An efficient metaheuristic algorithm based feature selection and recurrent neural network for DoS attack detection in cloud computing environment
Detection of Denial of Service (DoS) attack is one of the most critical issues in cloud computing. The attack detection framework is very complex due to the nonlinear thought of interruption activities, unusual conduct of systems traffic, and many attributes in the issue space. This paper proposes a...
Saved in:
Published in | Applied soft computing Vol. 100; p. 106997 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2020.106997 |
Cover
Loading…
Abstract | Detection of Denial of Service (DoS) attack is one of the most critical issues in cloud computing. The attack detection framework is very complex due to the nonlinear thought of interruption activities, unusual conduct of systems traffic, and many attributes in the issue space. This paper proposes an efficient DoS attack detection system that uses the Oppositional Crow Search Algorithm (OCSA), which integrates the Crow Search Algorithm (CSA) and Opposition Based Learning (OBL) method to address such type of issues. The proposed system consists of two stages viz. selection of features using OCSA and classification using Recurrent Neural Network (RNN) classifier. The essential features are selected using the OCSA algorithm and then given to RNN classifier. In the subsequent testing process, incoming data is classified using the RNN classifier. It ensures the separation of standard data (saved in cloud) and the removal of compromised data Using the benchmark data set, the results of experimental evaluation demonstrate that the proposed technique outperforms the other conventional methods by 98.18%, 95.13%, 93.56%, and 94.12% in terms of Precision, Recall, F-Measure, and Accuracy respectively. Further, the proposed work outperforms existing works by 3% on an average for all the metrics used.
•Introducing a new algorithm named Oppositional Crow Search Algorithm (OCSA).•The proposed OCSA is validated on KDD cup 99 dataset.•Feature selection is performed through OCSA algorithm.•Further classification is performed through Recurrent Neural Network (RNN).•OCSA hits with Precision-98.18%, Recall-95.13%, F-measure-93.56% & Accuracy-94.12%. |
---|---|
AbstractList | Detection of Denial of Service (DoS) attack is one of the most critical issues in cloud computing. The attack detection framework is very complex due to the nonlinear thought of interruption activities, unusual conduct of systems traffic, and many attributes in the issue space. This paper proposes an efficient DoS attack detection system that uses the Oppositional Crow Search Algorithm (OCSA), which integrates the Crow Search Algorithm (CSA) and Opposition Based Learning (OBL) method to address such type of issues. The proposed system consists of two stages viz. selection of features using OCSA and classification using Recurrent Neural Network (RNN) classifier. The essential features are selected using the OCSA algorithm and then given to RNN classifier. In the subsequent testing process, incoming data is classified using the RNN classifier. It ensures the separation of standard data (saved in cloud) and the removal of compromised data Using the benchmark data set, the results of experimental evaluation demonstrate that the proposed technique outperforms the other conventional methods by 98.18%, 95.13%, 93.56%, and 94.12% in terms of Precision, Recall, F-Measure, and Accuracy respectively. Further, the proposed work outperforms existing works by 3% on an average for all the metrics used.
•Introducing a new algorithm named Oppositional Crow Search Algorithm (OCSA).•The proposed OCSA is validated on KDD cup 99 dataset.•Feature selection is performed through OCSA algorithm.•Further classification is performed through Recurrent Neural Network (RNN).•OCSA hits with Precision-98.18%, Recall-95.13%, F-measure-93.56% & Accuracy-94.12%. |
ArticleNumber | 106997 |
Author | SaiSindhuTheja, Reddy Shyam, Gopal K. |
Author_xml | – sequence: 1 givenname: Reddy surname: SaiSindhuTheja fullname: SaiSindhuTheja, Reddy email: thejasindhu@gmail.com organization: School of Computing and Information Technology, REVA University, Bengaluru, Karnataka 560 064, India – sequence: 2 givenname: Gopal K. surname: Shyam fullname: Shyam, Gopal K. email: gopalkrishnashyam@reva.edu.in organization: School of Computing and Information Technology, REVA University, Bengaluru, Karnataka 560 064, India |
BookMark | eNp9kMFq3DAQhkVJIZukL5CTXsBbyWtrbehlSdIkEOih7VmMR6NEG1taJDmlj9E3jszuqYec_mHg-5n5LtiZD54Yu5ZiLYVUX_drSAHXtaiXher77Se2kt22rnrVybMyt6qrmr5R5-wipb0oUF93K_Zv5zlZ69CRz3yiDC80R5eyQw7jc4guv0x8gESGW4I8R-KJRsLsgufgDY-Ec4wL7QsJY4n8J8RXbkPkt-Enh5wBX7mhfKKc5ziG2XAM02HOzj9z8m8uBj-Vmiv22cKY6MspL9nv73e_bh6qpx_3jze7pwo3QuRqQDuAbQGtAdl0qmmtEjgMA2BD1Cja0KbeKtEaHITqkIwxhK0FqI1Ust9csvrYizGkFMnqQ3QTxL9aCr1I1Xu9SNWLVH2UWqDuPwhdhuWrHMGNH6PfjiiVp94cRZ0W6eUwVxRmbYL7CH8HiDCbYQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3109081 crossref_primary_10_32604_cmc_2024_059805 crossref_primary_10_3390_electronics12183806 crossref_primary_10_1108_IJPCC_05_2022_0197 crossref_primary_10_1007_s00521_024_10929_1 crossref_primary_10_1051_itmconf_20246504002 crossref_primary_10_1109_ACCESS_2022_3210189 crossref_primary_10_1016_j_heliyon_2024_e24192 crossref_primary_10_1016_j_knosys_2022_108290 crossref_primary_10_1155_2023_3489461 crossref_primary_10_1016_j_jpdc_2023_04_003 crossref_primary_10_3390_app132413019 crossref_primary_10_1007_s00500_025_10521_2 crossref_primary_10_1016_j_advengsoft_2022_103402 crossref_primary_10_1007_s11277_021_08756_x crossref_primary_10_1142_S0218843023500259 crossref_primary_10_1002_for_3037 crossref_primary_10_1109_TDSC_2024_3402955 crossref_primary_10_1007_s11042_023_15023_7 crossref_primary_10_1109_ACCESS_2024_3362246 crossref_primary_10_1155_2022_2076987 crossref_primary_10_1186_s40537_024_00957_y crossref_primary_10_1007_s10479_023_05745_0 crossref_primary_10_1016_j_jnca_2024_103938 crossref_primary_10_3390_math10020274 crossref_primary_10_1007_s11042_024_18162_7 crossref_primary_10_3390_diagnostics13182958 crossref_primary_10_1007_s10489_024_05505_y crossref_primary_10_1016_j_asoc_2021_108375 crossref_primary_10_3390_s22010140 crossref_primary_10_1002_rnc_7313 crossref_primary_10_1016_j_comcom_2022_08_022 crossref_primary_10_1109_TCE_2024_3458810 crossref_primary_10_1002_cpe_7840 crossref_primary_10_1007_s11277_022_10030_7 crossref_primary_10_1016_j_procs_2023_01_014 crossref_primary_10_1016_j_knosys_2022_109446 crossref_primary_10_1007_s11063_024_11500_8 crossref_primary_10_1007_s44196_024_00458_z crossref_primary_10_1007_s11227_025_06986_5 crossref_primary_10_1109_ACCESS_2022_3191430 crossref_primary_10_1016_j_asoc_2023_110184 crossref_primary_10_3389_fenrg_2024_1367199 crossref_primary_10_1007_s00521_024_09622_0 crossref_primary_10_1016_j_jnca_2021_103156 crossref_primary_10_1016_j_procs_2024_04_072 crossref_primary_10_4018_IJACI_293123 crossref_primary_10_7717_peerj_cs_2745 crossref_primary_10_1016_j_eswa_2023_120404 crossref_primary_10_1007_s11277_022_10100_w crossref_primary_10_1007_s13748_023_00306_9 crossref_primary_10_1155_2024_3909173 crossref_primary_10_1080_01969722_2022_2157603 crossref_primary_10_1520_JTE20220041 crossref_primary_10_1007_s10489_024_05673_x crossref_primary_10_1007_s11276_024_03885_0 crossref_primary_10_1186_s13677_024_00625_9 crossref_primary_10_3233_JIFS_221873 crossref_primary_10_1016_j_asoc_2021_107855 crossref_primary_10_1155_2022_8530312 crossref_primary_10_32604_csse_2023_036267 crossref_primary_10_1016_j_asoc_2021_107859 crossref_primary_10_53070_bbd_1172706 crossref_primary_10_1002_cpe_8001 crossref_primary_10_1016_j_comnet_2025_111160 crossref_primary_10_1002_cpe_6461 crossref_primary_10_1016_j_gltp_2021_08_066 crossref_primary_10_1007_s10142_023_01227_5 crossref_primary_10_1109_ACCESS_2021_3097247 crossref_primary_10_1109_ACCESS_2023_3280122 crossref_primary_10_1007_s11227_024_05994_1 crossref_primary_10_1016_j_jksuci_2023_01_020 crossref_primary_10_1155_2022_6473507 crossref_primary_10_1016_j_dajour_2023_100206 crossref_primary_10_1155_2022_6131463 crossref_primary_10_3390_app122312441 crossref_primary_10_1016_j_advengsoft_2022_103236 crossref_primary_10_1016_j_iswa_2022_200114 crossref_primary_10_32604_cmc_2024_058052 |
Cites_doi | 10.1080/0952813X.2015.1042530 10.1111/2041-210X.13107 10.1016/j.csl.2014.09.005 10.1007/s11227-012-0831-5 10.1016/j.ins.2016.04.019 10.1007/s00500-014-1250-8 10.1007/s13198-017-0683-8 10.1016/j.jnca.2010.07.006 10.1007/s12652-018-1093-8 10.1109/MCOM.2015.7081075 10.1007/s12243-016-0552-5 10.1016/j.future.2012.01.006 10.1016/j.asoc.2009.07.009 10.1016/j.asoc.2007.07.010 10.1016/j.compeleceng.2017.12.014 10.1016/j.asoc.2012.09.017 10.1016/j.jocs.2016.07.010 10.1109/TPDS.2013.181 10.1016/j.jnca.2010.06.004 10.1016/j.jpdc.2018.03.006 10.1016/j.jnca.2012.05.003 10.1109/MNET.2011.5958005 10.1016/S1353-4858(20)30056-8 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106997 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106997 S1568494620309364 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-bcfbaf5acfda148645f60cbbbac4ee46e3e327605dcb068cedddec5faa2d16193 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:08 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Fri Feb 23 02:48:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Crow Search Algorithm Cloud computing Recurrent neural network DoS attack Opposition based learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-bcfbaf5acfda148645f60cbbbac4ee46e3e327605dcb068cedddec5faa2d16193 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2020_106997 crossref_citationtrail_10_1016_j_asoc_2020_106997 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106997 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yu, Tian, Guo, Wu (b4) 2014; 25 Mirjalili, Lewis (b33) 2016 Modi, Patel, Borisaniya, Patel, Rajarajan (b3) 2013; 63 Branitskiy, Kotenko (b40) 2017; 23 Chen, Lin, Dou, Yu (b11) 2011 Jyothi, Sekhara Rao (b17) 2019; 44 Bhushan, Gupta (b26) 2018 Sohal, Sandhu, Sood, Chang (b23) 2018 Lipton, Berkowitz, Elkan (b60) 2015 Sayed, Hassanien, Azar (b52) 2019 Rizk-Allah, Hassanien, Bhattacharyya (b51) 2018 Zawbaa, Emary, Parv, Sharawi (b32) 2016 Manickam, Ramaraj, Chellappan (b66) 2017; 1 Girma, Garuba, Li, Liu (b5) 2015 Kozik, Choraś, Ficco, Palmieri (b25) 2018; 119 Jyothsna, Rama Prasad (b67) 2016 Balamurugan, Saravanan (b45) 2019 Girma, Garuba, Goel (b24) 2018 Hasan, Nasser, Ahmad, Molla (b31) 2016; 7 Chui, Fung, Lytras, Lam (b27) 2020 L. Jian, J. Li, K. Shu, H. Liu, Multi-label informed feature selection, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016, New York, pp. 1627–1633. De Mulder, Bethard, Moens (b57) 2015; 30 Ashfaq, Wang, Huang, Abbas, He (b65) 2017; 378 Gaurav, Gaur, Sanghi, Conti, Buyya (b21) 2017 Modi, Patel, Borisaniya, Patel, Patel, Rajarajan (b1) 2013; 36 Khorshed, Ali, Wasimi (b8) 2012; 28 Liu, Qiu, Li (b37) 2017 Zekri, Kafhali, Aboutabit, Saadi (b38) 2017 Aharkhizan, Azmoodeh, Haddad Pajouh, Dehghantanha, Parizi, Srivastava (b46) 2020 Anitha, Malliga (b13) 2013 Abdelaziz, Fathy (b49) 2017; 20 E.G. Dada, A hybridized SVM-kNN-pdAPSO approach to intrusion detection system, in: Proceedings of the Faculty of Engineering Seminar Series, Vol. 8, 2017, pp. 48–54. Lua, Yow (b12) 2011; 25 Tizhoosh (b53) 2005 Subashini, Kavitha (b7) 2011; 34 Figueiredo, Ludermir, Bastos-Filho (b35) 2016 Somani, Gaur, Sanghi, Conti, Buyya (b22) 2017; 72 Yan, Richard Yu (b20) 2015; 53 Fontaine, Kappler, Shahid, De Poorter (b30) 2019 Chapade, Pandey, Bhade (b14) 2013 Accessed on March 1, 2020. Feng, Wang, Dong, Wang (b18) 2018; 67 Aljamal, Tekeoğlu, Bekiroglu, Sengupta (b44) 2019 Chonka, Xiang, Zhou, Bonti (b6) 2011; 34 Mahmood, Agrawal, Hasan, Zenab (b64) 2014; 1 Tavallaee, Bagheri, Lu, Ghorbani (b63) 2009 Meng, Gao, Lu, Liu, Zhang (b34) 2016; 2 Valavi, Elith, Lahoz-Monfort, Guillera-Arroita (b28) 2019; 10 Zamani, Nadimi-Shahraki, Gandomi (b50) 2019 Bhosale, Nenova, Iliev (b29) 2018 Mahdavia, Rahnamayana, Debb (b54) 2018 W. Gai-Ge, D. Suash, D. Leandro, S. Coelho, Elephant herding optimization, in: Proceedings of the 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, 2015, pp. 1–5. Kaur, Pal, Singh (b41) 2017 Choi, Choi, Ko, Kim (b9) 2014; 18 Besharati, Naderan, Namjoo (b16) 2019; 10 Gowrison, Ramar, Muneeswaran, Revathi (b19) 2013; 13 Khraisat, Gondal, Vamplew, Kamruzzaman (b61) 2019; 2 Meryem, Ouahidi (b42) 2020; 2020 Guenane, Nogueira, Pujolle (b15) 2014 Chung, Gulcehre, Cho, Bengio (b59) 2014 Kaur, Pal, Singh (b48) 2018; 9 Ventresca, Rahnamayan, Tizhoosh (b55) 2010; 10 Wang, Zheng, Lou, Thomas Hou (b2) 2015 Sherstinsky (b58) 2020 Deshmukh, Devadkar (b10) 2015 Çavuşoğlu (b43) 2019 Rahnamayan, Tizhoosh, Salama (b56) 2008; 8 Tavallaee (10.1016/j.asoc.2020.106997_b63) 2009 Kaur (10.1016/j.asoc.2020.106997_b41) 2017 Yan (10.1016/j.asoc.2020.106997_b20) 2015; 53 Anitha (10.1016/j.asoc.2020.106997_b13) 2013 Lua (10.1016/j.asoc.2020.106997_b12) 2011; 25 Khorshed (10.1016/j.asoc.2020.106997_b8) 2012; 28 Sherstinsky (10.1016/j.asoc.2020.106997_b58) 2020 Bhosale (10.1016/j.asoc.2020.106997_b29) 2018 Zawbaa (10.1016/j.asoc.2020.106997_b32) 2016 Kozik (10.1016/j.asoc.2020.106997_b25) 2018; 119 Yu (10.1016/j.asoc.2020.106997_b4) 2014; 25 Valavi (10.1016/j.asoc.2020.106997_b28) 2019; 10 Liu (10.1016/j.asoc.2020.106997_b37) 2017 Chonka (10.1016/j.asoc.2020.106997_b6) 2011; 34 Zekri (10.1016/j.asoc.2020.106997_b38) 2017 Lipton (10.1016/j.asoc.2020.106997_b60) 2015 Modi (10.1016/j.asoc.2020.106997_b3) 2013; 63 Zamani (10.1016/j.asoc.2020.106997_b50) 2019 Ashfaq (10.1016/j.asoc.2020.106997_b65) 2017; 378 10.1016/j.asoc.2020.106997_b47 Deshmukh (10.1016/j.asoc.2020.106997_b10) 2015 Ventresca (10.1016/j.asoc.2020.106997_b55) 2010; 10 Choi (10.1016/j.asoc.2020.106997_b9) 2014; 18 Chapade (10.1016/j.asoc.2020.106997_b14) 2013 Girma (10.1016/j.asoc.2020.106997_b24) 2018 Fontaine (10.1016/j.asoc.2020.106997_b30) 2019 Kaur (10.1016/j.asoc.2020.106997_b48) 2018; 9 Guenane (10.1016/j.asoc.2020.106997_b15) 2014 Chui (10.1016/j.asoc.2020.106997_b27) 2020 Rahnamayan (10.1016/j.asoc.2020.106997_b56) 2008; 8 Tizhoosh (10.1016/j.asoc.2020.106997_b53) 2005 Manickam (10.1016/j.asoc.2020.106997_b66) 2017; 1 Aljamal (10.1016/j.asoc.2020.106997_b44) 2019 Gaurav (10.1016/j.asoc.2020.106997_b21) 2017 Bhushan (10.1016/j.asoc.2020.106997_b26) 2018 Mahmood (10.1016/j.asoc.2020.106997_b64) 2014; 1 Aharkhizan (10.1016/j.asoc.2020.106997_b46) 2020 Wang (10.1016/j.asoc.2020.106997_b2) 2015 Gowrison (10.1016/j.asoc.2020.106997_b19) 2013; 13 Hasan (10.1016/j.asoc.2020.106997_b31) 2016; 7 Meng (10.1016/j.asoc.2020.106997_b34) 2016; 2 10.1016/j.asoc.2020.106997_b36 10.1016/j.asoc.2020.106997_b39 Mirjalili (10.1016/j.asoc.2020.106997_b33) 2016 Chen (10.1016/j.asoc.2020.106997_b11) 2011 Sohal (10.1016/j.asoc.2020.106997_b23) 2018 Chung (10.1016/j.asoc.2020.106997_b59) 2014 Jyothi (10.1016/j.asoc.2020.106997_b17) 2019; 44 Figueiredo (10.1016/j.asoc.2020.106997_b35) 2016 Feng (10.1016/j.asoc.2020.106997_b18) 2018; 67 Somani (10.1016/j.asoc.2020.106997_b22) 2017; 72 Abdelaziz (10.1016/j.asoc.2020.106997_b49) 2017; 20 Subashini (10.1016/j.asoc.2020.106997_b7) 2011; 34 De Mulder (10.1016/j.asoc.2020.106997_b57) 2015; 30 Mahdavia (10.1016/j.asoc.2020.106997_b54) 2018 Branitskiy (10.1016/j.asoc.2020.106997_b40) 2017; 23 Çavuşoğlu (10.1016/j.asoc.2020.106997_b43) 2019 Girma (10.1016/j.asoc.2020.106997_b5) 2015 Sayed (10.1016/j.asoc.2020.106997_b52) 2019 Khraisat (10.1016/j.asoc.2020.106997_b61) 2019; 2 Modi (10.1016/j.asoc.2020.106997_b1) 2013; 36 Jyothsna (10.1016/j.asoc.2020.106997_b67) 2016 Rizk-Allah (10.1016/j.asoc.2020.106997_b51) 2018 Besharati (10.1016/j.asoc.2020.106997_b16) 2019; 10 10.1016/j.asoc.2020.106997_b62 Balamurugan (10.1016/j.asoc.2020.106997_b45) 2019 Meryem (10.1016/j.asoc.2020.106997_b42) 2020; 2020 |
References_xml | – start-page: 901 year: 2017 end-page: 910 ident: b41 article-title: Hybridization of K-means and firefly algorithm for intrusion detection system publication-title: Proc. Int. J. Syst. Assur. Eng. Manag. – volume: 72 start-page: 237 year: 2017 end-page: 252 ident: b22 article-title: Service resizing for quick DDoS mitigation in cloud computing environment publication-title: Proc. Ann. Telecommun. – year: 2020 ident: b46 article-title: A hybrid deep generative local metric learning method for intrusion detection publication-title: Proceedings of the Handbook of Big Data Privacy – volume: 9 start-page: 901 year: 2018 end-page: 910 ident: b48 article-title: Hybridization of K-means and Firefly algorithm for intrusion detection system publication-title: Proc. Int. J. Syst. Assur. Eng. Manag. – volume: 20 start-page: 391 year: 2017 end-page: 402 ident: b49 article-title: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks publication-title: Proc. Eng. Sci. Technol., Int. J. – volume: 2 start-page: 1 year: 2019 end-page: 22 ident: b61 article-title: Survey of intrusion detection systems: techniques, datasets and challenges publication-title: Proc. Cyber Secur. – volume: 18 start-page: 1697 year: 2014 end-page: 1703 ident: b9 article-title: A method of DDoS attack detection using HTTP packet pattern and rule engine in cloud computing environment publication-title: Proc. Soft Comput. – volume: 7 start-page: 129 year: 2016 end-page: 140 ident: b31 article-title: Feature selection for intrusion detection using random forest publication-title: Proc. J. Inf. Secur. – volume: 13 start-page: 921 year: 2013 end-page: 927 ident: b19 article-title: Minimal complexity attack classification intrusion detection system publication-title: Proc. Appl. Soft Comput. – start-page: 1 year: 2017 end-page: 7 ident: b38 article-title: DDoS attack detection using machine learning techniques in cloud computing environments publication-title: Proceedings of the 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech) – start-page: 1 year: 2020 end-page: 28 ident: b58 article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network publication-title: Proceedings of the Physica D: Nonlinear Phenomena, Vol. 404 – start-page: 30 year: 2017 end-page: 48 ident: b21 article-title: DDoS attacks in cloud computing: Issues, taxonomy, and future directions publication-title: Proceedings of the Computer Communications, Vol. 107 – volume: 63 start-page: 561 year: 2013 end-page: 592 ident: b3 article-title: A survey on security issues and solutions at different layers of cloud computing publication-title: Proc. J. Supercomput. – volume: 1 start-page: 1 year: 2017 end-page: 14 ident: b66 article-title: A combined PFCM and recurrent neural network based intrusion detection system for cloud environment publication-title: Proc. Int. J. Bus. Intell. Data Min. – volume: 25 start-page: 2245 year: 2014 end-page: 2254 ident: b4 article-title: Can we beat DDoS attacks in clouds publication-title: Proc. IEEE Trans. Parallel Distrib. Syst. – volume: 67 start-page: 454 year: 2018 end-page: 468 ident: b18 article-title: Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack problem publication-title: Proc. Comput. Electr. Eng. – volume: 23 start-page: 145 year: 2017 end-page: 156 ident: b40 article-title: Hybridization of computational intelligence methods for attack detection in computer networks publication-title: Proc. J. Comput. Sci. – volume: 30 start-page: 61 year: 2015 end-page: 98 ident: b57 article-title: A survey on the application of recurrent neural networks to statistical language modeling publication-title: Proc. Comput. Speech Lang. – reference: L. Jian, J. Li, K. Shu, H. Liu, Multi-label informed feature selection, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016, New York, pp. 1627–1633. – start-page: 1 year: 2018 end-page: 13 ident: b26 article-title: Distributed denial of service (DDoS) attack mitigation in software defined network (SDN)-based cloud computing environment publication-title: Proc. J. Ambient Intell. Humaniz. Comput. – volume: 28 start-page: 833 year: 2012 end-page: 851 ident: b8 article-title: A survey on gaps, threat remediation challenges and some thoughts for proactive attack detection in cloud computing publication-title: Proc. Future Gener. Comput. Syst. – start-page: 367 year: 2013 end-page: 370 ident: b13 article-title: A packet marking approach to protect cloud environment against DDoS attacks publication-title: Proceedings of the 20th International Conference on Information Communication and Embedded Systems (ICICES) – start-page: 84 year: 2019 end-page: 89 ident: b44 article-title: Hybrid intrusion detection system using machine learning techniques in cloud computing environments publication-title: Proceedings of the 17th International Conference on Software Engineering Research, Management and Applications (SERA) – volume: 8 start-page: 906 year: 2008 end-page: 918 ident: b56 article-title: Opposition versus randomness in soft computing techniques publication-title: Proc. Appl. Soft Comput. – volume: 53 start-page: 52 year: 2015 end-page: 59 ident: b20 article-title: Distributed denial of service attacks in software-defined networking with cloud computing publication-title: Proc. IEEE Commun. Mag. – start-page: 1 year: 2018 end-page: 23 ident: b54 article-title: Opposition based learning: A literature review publication-title: Proceedings of the Swarm and Evolutionary Computation, Vol. 39 – start-page: 427 year: 2011 end-page: 434 ident: b11 article-title: CBF: a packet filtering method for DDoS attack defense in cloud environment publication-title: Proceedings of the Ninth International Conference in Dependable, Autonomic and Secure Computing (DASC) – start-page: 1092 year: 2015 end-page: 1648 ident: b2 article-title: DDoS attack protection in the era of cloud computing and software-defined networking publication-title: Proceedings of the Computer Networks, Vol. 81 – start-page: 197 year: 2019 end-page: 210 ident: b30 article-title: Log-based intrusion detection for cloud web applications using machine learning publication-title: Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Vol. 96 – volume: 1 start-page: 1 year: 2014 end-page: 4 ident: b64 article-title: Intrusion detection in cloud computing environment using neural network publication-title: Proc. Int. J. Res. Comput. Eng. Electron. – start-page: 51 year: 2016 end-page: 67 ident: b33 article-title: The Whale optimization algorithm publication-title: Proceedings of the Advances in Engineering Software, Vol. 95 – start-page: 19 year: 2018 end-page: 28 ident: b29 article-title: Intrusion detection in communication networks using different classifiers publication-title: Proceedings of the Techno-Societal, 2nd International Conference on Advanced Technologies for Societal Applications, Vol. 2 – start-page: 1 year: 2015 end-page: 38 ident: b60 article-title: A critical review of recurrent neural networks for sequence learning – start-page: 103 year: 2016 end-page: 116 ident: b67 article-title: FCAAIS: Anomaly based network intrusion detection through feature correlation analysis and association impact scale publication-title: Proceedings of the ICT Express, Vol. 2 – start-page: 1 year: 2009 end-page: 6 ident: b63 article-title: A detailed analysis of the KDD CUP 99 data set publication-title: Proceedings of the IEEE Symposium on Computational Intelligence in Security and Defense Applications (CISDA) – start-page: 1 year: 2014 end-page: 9 ident: b59 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – year: 2019 ident: b43 article-title: A new hybrid approach for intrusion detection using machine learning methods publication-title: Proceedings of the Applied Intelligence, Vol. 49 – volume: 25 start-page: 28 year: 2011 end-page: 33 ident: b12 article-title: Mitigating DDoS attacks with transparent and intelligent fast-flux swarm network publication-title: Proc. IEEE Netw. – volume: 2 start-page: 673 year: 2016 end-page: 687 ident: b34 article-title: A new bioinspired optimisation algorithm: bird swarm algorithm publication-title: Proc. J. Exp. Theor. Artif. Intell. – volume: 10 start-page: 225 year: 2019 end-page: 232 ident: b28 article-title: BLOCKCV: An R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models publication-title: Proc. Methods Ecol. Evol. – volume: 34 start-page: 1097 year: 2011 end-page: 1107 ident: b6 article-title: Cloud security defence to protect cloud computing against HTTP-DoS and XML-DoS attacks publication-title: Proc. J. Netw. Comput. Appl. – reference: W. Gai-Ge, D. Suash, D. Leandro, S. Coelho, Elephant herding optimization, in: Proceedings of the 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, 2015, pp. 1–5. – start-page: 340 year: 2018 end-page: 354 ident: b23 article-title: A cybersecurity framework to identify malicious edge device in fog computing and cloud-of-things environments publication-title: Proceedings of the Computers & Security, Vol. 74 – volume: 10 start-page: 956 year: 2010 end-page: 957 ident: b55 article-title: A note on opposition versus randomness in soft computing techniques publication-title: Proc. Appl. Soft Comput. – start-page: 524 year: 2013 end-page: 528 ident: b14 article-title: Securing cloud servers against flooding based DDoS attacks publication-title: Proceedings of the Communication Systems and Network Technologies (CSNT) – year: 2020 ident: b27 article-title: Predicting at-risk university students in a virtual learning environment via a machine learning algorithm publication-title: Proceedings of the Computers in Human Behavior, Vol. 170 – start-page: 212 year: 2015 end-page: 217 ident: b5 article-title: Analysis of DDoS attacks and an introduction of a hybrid statistical model to detect DDoS attacks on cloud computing environment publication-title: Proceedings of the 12th International Conference on Information Technology-New Generations (ITNG) – start-page: 202 year: 2015 end-page: 210 ident: b10 article-title: Understanding DDoS attack & its effect in cloud environment publication-title: Proceedings of the Procedia Computer Science, Vol. 49 – start-page: 171 year: 2019 end-page: 188 ident: b52 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Proceedings of Neural Computing and Applications, Vol. 31 – reference: , Accessed on March 1, 2020. – volume: 378 start-page: 484 year: 2017 end-page: 497 ident: b65 article-title: Fuzziness based semi-supervised learning approach for intrusion detection system publication-title: Proc. J. Inf. Sci. – start-page: 695 year: 2005 end-page: 701 ident: b53 article-title: Opposition-based learning: A new scheme for machine intelligence publication-title: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vol. 1 – start-page: 1161 year: 2018 end-page: 1175 ident: b51 article-title: Chaotic crow search algorithm for fractional optimization problems publication-title: Proceedings of the Applied Soft Computing, Vol. 71 – volume: 10 start-page: 3669 year: 2019 end-page: 3692 ident: b16 article-title: LR-HIDS: logistic regression host-based intrusion detection system for cloud environments publication-title: Proc. J. Ambient Intell. Humaniz. Comput. – start-page: 115 year: 2016 end-page: 134 ident: b35 article-title: Many objective particle swarm optimization publication-title: Proceedings of the Information Sciences, Vol. 374 – volume: 34 start-page: 1 year: 2011 end-page: 11 ident: b7 article-title: A survey on security issues in service delivery models of cloud computing publication-title: Proc. J. Netw. Comput. Appl. – year: 2019 ident: b45 article-title: Enhanced intrusion detection and prevention system on cloud environment using hybrid classification and OTS generation publication-title: Proceedings of the Cluster Computing, Vol. 22 – volume: 44 start-page: 157 year: 2019 end-page: 169 ident: b17 article-title: Privacy preservation of data using crow search with adaptive awareness probability publication-title: Proc. Appl. Soft Comput. – volume: 2020 start-page: 8 year: 2020 end-page: 19 ident: b42 article-title: Hybrid intrusion detection system using machine learning publication-title: Proc. Netw. Secur. – start-page: 125 year: 2018 end-page: 131 ident: b24 article-title: Advanced machine language approach to detect DDoS attack using DBSCAN clustering technology with entropy publication-title: Proceedings of the Information Technology - New Generations – start-page: 318 year: 2017 end-page: 321 ident: b37 article-title: The intrusion detection modle utilizing LE and modified PSO-BP publication-title: Proceedings of the 8th IEEE International Conference on Software Engineering and Service Science (ICSESS) – reference: E.G. Dada, A hybridized SVM-kNN-pdAPSO approach to intrusion detection system, in: Proceedings of the Faculty of Engineering Seminar Series, Vol. 8, 2017, pp. 48–54. – volume: 36 start-page: 42 year: 2013 end-page: 57 ident: b1 article-title: A survey of intrusion detection techniques in cloud publication-title: Proc. J. Netw. Comput. Appl. – start-page: 1 year: 2014 end-page: 6 ident: b15 article-title: Reducing DDoS attacks impact using a hybrid cloud-based firewalling architecture publication-title: Proceedings of the Global Information Infrastructure and Networking Symposium (GIIS) – volume: 119 start-page: 18 year: 2018 end-page: 26 ident: b25 article-title: A scalable distributed machine learning approach for attack detection in edge computing environments publication-title: Proc. J. Parallel Distrib. Comput. – year: 2019 ident: b50 article-title: CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems publication-title: Proceedings of the Applied Soft Computing – start-page: 4612 year: 2016 end-page: 4617 ident: b32 article-title: Feature selection approach based on moth-flame optimization algorithm publication-title: Proceedings of the IEEE Congress on Evolutionary Computation – start-page: 202 year: 2015 ident: 10.1016/j.asoc.2020.106997_b10 article-title: Understanding DDoS attack & its effect in cloud environment – volume: 44 start-page: 157 issue: 2 year: 2019 ident: 10.1016/j.asoc.2020.106997_b17 article-title: Privacy preservation of data using crow search with adaptive awareness probability publication-title: Proc. Appl. Soft Comput. – volume: 2 start-page: 673 issue: 4 year: 2016 ident: 10.1016/j.asoc.2020.106997_b34 article-title: A new bioinspired optimisation algorithm: bird swarm algorithm publication-title: Proc. J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2015.1042530 – ident: 10.1016/j.asoc.2020.106997_b39 – start-page: 695 year: 2005 ident: 10.1016/j.asoc.2020.106997_b53 article-title: Opposition-based learning: A new scheme for machine intelligence – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2020.106997_b59 – start-page: 1 year: 2009 ident: 10.1016/j.asoc.2020.106997_b63 article-title: A detailed analysis of the KDD CUP 99 data set – volume: 10 start-page: 225 issue: 2 year: 2019 ident: 10.1016/j.asoc.2020.106997_b28 article-title: BLOCKCV: An R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models publication-title: Proc. Methods Ecol. Evol. doi: 10.1111/2041-210X.13107 – volume: 7 start-page: 129 issue: 3 year: 2016 ident: 10.1016/j.asoc.2020.106997_b31 article-title: Feature selection for intrusion detection using random forest publication-title: Proc. J. Inf. Secur. – volume: 30 start-page: 61 issue: 1 year: 2015 ident: 10.1016/j.asoc.2020.106997_b57 article-title: A survey on the application of recurrent neural networks to statistical language modeling publication-title: Proc. Comput. Speech Lang. doi: 10.1016/j.csl.2014.09.005 – start-page: 4612 year: 2016 ident: 10.1016/j.asoc.2020.106997_b32 article-title: Feature selection approach based on moth-flame optimization algorithm – start-page: 171 year: 2019 ident: 10.1016/j.asoc.2020.106997_b52 article-title: Feature selection via a novel chaotic crow search algorithm – volume: 2 start-page: 1 issue: 20 year: 2019 ident: 10.1016/j.asoc.2020.106997_b61 article-title: Survey of intrusion detection systems: techniques, datasets and challenges publication-title: Proc. Cyber Secur. – volume: 1 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.asoc.2020.106997_b64 article-title: Intrusion detection in cloud computing environment using neural network publication-title: Proc. Int. J. Res. Comput. Eng. Electron. – volume: 63 start-page: 561 issue: 2 year: 2013 ident: 10.1016/j.asoc.2020.106997_b3 article-title: A survey on security issues and solutions at different layers of cloud computing publication-title: Proc. J. Supercomput. doi: 10.1007/s11227-012-0831-5 – volume: 378 start-page: 484 year: 2017 ident: 10.1016/j.asoc.2020.106997_b65 article-title: Fuzziness based semi-supervised learning approach for intrusion detection system publication-title: Proc. J. Inf. Sci. doi: 10.1016/j.ins.2016.04.019 – start-page: 197 year: 2019 ident: 10.1016/j.asoc.2020.106997_b30 article-title: Log-based intrusion detection for cloud web applications using machine learning – start-page: 1092 year: 2015 ident: 10.1016/j.asoc.2020.106997_b2 article-title: DDoS attack protection in the era of cloud computing and software-defined networking – start-page: 51 year: 2016 ident: 10.1016/j.asoc.2020.106997_b33 article-title: The Whale optimization algorithm – volume: 18 start-page: 1697 issue: 9 year: 2014 ident: 10.1016/j.asoc.2020.106997_b9 article-title: A method of DDoS attack detection using HTTP packet pattern and rule engine in cloud computing environment publication-title: Proc. Soft Comput. doi: 10.1007/s00500-014-1250-8 – year: 2020 ident: 10.1016/j.asoc.2020.106997_b46 article-title: A hybrid deep generative local metric learning method for intrusion detection – volume: 9 start-page: 901 issue: 4 year: 2018 ident: 10.1016/j.asoc.2020.106997_b48 article-title: Hybridization of K-means and Firefly algorithm for intrusion detection system publication-title: Proc. Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-017-0683-8 – start-page: 103 year: 2016 ident: 10.1016/j.asoc.2020.106997_b67 article-title: FCAAIS: Anomaly based network intrusion detection through feature correlation analysis and association impact scale – volume: 34 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.asoc.2020.106997_b7 article-title: A survey on security issues in service delivery models of cloud computing publication-title: Proc. J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2010.07.006 – volume: 10 start-page: 3669 issue: 9 year: 2019 ident: 10.1016/j.asoc.2020.106997_b16 article-title: LR-HIDS: logistic regression host-based intrusion detection system for cloud environments publication-title: Proc. J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-1093-8 – volume: 53 start-page: 52 issue: 4 year: 2015 ident: 10.1016/j.asoc.2020.106997_b20 article-title: Distributed denial of service attacks in software-defined networking with cloud computing publication-title: Proc. IEEE Commun. Mag. doi: 10.1109/MCOM.2015.7081075 – year: 2020 ident: 10.1016/j.asoc.2020.106997_b27 article-title: Predicting at-risk university students in a virtual learning environment via a machine learning algorithm – volume: 72 start-page: 237 issue: 5–6 year: 2017 ident: 10.1016/j.asoc.2020.106997_b22 article-title: Service resizing for quick DDoS mitigation in cloud computing environment publication-title: Proc. Ann. Telecommun. doi: 10.1007/s12243-016-0552-5 – start-page: 84 year: 2019 ident: 10.1016/j.asoc.2020.106997_b44 article-title: Hybrid intrusion detection system using machine learning techniques in cloud computing environments – year: 2019 ident: 10.1016/j.asoc.2020.106997_b43 article-title: A new hybrid approach for intrusion detection using machine learning methods – start-page: 1161 year: 2018 ident: 10.1016/j.asoc.2020.106997_b51 article-title: Chaotic crow search algorithm for fractional optimization problems – year: 2019 ident: 10.1016/j.asoc.2020.106997_b50 article-title: CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems – start-page: 30 year: 2017 ident: 10.1016/j.asoc.2020.106997_b21 article-title: DDoS attacks in cloud computing: Issues, taxonomy, and future directions – start-page: 427 year: 2011 ident: 10.1016/j.asoc.2020.106997_b11 article-title: CBF: a packet filtering method for DDoS attack defense in cloud environment – start-page: 318 year: 2017 ident: 10.1016/j.asoc.2020.106997_b37 article-title: The intrusion detection modle utilizing LE and modified PSO-BP – ident: 10.1016/j.asoc.2020.106997_b62 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2020.106997_b58 article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network – volume: 28 start-page: 833 issue: 6 year: 2012 ident: 10.1016/j.asoc.2020.106997_b8 article-title: A survey on gaps, threat remediation challenges and some thoughts for proactive attack detection in cloud computing publication-title: Proc. Future Gener. Comput. Syst. doi: 10.1016/j.future.2012.01.006 – volume: 10 start-page: 956 issue: 3 year: 2010 ident: 10.1016/j.asoc.2020.106997_b55 article-title: A note on opposition versus randomness in soft computing techniques publication-title: Proc. Appl. Soft Comput. doi: 10.1016/j.asoc.2009.07.009 – year: 2019 ident: 10.1016/j.asoc.2020.106997_b45 article-title: Enhanced intrusion detection and prevention system on cloud environment using hybrid classification and OTS generation – volume: 8 start-page: 906 issue: 2 year: 2008 ident: 10.1016/j.asoc.2020.106997_b56 article-title: Opposition versus randomness in soft computing techniques publication-title: Proc. Appl. Soft Comput. doi: 10.1016/j.asoc.2007.07.010 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106997_b26 article-title: Distributed denial of service (DDoS) attack mitigation in software defined network (SDN)-based cloud computing environment publication-title: Proc. J. Ambient Intell. Humaniz. Comput. – start-page: 115 year: 2016 ident: 10.1016/j.asoc.2020.106997_b35 article-title: Many objective particle swarm optimization – start-page: 212 year: 2015 ident: 10.1016/j.asoc.2020.106997_b5 article-title: Analysis of DDoS attacks and an introduction of a hybrid statistical model to detect DDoS attacks on cloud computing environment – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2020.106997_b38 article-title: DDoS attack detection using machine learning techniques in cloud computing environments – start-page: 125 year: 2018 ident: 10.1016/j.asoc.2020.106997_b24 article-title: Advanced machine language approach to detect DDoS attack using DBSCAN clustering technology with entropy – volume: 1 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.asoc.2020.106997_b66 article-title: A combined PFCM and recurrent neural network based intrusion detection system for cloud environment publication-title: Proc. Int. J. Bus. Intell. Data Min. – start-page: 367 year: 2013 ident: 10.1016/j.asoc.2020.106997_b13 article-title: A packet marking approach to protect cloud environment against DDoS attacks – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2020.106997_b15 article-title: Reducing DDoS attacks impact using a hybrid cloud-based firewalling architecture – volume: 67 start-page: 454 issue: 4 year: 2018 ident: 10.1016/j.asoc.2020.106997_b18 article-title: Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack problem publication-title: Proc. Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.12.014 – volume: 13 start-page: 921 issue: 2 year: 2013 ident: 10.1016/j.asoc.2020.106997_b19 article-title: Minimal complexity attack classification intrusion detection system publication-title: Proc. Appl. Soft Comput. doi: 10.1016/j.asoc.2012.09.017 – start-page: 524 year: 2013 ident: 10.1016/j.asoc.2020.106997_b14 article-title: Securing cloud servers against flooding based DDoS attacks – ident: 10.1016/j.asoc.2020.106997_b36 – volume: 23 start-page: 145 year: 2017 ident: 10.1016/j.asoc.2020.106997_b40 article-title: Hybridization of computational intelligence methods for attack detection in computer networks publication-title: Proc. J. Comput. Sci. doi: 10.1016/j.jocs.2016.07.010 – start-page: 901 year: 2017 ident: 10.1016/j.asoc.2020.106997_b41 article-title: Hybridization of K-means and firefly algorithm for intrusion detection system publication-title: Proc. Int. J. Syst. Assur. Eng. Manag. – start-page: 19 year: 2018 ident: 10.1016/j.asoc.2020.106997_b29 article-title: Intrusion detection in communication networks using different classifiers – volume: 25 start-page: 2245 issue: 9 year: 2014 ident: 10.1016/j.asoc.2020.106997_b4 article-title: Can we beat DDoS attacks in clouds publication-title: Proc. IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2013.181 – ident: 10.1016/j.asoc.2020.106997_b47 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106997_b54 article-title: Opposition based learning: A literature review – start-page: 1 year: 2015 ident: 10.1016/j.asoc.2020.106997_b60 – volume: 34 start-page: 1097 issue: 4 year: 2011 ident: 10.1016/j.asoc.2020.106997_b6 article-title: Cloud security defence to protect cloud computing against HTTP-DoS and XML-DoS attacks publication-title: Proc. J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2010.06.004 – volume: 119 start-page: 18 year: 2018 ident: 10.1016/j.asoc.2020.106997_b25 article-title: A scalable distributed machine learning approach for attack detection in edge computing environments publication-title: Proc. J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2018.03.006 – volume: 36 start-page: 42 issue: 1 year: 2013 ident: 10.1016/j.asoc.2020.106997_b1 article-title: A survey of intrusion detection techniques in cloud publication-title: Proc. J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2012.05.003 – volume: 25 start-page: 28 issue: 4 year: 2011 ident: 10.1016/j.asoc.2020.106997_b12 article-title: Mitigating DDoS attacks with transparent and intelligent fast-flux swarm network publication-title: Proc. IEEE Netw. doi: 10.1109/MNET.2011.5958005 – start-page: 340 year: 2018 ident: 10.1016/j.asoc.2020.106997_b23 article-title: A cybersecurity framework to identify malicious edge device in fog computing and cloud-of-things environments – volume: 2020 start-page: 8 issue: 5 year: 2020 ident: 10.1016/j.asoc.2020.106997_b42 article-title: Hybrid intrusion detection system using machine learning publication-title: Proc. Netw. Secur. doi: 10.1016/S1353-4858(20)30056-8 – volume: 20 start-page: 391 issue: 2 year: 2017 ident: 10.1016/j.asoc.2020.106997_b49 article-title: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks publication-title: Proc. Eng. Sci. Technol., Int. J. |
SSID | ssj0016928 |
Score | 2.6097267 |
Snippet | Detection of Denial of Service (DoS) attack is one of the most critical issues in cloud computing. The attack detection framework is very complex due to the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106997 |
SubjectTerms | Cloud computing Crow Search Algorithm DoS attack Opposition based learning Recurrent neural network |
Title | An efficient metaheuristic algorithm based feature selection and recurrent neural network for DoS attack detection in cloud computing environment |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106997 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4huPTSAm1VXtEcuFVuHGe9xMcoEIVHEYIicbNmXyUQHATOlf_AP2ZmvUYgVRx6srTakVf7refhnflGiF3m8cmyHiZW2pwClDRNBsarRHt0yg-k06Fc7PepmlzKo6v8akmM2loYTquMur_R6UFbx5Fu3M3u_XTavaDIYyALqbJwm6eYE5TZ6-hM_3p6TfPoqSL0V-XJCc-OhTNNjhfSDlCMmPGAKpj46V_G6Y3BGa-Kz9FThGGzmDWx5Kp18aXtwgDxo_wqnocVuEAEQfYD7lyN127R8C8Dzv7OKfq_vgO2Vha8Czye8Bi63xAkgJWFB_7nzixNwOyW9M6qyQ0Hcmhhf34BWNdobsG6OkpNKzCz-cKCCcsh8wdvKua-icvxwZ_RJImNFhLTT9M60cZr9Dkab5HCIyVzr1KjtUYjnZPK9V0_26PAxxqdqgFBQ0rR5B4xs-QxFv3vYrmaV-6HAOulRYO5cZmWBXlDOUpCyRD-Dine2xC9dodLE1nIuRnGrGzTzW5KRqVkVMoGlQ3x81XmvuHg-HB23gJXvjtJJRmJD-Q2_1NuS3zKOM8l5KVti-X6YeF2yFGpdSecxI5YGY7OT874eXg8OX0BHxTvTA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cBegF1Y8VzmsLdV1JA6pjlWPFRevQASt2j8WgolRSX9Ifxjxo6DQEIc9mp5FMufPY945huAP57HJ8v2KTHC5BygpGnS104mypGVri-sCuVilyM5vBFnt_ntAhy2tTA-rTLq_kanB20dR7pxN7tP43H3iiOPviiEzMJrnhTfYNGzU4kOLA5Oz4ejt8cEWYQWq35-4gVi7UyT5kW8CRwmZn5AFp776TP79M7mnKzCcnQWcdCs5wcs2OonrLSNGDDeyzV4GVRoAxcEmxB8tDXd2XlDwYw0-Tedjeu7R_QGy6CzgcoTn0MDHEYFqTI487_dPVETeoJL_mbVpIcj-7R4NL1CqmvSD2hsHaXGFerJdG5Qh-WwBcR3RXPrcHNyfH04TGKvhUT30rROlHaKXE7aGeIISYrcyVQrpUgLa4W0PdvLDjj2MVqlss_osF7UuSPKDDuNRe8XdKppZTcAjROGNOXaZkoU7BDlJBgozUfAEod8m7Df7nCpIxG574cxKduMs_vSo1J6VMoGlU34-ybz1NBwfDk7b4ErPxymku3EF3Jb_ym3B0vD68uL8uJ0dL4N3zOf9hLS1HagU8_mdpf9llr9jufyFcat8Gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+metaheuristic+algorithm+based+feature+selection+and+recurrent+neural+network+for+DoS+attack+detection+in+cloud+computing+environment&rft.jtitle=Applied+soft+computing&rft.au=SaiSindhuTheja%2C+Reddy&rft.au=Shyam%2C+Gopal+K.&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=100&rft_id=info:doi/10.1016%2Fj.asoc.2020.106997&rft.externalDocID=S1568494620309364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |