Autism spectrum disorder diagnosis using the relational graph attention network

•Define that each subject sample is a node, and each node corresponds to its own feature vector.•Construct an initial population graph using several information that may strongly influence the correlation between subjects of autism.•Combine the correlation of nodes in feature information and edges t...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 85; p. 105090
Main Authors Gu, Xiaoai, Xie, Lihao, Xia, Yujing, Cheng, Yu, Liu, Lin, Tang, Lin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Define that each subject sample is a node, and each node corresponds to its own feature vector.•Construct an initial population graph using several information that may strongly influence the correlation between subjects of autism.•Combine the correlation of nodes in feature information and edges to obtain the importance of neighbor nodes to central nodes.•The attention coefficient is adopted by the relational graph attention convolutional layer to aggregate the information of neighbor nodes and complete the autism prediction for the designated subjects. Autism spectrum disorder (ASD) is a common neurodegenerative disorder, and its effective identification will facilitate medical diagnosis and treatment. Geometric deep learning methods, such as Graph Convolutional Neural Networks (GCN), have recently been proven to deliver generalized solutions for disease prediction. To enrich the valid information in ASD prediction, we explore various methods for constructing the population graph: Phenotype-Edge (P-Edge), fMRI-Edge (F-Edge) and phenotype combined with fMRI-Edge (PF-Edge). In addition, Graph Attention Networks (GAT) is introduced to capture correlation between subjects on graph’s node-features, which is ignored by previous GCN-based methods. However, the originally proposed architecture of GAT does not consider the edge-features. To exploit the structural information encoded in the edge-features, relation-aware attention is further introduced by Relational Graph Attention Network (RGAT) based on GAT. Based on three graph structures and RGAT, three ASD prediction models are proposed: RGAT involving P-Edge (p-RGAT), RGAT involving F-Edge (f-RGAT), and RGAT involving PF-Edge (pf-RGAT). GAT achieves an accuracy of 71.6% on the graph with only “site” and “sex” edge-features, but fails on the graph with more diverse edge-features. RGAT not only obtains stable predictions on different population graphs, but also learns more diverse edge-features while improving the accuracy by 1.4% compared to previous GCN. The further introduction of relation-aware attention through RGAT based on GAT gives the ASD prediction model the ability to learn more diverse information, while improves the model's generalization ability. This will facilitate the expansion of more valid structural information for the field of ASD prediction.
AbstractList •Define that each subject sample is a node, and each node corresponds to its own feature vector.•Construct an initial population graph using several information that may strongly influence the correlation between subjects of autism.•Combine the correlation of nodes in feature information and edges to obtain the importance of neighbor nodes to central nodes.•The attention coefficient is adopted by the relational graph attention convolutional layer to aggregate the information of neighbor nodes and complete the autism prediction for the designated subjects. Autism spectrum disorder (ASD) is a common neurodegenerative disorder, and its effective identification will facilitate medical diagnosis and treatment. Geometric deep learning methods, such as Graph Convolutional Neural Networks (GCN), have recently been proven to deliver generalized solutions for disease prediction. To enrich the valid information in ASD prediction, we explore various methods for constructing the population graph: Phenotype-Edge (P-Edge), fMRI-Edge (F-Edge) and phenotype combined with fMRI-Edge (PF-Edge). In addition, Graph Attention Networks (GAT) is introduced to capture correlation between subjects on graph’s node-features, which is ignored by previous GCN-based methods. However, the originally proposed architecture of GAT does not consider the edge-features. To exploit the structural information encoded in the edge-features, relation-aware attention is further introduced by Relational Graph Attention Network (RGAT) based on GAT. Based on three graph structures and RGAT, three ASD prediction models are proposed: RGAT involving P-Edge (p-RGAT), RGAT involving F-Edge (f-RGAT), and RGAT involving PF-Edge (pf-RGAT). GAT achieves an accuracy of 71.6% on the graph with only “site” and “sex” edge-features, but fails on the graph with more diverse edge-features. RGAT not only obtains stable predictions on different population graphs, but also learns more diverse edge-features while improving the accuracy by 1.4% compared to previous GCN. The further introduction of relation-aware attention through RGAT based on GAT gives the ASD prediction model the ability to learn more diverse information, while improves the model's generalization ability. This will facilitate the expansion of more valid structural information for the field of ASD prediction.
ArticleNumber 105090
Author Gu, Xiaoai
Cheng, Yu
Xie, Lihao
Tang, Lin
Xia, Yujing
Liu, Lin
Author_xml – sequence: 1
  givenname: Xiaoai
  orcidid: 0000-0003-4598-8991
  surname: Gu
  fullname: Gu, Xiaoai
  organization: School of Information, Yunnan Normal University, Kunming 650092, Yunnan, China
– sequence: 2
  givenname: Lihao
  surname: Xie
  fullname: Xie, Lihao
  organization: School of Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
– sequence: 3
  givenname: Yujing
  surname: Xia
  fullname: Xia, Yujing
  organization: School of Information, Yunnan Normal University, Kunming 650092, Yunnan, China
– sequence: 4
  givenname: Yu
  surname: Cheng
  fullname: Cheng, Yu
  organization: School of Information, Yunnan Normal University, Kunming 650092, Yunnan, China
– sequence: 5
  givenname: Lin
  surname: Liu
  fullname: Liu, Lin
  organization: School of Information, Yunnan Normal University, Kunming 650092, Yunnan, China
– sequence: 6
  givenname: Lin
  orcidid: 0000-0001-5517-0793
  surname: Tang
  fullname: Tang, Lin
  email: Maitanweng2@163.com
  organization: Key Laboratory of Education, Yunnan Normal University, Kunming 650092, Yunnan, China
BookMark eNp9kMtOwzAQRb0oEm3hB1j5B1LsOEltiU1V8ZIqdQNry49J65Lake2C-HsSyopFVzNzpTOaOTM08cEDQneULCihzf1hoVNvFiUp2RDURJAJmtJl1RSciOoazVI6EFLxJa2maLs6ZZeOOPVgcjwdsXUpRAtxaNTOh-QSPiXndzjvAUfoVHbBqw7vour3WOUMfkywh_wV4scNumpVl-D2r87R-9Pj2_ql2GyfX9erTWEYIbnQpl0aQQ2pmxo4a4SpRatAcCtqxUugWms-zLa02nLCbNsSzqC0VAtbG8bmiJ_3mhhSitBK4_LvbTkq10lK5ChDHuQoQ44y5FnGgJb_0D66o4rfl6GHMwTDU58OokzGgTdgXRzMSRvcJfwHjtp_kw
CitedBy_id crossref_primary_10_1016_j_patter_2024_101081
crossref_primary_10_1016_j_bspc_2024_106364
crossref_primary_10_3389_fncom_2024_1388083
crossref_primary_10_1155_hbe2_1496105
crossref_primary_10_1016_j_bspc_2024_106337
crossref_primary_10_1109_TII_2024_3431074
crossref_primary_10_1016_j_bspc_2024_107467
Cites_doi 10.1371/journal.pone.0168224
10.1016/j.neuroimage.2016.10.045
10.1109/ISBI.2019.8759531
10.1016/j.ipm.2020.102439
10.1007/s10803-014-2344-y
10.1016/j.neuroimage.2009.12.047
10.1016/j.neuroimage.2006.01.021
10.3389/fgene.2018.00018
10.3389/fnhum.2013.00599
10.1097/00004703-200604002-00005
10.1016/j.nicl.2017.08.017
10.1038/s41398-020-01015-w
10.1016/j.rasd.2007.03.002
10.1109/TASLP.2020.3042009
10.1007/s10803-017-3054-z
10.1016/j.nicl.2014.12.013
10.1038/mp.2013.78
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105090
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2023_105090
S1746809423005232
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c300t-bcf7c91c0565e8369c59fae98d95a82e1bbb8ae9d2dbd803dff083e2d1b9d5c33
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:18 EDT 2025
Thu Apr 24 22:55:58 EDT 2025
Sun Apr 06 06:53:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Relation-aware attention
ASD prediction
More diverse structural information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-bcf7c91c0565e8369c59fae98d95a82e1bbb8ae9d2dbd803dff083e2d1b9d5c33
ORCID 0000-0001-5517-0793
0000-0003-4598-8991
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_105090
crossref_primary_10_1016_j_bspc_2023_105090
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References T.A. Song, S.R. Chowdhury, F. Yang, et al., Graph convolutional neural networks for Alzheimer’s disease classification[C], in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), IEEE, 2019, pp. 414–417.
Wang, Govindaraj, Gorriz (b0070) 2021
Maenner, Yeargin-Allsopp, Van Naarden (b0040) 2016; 11
Zhang, Satapathy, Guttery (b0075) 2021; 58
Zhao, Zhou, Ou-Yang (b0080) 2019; 2019
Parisot, Ktena, Ferrante (b0090) 2017
Craddock, Sikka, Cheung (b0115) 2013; 42
Defferrard, Bresson, Vandergheynst (b0065) 2016; 29
Abraham, Milham, Di Martino (b0130) 2017; 147
Taylor, Eapen, Maybery (b0015) 2017; 47
Bai, Liu, Zhang (b0110) 2020; 29
Nielsen, Zielinski, Fletcher (b0050) 2013; 7
P. Veličković, G. Cucurull, A. Casanova, et al., Graph attention networks[J], arXiv preprint arXiv:1710.10903, 2017.
Desikan, Ségonne, Fischl (b0125) 2006; 31
Matson, Wilkins, González (b0010) 2008; 2
Di Martino, Yan, Li (b0055) 2014; 19
Wiggins, Baio, Rice (b0025) 2006; 27
Liu, Yu, Raj (b0030) 2015
Jiao, Chen, Ke (b0035) 2010; 50
Arya, Olij, Gupta (b0100) 2020
Karten, Hirsch (b0005) 2015; 45
de Belen, Bednarz, Sowmya (b0020) 2020; 10
Bi, Wang, Shu (b0045) 2018; 9
Kazi, Shekarforoush, Krishna (b0095) 2019
Heinsfeld, Franco, Craddock (b0060) 2018; 17
Plitt, Barnes, Martin (b0120) 2015; 7
Wang (10.1016/j.bspc.2023.105090_b0070) 2021
Parisot (10.1016/j.bspc.2023.105090_b0090) 2017
Desikan (10.1016/j.bspc.2023.105090_b0125) 2006; 31
Zhang (10.1016/j.bspc.2023.105090_b0075) 2021; 58
Heinsfeld (10.1016/j.bspc.2023.105090_b0060) 2018; 17
Kazi (10.1016/j.bspc.2023.105090_b0095) 2019
Defferrard (10.1016/j.bspc.2023.105090_b0065) 2016; 29
Jiao (10.1016/j.bspc.2023.105090_b0035) 2010; 50
Bai (10.1016/j.bspc.2023.105090_b0110) 2020; 29
Plitt (10.1016/j.bspc.2023.105090_b0120) 2015; 7
Liu (10.1016/j.bspc.2023.105090_b0030) 2015
Craddock (10.1016/j.bspc.2023.105090_b0115) 2013; 42
Karten (10.1016/j.bspc.2023.105090_b0005) 2015; 45
10.1016/j.bspc.2023.105090_b0105
Bi (10.1016/j.bspc.2023.105090_b0045) 2018; 9
Matson (10.1016/j.bspc.2023.105090_b0010) 2008; 2
10.1016/j.bspc.2023.105090_b0085
Arya (10.1016/j.bspc.2023.105090_b0100) 2020
Zhao (10.1016/j.bspc.2023.105090_b0080) 2019; 2019
Maenner (10.1016/j.bspc.2023.105090_b0040) 2016; 11
de Belen (10.1016/j.bspc.2023.105090_b0020) 2020; 10
Wiggins (10.1016/j.bspc.2023.105090_b0025) 2006; 27
Taylor (10.1016/j.bspc.2023.105090_b0015) 2017; 47
Nielsen (10.1016/j.bspc.2023.105090_b0050) 2013; 7
Di Martino (10.1016/j.bspc.2023.105090_b0055) 2014; 19
Abraham (10.1016/j.bspc.2023.105090_b0130) 2017; 147
References_xml – volume: 42
  start-page: 10.3389
  year: 2013
  ident: b0115
  article-title: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac)[J]
  publication-title: Front. Neuroinform.
– start-page: 177
  year: 2017
  end-page: 185
  ident: b0090
  article-title: Spectral graph convolutions for population-based disease prediction[C], in: International conference on medical image computing and computer-assisted intervention
– volume: 27
  start-page: S79
  year: 2006
  end-page: S87
  ident: b0025
  article-title: Examination of the time between first evaluation and first autism spectrum diagnosis in a population-based sample[J]
  publication-title: J. Dev. Behav. Pediatr.
– volume: 50
  start-page: 589
  year: 2010
  end-page: 599
  ident: b0035
  article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness[J]
  publication-title: Neuroimage
– start-page: 44
  year: 2020
  end-page: 61
  ident: b0100
  article-title: Fusing structural and functional mris using graph convolutional networks for autism classification[C]
  publication-title: Medical Imaging with Deep Learning, PMLR
– volume: 29
  start-page: 3844
  year: 2016
  end-page: 3852
  ident: b0065
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering[J]
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 7
  start-page: 359
  year: 2015
  end-page: 366
  ident: b0120
  article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards[J]
  publication-title: NeuroImage: Clin.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 20
  ident: b0020
  article-title: Computer vision in autism spectrum disorder research: a systematic review of published studies from 2009 to 2019[J]
  publication-title: Transl. Psychiatry
– start-page: 1
  year: 2021
  end-page: 14
  ident: b0070
  article-title: Explainable diagnosis of secondary pulmonary tuberculosis by graph rank-based average pooling neural network[J]
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 7
  start-page: 599
  year: 2013
  ident: b0050
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results[J]
  publication-title: Front. Hum. Neurosci.
– volume: 45
  start-page: 1905
  year: 2015
  end-page: 1914
  ident: b0005
  article-title: Brief report: anomalous neural deactivations and functional connectivity during receptive language in autism spectrum disorder: a functional MRI study[J]
  publication-title: J. Autism Dev. Disord.
– volume: 47
  start-page: 1551
  year: 2017
  end-page: 1558
  ident: b0015
  article-title: Brief report: an exploratory study of the diagnostic reliability for autism spectrum disorder[J]
  publication-title: J. Autism Dev. Disord.
– reference: T.A. Song, S.R. Chowdhury, F. Yang, et al., Graph convolutional neural networks for Alzheimer’s disease classification[C], in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), IEEE, 2019, pp. 414–417.
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  ident: b0130
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example[J]
  publication-title: Neuroimage
– volume: 2
  start-page: 75
  year: 2008
  end-page: 84
  ident: b0010
  article-title: Early identification and diagnosis in autism spectrum disorders in young children and infants: how early is too early?[J]
  publication-title: Res. Autism Spectr. Disord.
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: b0055
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[J]
  publication-title: Mol. Psychiatry
– volume: 58
  year: 2021
  ident: b0075
  article-title: Improved breast cancer classification through combining graph convolutional network and convolutional neural network[J]
  publication-title: Inf. Process. Manag.
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: b0060
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset[J]
  publication-title: NeuroImage: Clinical
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: b0125
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J]
  publication-title: Neuroimage
– volume: 2019
  start-page: 1598
  year: 2019
  end-page: 1601
  ident: b0080
  article-title: Graph convolutional network analysis for mild cognitive impairment prediction[C]//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI
  publication-title: IEEE
– start-page: 73
  year: 2019
  end-page: 85
  ident: b0095
  article-title: InceptionGCN: receptive field aware graph convolutional network for disease prediction[C], in: International Conference on Information Processing in Medical Imaging
– volume: 29
  start-page: 503
  year: 2020
  end-page: 514
  ident: b0110
  article-title: Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J]
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– start-page: 649
  year: 2015
  end-page: 655
  ident: b0030
  article-title: Efficient autism spectrum disorder prediction with eye movement: a machine learning framework[C]//2015 International conference on affective computing and intelligent interaction (ACII)
  publication-title: IEEE
– reference: P. Veličković, G. Cucurull, A. Casanova, et al., Graph attention networks[J], arXiv preprint arXiv:1710.10903, 2017.
– volume: 11
  start-page: e0168224
  year: 2016
  ident: b0040
  article-title: Development of a machine learning algorithm for the surveillance of autism spectrum disorder[J]
  publication-title: PLoS One
– volume: 9
  start-page: 18
  year: 2018
  ident: b0045
  article-title: Classification of autism spectrum disorder using random support vector machine cluster[J]
  publication-title: Front. Genet.
– volume: 11
  start-page: e0168224
  issue: 12
  year: 2016
  ident: 10.1016/j.bspc.2023.105090_b0040
  article-title: Development of a machine learning algorithm for the surveillance of autism spectrum disorder[J]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0168224
– volume: 147
  start-page: 736
  year: 2017
  ident: 10.1016/j.bspc.2023.105090_b0130
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example[J]
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.045
– ident: 10.1016/j.bspc.2023.105090_b0085
  doi: 10.1109/ISBI.2019.8759531
– volume: 58
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2023.105090_b0075
  article-title: Improved breast cancer classification through combining graph convolutional network and convolutional neural network[J]
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2020.102439
– ident: 10.1016/j.bspc.2023.105090_b0105
– volume: 45
  start-page: 1905
  issue: 6
  year: 2015
  ident: 10.1016/j.bspc.2023.105090_b0005
  article-title: Brief report: anomalous neural deactivations and functional connectivity during receptive language in autism spectrum disorder: a functional MRI study[J]
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-014-2344-y
– volume: 50
  start-page: 589
  issue: 2
  year: 2010
  ident: 10.1016/j.bspc.2023.105090_b0035
  article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness[J]
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.047
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  ident: 10.1016/j.bspc.2023.105090_b0125
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J]
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105090_b0070
  article-title: Explainable diagnosis of secondary pulmonary tuberculosis by graph rank-based average pooling neural network[J]
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 42
  start-page: 10.3389
  year: 2013
  ident: 10.1016/j.bspc.2023.105090_b0115
  article-title: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac)[J]
  publication-title: Front. Neuroinform.
– volume: 9
  start-page: 18
  year: 2018
  ident: 10.1016/j.bspc.2023.105090_b0045
  article-title: Classification of autism spectrum disorder using random support vector machine cluster[J]
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00018
– volume: 7
  start-page: 599
  year: 2013
  ident: 10.1016/j.bspc.2023.105090_b0050
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results[J]
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00599
– volume: 27
  start-page: S79
  issue: 2
  year: 2006
  ident: 10.1016/j.bspc.2023.105090_b0025
  article-title: Examination of the time between first evaluation and first autism spectrum diagnosis in a population-based sample[J]
  publication-title: J. Dev. Behav. Pediatr.
  doi: 10.1097/00004703-200604002-00005
– volume: 29
  start-page: 3844
  year: 2016
  ident: 10.1016/j.bspc.2023.105090_b0065
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering[J]
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 17
  start-page: 16
  year: 2018
  ident: 10.1016/j.bspc.2023.105090_b0060
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset[J]
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.08.017
– start-page: 44
  year: 2020
  ident: 10.1016/j.bspc.2023.105090_b0100
  article-title: Fusing structural and functional mris using graph convolutional networks for autism classification[C]
  publication-title: Medical Imaging with Deep Learning, PMLR
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.105090_b0020
  article-title: Computer vision in autism spectrum disorder research: a systematic review of published studies from 2009 to 2019[J]
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-020-01015-w
– volume: 2
  start-page: 75
  issue: 1
  year: 2008
  ident: 10.1016/j.bspc.2023.105090_b0010
  article-title: Early identification and diagnosis in autism spectrum disorders in young children and infants: how early is too early?[J]
  publication-title: Res. Autism Spectr. Disord.
  doi: 10.1016/j.rasd.2007.03.002
– volume: 29
  start-page: 503
  year: 2020
  ident: 10.1016/j.bspc.2023.105090_b0110
  article-title: Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J]
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2020.3042009
– volume: 2019
  start-page: 1598
  year: 2019
  ident: 10.1016/j.bspc.2023.105090_b0080
  article-title: Graph convolutional network analysis for mild cognitive impairment prediction[C]//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI
  publication-title: IEEE
– start-page: 649
  year: 2015
  ident: 10.1016/j.bspc.2023.105090_b0030
  article-title: Efficient autism spectrum disorder prediction with eye movement: a machine learning framework[C]//2015 International conference on affective computing and intelligent interaction (ACII)
  publication-title: IEEE
– volume: 47
  start-page: 1551
  issue: 5
  year: 2017
  ident: 10.1016/j.bspc.2023.105090_b0015
  article-title: Brief report: an exploratory study of the diagnostic reliability for autism spectrum disorder[J]
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-017-3054-z
– start-page: 73
  year: 2019
  ident: 10.1016/j.bspc.2023.105090_b0095
– volume: 7
  start-page: 359
  year: 2015
  ident: 10.1016/j.bspc.2023.105090_b0120
  article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards[J]
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2014.12.013
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  ident: 10.1016/j.bspc.2023.105090_b0055
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[J]
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.78
– start-page: 177
  year: 2017
  ident: 10.1016/j.bspc.2023.105090_b0090
SSID ssj0048714
Score 2.3572967
Snippet •Define that each subject sample is a node, and each node corresponds to its own feature vector.•Construct an initial population graph using several...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105090
SubjectTerms ASD prediction
More diverse structural information
Relation-aware attention
Title Autism spectrum disorder diagnosis using the relational graph attention network
URI https://dx.doi.org/10.1016/j.bspc.2023.105090
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywodAmthN7rCqqAqIMUKlbFL9QEQ1VW1Z-O2fHqYqEOrDFkS9Kzqe7L9bn7xC6ThSXlmZFZB2zndKujYSUJsqE7QoDNdv6dkBPo3Q4pg8TNmmgfn0WxtEqQ-6vcrrP1uFOJ3izM59OOy-ApVMOfycJ8XubLg9Tmrkov_1e0zwAj3t9bzc5crPDwZmK4yWXcydjmBDX7rbr8vJfxWmj4AwO0H5AirhXvcwhapjyCO1t6Aceo-cehM1yhv1xycXXDOugpQkXnkE3XWJHbH_DAPPwIvDe4KFepho7aU1PdsRlRQY_QePB3Wt_GIUOCZGCj15FUtlMiVgBimGGk1QoJmxhBNeCFTwxsZSSw1gnWmreJdrCkhCT6FgKzRQhp6hZfpbmDGFJEmNpUsSWawqgpMhSKVMmVcaMZqlsobh2Ta6CfLjrYvGR1zyx99y5M3fuzCt3ttDN2mZeiWdsnc1qj-e_QiCH7L7F7vyfdhdo140qNt8lasI6mStAGCvZ9iHURju9-8fh6Ach1tHo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YENhTYPJ_ZYVVQF2jLQSt2s-IWKaKjasvLbOTtOVSTUgS2Pc5ScL-cv0XffIXQbSSpMkuWBscz2JGmagAmhg4yZJtOwZhvXDqg_SLuj5GlMxjXUrmphLK3S5_4yp7ts7Y80vDcbs8mk8QpYOqXwdRLF7t8m5OHtBF5f28bg_nvF8wBA7gS-rXVgzX3lTEnyEouZ1TGMYtvvtmkT81-r09qK0zlA-x4q4lZ5N4eoposjtLcmIHiMXloQN4spdvWS868pVl5MEzYchW6ywJbZ_oYB5-G5J77BRZ1ONbbamo7tiIuSDX6CRp2HYbsb-BYJgYSnXgZCmkyyUAKMIZrGKZOEmVwzqhjJaaRDIQSFfRUpoWgzVgbmJNaRCgVTRMbxKdoqPgt9hrCII22SKA8NVQmgkjxLhUiJkBnRiqSijsLKNVx6_XDbxuKDV0Sxd27dya07eenOOrpbjZmV6hkbrUnlcf4rBjik9w3jzv857gbtdIf9Hu89Dp4v0K49U1L7LtEWzJm-ArixFNcunH4AF-rTdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autism+spectrum+disorder+diagnosis+using+the+relational+graph+attention+network&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Gu%2C+Xiaoai&rft.au=Xie%2C+Lihao&rft.au=Xia%2C+Yujing&rft.au=Cheng%2C+Yu&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=85&rft_id=info:doi/10.1016%2Fj.bspc.2023.105090&rft.externalDocID=S1746809423005232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon