Comparative analysis of photovoltaic technologies for high efficiency solar cell design

Sun is the provenance of all kinds of energy prevailing on earth since ages. Being renewable and pollution free, solar energy has paved the way to compensate the exploitation of non-renewable sources of energy through the discovery of solar/photovoltaic cells. Considerable developments have been wit...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 153; p. 106861
Main Authors Sharma, Divya, Mehra, Rajesh, Raj, Balwinder
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sun is the provenance of all kinds of energy prevailing on earth since ages. Being renewable and pollution free, solar energy has paved the way to compensate the exploitation of non-renewable sources of energy through the discovery of solar/photovoltaic cells. Considerable developments have been witnessed in solar cells with the passage of time which not only resulted in their compact sizes but also resulted in increased power conversion rate. This paper presents comparative analysis of photovoltaic through a detailed study of constructions, applications and efficiencies of the solar cells of third generation including their future trends and aspects. Among all types of solar cells, till date concentrated solar cells have shown maximum efficiency of 38.9%. •Being renewable and pollution free, solar energy has paved the way to compensate the exploitation of non-renewable sources of energy through discovery of solar cells.•Developments have been witnessed in solar cells with the passage of time which not only resulted in their compact sizes but also resulted in increased power conversion rate.•This paper presents detailed study of constructions, applications and efficiencies of the solar cells of third generation including their future trends and aspects.•Among all types of solar cells, till date concentrated solar cells have shown maximum efficiency of 38.9%.
AbstractList Sun is the provenance of all kinds of energy prevailing on earth since ages. Being renewable and pollution free, solar energy has paved the way to compensate the exploitation of non-renewable sources of energy through the discovery of solar/photovoltaic cells. Considerable developments have been witnessed in solar cells with the passage of time which not only resulted in their compact sizes but also resulted in increased power conversion rate. This paper presents comparative analysis of photovoltaic through a detailed study of constructions, applications and efficiencies of the solar cells of third generation including their future trends and aspects. Among all types of solar cells, till date concentrated solar cells have shown maximum efficiency of 38.9%. •Being renewable and pollution free, solar energy has paved the way to compensate the exploitation of non-renewable sources of energy through discovery of solar cells.•Developments have been witnessed in solar cells with the passage of time which not only resulted in their compact sizes but also resulted in increased power conversion rate.•This paper presents detailed study of constructions, applications and efficiencies of the solar cells of third generation including their future trends and aspects.•Among all types of solar cells, till date concentrated solar cells have shown maximum efficiency of 38.9%.
ArticleNumber 106861
Author Mehra, Rajesh
Raj, Balwinder
Sharma, Divya
Author_xml – sequence: 1
  givenname: Divya
  surname: Sharma
  fullname: Sharma, Divya
  email: divya13jan@gmail.com
– sequence: 2
  givenname: Rajesh
  surname: Mehra
  fullname: Mehra, Rajesh
  email: rajeshmehra@nitttrchd.ac.in
– sequence: 3
  givenname: Balwinder
  surname: Raj
  fullname: Raj, Balwinder
  email: balwinderraj@gmail.com
BookMark eNp9kM1KAzEUhYNUsK2-gKu8wNRkZppJwY0U_6DgRnEZMpmbzi3pZEhCoW9val256OrAge9w7zcjk8EPQMg9ZwvOuHjYLeK4x0XJSp4LIQW_IlPOVqKoRNNMyJQ19aoQrBI3ZBbjjjG2qnkzJd9rvx910AkPQPWg3TFipN7SsffJH7xLGg1NYPrBO79FiNT6QHvc9hSsRYMwmCON3ulADThHO4i4HW7JtdUuwt1fzsnXy_Pn-q3YfLy-r582hakYS0ULy1oYI1veySXIJl-lS6gZcN7Kmgutpc1poGW2bK1p2q6VupOsM02Z22pOyvOuCT7GAFaNAfc6HBVn6qRG7dRJjTqpUWc1GZL_IIMpK_BDChrdZfTxjEJ-6oAQVPxVAB0GMEl1Hi_hPzS1hH0
CitedBy_id crossref_primary_10_3390_ma15165542
crossref_primary_10_1142_S1793292023500388
crossref_primary_10_3390_en15103801
crossref_primary_10_1002_adom_202300908
crossref_primary_10_1016_j_scca_2022_100010
crossref_primary_10_3390_en15228578
crossref_primary_10_1002_eng2_12600
crossref_primary_10_1016_j_mser_2025_100934
crossref_primary_10_1016_j_optmat_2022_112221
crossref_primary_10_3390_en14206535
crossref_primary_10_1007_s10853_022_07958_3
crossref_primary_10_1142_S1793292023501096
crossref_primary_10_1002_cphc_202400800
crossref_primary_10_1016_j_applthermaleng_2024_122474
crossref_primary_10_1016_j_optmat_2022_113060
crossref_primary_10_1021_acsaelm_3c01386
crossref_primary_10_1016_j_solmat_2024_113374
crossref_primary_10_1016_j_apenergy_2024_123936
crossref_primary_10_1016_j_mseb_2022_116207
crossref_primary_10_18502_kss_v9i13_16073
crossref_primary_10_1007_s40095_022_00512_6
crossref_primary_10_1016_j_inoche_2024_113773
crossref_primary_10_3390_asi5040067
crossref_primary_10_1021_acs_energyfuels_1c02122
crossref_primary_10_3390_buildings15071028
crossref_primary_10_3390_en14133974
crossref_primary_10_1039_D3RA00431G
crossref_primary_10_1002_ese3_1815
crossref_primary_10_1007_s10825_022_01940_7
crossref_primary_10_1109_TEM_2022_3204629
crossref_primary_10_1016_j_solener_2024_112965
crossref_primary_10_1007_s10825_024_02222_0
crossref_primary_10_26565_2312_4334_2024_2_57
crossref_primary_10_1016_j_mtcomm_2022_104083
crossref_primary_10_1080_09593330_2024_2316669
Cites_doi 10.1021/ja809598r
10.1002/adma.201402076
10.1002/adma.201102712
10.1038/srep35091
10.1016/j.solmat.2017.04.029
10.1039/C8TC06476H
10.1021/acs.chemmater.5b03864
10.1109/TED.2020.2996570
10.1088/1674-1056/25/10/108802
10.1002/adma.201900593
10.1007/s10853-018-03265-y
10.1016/S0301-4215(00)00086-0
10.1007/978-3-319-50144-4_9
10.1016/j.solener.2019.12.016
10.1002/adfm.200900081
10.1021/nn3029327
10.1007/s12274-017-1812-z
10.1021/nl102122x
10.1080/02726351.2013.769470
10.1002/aenm.201301989
10.1063/1.1721711
10.1016/S1369-7021(07)70278-X
10.1016/j.scib.2020.01.001
10.1038/nphoton.2013.276
10.1038/nmat3984
10.1021/acsaem.9b00565
10.1021/acs.jpclett.6b02864
10.1016/j.solmat.2012.07.006
10.1016/S0261-3069(01)00019-X
10.1016/j.rser.2018.06.031
10.1007/s11664-018-6620-z
10.1021/acsami.8b02403
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2021.106861
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2021_106861
S0749603621000598
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-be546cc8b1d85e87094a2e40e11b8416aa8f841ceb0f2bfc7bdb8ad80dc72ceb3
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Tue Jul 01 01:35:16 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Fri Feb 23 02:45:41 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Solar cells
Recent photovoltaic technologies
And overall energy efficiency
Efficiency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-be546cc8b1d85e87094a2e40e11b8416aa8f841ceb0f2bfc7bdb8ad80dc72ceb3
ParticipantIDs crossref_primary_10_1016_j_spmi_2021_106861
crossref_citationtrail_10_1016_j_spmi_2021_106861
elsevier_sciencedirect_doi_10_1016_j_spmi_2021_106861
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Superlattices and microstructures
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fraas, Knechtli (bib6) 1978
Zhang, Yang, Yang, Guo, Liu, Ren, Liu (bib14) 2016; 6
Ren, Wang, Pan, Zhao, Zhang, Li, Zhao, Sero, Bisquert, Zhong (bib22) 2015; 27
Jiao, Du, Du, Long, Jiang, Pan, Li, Zhong (bib23) 2017; 8
Freiburg (bib30) Nov 2019; 14
Raghvendra, Pathak, Pandey (bib7) 2020; 67
Gomez, Pastorelli, Perez, Mariano, Otero, Elias, Betancur, Martorell (bib31) 2015; 5
Zhai, Li, Chen, Wang, Shi, Wang, Sun (bib37) 2018; 11
Chapin, Fuller, Pearson (bib5) 1954; 25
Liu, Lee, Sun (bib13) 2014; 26
Devi, Mehra (bib45) 2019; 54
Avasthi, Lee, Loo, Sturm (bib12) 2011; 23
Chen, Dou, Zhu, Chung, Song, Zheng, Hawks, Li, Weiss, Yang (bib34) 2012; 6
Chuang, Brown, Bulovic, Bawendi (bib21) 2014; 13
Liu, Jiang, Jin, Qin, Xu, Li, Xiong, Liu, Xiao, Sun, Yang, Zhang, Ding (bib17) 2020; 65
(bib27) 2009
Thakur, Mehra, Devi (bib44) 2018; 47
Srinivas, Balaji, Babu, Reddy (bib3) 2015; 3
(bib38) 2017
Chen, Wei, Hsiao, Hung (bib16) 2019; 2
Lee, Leventis, Moon, Chen, Ito, Haque, Torres, Nueesch, Geiger, Zakeeruddin, Graetzel, Nazeeruddin (bib20) 2009; 19
Ohl (bib4) 1941; 27
Nozik (bib26) 2010; 10
Syafiq, Ataollahi, Scardia (bib39) 2020; 196
Husain, Hasan, Shafie, Hamidon, Pandey (bib32) 2018; 94
Betancur, Gomez, Otero, Elias, Maymo, Martorell (bib35) 2013; 7
Ahmad, He, Liu, Xu, Chen, Yang, Li, Xia, Zhang, Chen (bib24) 2019; 31
National Renewable Energy Laboratory, Best research-cell efficiencies.
Wright, Uddin (bib9) 2012; 107
Yusoff, Seungjoo, Shneider, Silva, Jang (bib36) 2014; 4
Gavin (bib10) 2007; 10
.
Zheng, Zhang, Lau, Deng, Kim, Ma, Chen, Green, Huang, Baillie (bib40) 2017; 168
Green (bib1) 2000; 28
Chebrolu, Kim (bib18) 2019; 7
(bib19) 2019
Ullattil, Periyat (bib33) 2017
Henderson, Mu, Ueda, Wu, Gordon, Tung, Huang, Keay, Feldman, Hollingsworth, Buhro (bib42) 2001; 22
(bib8) 2019; vol. 23
Abdulrazzaq, Saini, Bourdo, Dervishi, Biris (bib11) 2013; 31
(bib29) 2019
Becquerel (bib2) 1939; 9
Du, Wang, Zhu (bib43) 2016; 25
Xia, Gao, Sun, Wu, Tan, Song, Lee, Sun (bib15) 2018; 10
(bib28) 2008
Kojima, Teshima, Shirai, Miyasaka (bib41) 2009; 131
(10.1016/j.spmi.2021.106861_bib28) 2008
(10.1016/j.spmi.2021.106861_bib19) 2019
(10.1016/j.spmi.2021.106861_bib29) 2019
Fraas (10.1016/j.spmi.2021.106861_bib6) 1978
Zheng (10.1016/j.spmi.2021.106861_bib40) 2017; 168
Ullattil (10.1016/j.spmi.2021.106861_bib33) 2017
Betancur (10.1016/j.spmi.2021.106861_bib35) 2013; 7
Avasthi (10.1016/j.spmi.2021.106861_bib12) 2011; 23
Yusoff (10.1016/j.spmi.2021.106861_bib36) 2014; 4
Chapin (10.1016/j.spmi.2021.106861_bib5) 1954; 25
Jiao (10.1016/j.spmi.2021.106861_bib23) 2017; 8
Zhai (10.1016/j.spmi.2021.106861_bib37) 2018; 11
Abdulrazzaq (10.1016/j.spmi.2021.106861_bib11) 2013; 31
(10.1016/j.spmi.2021.106861_bib8) 2019; vol. 23
Xia (10.1016/j.spmi.2021.106861_bib15) 2018; 10
Lee (10.1016/j.spmi.2021.106861_bib20) 2009; 19
Devi (10.1016/j.spmi.2021.106861_bib45) 2019; 54
Ren (10.1016/j.spmi.2021.106861_bib22) 2015; 27
Gomez (10.1016/j.spmi.2021.106861_bib31) 2015; 5
Freiburg (10.1016/j.spmi.2021.106861_bib30) 2019; 14
Thakur (10.1016/j.spmi.2021.106861_bib44) 2018; 47
Ohl (10.1016/j.spmi.2021.106861_bib4) 1941; 27
(10.1016/j.spmi.2021.106861_bib38) 2017
Chen (10.1016/j.spmi.2021.106861_bib16) 2019; 2
Green (10.1016/j.spmi.2021.106861_bib1) 2000; 28
Raghvendra (10.1016/j.spmi.2021.106861_bib7) 2020; 67
Nozik (10.1016/j.spmi.2021.106861_bib26) 2010; 10
Husain (10.1016/j.spmi.2021.106861_bib32) 2018; 94
Chen (10.1016/j.spmi.2021.106861_bib34) 2012; 6
(10.1016/j.spmi.2021.106861_bib27) 2009
Gavin (10.1016/j.spmi.2021.106861_bib10) 2007; 10
Ahmad (10.1016/j.spmi.2021.106861_bib24) 2019; 31
Zhang (10.1016/j.spmi.2021.106861_bib14) 2016; 6
Liu (10.1016/j.spmi.2021.106861_bib13) 2014; 26
Wright (10.1016/j.spmi.2021.106861_bib9) 2012; 107
Henderson (10.1016/j.spmi.2021.106861_bib42) 2001; 22
Du (10.1016/j.spmi.2021.106861_bib43) 2016; 25
Syafiq (10.1016/j.spmi.2021.106861_bib39) 2020; 196
Srinivas (10.1016/j.spmi.2021.106861_bib3) 2015; 3
Liu (10.1016/j.spmi.2021.106861_bib17) 2020; 65
Kojima (10.1016/j.spmi.2021.106861_bib41) 2009; 131
Becquerel (10.1016/j.spmi.2021.106861_bib2) 1939; 9
Chebrolu (10.1016/j.spmi.2021.106861_bib18) 2019; 7
Chuang (10.1016/j.spmi.2021.106861_bib21) 2014; 13
10.1016/j.spmi.2021.106861_bib25
References_xml – volume: 4
  start-page: 1301989
  year: 2014
  ident: bib36
  article-title: High-performance semi-transparent tandem solar cell of 8.02% conversion efficiency with solution-processed graphene mesh and laminated Ag nanowire top electrodes
  publication-title: Adv. Energy Mater.
– volume: 94
  start-page: 779
  year: 2018
  end-page: 791
  ident: bib32
  article-title: A review of transparent solar photovoltaic technologies
  publication-title: Renew. Sustain. Energy Rev.
– volume: 11
  start-page: 1956
  year: 2018
  end-page: 1966
  ident: bib37
  article-title: Semi-transparent polymer solar cells with all-copper nanowire electrodes
  publication-title: Nano Res
– volume: 10
  start-page: 2735
  year: 2010
  end-page: 2741
  ident: bib26
  article-title: Nanoscience and nanostructures for photovoltaics and solar fuels
  publication-title: Nano Lett.
– volume: 2
  start-page: 4873
  year: 2019
  end-page: 4881
  ident: bib16
  article-title: Vanadium oxide as transparent carrier-selective layer in silicon hybrid solar cells promoting photovoltaic performances
  publication-title: ACS Appl. Energy Mater.
– volume: 26
  start-page: 6007
  year: 2014
  end-page: 6012
  ident: bib13
  article-title: 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO
  publication-title: Adv. Mater.
– volume: vol. 23
  start-page: 305
  year: 2019
  end-page: 339
  ident: bib8
  publication-title: Third-Generation Solar Cells: Concept, Materials and Performance - an Overview”, Emerging Nanostructured Mater. For Energy and Environmental Sci.
– volume: 6
  start-page: 35091
  year: 2016
  ident: bib14
  article-title: Improved PEDOT:PSS/c- Si hybrid solar cell using inverted structure and effective passivation
  publication-title: Sci. Rep.
– volume: 65
  start-page: 272
  year: 2020
  end-page: 275
  ident: bib17
  article-title: 18% efficiency organic solar cells
  publication-title: Sci. Bull.
– volume: 7
  start-page: 995
  year: 2013
  end-page: 1000
  ident: bib35
  article-title: Transparent polymer solar cells employing a layered light-trapping architecture
  publication-title: Nat. Photon.
– volume: 28
  start-page: 989
  year: 2000
  end-page: 998
  ident: bib1
  article-title: Photovoltaics: technology overview
  publication-title: Energy Pol.
– volume: 19
  start-page: 2735
  year: 2009
  end-page: 2742
  ident: bib20
  article-title: “PbS and CdS quantum dot-sensitized solid-state solar cells: old concepts, new results'’
  publication-title: Adv. Funct. Mater.
– start-page: 377
  year: 2019
  end-page: 415
  ident: bib19
  publication-title: “Quantum Dots for Solar Cell Application”, Nanomaterials for Solar Cell Applications
– volume: 5
  year: 2015
  ident: bib31
  article-title: Semi-transparent polymer solar cells
  publication-title: J. Photon. Energy
– volume: 196
  start-page: 399
  year: 2020
  end-page: 408
  ident: bib39
  article-title: Progress in CZTS as hole transport layer in perovskite solar cell”
  publication-title: Sol. Energy
– volume: 107
  start-page: 87
  year: 2012
  end-page: 111
  ident: bib9
  article-title: Organic-inorganic hybrid solar cells: a comparative review
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 10
  start-page: 13767
  year: 2018
  end-page: 13773
  ident: bib15
  article-title: Buried MoO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 42
  year: 2007
  end-page: 50
  ident: bib10
  article-title: Third generation photovoltaics
  publication-title: Mater. Today
– volume: 7
  start-page: 4911
  year: 2019
  end-page: 4933
  ident: bib18
  article-title: Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode
  publication-title: J. Mater. Chem. C.
– volume: 13
  start-page: 796
  year: 2014
  end-page: 801
  ident: bib21
  article-title: Improved performance and stability in quantum dot solar cells through band alignment engineering
  publication-title: Nat. Mater.
– volume: 14
  year: Nov 2019
  ident: bib30
  article-title: Photovoltaics report (pdf)”
  publication-title: Fraunhofer ISE
– volume: 25
  start-page: 676
  year: 1954
  end-page: 677
  ident: bib5
  article-title: A new silicon p-n junction photocell for converting solar radiation into electrical power
  publication-title: J. Appl. Phys.
– volume: 31
  start-page: 427
  year: 2013
  end-page: 442
  ident: bib11
  article-title: Organic solar cells: a review of materials, limitations, and possibilities for improvement
  publication-title: Part. Sci. Technol.
– year: 2008
  ident: bib28
  publication-title: “Solar Cell Materials”, Course: Solid State II
– volume: 8
  start-page: 559
  year: 2017
  end-page: 564
  ident: bib23
  article-title: Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%
  publication-title: J. Phys. Chem. Lett.
– start-page: 271
  year: 2017
  end-page: 283
  ident: bib33
  article-title: Sol-gel synthesis of titanium dioxide
  publication-title: Adv. In Sol-Gel Derived Materials & Technologies
– volume: 47
  start-page: 6935
  year: 2018
  end-page: 6942
  ident: bib44
  article-title: Efficient Design of perovskite solar cell using parametric grading of mixed halide perovskite and copper iodide
  publication-title: J. Electron. Mater.
– volume: 27
  year: 1941
  ident: bib4
  article-title: “Light sensitive electric device”, US Patent 240252
  publication-title: filed March
– volume: 25
  start-page: 108802
  year: 2016
  ident: bib43
  article-title: Device simulation of lead-free CH
  publication-title: Chin. Phys. B
– volume: 6
  start-page: 7185
  year: 2012
  end-page: 7190
  ident: bib34
  article-title: Visibly transparent polymer solar cells produced by solution processing
  publication-title: ACS Nano
– volume: 22
  start-page: 585
  year: 2001
  end-page: 589
  ident: bib42
  article-title: Optical and structural characterization of copper indium disulfide thin films
  publication-title: Mater. Des.
– start-page: 886
  year: 1978
  end-page: 891
  ident: bib6
  article-title: Design of high efficiency monolithic stacked multijunction solar cells
  publication-title: Proceedings of 13th IEEE Photovolt. Spec. Conf
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  ident: bib41
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 8398
  year: 2015
  end-page: 8405
  ident: bib22
  article-title: Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%
  publication-title: Chem. Mater.
– volume: 23
  start-page: 5762
  year: 2011
  end-page: 5766
  ident: bib12
  article-title: Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells
  publication-title: Adv. Mater.
– volume: 3
  start-page: 178
  year: 2015
  end-page: 182
  ident: bib3
  article-title: Review on present and advance materials for solar cells
  publication-title: Int. J. Engg. Res. Onl.
– volume: 67
  start-page: 2837
  year: 2020
  end-page: 2843
  ident: bib7
  article-title: Design, performance, and defect density analysis of efficient eco-friendly perovskite solar cell
  publication-title: IEEE Trans. Electron. Dev.
– reference: .
– volume: 168
  start-page: 165
  year: 2017
  end-page: 171
  ident: bib40
  article-title: Spin-coating free fabrication for highly efficient perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– reference: National Renewable Energy Laboratory, Best research-cell efficiencies.
– volume: 54
  start-page: 5615
  year: 2019
  end-page: 5624
  ident: bib45
  article-title: Device simulation of lead-free MASnI3 solar cell with CuSbS
  publication-title: J. Mater. Sci.
– start-page: 1
  year: 2017
  end-page: 46
  ident: bib38
  publication-title: Handbook of Organic Solar Cells-Device Physics, Processing, Degradation, and Prevention
– volume: 31
  start-page: 1900593
  year: 2019
  ident: bib24
  article-title: Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency
  publication-title: Adv. Mater.
– year: 2009
  ident: bib27
  publication-title: Physics of Solar Cells: from Basic Principles to Advanced Concepts
– volume: 9
  start-page: 561
  year: 1939
  end-page: 567
  ident: bib2
  article-title: “Mémoire sur les effets électriques produits sous l’influence des rayons solaires”
  publication-title: Comptes Rendus
– start-page: 81
  year: 2019
  end-page: 137
  ident: bib29
  publication-title: “Energy Conversion Efficiency of Solar Cells”, Green Energy and Tech
– volume: 131
  start-page: 6050
  issue: 17
  year: 2009
  ident: 10.1016/j.spmi.2021.106861_bib41
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 26
  start-page: 6007
  issue: 34
  year: 2014
  ident: 10.1016/j.spmi.2021.106861_bib13
  article-title: 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402076
– start-page: 81
  year: 2019
  ident: 10.1016/j.spmi.2021.106861_bib29
– volume: 23
  start-page: 5762
  issue: 48
  year: 2011
  ident: 10.1016/j.spmi.2021.106861_bib12
  article-title: Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102712
– volume: 6
  start-page: 35091
  year: 2016
  ident: 10.1016/j.spmi.2021.106861_bib14
  article-title: Improved PEDOT:PSS/c- Si hybrid solar cell using inverted structure and effective passivation
  publication-title: Sci. Rep.
  doi: 10.1038/srep35091
– year: 2009
  ident: 10.1016/j.spmi.2021.106861_bib27
– volume: 27
  year: 1941
  ident: 10.1016/j.spmi.2021.106861_bib4
  article-title: “Light sensitive electric device”, US Patent 240252
  publication-title: filed March
– volume: vol. 23
  start-page: 305
  year: 2019
  ident: 10.1016/j.spmi.2021.106861_bib8
– volume: 168
  start-page: 165
  year: 2017
  ident: 10.1016/j.spmi.2021.106861_bib40
  article-title: Spin-coating free fabrication for highly efficient perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.04.029
– volume: 3
  start-page: 178
  year: 2015
  ident: 10.1016/j.spmi.2021.106861_bib3
  article-title: Review on present and advance materials for solar cells
  publication-title: Int. J. Engg. Res. Onl.
– volume: 7
  start-page: 4911
  issue: 11
  year: 2019
  ident: 10.1016/j.spmi.2021.106861_bib18
  article-title: Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C8TC06476H
– volume: 27
  start-page: 8398
  issue: 24
  year: 2015
  ident: 10.1016/j.spmi.2021.106861_bib22
  article-title: Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03864
– volume: 67
  start-page: 2837
  issue: 7
  year: 2020
  ident: 10.1016/j.spmi.2021.106861_bib7
  article-title: Design, performance, and defect density analysis of efficient eco-friendly perovskite solar cell
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2020.2996570
– volume: 25
  start-page: 108802
  issue: 10
  year: 2016
  ident: 10.1016/j.spmi.2021.106861_bib43
  article-title: Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/25/10/108802
– volume: 31
  start-page: 1900593
  issue: 33
  year: 2019
  ident: 10.1016/j.spmi.2021.106861_bib24
  article-title: Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900593
– volume: 5
  year: 2015
  ident: 10.1016/j.spmi.2021.106861_bib31
  article-title: Semi-transparent polymer solar cells
  publication-title: J. Photon. Energy
– volume: 54
  start-page: 5615
  issue: 7
  year: 2019
  ident: 10.1016/j.spmi.2021.106861_bib45
  article-title: Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide)
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-03265-y
– volume: 28
  start-page: 989
  issue: 14
  year: 2000
  ident: 10.1016/j.spmi.2021.106861_bib1
  article-title: Photovoltaics: technology overview
  publication-title: Energy Pol.
  doi: 10.1016/S0301-4215(00)00086-0
– year: 2008
  ident: 10.1016/j.spmi.2021.106861_bib28
– volume: 14
  year: 2019
  ident: 10.1016/j.spmi.2021.106861_bib30
  article-title: Photovoltaics report (pdf)”
  publication-title: Fraunhofer ISE
– start-page: 271
  year: 2017
  ident: 10.1016/j.spmi.2021.106861_bib33
  article-title: Sol-gel synthesis of titanium dioxide
  publication-title: Adv. In Sol-Gel Derived Materials & Technologies
  doi: 10.1007/978-3-319-50144-4_9
– volume: 196
  start-page: 399
  year: 2020
  ident: 10.1016/j.spmi.2021.106861_bib39
  article-title: Progress in CZTS as hole transport layer in perovskite solar cell”
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.12.016
– volume: 19
  start-page: 2735
  issue: 17
  year: 2009
  ident: 10.1016/j.spmi.2021.106861_bib20
  article-title: “PbS and CdS quantum dot-sensitized solid-state solar cells: old concepts, new results'’
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900081
– start-page: 886
  year: 1978
  ident: 10.1016/j.spmi.2021.106861_bib6
  article-title: Design of high efficiency monolithic stacked multijunction solar cells
  publication-title: Proceedings of 13th IEEE Photovolt. Spec. Conf
– volume: 9
  start-page: 561
  year: 1939
  ident: 10.1016/j.spmi.2021.106861_bib2
  article-title: “Mémoire sur les effets électriques produits sous l’influence des rayons solaires”
  publication-title: Comptes Rendus
– volume: 6
  start-page: 7185
  issue: 8
  year: 2012
  ident: 10.1016/j.spmi.2021.106861_bib34
  article-title: Visibly transparent polymer solar cells produced by solution processing
  publication-title: ACS Nano
  doi: 10.1021/nn3029327
– volume: 11
  start-page: 1956
  year: 2018
  ident: 10.1016/j.spmi.2021.106861_bib37
  article-title: Semi-transparent polymer solar cells with all-copper nanowire electrodes
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1812-z
– volume: 10
  start-page: 2735
  issue: 8
  year: 2010
  ident: 10.1016/j.spmi.2021.106861_bib26
  article-title: Nanoscience and nanostructures for photovoltaics and solar fuels
  publication-title: Nano Lett.
  doi: 10.1021/nl102122x
– volume: 31
  start-page: 427
  issue: 5
  year: 2013
  ident: 10.1016/j.spmi.2021.106861_bib11
  article-title: Organic solar cells: a review of materials, limitations, and possibilities for improvement
  publication-title: Part. Sci. Technol.
  doi: 10.1080/02726351.2013.769470
– volume: 4
  start-page: 1301989
  issue: 12
  year: 2014
  ident: 10.1016/j.spmi.2021.106861_bib36
  article-title: High-performance semi-transparent tandem solar cell of 8.02% conversion efficiency with solution-processed graphene mesh and laminated Ag nanowire top electrodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301989
– volume: 25
  start-page: 676
  issue: 5
  year: 1954
  ident: 10.1016/j.spmi.2021.106861_bib5
  article-title: A new silicon p-n junction photocell for converting solar radiation into electrical power
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1721711
– ident: 10.1016/j.spmi.2021.106861_bib25
– start-page: 1
  year: 2017
  ident: 10.1016/j.spmi.2021.106861_bib38
– volume: 10
  start-page: 42
  issue: 11
  year: 2007
  ident: 10.1016/j.spmi.2021.106861_bib10
  article-title: Third generation photovoltaics
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(07)70278-X
– volume: 65
  start-page: 272
  issue: 4
  year: 2020
  ident: 10.1016/j.spmi.2021.106861_bib17
  article-title: 18% efficiency organic solar cells
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.01.001
– volume: 7
  start-page: 995
  issue: 12
  year: 2013
  ident: 10.1016/j.spmi.2021.106861_bib35
  article-title: Transparent polymer solar cells employing a layered light-trapping architecture
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.276
– volume: 13
  start-page: 796
  issue: 8
  year: 2014
  ident: 10.1016/j.spmi.2021.106861_bib21
  article-title: Improved performance and stability in quantum dot solar cells through band alignment engineering
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3984
– volume: 2
  start-page: 4873
  issue: 7
  year: 2019
  ident: 10.1016/j.spmi.2021.106861_bib16
  article-title: Vanadium oxide as transparent carrier-selective layer in silicon hybrid solar cells promoting photovoltaic performances
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00565
– volume: 8
  start-page: 559
  issue: 3
  year: 2017
  ident: 10.1016/j.spmi.2021.106861_bib23
  article-title: Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02864
– volume: 107
  start-page: 87
  year: 2012
  ident: 10.1016/j.spmi.2021.106861_bib9
  article-title: Organic-inorganic hybrid solar cells: a comparative review
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2012.07.006
– volume: 22
  start-page: 585
  issue: 7
  year: 2001
  ident: 10.1016/j.spmi.2021.106861_bib42
  article-title: Optical and structural characterization of copper indium disulfide thin films
  publication-title: Mater. Des.
  doi: 10.1016/S0261-3069(01)00019-X
– volume: 94
  start-page: 779
  year: 2018
  ident: 10.1016/j.spmi.2021.106861_bib32
  article-title: A review of transparent solar photovoltaic technologies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.06.031
– start-page: 377
  year: 2019
  ident: 10.1016/j.spmi.2021.106861_bib19
– volume: 47
  start-page: 6935
  issue: 11
  year: 2018
  ident: 10.1016/j.spmi.2021.106861_bib44
  article-title: Efficient Design of perovskite solar cell using parametric grading of mixed halide perovskite and copper iodide
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-018-6620-z
– volume: 10
  start-page: 13767
  issue: 16
  year: 2018
  ident: 10.1016/j.spmi.2021.106861_bib15
  article-title: Buried MoOx/Ag electrode enables high-efficiency organic/silicon heterojunction solar cells with a high fill factor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02403
SSID ssj0009417
Score 2.1223202
SecondaryResourceType review_article
Snippet Sun is the provenance of all kinds of energy prevailing on earth since ages. Being renewable and pollution free, solar energy has paved the way to compensate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106861
SubjectTerms And overall energy efficiency
Efficiency
Recent photovoltaic technologies
Solar cells
Title Comparative analysis of photovoltaic technologies for high efficiency solar cell design
URI https://dx.doi.org/10.1016/j.spmi.2021.106861
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jInoRnYrzx8jBm9Qladqmx1EcU2EXHe5WkjTFia7F1at_uy9t6hRkBy8tDQmUl_TLe-n3vofQpY5iEkpNPCNV6Fn1EU_IgHskp0QCGFKmapbvNJzM-N08mHdQ0ubCWFqlw_4G02u0di1DZ81huVgMH2DzA_cbAJjWKiM24ZfzyK7y6881zSPmddVd29mzvV3iTMPxWpVvC4gRGYWGUIT0783px4Yz3kd7zlPEo-ZlDlDHLHtoJ2kLtPXQds3e1KtD9JSsNbyxdDIjuMhx-VxUBQAQxP8aV-0pOgTHGHxVbKWKsak1JGwCJl7ZMBfbo3yc1cSOIzQb3zwmE89VTPC0T0jlKRPwUGuhaCYCA59izCUznBhKlf2_KKXI4a6NIjlTuY5UpoTMBMl0xKDVP0bdZbE0JwgzP9CaESV9mDpGAsF8AzbK4BrHucj7iLamSrWTE7dVLV7Tljf2klrzpta8aWPePrr6HlM2YhobewftDKS_lkQKaL9h3Ok_x52hXfvUsBnPUbd6_zAX4HFUalAvqQHaGt3eT6ZfmnnWAQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VIlQWBAVEeXpgQ6G286gzooiqQOlCK7pFtuOIImgqGlZ-O-c8KEiIgSWRHFuKzvbns_3ddwDnuhfSQGrqGKkCx6qPOEL6nkNTRiWCIeOqYPmOgsHEu5360wZEdSyMpVVW2F9ieoHWVUm3smZ3MZt1H3DxQ_cbAZgVKiNiDdY9nL42jcHlx4rnEXpF2l1b27HVq8iZkuS1XLzOcJPIGRYEImC_r07fVpz-NmxVriK5Kv9mBxpm3oZWVGdoa8NGQd_Uy114jFYi3kRWOiMkS8niKcszRKBczjTJ62N03B0TdFaJ1SomphCRsBGYZGn3ucSe5ZOkYHbswaR_PY4GTpUywdEupbmjjO8FWgvFEuEbnIuhJ7nxqGFM2QtGKUWKb20UTblKdU8lSshE0ET3OJa6-9CcZ3NzAIS7vtacKuli33HqC-4atFGCzzBMRdoBVpsq1pWeuE1r8RLXxLHn2Jo3tuaNS_N24OKrzaJU0_iztl_3QPxjTMQI93-0O_xnuzNoDcb3w3h4M7o7gk37paQ2HkMzf3s3J-h-5Oq0GF6fo83Xjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+photovoltaic+technologies+for+high+efficiency+solar+cell+design&rft.jtitle=Superlattices+and+microstructures&rft.au=Sharma%2C+Divya&rft.au=Mehra%2C+Rajesh&rft.au=Raj%2C+Balwinder&rft.date=2021-05-01&rft.issn=0749-6036&rft.volume=153&rft.spage=106861&rft_id=info:doi/10.1016%2Fj.spmi.2021.106861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2021_106861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon