An efficient metaheuristic algorithm based feature selection and recurrent neural network for DoS attack detection in cloud computing environment

Detection of Denial of Service (DoS) attack is one of the most critical issues in cloud computing. The attack detection framework is very complex due to the nonlinear thought of interruption activities, unusual conduct of systems traffic, and many attributes in the issue space. This paper proposes a...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 100; p. 106997
Main Authors SaiSindhuTheja, Reddy, Shyam, Gopal K.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2021
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2020.106997

Cover

Loading…
Abstract Detection of Denial of Service (DoS) attack is one of the most critical issues in cloud computing. The attack detection framework is very complex due to the nonlinear thought of interruption activities, unusual conduct of systems traffic, and many attributes in the issue space. This paper proposes an efficient DoS attack detection system that uses the Oppositional Crow Search Algorithm (OCSA), which integrates the Crow Search Algorithm (CSA) and Opposition Based Learning (OBL) method to address such type of issues. The proposed system consists of two stages viz. selection of features using OCSA and classification using Recurrent Neural Network (RNN) classifier. The essential features are selected using the OCSA algorithm and then given to RNN classifier. In the subsequent testing process, incoming data is classified using the RNN classifier. It ensures the separation of standard data (saved in cloud) and the removal of compromised data Using the benchmark data set, the results of experimental evaluation demonstrate that the proposed technique outperforms the other conventional methods by 98.18%, 95.13%, 93.56%, and 94.12% in terms of Precision, Recall, F-Measure, and Accuracy respectively. Further, the proposed work outperforms existing works by 3% on an average for all the metrics used. •Introducing a new algorithm named Oppositional Crow Search Algorithm (OCSA).•The proposed OCSA is validated on KDD cup 99 dataset.•Feature selection is performed through OCSA algorithm.•Further classification is performed through Recurrent Neural Network (RNN).•OCSA hits with Precision-98.18%, Recall-95.13%, F-measure-93.56% & Accuracy-94.12%.
AbstractList Detection of Denial of Service (DoS) attack is one of the most critical issues in cloud computing. The attack detection framework is very complex due to the nonlinear thought of interruption activities, unusual conduct of systems traffic, and many attributes in the issue space. This paper proposes an efficient DoS attack detection system that uses the Oppositional Crow Search Algorithm (OCSA), which integrates the Crow Search Algorithm (CSA) and Opposition Based Learning (OBL) method to address such type of issues. The proposed system consists of two stages viz. selection of features using OCSA and classification using Recurrent Neural Network (RNN) classifier. The essential features are selected using the OCSA algorithm and then given to RNN classifier. In the subsequent testing process, incoming data is classified using the RNN classifier. It ensures the separation of standard data (saved in cloud) and the removal of compromised data Using the benchmark data set, the results of experimental evaluation demonstrate that the proposed technique outperforms the other conventional methods by 98.18%, 95.13%, 93.56%, and 94.12% in terms of Precision, Recall, F-Measure, and Accuracy respectively. Further, the proposed work outperforms existing works by 3% on an average for all the metrics used. •Introducing a new algorithm named Oppositional Crow Search Algorithm (OCSA).•The proposed OCSA is validated on KDD cup 99 dataset.•Feature selection is performed through OCSA algorithm.•Further classification is performed through Recurrent Neural Network (RNN).•OCSA hits with Precision-98.18%, Recall-95.13%, F-measure-93.56% & Accuracy-94.12%.
ArticleNumber 106997
Author SaiSindhuTheja, Reddy
Shyam, Gopal K.
Author_xml – sequence: 1
  givenname: Reddy
  surname: SaiSindhuTheja
  fullname: SaiSindhuTheja, Reddy
  email: thejasindhu@gmail.com
  organization: School of Computing and Information Technology, REVA University, Bengaluru, Karnataka 560 064, India
– sequence: 2
  givenname: Gopal K.
  surname: Shyam
  fullname: Shyam, Gopal K.
  email: gopalkrishnashyam@reva.edu.in
  organization: School of Computing and Information Technology, REVA University, Bengaluru, Karnataka 560 064, India
BookMark eNp9kMFq3DAQhkVJIZukL5CTXsBbyWtrbehlSdIkEOih7VmMR6NEG1taJDmlj9E3jszuqYec_mHg-5n5LtiZD54Yu5ZiLYVUX_drSAHXtaiXher77Se2kt22rnrVybMyt6qrmr5R5-wipb0oUF93K_Zv5zlZ69CRz3yiDC80R5eyQw7jc4guv0x8gESGW4I8R-KJRsLsgufgDY-Ec4wL7QsJY4n8J8RXbkPkt-Enh5wBX7mhfKKc5ziG2XAM02HOzj9z8m8uBj-Vmiv22cKY6MspL9nv73e_bh6qpx_3jze7pwo3QuRqQDuAbQGtAdl0qmmtEjgMA2BD1Cja0KbeKtEaHITqkIwxhK0FqI1Ust9csvrYizGkFMnqQ3QTxL9aCr1I1Xu9SNWLVH2UWqDuPwhdhuWrHMGNH6PfjiiVp94cRZ0W6eUwVxRmbYL7CH8HiDCbYQ
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3109081
crossref_primary_10_32604_cmc_2024_059805
crossref_primary_10_3390_electronics12183806
crossref_primary_10_1108_IJPCC_05_2022_0197
crossref_primary_10_1007_s00521_024_10929_1
crossref_primary_10_1051_itmconf_20246504002
crossref_primary_10_1109_ACCESS_2022_3210189
crossref_primary_10_1016_j_heliyon_2024_e24192
crossref_primary_10_1016_j_knosys_2022_108290
crossref_primary_10_1155_2023_3489461
crossref_primary_10_1016_j_jpdc_2023_04_003
crossref_primary_10_3390_app132413019
crossref_primary_10_1007_s00500_025_10521_2
crossref_primary_10_1016_j_advengsoft_2022_103402
crossref_primary_10_1007_s11277_021_08756_x
crossref_primary_10_1142_S0218843023500259
crossref_primary_10_1002_for_3037
crossref_primary_10_1109_TDSC_2024_3402955
crossref_primary_10_1007_s11042_023_15023_7
crossref_primary_10_1109_ACCESS_2024_3362246
crossref_primary_10_1155_2022_2076987
crossref_primary_10_1186_s40537_024_00957_y
crossref_primary_10_1007_s10479_023_05745_0
crossref_primary_10_1016_j_jnca_2024_103938
crossref_primary_10_3390_math10020274
crossref_primary_10_1007_s11042_024_18162_7
crossref_primary_10_3390_diagnostics13182958
crossref_primary_10_1007_s10489_024_05505_y
crossref_primary_10_1016_j_asoc_2021_108375
crossref_primary_10_3390_s22010140
crossref_primary_10_1002_rnc_7313
crossref_primary_10_1016_j_comcom_2022_08_022
crossref_primary_10_1109_TCE_2024_3458810
crossref_primary_10_1002_cpe_7840
crossref_primary_10_1007_s11277_022_10030_7
crossref_primary_10_1016_j_procs_2023_01_014
crossref_primary_10_1016_j_knosys_2022_109446
crossref_primary_10_1007_s11063_024_11500_8
crossref_primary_10_1007_s44196_024_00458_z
crossref_primary_10_1007_s11227_025_06986_5
crossref_primary_10_1109_ACCESS_2022_3191430
crossref_primary_10_1016_j_asoc_2023_110184
crossref_primary_10_3389_fenrg_2024_1367199
crossref_primary_10_1007_s00521_024_09622_0
crossref_primary_10_1016_j_jnca_2021_103156
crossref_primary_10_1016_j_procs_2024_04_072
crossref_primary_10_4018_IJACI_293123
crossref_primary_10_7717_peerj_cs_2745
crossref_primary_10_1016_j_eswa_2023_120404
crossref_primary_10_1007_s11277_022_10100_w
crossref_primary_10_1007_s13748_023_00306_9
crossref_primary_10_1155_2024_3909173
crossref_primary_10_1080_01969722_2022_2157603
crossref_primary_10_1520_JTE20220041
crossref_primary_10_1007_s10489_024_05673_x
crossref_primary_10_1007_s11276_024_03885_0
crossref_primary_10_1186_s13677_024_00625_9
crossref_primary_10_3233_JIFS_221873
crossref_primary_10_1016_j_asoc_2021_107855
crossref_primary_10_1155_2022_8530312
crossref_primary_10_32604_csse_2023_036267
crossref_primary_10_1016_j_asoc_2021_107859
crossref_primary_10_53070_bbd_1172706
crossref_primary_10_1002_cpe_8001
crossref_primary_10_1016_j_comnet_2025_111160
crossref_primary_10_1002_cpe_6461
crossref_primary_10_1016_j_gltp_2021_08_066
crossref_primary_10_1007_s10142_023_01227_5
crossref_primary_10_1109_ACCESS_2021_3097247
crossref_primary_10_1109_ACCESS_2023_3280122
crossref_primary_10_1007_s11227_024_05994_1
crossref_primary_10_1016_j_jksuci_2023_01_020
crossref_primary_10_1155_2022_6473507
crossref_primary_10_1016_j_dajour_2023_100206
crossref_primary_10_1155_2022_6131463
crossref_primary_10_3390_app122312441
crossref_primary_10_1016_j_advengsoft_2022_103236
crossref_primary_10_1016_j_iswa_2022_200114
crossref_primary_10_32604_cmc_2024_058052
Cites_doi 10.1080/0952813X.2015.1042530
10.1111/2041-210X.13107
10.1016/j.csl.2014.09.005
10.1007/s11227-012-0831-5
10.1016/j.ins.2016.04.019
10.1007/s00500-014-1250-8
10.1007/s13198-017-0683-8
10.1016/j.jnca.2010.07.006
10.1007/s12652-018-1093-8
10.1109/MCOM.2015.7081075
10.1007/s12243-016-0552-5
10.1016/j.future.2012.01.006
10.1016/j.asoc.2009.07.009
10.1016/j.asoc.2007.07.010
10.1016/j.compeleceng.2017.12.014
10.1016/j.asoc.2012.09.017
10.1016/j.jocs.2016.07.010
10.1109/TPDS.2013.181
10.1016/j.jnca.2010.06.004
10.1016/j.jpdc.2018.03.006
10.1016/j.jnca.2012.05.003
10.1109/MNET.2011.5958005
10.1016/S1353-4858(20)30056-8
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106997
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106997
S1568494620309364
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-bcfbaf5acfda148645f60cbbbac4ee46e3e327605dcb068cedddec5faa2d16193
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:08 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Fri Feb 23 02:48:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Crow Search Algorithm
Cloud computing
Recurrent neural network
DoS attack
Opposition based learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-bcfbaf5acfda148645f60cbbbac4ee46e3e327605dcb068cedddec5faa2d16193
ParticipantIDs crossref_primary_10_1016_j_asoc_2020_106997
crossref_citationtrail_10_1016_j_asoc_2020_106997
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yu, Tian, Guo, Wu (b4) 2014; 25
Mirjalili, Lewis (b33) 2016
Modi, Patel, Borisaniya, Patel, Rajarajan (b3) 2013; 63
Branitskiy, Kotenko (b40) 2017; 23
Chen, Lin, Dou, Yu (b11) 2011
Jyothi, Sekhara Rao (b17) 2019; 44
Bhushan, Gupta (b26) 2018
Sohal, Sandhu, Sood, Chang (b23) 2018
Lipton, Berkowitz, Elkan (b60) 2015
Sayed, Hassanien, Azar (b52) 2019
Rizk-Allah, Hassanien, Bhattacharyya (b51) 2018
Zawbaa, Emary, Parv, Sharawi (b32) 2016
Manickam, Ramaraj, Chellappan (b66) 2017; 1
Girma, Garuba, Li, Liu (b5) 2015
Kozik, Choraś, Ficco, Palmieri (b25) 2018; 119
Jyothsna, Rama Prasad (b67) 2016
Balamurugan, Saravanan (b45) 2019
Girma, Garuba, Goel (b24) 2018
Hasan, Nasser, Ahmad, Molla (b31) 2016; 7
Chui, Fung, Lytras, Lam (b27) 2020
L. Jian, J. Li, K. Shu, H. Liu, Multi-label informed feature selection, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016, New York, pp. 1627–1633.
De Mulder, Bethard, Moens (b57) 2015; 30
Ashfaq, Wang, Huang, Abbas, He (b65) 2017; 378
Gaurav, Gaur, Sanghi, Conti, Buyya (b21) 2017
Modi, Patel, Borisaniya, Patel, Patel, Rajarajan (b1) 2013; 36
Khorshed, Ali, Wasimi (b8) 2012; 28
Liu, Qiu, Li (b37) 2017
Zekri, Kafhali, Aboutabit, Saadi (b38) 2017
Aharkhizan, Azmoodeh, Haddad Pajouh, Dehghantanha, Parizi, Srivastava (b46) 2020
Anitha, Malliga (b13) 2013
Abdelaziz, Fathy (b49) 2017; 20
E.G. Dada, A hybridized SVM-kNN-pdAPSO approach to intrusion detection system, in: Proceedings of the Faculty of Engineering Seminar Series, Vol. 8, 2017, pp. 48–54.
Lua, Yow (b12) 2011; 25
Tizhoosh (b53) 2005
Subashini, Kavitha (b7) 2011; 34
Figueiredo, Ludermir, Bastos-Filho (b35) 2016
Somani, Gaur, Sanghi, Conti, Buyya (b22) 2017; 72
Yan, Richard Yu (b20) 2015; 53
Fontaine, Kappler, Shahid, De Poorter (b30) 2019
Chapade, Pandey, Bhade (b14) 2013
Accessed on March 1, 2020.
Feng, Wang, Dong, Wang (b18) 2018; 67
Aljamal, Tekeoğlu, Bekiroglu, Sengupta (b44) 2019
Chonka, Xiang, Zhou, Bonti (b6) 2011; 34
Mahmood, Agrawal, Hasan, Zenab (b64) 2014; 1
Tavallaee, Bagheri, Lu, Ghorbani (b63) 2009
Meng, Gao, Lu, Liu, Zhang (b34) 2016; 2
Valavi, Elith, Lahoz-Monfort, Guillera-Arroita (b28) 2019; 10
Zamani, Nadimi-Shahraki, Gandomi (b50) 2019
Bhosale, Nenova, Iliev (b29) 2018
Mahdavia, Rahnamayana, Debb (b54) 2018
W. Gai-Ge, D. Suash, D. Leandro, S. Coelho, Elephant herding optimization, in: Proceedings of the 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, 2015, pp. 1–5.
Kaur, Pal, Singh (b41) 2017
Choi, Choi, Ko, Kim (b9) 2014; 18
Besharati, Naderan, Namjoo (b16) 2019; 10
Gowrison, Ramar, Muneeswaran, Revathi (b19) 2013; 13
Khraisat, Gondal, Vamplew, Kamruzzaman (b61) 2019; 2
Meryem, Ouahidi (b42) 2020; 2020
Guenane, Nogueira, Pujolle (b15) 2014
Chung, Gulcehre, Cho, Bengio (b59) 2014
Kaur, Pal, Singh (b48) 2018; 9
Ventresca, Rahnamayan, Tizhoosh (b55) 2010; 10
Wang, Zheng, Lou, Thomas Hou (b2) 2015
Sherstinsky (b58) 2020
Deshmukh, Devadkar (b10) 2015
Çavuşoğlu (b43) 2019
Rahnamayan, Tizhoosh, Salama (b56) 2008; 8
Tavallaee (10.1016/j.asoc.2020.106997_b63) 2009
Kaur (10.1016/j.asoc.2020.106997_b41) 2017
Yan (10.1016/j.asoc.2020.106997_b20) 2015; 53
Anitha (10.1016/j.asoc.2020.106997_b13) 2013
Lua (10.1016/j.asoc.2020.106997_b12) 2011; 25
Khorshed (10.1016/j.asoc.2020.106997_b8) 2012; 28
Sherstinsky (10.1016/j.asoc.2020.106997_b58) 2020
Bhosale (10.1016/j.asoc.2020.106997_b29) 2018
Zawbaa (10.1016/j.asoc.2020.106997_b32) 2016
Kozik (10.1016/j.asoc.2020.106997_b25) 2018; 119
Yu (10.1016/j.asoc.2020.106997_b4) 2014; 25
Valavi (10.1016/j.asoc.2020.106997_b28) 2019; 10
Liu (10.1016/j.asoc.2020.106997_b37) 2017
Chonka (10.1016/j.asoc.2020.106997_b6) 2011; 34
Zekri (10.1016/j.asoc.2020.106997_b38) 2017
Lipton (10.1016/j.asoc.2020.106997_b60) 2015
Modi (10.1016/j.asoc.2020.106997_b3) 2013; 63
Zamani (10.1016/j.asoc.2020.106997_b50) 2019
Ashfaq (10.1016/j.asoc.2020.106997_b65) 2017; 378
10.1016/j.asoc.2020.106997_b47
Deshmukh (10.1016/j.asoc.2020.106997_b10) 2015
Ventresca (10.1016/j.asoc.2020.106997_b55) 2010; 10
Choi (10.1016/j.asoc.2020.106997_b9) 2014; 18
Chapade (10.1016/j.asoc.2020.106997_b14) 2013
Girma (10.1016/j.asoc.2020.106997_b24) 2018
Fontaine (10.1016/j.asoc.2020.106997_b30) 2019
Kaur (10.1016/j.asoc.2020.106997_b48) 2018; 9
Guenane (10.1016/j.asoc.2020.106997_b15) 2014
Chui (10.1016/j.asoc.2020.106997_b27) 2020
Rahnamayan (10.1016/j.asoc.2020.106997_b56) 2008; 8
Tizhoosh (10.1016/j.asoc.2020.106997_b53) 2005
Manickam (10.1016/j.asoc.2020.106997_b66) 2017; 1
Aljamal (10.1016/j.asoc.2020.106997_b44) 2019
Gaurav (10.1016/j.asoc.2020.106997_b21) 2017
Bhushan (10.1016/j.asoc.2020.106997_b26) 2018
Mahmood (10.1016/j.asoc.2020.106997_b64) 2014; 1
Aharkhizan (10.1016/j.asoc.2020.106997_b46) 2020
Wang (10.1016/j.asoc.2020.106997_b2) 2015
Gowrison (10.1016/j.asoc.2020.106997_b19) 2013; 13
Hasan (10.1016/j.asoc.2020.106997_b31) 2016; 7
Meng (10.1016/j.asoc.2020.106997_b34) 2016; 2
10.1016/j.asoc.2020.106997_b36
10.1016/j.asoc.2020.106997_b39
Mirjalili (10.1016/j.asoc.2020.106997_b33) 2016
Chen (10.1016/j.asoc.2020.106997_b11) 2011
Sohal (10.1016/j.asoc.2020.106997_b23) 2018
Chung (10.1016/j.asoc.2020.106997_b59) 2014
Jyothi (10.1016/j.asoc.2020.106997_b17) 2019; 44
Figueiredo (10.1016/j.asoc.2020.106997_b35) 2016
Feng (10.1016/j.asoc.2020.106997_b18) 2018; 67
Somani (10.1016/j.asoc.2020.106997_b22) 2017; 72
Abdelaziz (10.1016/j.asoc.2020.106997_b49) 2017; 20
Subashini (10.1016/j.asoc.2020.106997_b7) 2011; 34
De Mulder (10.1016/j.asoc.2020.106997_b57) 2015; 30
Mahdavia (10.1016/j.asoc.2020.106997_b54) 2018
Branitskiy (10.1016/j.asoc.2020.106997_b40) 2017; 23
Çavuşoğlu (10.1016/j.asoc.2020.106997_b43) 2019
Girma (10.1016/j.asoc.2020.106997_b5) 2015
Sayed (10.1016/j.asoc.2020.106997_b52) 2019
Khraisat (10.1016/j.asoc.2020.106997_b61) 2019; 2
Modi (10.1016/j.asoc.2020.106997_b1) 2013; 36
Jyothsna (10.1016/j.asoc.2020.106997_b67) 2016
Rizk-Allah (10.1016/j.asoc.2020.106997_b51) 2018
Besharati (10.1016/j.asoc.2020.106997_b16) 2019; 10
10.1016/j.asoc.2020.106997_b62
Balamurugan (10.1016/j.asoc.2020.106997_b45) 2019
Meryem (10.1016/j.asoc.2020.106997_b42) 2020; 2020
References_xml – start-page: 901
  year: 2017
  end-page: 910
  ident: b41
  article-title: Hybridization of K-means and firefly algorithm for intrusion detection system
  publication-title: Proc. Int. J. Syst. Assur. Eng. Manag.
– volume: 72
  start-page: 237
  year: 2017
  end-page: 252
  ident: b22
  article-title: Service resizing for quick DDoS mitigation in cloud computing environment
  publication-title: Proc. Ann. Telecommun.
– year: 2020
  ident: b46
  article-title: A hybrid deep generative local metric learning method for intrusion detection
  publication-title: Proceedings of the Handbook of Big Data Privacy
– volume: 9
  start-page: 901
  year: 2018
  end-page: 910
  ident: b48
  article-title: Hybridization of K-means and Firefly algorithm for intrusion detection system
  publication-title: Proc. Int. J. Syst. Assur. Eng. Manag.
– volume: 20
  start-page: 391
  year: 2017
  end-page: 402
  ident: b49
  article-title: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks
  publication-title: Proc. Eng. Sci. Technol., Int. J.
– volume: 2
  start-page: 1
  year: 2019
  end-page: 22
  ident: b61
  article-title: Survey of intrusion detection systems: techniques, datasets and challenges
  publication-title: Proc. Cyber Secur.
– volume: 18
  start-page: 1697
  year: 2014
  end-page: 1703
  ident: b9
  article-title: A method of DDoS attack detection using HTTP packet pattern and rule engine in cloud computing environment
  publication-title: Proc. Soft Comput.
– volume: 7
  start-page: 129
  year: 2016
  end-page: 140
  ident: b31
  article-title: Feature selection for intrusion detection using random forest
  publication-title: Proc. J. Inf. Secur.
– volume: 13
  start-page: 921
  year: 2013
  end-page: 927
  ident: b19
  article-title: Minimal complexity attack classification intrusion detection system
  publication-title: Proc. Appl. Soft Comput.
– start-page: 1
  year: 2017
  end-page: 7
  ident: b38
  article-title: DDoS attack detection using machine learning techniques in cloud computing environments
  publication-title: Proceedings of the 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech)
– start-page: 1
  year: 2020
  end-page: 28
  ident: b58
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Proceedings of the Physica D: Nonlinear Phenomena, Vol. 404
– start-page: 30
  year: 2017
  end-page: 48
  ident: b21
  article-title: DDoS attacks in cloud computing: Issues, taxonomy, and future directions
  publication-title: Proceedings of the Computer Communications, Vol. 107
– volume: 63
  start-page: 561
  year: 2013
  end-page: 592
  ident: b3
  article-title: A survey on security issues and solutions at different layers of cloud computing
  publication-title: Proc. J. Supercomput.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 14
  ident: b66
  article-title: A combined PFCM and recurrent neural network based intrusion detection system for cloud environment
  publication-title: Proc. Int. J. Bus. Intell. Data Min.
– volume: 25
  start-page: 2245
  year: 2014
  end-page: 2254
  ident: b4
  article-title: Can we beat DDoS attacks in clouds
  publication-title: Proc. IEEE Trans. Parallel Distrib. Syst.
– volume: 67
  start-page: 454
  year: 2018
  end-page: 468
  ident: b18
  article-title: Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack problem
  publication-title: Proc. Comput. Electr. Eng.
– volume: 23
  start-page: 145
  year: 2017
  end-page: 156
  ident: b40
  article-title: Hybridization of computational intelligence methods for attack detection in computer networks
  publication-title: Proc. J. Comput. Sci.
– volume: 30
  start-page: 61
  year: 2015
  end-page: 98
  ident: b57
  article-title: A survey on the application of recurrent neural networks to statistical language modeling
  publication-title: Proc. Comput. Speech Lang.
– reference: L. Jian, J. Li, K. Shu, H. Liu, Multi-label informed feature selection, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016, New York, pp. 1627–1633.
– start-page: 1
  year: 2018
  end-page: 13
  ident: b26
  article-title: Distributed denial of service (DDoS) attack mitigation in software defined network (SDN)-based cloud computing environment
  publication-title: Proc. J. Ambient Intell. Humaniz. Comput.
– volume: 28
  start-page: 833
  year: 2012
  end-page: 851
  ident: b8
  article-title: A survey on gaps, threat remediation challenges and some thoughts for proactive attack detection in cloud computing
  publication-title: Proc. Future Gener. Comput. Syst.
– start-page: 367
  year: 2013
  end-page: 370
  ident: b13
  article-title: A packet marking approach to protect cloud environment against DDoS attacks
  publication-title: Proceedings of the 20th International Conference on Information Communication and Embedded Systems (ICICES)
– start-page: 84
  year: 2019
  end-page: 89
  ident: b44
  article-title: Hybrid intrusion detection system using machine learning techniques in cloud computing environments
  publication-title: Proceedings of the 17th International Conference on Software Engineering Research, Management and Applications (SERA)
– volume: 8
  start-page: 906
  year: 2008
  end-page: 918
  ident: b56
  article-title: Opposition versus randomness in soft computing techniques
  publication-title: Proc. Appl. Soft Comput.
– volume: 53
  start-page: 52
  year: 2015
  end-page: 59
  ident: b20
  article-title: Distributed denial of service attacks in software-defined networking with cloud computing
  publication-title: Proc. IEEE Commun. Mag.
– start-page: 1
  year: 2018
  end-page: 23
  ident: b54
  article-title: Opposition based learning: A literature review
  publication-title: Proceedings of the Swarm and Evolutionary Computation, Vol. 39
– start-page: 427
  year: 2011
  end-page: 434
  ident: b11
  article-title: CBF: a packet filtering method for DDoS attack defense in cloud environment
  publication-title: Proceedings of the Ninth International Conference in Dependable, Autonomic and Secure Computing (DASC)
– start-page: 1092
  year: 2015
  end-page: 1648
  ident: b2
  article-title: DDoS attack protection in the era of cloud computing and software-defined networking
  publication-title: Proceedings of the Computer Networks, Vol. 81
– start-page: 197
  year: 2019
  end-page: 210
  ident: b30
  article-title: Log-based intrusion detection for cloud web applications using machine learning
  publication-title: Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Vol. 96
– volume: 1
  start-page: 1
  year: 2014
  end-page: 4
  ident: b64
  article-title: Intrusion detection in cloud computing environment using neural network
  publication-title: Proc. Int. J. Res. Comput. Eng. Electron.
– start-page: 51
  year: 2016
  end-page: 67
  ident: b33
  article-title: The Whale optimization algorithm
  publication-title: Proceedings of the Advances in Engineering Software, Vol. 95
– start-page: 19
  year: 2018
  end-page: 28
  ident: b29
  article-title: Intrusion detection in communication networks using different classifiers
  publication-title: Proceedings of the Techno-Societal, 2nd International Conference on Advanced Technologies for Societal Applications, Vol. 2
– start-page: 1
  year: 2015
  end-page: 38
  ident: b60
  article-title: A critical review of recurrent neural networks for sequence learning
– start-page: 103
  year: 2016
  end-page: 116
  ident: b67
  article-title: FCAAIS: Anomaly based network intrusion detection through feature correlation analysis and association impact scale
  publication-title: Proceedings of the ICT Express, Vol. 2
– start-page: 1
  year: 2009
  end-page: 6
  ident: b63
  article-title: A detailed analysis of the KDD CUP 99 data set
  publication-title: Proceedings of the IEEE Symposium on Computational Intelligence in Security and Defense Applications (CISDA)
– start-page: 1
  year: 2014
  end-page: 9
  ident: b59
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– year: 2019
  ident: b43
  article-title: A new hybrid approach for intrusion detection using machine learning methods
  publication-title: Proceedings of the Applied Intelligence, Vol. 49
– volume: 25
  start-page: 28
  year: 2011
  end-page: 33
  ident: b12
  article-title: Mitigating DDoS attacks with transparent and intelligent fast-flux swarm network
  publication-title: Proc. IEEE Netw.
– volume: 2
  start-page: 673
  year: 2016
  end-page: 687
  ident: b34
  article-title: A new bioinspired optimisation algorithm: bird swarm algorithm
  publication-title: Proc. J. Exp. Theor. Artif. Intell.
– volume: 10
  start-page: 225
  year: 2019
  end-page: 232
  ident: b28
  article-title: BLOCKCV: An R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models
  publication-title: Proc. Methods Ecol. Evol.
– volume: 34
  start-page: 1097
  year: 2011
  end-page: 1107
  ident: b6
  article-title: Cloud security defence to protect cloud computing against HTTP-DoS and XML-DoS attacks
  publication-title: Proc. J. Netw. Comput. Appl.
– reference: W. Gai-Ge, D. Suash, D. Leandro, S. Coelho, Elephant herding optimization, in: Proceedings of the 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, 2015, pp. 1–5.
– start-page: 340
  year: 2018
  end-page: 354
  ident: b23
  article-title: A cybersecurity framework to identify malicious edge device in fog computing and cloud-of-things environments
  publication-title: Proceedings of the Computers & Security, Vol. 74
– volume: 10
  start-page: 956
  year: 2010
  end-page: 957
  ident: b55
  article-title: A note on opposition versus randomness in soft computing techniques
  publication-title: Proc. Appl. Soft Comput.
– start-page: 524
  year: 2013
  end-page: 528
  ident: b14
  article-title: Securing cloud servers against flooding based DDoS attacks
  publication-title: Proceedings of the Communication Systems and Network Technologies (CSNT)
– year: 2020
  ident: b27
  article-title: Predicting at-risk university students in a virtual learning environment via a machine learning algorithm
  publication-title: Proceedings of the Computers in Human Behavior, Vol. 170
– start-page: 212
  year: 2015
  end-page: 217
  ident: b5
  article-title: Analysis of DDoS attacks and an introduction of a hybrid statistical model to detect DDoS attacks on cloud computing environment
  publication-title: Proceedings of the 12th International Conference on Information Technology-New Generations (ITNG)
– start-page: 202
  year: 2015
  end-page: 210
  ident: b10
  article-title: Understanding DDoS attack & its effect in cloud environment
  publication-title: Proceedings of the Procedia Computer Science, Vol. 49
– start-page: 171
  year: 2019
  end-page: 188
  ident: b52
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Proceedings of Neural Computing and Applications, Vol. 31
– reference: , Accessed on March 1, 2020.
– volume: 378
  start-page: 484
  year: 2017
  end-page: 497
  ident: b65
  article-title: Fuzziness based semi-supervised learning approach for intrusion detection system
  publication-title: Proc. J. Inf. Sci.
– start-page: 695
  year: 2005
  end-page: 701
  ident: b53
  article-title: Opposition-based learning: A new scheme for machine intelligence
  publication-title: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vol. 1
– start-page: 1161
  year: 2018
  end-page: 1175
  ident: b51
  article-title: Chaotic crow search algorithm for fractional optimization problems
  publication-title: Proceedings of the Applied Soft Computing, Vol. 71
– volume: 10
  start-page: 3669
  year: 2019
  end-page: 3692
  ident: b16
  article-title: LR-HIDS: logistic regression host-based intrusion detection system for cloud environments
  publication-title: Proc. J. Ambient Intell. Humaniz. Comput.
– start-page: 115
  year: 2016
  end-page: 134
  ident: b35
  article-title: Many objective particle swarm optimization
  publication-title: Proceedings of the Information Sciences, Vol. 374
– volume: 34
  start-page: 1
  year: 2011
  end-page: 11
  ident: b7
  article-title: A survey on security issues in service delivery models of cloud computing
  publication-title: Proc. J. Netw. Comput. Appl.
– year: 2019
  ident: b45
  article-title: Enhanced intrusion detection and prevention system on cloud environment using hybrid classification and OTS generation
  publication-title: Proceedings of the Cluster Computing, Vol. 22
– volume: 44
  start-page: 157
  year: 2019
  end-page: 169
  ident: b17
  article-title: Privacy preservation of data using crow search with adaptive awareness probability
  publication-title: Proc. Appl. Soft Comput.
– volume: 2020
  start-page: 8
  year: 2020
  end-page: 19
  ident: b42
  article-title: Hybrid intrusion detection system using machine learning
  publication-title: Proc. Netw. Secur.
– start-page: 125
  year: 2018
  end-page: 131
  ident: b24
  article-title: Advanced machine language approach to detect DDoS attack using DBSCAN clustering technology with entropy
  publication-title: Proceedings of the Information Technology - New Generations
– start-page: 318
  year: 2017
  end-page: 321
  ident: b37
  article-title: The intrusion detection modle utilizing LE and modified PSO-BP
  publication-title: Proceedings of the 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)
– reference: E.G. Dada, A hybridized SVM-kNN-pdAPSO approach to intrusion detection system, in: Proceedings of the Faculty of Engineering Seminar Series, Vol. 8, 2017, pp. 48–54.
– volume: 36
  start-page: 42
  year: 2013
  end-page: 57
  ident: b1
  article-title: A survey of intrusion detection techniques in cloud
  publication-title: Proc. J. Netw. Comput. Appl.
– start-page: 1
  year: 2014
  end-page: 6
  ident: b15
  article-title: Reducing DDoS attacks impact using a hybrid cloud-based firewalling architecture
  publication-title: Proceedings of the Global Information Infrastructure and Networking Symposium (GIIS)
– volume: 119
  start-page: 18
  year: 2018
  end-page: 26
  ident: b25
  article-title: A scalable distributed machine learning approach for attack detection in edge computing environments
  publication-title: Proc. J. Parallel Distrib. Comput.
– year: 2019
  ident: b50
  article-title: CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems
  publication-title: Proceedings of the Applied Soft Computing
– start-page: 4612
  year: 2016
  end-page: 4617
  ident: b32
  article-title: Feature selection approach based on moth-flame optimization algorithm
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation
– start-page: 202
  year: 2015
  ident: 10.1016/j.asoc.2020.106997_b10
  article-title: Understanding DDoS attack & its effect in cloud environment
– volume: 44
  start-page: 157
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2020.106997_b17
  article-title: Privacy preservation of data using crow search with adaptive awareness probability
  publication-title: Proc. Appl. Soft Comput.
– volume: 2
  start-page: 673
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2020.106997_b34
  article-title: A new bioinspired optimisation algorithm: bird swarm algorithm
  publication-title: Proc. J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2015.1042530
– ident: 10.1016/j.asoc.2020.106997_b39
– start-page: 695
  year: 2005
  ident: 10.1016/j.asoc.2020.106997_b53
  article-title: Opposition-based learning: A new scheme for machine intelligence
– start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2020.106997_b59
– start-page: 1
  year: 2009
  ident: 10.1016/j.asoc.2020.106997_b63
  article-title: A detailed analysis of the KDD CUP 99 data set
– volume: 10
  start-page: 225
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2020.106997_b28
  article-title: BLOCKCV: An R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models
  publication-title: Proc. Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13107
– volume: 7
  start-page: 129
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2020.106997_b31
  article-title: Feature selection for intrusion detection using random forest
  publication-title: Proc. J. Inf. Secur.
– volume: 30
  start-page: 61
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2020.106997_b57
  article-title: A survey on the application of recurrent neural networks to statistical language modeling
  publication-title: Proc. Comput. Speech Lang.
  doi: 10.1016/j.csl.2014.09.005
– start-page: 4612
  year: 2016
  ident: 10.1016/j.asoc.2020.106997_b32
  article-title: Feature selection approach based on moth-flame optimization algorithm
– start-page: 171
  year: 2019
  ident: 10.1016/j.asoc.2020.106997_b52
  article-title: Feature selection via a novel chaotic crow search algorithm
– volume: 2
  start-page: 1
  issue: 20
  year: 2019
  ident: 10.1016/j.asoc.2020.106997_b61
  article-title: Survey of intrusion detection systems: techniques, datasets and challenges
  publication-title: Proc. Cyber Secur.
– volume: 1
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2020.106997_b64
  article-title: Intrusion detection in cloud computing environment using neural network
  publication-title: Proc. Int. J. Res. Comput. Eng. Electron.
– volume: 63
  start-page: 561
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2020.106997_b3
  article-title: A survey on security issues and solutions at different layers of cloud computing
  publication-title: Proc. J. Supercomput.
  doi: 10.1007/s11227-012-0831-5
– volume: 378
  start-page: 484
  year: 2017
  ident: 10.1016/j.asoc.2020.106997_b65
  article-title: Fuzziness based semi-supervised learning approach for intrusion detection system
  publication-title: Proc. J. Inf. Sci.
  doi: 10.1016/j.ins.2016.04.019
– start-page: 197
  year: 2019
  ident: 10.1016/j.asoc.2020.106997_b30
  article-title: Log-based intrusion detection for cloud web applications using machine learning
– start-page: 1092
  year: 2015
  ident: 10.1016/j.asoc.2020.106997_b2
  article-title: DDoS attack protection in the era of cloud computing and software-defined networking
– start-page: 51
  year: 2016
  ident: 10.1016/j.asoc.2020.106997_b33
  article-title: The Whale optimization algorithm
– volume: 18
  start-page: 1697
  issue: 9
  year: 2014
  ident: 10.1016/j.asoc.2020.106997_b9
  article-title: A method of DDoS attack detection using HTTP packet pattern and rule engine in cloud computing environment
  publication-title: Proc. Soft Comput.
  doi: 10.1007/s00500-014-1250-8
– year: 2020
  ident: 10.1016/j.asoc.2020.106997_b46
  article-title: A hybrid deep generative local metric learning method for intrusion detection
– volume: 9
  start-page: 901
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2020.106997_b48
  article-title: Hybridization of K-means and Firefly algorithm for intrusion detection system
  publication-title: Proc. Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-017-0683-8
– start-page: 103
  year: 2016
  ident: 10.1016/j.asoc.2020.106997_b67
  article-title: FCAAIS: Anomaly based network intrusion detection through feature correlation analysis and association impact scale
– volume: 34
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2020.106997_b7
  article-title: A survey on security issues in service delivery models of cloud computing
  publication-title: Proc. J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2010.07.006
– volume: 10
  start-page: 3669
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2020.106997_b16
  article-title: LR-HIDS: logistic regression host-based intrusion detection system for cloud environments
  publication-title: Proc. J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-1093-8
– volume: 53
  start-page: 52
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2020.106997_b20
  article-title: Distributed denial of service attacks in software-defined networking with cloud computing
  publication-title: Proc. IEEE Commun. Mag.
  doi: 10.1109/MCOM.2015.7081075
– year: 2020
  ident: 10.1016/j.asoc.2020.106997_b27
  article-title: Predicting at-risk university students in a virtual learning environment via a machine learning algorithm
– volume: 72
  start-page: 237
  issue: 5–6
  year: 2017
  ident: 10.1016/j.asoc.2020.106997_b22
  article-title: Service resizing for quick DDoS mitigation in cloud computing environment
  publication-title: Proc. Ann. Telecommun.
  doi: 10.1007/s12243-016-0552-5
– start-page: 84
  year: 2019
  ident: 10.1016/j.asoc.2020.106997_b44
  article-title: Hybrid intrusion detection system using machine learning techniques in cloud computing environments
– year: 2019
  ident: 10.1016/j.asoc.2020.106997_b43
  article-title: A new hybrid approach for intrusion detection using machine learning methods
– start-page: 1161
  year: 2018
  ident: 10.1016/j.asoc.2020.106997_b51
  article-title: Chaotic crow search algorithm for fractional optimization problems
– year: 2019
  ident: 10.1016/j.asoc.2020.106997_b50
  article-title: CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems
– start-page: 30
  year: 2017
  ident: 10.1016/j.asoc.2020.106997_b21
  article-title: DDoS attacks in cloud computing: Issues, taxonomy, and future directions
– start-page: 427
  year: 2011
  ident: 10.1016/j.asoc.2020.106997_b11
  article-title: CBF: a packet filtering method for DDoS attack defense in cloud environment
– start-page: 318
  year: 2017
  ident: 10.1016/j.asoc.2020.106997_b37
  article-title: The intrusion detection modle utilizing LE and modified PSO-BP
– ident: 10.1016/j.asoc.2020.106997_b62
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2020.106997_b58
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
– volume: 28
  start-page: 833
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2020.106997_b8
  article-title: A survey on gaps, threat remediation challenges and some thoughts for proactive attack detection in cloud computing
  publication-title: Proc. Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2012.01.006
– volume: 10
  start-page: 956
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2020.106997_b55
  article-title: A note on opposition versus randomness in soft computing techniques
  publication-title: Proc. Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.07.009
– year: 2019
  ident: 10.1016/j.asoc.2020.106997_b45
  article-title: Enhanced intrusion detection and prevention system on cloud environment using hybrid classification and OTS generation
– volume: 8
  start-page: 906
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2020.106997_b56
  article-title: Opposition versus randomness in soft computing techniques
  publication-title: Proc. Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.07.010
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106997_b26
  article-title: Distributed denial of service (DDoS) attack mitigation in software defined network (SDN)-based cloud computing environment
  publication-title: Proc. J. Ambient Intell. Humaniz. Comput.
– start-page: 115
  year: 2016
  ident: 10.1016/j.asoc.2020.106997_b35
  article-title: Many objective particle swarm optimization
– start-page: 212
  year: 2015
  ident: 10.1016/j.asoc.2020.106997_b5
  article-title: Analysis of DDoS attacks and an introduction of a hybrid statistical model to detect DDoS attacks on cloud computing environment
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106997_b38
  article-title: DDoS attack detection using machine learning techniques in cloud computing environments
– start-page: 125
  year: 2018
  ident: 10.1016/j.asoc.2020.106997_b24
  article-title: Advanced machine language approach to detect DDoS attack using DBSCAN clustering technology with entropy
– volume: 1
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106997_b66
  article-title: A combined PFCM and recurrent neural network based intrusion detection system for cloud environment
  publication-title: Proc. Int. J. Bus. Intell. Data Min.
– start-page: 367
  year: 2013
  ident: 10.1016/j.asoc.2020.106997_b13
  article-title: A packet marking approach to protect cloud environment against DDoS attacks
– start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2020.106997_b15
  article-title: Reducing DDoS attacks impact using a hybrid cloud-based firewalling architecture
– volume: 67
  start-page: 454
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2020.106997_b18
  article-title: Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack problem
  publication-title: Proc. Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.12.014
– volume: 13
  start-page: 921
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2020.106997_b19
  article-title: Minimal complexity attack classification intrusion detection system
  publication-title: Proc. Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.09.017
– start-page: 524
  year: 2013
  ident: 10.1016/j.asoc.2020.106997_b14
  article-title: Securing cloud servers against flooding based DDoS attacks
– ident: 10.1016/j.asoc.2020.106997_b36
– volume: 23
  start-page: 145
  year: 2017
  ident: 10.1016/j.asoc.2020.106997_b40
  article-title: Hybridization of computational intelligence methods for attack detection in computer networks
  publication-title: Proc. J. Comput. Sci.
  doi: 10.1016/j.jocs.2016.07.010
– start-page: 901
  year: 2017
  ident: 10.1016/j.asoc.2020.106997_b41
  article-title: Hybridization of K-means and firefly algorithm for intrusion detection system
  publication-title: Proc. Int. J. Syst. Assur. Eng. Manag.
– start-page: 19
  year: 2018
  ident: 10.1016/j.asoc.2020.106997_b29
  article-title: Intrusion detection in communication networks using different classifiers
– volume: 25
  start-page: 2245
  issue: 9
  year: 2014
  ident: 10.1016/j.asoc.2020.106997_b4
  article-title: Can we beat DDoS attacks in clouds
  publication-title: Proc. IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2013.181
– ident: 10.1016/j.asoc.2020.106997_b47
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106997_b54
  article-title: Opposition based learning: A literature review
– start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2020.106997_b60
– volume: 34
  start-page: 1097
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2020.106997_b6
  article-title: Cloud security defence to protect cloud computing against HTTP-DoS and XML-DoS attacks
  publication-title: Proc. J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2010.06.004
– volume: 119
  start-page: 18
  year: 2018
  ident: 10.1016/j.asoc.2020.106997_b25
  article-title: A scalable distributed machine learning approach for attack detection in edge computing environments
  publication-title: Proc. J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2018.03.006
– volume: 36
  start-page: 42
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2020.106997_b1
  article-title: A survey of intrusion detection techniques in cloud
  publication-title: Proc. J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2012.05.003
– volume: 25
  start-page: 28
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2020.106997_b12
  article-title: Mitigating DDoS attacks with transparent and intelligent fast-flux swarm network
  publication-title: Proc. IEEE Netw.
  doi: 10.1109/MNET.2011.5958005
– start-page: 340
  year: 2018
  ident: 10.1016/j.asoc.2020.106997_b23
  article-title: A cybersecurity framework to identify malicious edge device in fog computing and cloud-of-things environments
– volume: 2020
  start-page: 8
  issue: 5
  year: 2020
  ident: 10.1016/j.asoc.2020.106997_b42
  article-title: Hybrid intrusion detection system using machine learning
  publication-title: Proc. Netw. Secur.
  doi: 10.1016/S1353-4858(20)30056-8
– volume: 20
  start-page: 391
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2020.106997_b49
  article-title: A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks
  publication-title: Proc. Eng. Sci. Technol., Int. J.
SSID ssj0016928
Score 2.6097267
Snippet Detection of Denial of Service (DoS) attack is one of the most critical issues in cloud computing. The attack detection framework is very complex due to the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106997
SubjectTerms Cloud computing
Crow Search Algorithm
DoS attack
Opposition based learning
Recurrent neural network
Title An efficient metaheuristic algorithm based feature selection and recurrent neural network for DoS attack detection in cloud computing environment
URI https://dx.doi.org/10.1016/j.asoc.2020.106997
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4huPTSAm1VXtEcuFVuHGe9xMcoEIVHEYIicbNmXyUQHATOlf_AP2ZmvUYgVRx6srTakVf7refhnflGiF3m8cmyHiZW2pwClDRNBsarRHt0yg-k06Fc7PepmlzKo6v8akmM2loYTquMur_R6UFbx5Fu3M3u_XTavaDIYyALqbJwm6eYE5TZ6-hM_3p6TfPoqSL0V-XJCc-OhTNNjhfSDlCMmPGAKpj46V_G6Y3BGa-Kz9FThGGzmDWx5Kp18aXtwgDxo_wqnocVuEAEQfYD7lyN127R8C8Dzv7OKfq_vgO2Vha8Czye8Bi63xAkgJWFB_7nzixNwOyW9M6qyQ0Hcmhhf34BWNdobsG6OkpNKzCz-cKCCcsh8wdvKua-icvxwZ_RJImNFhLTT9M60cZr9Dkab5HCIyVzr1KjtUYjnZPK9V0_26PAxxqdqgFBQ0rR5B4xs-QxFv3vYrmaV-6HAOulRYO5cZmWBXlDOUpCyRD-Dine2xC9dodLE1nIuRnGrGzTzW5KRqVkVMoGlQ3x81XmvuHg-HB23gJXvjtJJRmJD-Q2_1NuS3zKOM8l5KVti-X6YeF2yFGpdSecxI5YGY7OT874eXg8OX0BHxTvTA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cBegF1Y8VzmsLdV1JA6pjlWPFRevQASt2j8WgolRSX9Ifxjxo6DQEIc9mp5FMufPY945huAP57HJ8v2KTHC5BygpGnS104mypGVri-sCuVilyM5vBFnt_ntAhy2tTA-rTLq_kanB20dR7pxN7tP43H3iiOPviiEzMJrnhTfYNGzU4kOLA5Oz4ejt8cEWYQWq35-4gVi7UyT5kW8CRwmZn5AFp776TP79M7mnKzCcnQWcdCs5wcs2OonrLSNGDDeyzV4GVRoAxcEmxB8tDXd2XlDwYw0-Tedjeu7R_QGy6CzgcoTn0MDHEYFqTI487_dPVETeoJL_mbVpIcj-7R4NL1CqmvSD2hsHaXGFerJdG5Qh-WwBcR3RXPrcHNyfH04TGKvhUT30rROlHaKXE7aGeIISYrcyVQrpUgLa4W0PdvLDjj2MVqlss_osF7UuSPKDDuNRe8XdKppZTcAjROGNOXaZkoU7BDlJBgozUfAEod8m7Df7nCpIxG574cxKduMs_vSo1J6VMoGlU34-ybz1NBwfDk7b4ErPxymku3EF3Jb_ym3B0vD68uL8uJ0dL4N3zOf9hLS1HagU8_mdpf9llr9jufyFcat8Gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+metaheuristic+algorithm+based+feature+selection+and+recurrent+neural+network+for+DoS+attack+detection+in+cloud+computing+environment&rft.jtitle=Applied+soft+computing&rft.au=SaiSindhuTheja%2C+Reddy&rft.au=Shyam%2C+Gopal+K.&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=100&rft_id=info:doi/10.1016%2Fj.asoc.2020.106997&rft.externalDocID=S1568494620309364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon