; 22 Du (10.1016/j.spmi.2021.106861_bib43) 2016; 25 Syafiq (10.1016/j.spmi.2021.106861_bib39) 2020; 196 Srinivas (10.1016/j.spmi.2021.106861_bib3) 2015; 3 Liu (10.1016/j.spmi.2021.106861_bib17) 2020; 65 Kojima (10.1016/j.spmi.2021.106861_bib41) 2009; 131 Becquerel (10.1016/j.spmi.2021.106861_bib2) 1939; 9 Chebrolu (10.1016/j.spmi.2021.106861_bib18) 2019; 7 Chuang (10.1016/j.spmi.2021.106861_bib21) 2014; 13 10.1016/j.spmi.2021.106861_bib25 |
References_xml | – volume: 4 start-page: 1301989 year: 2014 ident: bib36 article-title: High-performance semi-transparent tandem solar cell of 8.02% conversion efficiency with solution-processed graphene mesh and laminated Ag nanowire top electrodes publication-title: Adv. Energy Mater. – volume: 94 start-page: 779 year: 2018 end-page: 791 ident: bib32 article-title: A review of transparent solar photovoltaic technologies publication-title: Renew. Sustain. Energy Rev. – volume: 11 start-page: 1956 year: 2018 end-page: 1966 ident: bib37 article-title: Semi-transparent polymer solar cells with all-copper nanowire electrodes publication-title: Nano Res – volume: 10 start-page: 2735 year: 2010 end-page: 2741 ident: bib26 article-title: Nanoscience and nanostructures for photovoltaics and solar fuels publication-title: Nano Lett. – volume: 2 start-page: 4873 year: 2019 end-page: 4881 ident: bib16 article-title: Vanadium oxide as transparent carrier-selective layer in silicon hybrid solar cells promoting photovoltaic performances publication-title: ACS Appl. Energy Mater. – volume: 26 start-page: 6007 year: 2014 end-page: 6012 ident: bib13 article-title: 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO publication-title: Adv. Mater. – volume: vol. 23 start-page: 305 year: 2019 end-page: 339 ident: bib8 publication-title: Third-Generation Solar Cells: Concept, Materials and Performance - an Overview”, Emerging Nanostructured Mater. For Energy and Environmental Sci. – volume: 6 start-page: 35091 year: 2016 ident: bib14 article-title: Improved PEDOT:PSS/c- Si hybrid solar cell using inverted structure and effective passivation publication-title: Sci. Rep. – volume: 65 start-page: 272 year: 2020 end-page: 275 ident: bib17 article-title: 18% efficiency organic solar cells publication-title: Sci. Bull. – volume: 7 start-page: 995 year: 2013 end-page: 1000 ident: bib35 article-title: Transparent polymer solar cells employing a layered light-trapping architecture publication-title: Nat. Photon. – volume: 28 start-page: 989 year: 2000 end-page: 998 ident: bib1 article-title: Photovoltaics: technology overview publication-title: Energy Pol. – volume: 19 start-page: 2735 year: 2009 end-page: 2742 ident: bib20 article-title: “PbS and CdS quantum dot-sensitized solid-state solar cells: old concepts, new results'’ publication-title: Adv. Funct. Mater. – start-page: 377 year: 2019 end-page: 415 ident: bib19 publication-title: “Quantum Dots for Solar Cell Application”, Nanomaterials for Solar Cell Applications – volume: 5 year: 2015 ident: bib31 article-title: Semi-transparent polymer solar cells publication-title: J. Photon. Energy – volume: 196 start-page: 399 year: 2020 end-page: 408 ident: bib39 article-title: Progress in CZTS as hole transport layer in perovskite solar cell” publication-title: Sol. Energy – volume: 107 start-page: 87 year: 2012 end-page: 111 ident: bib9 article-title: Organic-inorganic hybrid solar cells: a comparative review publication-title: Sol. Energy Mater. Sol. Cell. – volume: 10 start-page: 13767 year: 2018 end-page: 13773 ident: bib15 article-title: Buried MoO publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 42 year: 2007 end-page: 50 ident: bib10 article-title: Third generation photovoltaics publication-title: Mater. Today – volume: 7 start-page: 4911 year: 2019 end-page: 4933 ident: bib18 article-title: Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode publication-title: J. Mater. Chem. C. – volume: 13 start-page: 796 year: 2014 end-page: 801 ident: bib21 article-title: Improved performance and stability in quantum dot solar cells through band alignment engineering publication-title: Nat. Mater. – volume: 14 year: Nov 2019 ident: bib30 article-title: Photovoltaics report (pdf)” publication-title: Fraunhofer ISE – volume: 25 start-page: 676 year: 1954 end-page: 677 ident: bib5 article-title: A new silicon p-n junction photocell for converting solar radiation into electrical power publication-title: J. Appl. Phys. – volume: 31 start-page: 427 year: 2013 end-page: 442 ident: bib11 article-title: Organic solar cells: a review of materials, limitations, and possibilities for improvement publication-title: Part. Sci. Technol. – year: 2008 ident: bib28 publication-title: “Solar Cell Materials”, Course: Solid State II – volume: 8 start-page: 559 year: 2017 end-page: 564 ident: bib23 article-title: Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12% publication-title: J. Phys. Chem. Lett. – start-page: 271 year: 2017 end-page: 283 ident: bib33 article-title: Sol-gel synthesis of titanium dioxide publication-title: Adv. In Sol-Gel Derived Materials & Technologies – volume: 47 start-page: 6935 year: 2018 end-page: 6942 ident: bib44 article-title: Efficient Design of perovskite solar cell using parametric grading of mixed halide perovskite and copper iodide publication-title: J. Electron. Mater. – volume: 27 year: 1941 ident: bib4 article-title: “Light sensitive electric device”, US Patent 240252 publication-title: filed March – volume: 25 start-page: 108802 year: 2016 ident: bib43 article-title: Device simulation of lead-free CH publication-title: Chin. Phys. B – volume: 6 start-page: 7185 year: 2012 end-page: 7190 ident: bib34 article-title: Visibly transparent polymer solar cells produced by solution processing publication-title: ACS Nano – volume: 22 start-page: 585 year: 2001 end-page: 589 ident: bib42 article-title: Optical and structural characterization of copper indium disulfide thin films publication-title: Mater. Des. – start-page: 886 year: 1978 end-page: 891 ident: bib6 article-title: Design of high efficiency monolithic stacked multijunction solar cells publication-title: Proceedings of 13th IEEE Photovolt. Spec. Conf – volume: 131 start-page: 6050 year: 2009 end-page: 6051 ident: bib41 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 8398 year: 2015 end-page: 8405 ident: bib22 article-title: Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9% publication-title: Chem. Mater. – volume: 23 start-page: 5762 year: 2011 end-page: 5766 ident: bib12 article-title: Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells publication-title: Adv. Mater. – volume: 3 start-page: 178 year: 2015 end-page: 182 ident: bib3 article-title: Review on present and advance materials for solar cells publication-title: Int. J. Engg. Res. Onl. – volume: 67 start-page: 2837 year: 2020 end-page: 2843 ident: bib7 article-title: Design, performance, and defect density analysis of efficient eco-friendly perovskite solar cell publication-title: IEEE Trans. Electron. Dev. – reference: . – volume: 168 start-page: 165 year: 2017 end-page: 171 ident: bib40 article-title: Spin-coating free fabrication for highly efficient perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells – reference: National Renewable Energy Laboratory, Best research-cell efficiencies. – volume: 54 start-page: 5615 year: 2019 end-page: 5624 ident: bib45 article-title: Device simulation of lead-free MASnI3 solar cell with CuSbS publication-title: J. Mater. Sci. – start-page: 1 year: 2017 end-page: 46 ident: bib38 publication-title: Handbook of Organic Solar Cells-Device Physics, Processing, Degradation, and Prevention – volume: 31 start-page: 1900593 year: 2019 ident: bib24 article-title: Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency publication-title: Adv. Mater. – year: 2009 ident: bib27 publication-title: Physics of Solar Cells: from Basic Principles to Advanced Concepts – volume: 9 start-page: 561 year: 1939 end-page: 567 ident: bib2 article-title: “Mémoire sur les effets électriques produits sous l’influence des rayons solaires” publication-title: Comptes Rendus – start-page: 81 year: 2019 end-page: 137 ident: bib29 publication-title: “Energy Conversion Efficiency of Solar Cells”, Green Energy and Tech – volume: 131 start-page: 6050 issue: 17 year: 2009 ident: 10.1016/j.spmi.2021.106861_bib41 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 26 start-page: 6007 issue: 34 year: 2014 ident: 10.1016/j.spmi.2021.106861_bib13 article-title: 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer publication-title: Adv. Mater. doi: 10.1002/adma.201402076 – start-page: 81 year: 2019 ident: 10.1016/j.spmi.2021.106861_bib29 – volume: 23 start-page: 5762 issue: 48 year: 2011 ident: 10.1016/j.spmi.2021.106861_bib12 article-title: Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201102712 – volume: 6 start-page: 35091 year: 2016 ident: 10.1016/j.spmi.2021.106861_bib14 article-title: Improved PEDOT:PSS/c- Si hybrid solar cell using inverted structure and effective passivation publication-title: Sci. Rep. doi: 10.1038/srep35091 – year: 2009 ident: 10.1016/j.spmi.2021.106861_bib27 – volume: 27 year: 1941 ident: 10.1016/j.spmi.2021.106861_bib4 article-title: “Light sensitive electric device”, US Patent 240252 publication-title: filed March – volume: vol. 23 start-page: 305 year: 2019 ident: 10.1016/j.spmi.2021.106861_bib8 – volume: 168 start-page: 165 year: 2017 ident: 10.1016/j.spmi.2021.106861_bib40 article-title: Spin-coating free fabrication for highly efficient perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.04.029 – volume: 3 start-page: 178 year: 2015 ident: 10.1016/j.spmi.2021.106861_bib3 article-title: Review on present and advance materials for solar cells publication-title: Int. J. Engg. Res. Onl. – volume: 7 start-page: 4911 issue: 11 year: 2019 ident: 10.1016/j.spmi.2021.106861_bib18 article-title: Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode publication-title: J. Mater. Chem. C. doi: 10.1039/C8TC06476H – volume: 27 start-page: 8398 issue: 24 year: 2015 ident: 10.1016/j.spmi.2021.106861_bib22 article-title: Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9% publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03864 – volume: 67 start-page: 2837 issue: 7 year: 2020 ident: 10.1016/j.spmi.2021.106861_bib7 article-title: Design, performance, and defect density analysis of efficient eco-friendly perovskite solar cell publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2020.2996570 – volume: 25 start-page: 108802 issue: 10 year: 2016 ident: 10.1016/j.spmi.2021.106861_bib43 article-title: Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency publication-title: Chin. Phys. B doi: 10.1088/1674-1056/25/10/108802 – volume: 31 start-page: 1900593 issue: 33 year: 2019 ident: 10.1016/j.spmi.2021.106861_bib24 article-title: Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency publication-title: Adv. Mater. doi: 10.1002/adma.201900593 – volume: 5 year: 2015 ident: 10.1016/j.spmi.2021.106861_bib31 article-title: Semi-transparent polymer solar cells publication-title: J. Photon. Energy – volume: 54 start-page: 5615 issue: 7 year: 2019 ident: 10.1016/j.spmi.2021.106861_bib45 article-title: Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide) publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-03265-y – volume: 28 start-page: 989 issue: 14 year: 2000 ident: 10.1016/j.spmi.2021.106861_bib1 article-title: Photovoltaics: technology overview publication-title: Energy Pol. doi: 10.1016/S0301-4215(00)00086-0 – year: 2008 ident: 10.1016/j.spmi.2021.106861_bib28 – volume: 14 year: 2019 ident: 10.1016/j.spmi.2021.106861_bib30 article-title: Photovoltaics report (pdf)” publication-title: Fraunhofer ISE – start-page: 271 year: 2017 ident: 10.1016/j.spmi.2021.106861_bib33 article-title: Sol-gel synthesis of titanium dioxide publication-title: Adv. In Sol-Gel Derived Materials & Technologies doi: 10.1007/978-3-319-50144-4_9 – volume: 196 start-page: 399 year: 2020 ident: 10.1016/j.spmi.2021.106861_bib39 article-title: Progress in CZTS as hole transport layer in perovskite solar cell” publication-title: Sol. Energy doi: 10.1016/j.solener.2019.12.016 – volume: 19 start-page: 2735 issue: 17 year: 2009 ident: 10.1016/j.spmi.2021.106861_bib20 article-title: “PbS and CdS quantum dot-sensitized solid-state solar cells: old concepts, new results'’ publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900081 – start-page: 886 year: 1978 ident: 10.1016/j.spmi.2021.106861_bib6 article-title: Design of high efficiency monolithic stacked multijunction solar cells publication-title: Proceedings of 13th IEEE Photovolt. Spec. Conf – volume: 9 start-page: 561 year: 1939 ident: 10.1016/j.spmi.2021.106861_bib2 article-title: “Mémoire sur les effets électriques produits sous l’influence des rayons solaires” publication-title: Comptes Rendus – volume: 6 start-page: 7185 issue: 8 year: 2012 ident: 10.1016/j.spmi.2021.106861_bib34 article-title: Visibly transparent polymer solar cells produced by solution processing publication-title: ACS Nano doi: 10.1021/nn3029327 – volume: 11 start-page: 1956 year: 2018 ident: 10.1016/j.spmi.2021.106861_bib37 article-title: Semi-transparent polymer solar cells with all-copper nanowire electrodes publication-title: Nano Res doi: 10.1007/s12274-017-1812-z – volume: 10 start-page: 2735 issue: 8 year: 2010 ident: 10.1016/j.spmi.2021.106861_bib26 article-title: Nanoscience and nanostructures for photovoltaics and solar fuels publication-title: Nano Lett. doi: 10.1021/nl102122x – volume: 31 start-page: 427 issue: 5 year: 2013 ident: 10.1016/j.spmi.2021.106861_bib11 article-title: Organic solar cells: a review of materials, limitations, and possibilities for improvement publication-title: Part. Sci. Technol. doi: 10.1080/02726351.2013.769470 – volume: 4 start-page: 1301989 issue: 12 year: 2014 ident: 10.1016/j.spmi.2021.106861_bib36 article-title: High-performance semi-transparent tandem solar cell of 8.02% conversion efficiency with solution-processed graphene mesh and laminated Ag nanowire top electrodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301989 – volume: 25 start-page: 676 issue: 5 year: 1954 ident: 10.1016/j.spmi.2021.106861_bib5 article-title: A new silicon p-n junction photocell for converting solar radiation into electrical power publication-title: J. Appl. Phys. doi: 10.1063/1.1721711 – ident: 10.1016/j.spmi.2021.106861_bib25 – start-page: 1 year: 2017 ident: 10.1016/j.spmi.2021.106861_bib38 – volume: 10 start-page: 42 issue: 11 year: 2007 ident: 10.1016/j.spmi.2021.106861_bib10 article-title: Third generation photovoltaics publication-title: Mater. Today doi: 10.1016/S1369-7021(07)70278-X – volume: 65 start-page: 272 issue: 4 year: 2020 ident: 10.1016/j.spmi.2021.106861_bib17 article-title: 18% efficiency organic solar cells publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.01.001 – volume: 7 start-page: 995 issue: 12 year: 2013 ident: 10.1016/j.spmi.2021.106861_bib35 article-title: Transparent polymer solar cells employing a layered light-trapping architecture publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.276 – volume: 13 start-page: 796 issue: 8 year: 2014 ident: 10.1016/j.spmi.2021.106861_bib21 article-title: Improved performance and stability in quantum dot solar cells through band alignment engineering publication-title: Nat. Mater. doi: 10.1038/nmat3984 – volume: 2 start-page: 4873 issue: 7 year: 2019 ident: 10.1016/j.spmi.2021.106861_bib16 article-title: Vanadium oxide as transparent carrier-selective layer in silicon hybrid solar cells promoting photovoltaic performances publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00565 – volume: 8 start-page: 559 issue: 3 year: 2017 ident: 10.1016/j.spmi.2021.106861_bib23 article-title: Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12% publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02864 – volume: 107 start-page: 87 year: 2012 ident: 10.1016/j.spmi.2021.106861_bib9 article-title: Organic-inorganic hybrid solar cells: a comparative review publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2012.07.006 – volume: 22 start-page: 585 issue: 7 year: 2001 ident: 10.1016/j.spmi.2021.106861_bib42 article-title: Optical and structural characterization of copper indium disulfide thin films publication-title: Mater. Des. doi: 10.1016/S0261-3069(01)00019-X – volume: 94 start-page: 779 year: 2018 ident: 10.1016/j.spmi.2021.106861_bib32 article-title: A review of transparent solar photovoltaic technologies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.06.031 – start-page: 377 year: 2019 ident: 10.1016/j.spmi.2021.106861_bib19 – volume: 47 start-page: 6935 issue: 11 year: 2018 ident: 10.1016/j.spmi.2021.106861_bib44 article-title: Efficient Design of perovskite solar cell using parametric grading of mixed halide perovskite and copper iodide publication-title: J. Electron. Mater. doi: 10.1007/s11664-018-6620-z – volume: 10 start-page: 13767 issue: 16 year: 2018 ident: 10.1016/j.spmi.2021.106861_bib15 article-title: Buried MoOx/Ag electrode enables high-efficiency organic/silicon heterojunction solar cells with a high fill factor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02403 |
SSID | ssj0009417 |
Score | 2.1223202 |
SecondaryResourceType | review_article |
Snippet | Sun is the provenance of all kinds of energy prevailing on earth since ages. Being renewable and pollution free, solar energy has paved the way to compensate... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106861 |
SubjectTerms | And overall energy efficiency Efficiency Recent photovoltaic technologies Solar cells |
Title | Comparative analysis of photovoltaic technologies for high efficiency solar cell design |
URI | https://dx.doi.org/10.1016/j.spmi.2021.106861 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jInoRnYrzx8jBm9Qladqmx1EcU2EXHe5WkjTFia7F1at_uy9t6hRkBy8tDQmUl_TLe-n3vofQpY5iEkpNPCNV6Fn1EU_IgHskp0QCGFKmapbvNJzM-N08mHdQ0ubCWFqlw_4G02u0di1DZ81huVgMH2DzA_cbAJjWKiM24ZfzyK7y6881zSPmddVd29mzvV3iTMPxWpVvC4gRGYWGUIT0783px4Yz3kd7zlPEo-ZlDlDHLHtoJ2kLtPXQds3e1KtD9JSsNbyxdDIjuMhx-VxUBQAQxP8aV-0pOgTHGHxVbKWKsak1JGwCJl7ZMBfbo3yc1cSOIzQb3zwmE89VTPC0T0jlKRPwUGuhaCYCA59izCUznBhKlf2_KKXI4a6NIjlTuY5UpoTMBMl0xKDVP0bdZbE0JwgzP9CaESV9mDpGAsF8AzbK4BrHucj7iLamSrWTE7dVLV7Tljf2klrzpta8aWPePrr6HlM2YhobewftDKS_lkQKaL9h3Ok_x52hXfvUsBnPUbd6_zAX4HFUalAvqQHaGt3eT6ZfmnnWAQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VIlQWBAVEeXpgQ6G286gzooiqQOlCK7pFtuOIImgqGlZ-O-c8KEiIgSWRHFuKzvbns_3ddwDnuhfSQGrqGKkCx6qPOEL6nkNTRiWCIeOqYPmOgsHEu5360wZEdSyMpVVW2F9ieoHWVUm3smZ3MZt1H3DxQ_cbAZgVKiNiDdY9nL42jcHlx4rnEXpF2l1b27HVq8iZkuS1XLzOcJPIGRYEImC_r07fVpz-NmxVriK5Kv9mBxpm3oZWVGdoa8NGQd_Uy114jFYi3kRWOiMkS8niKcszRKBczjTJ62N03B0TdFaJ1SomphCRsBGYZGn3ucSe5ZOkYHbswaR_PY4GTpUywdEupbmjjO8FWgvFEuEbnIuhJ7nxqGFM2QtGKUWKb20UTblKdU8lSshE0ET3OJa6-9CcZ3NzAIS7vtacKuli33HqC-4atFGCzzBMRdoBVpsq1pWeuE1r8RLXxLHn2Jo3tuaNS_N24OKrzaJU0_iztl_3QPxjTMQI93-0O_xnuzNoDcb3w3h4M7o7gk37paQ2HkMzf3s3J-h-5Oq0GF6fo83Xjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+photovoltaic+technologies+for+high+efficiency+solar+cell+design&rft.jtitle=Superlattices+and+microstructures&rft.au=Sharma%2C+Divya&rft.au=Mehra%2C+Rajesh&rft.au=Raj%2C+Balwinder&rft.date=2021-05-01&rft.issn=0749-6036&rft.volume=153&rft.spage=106861&rft_id=info:doi/10.1016%2Fj.spmi.2021.106861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2021_106861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |