Autism spectrum disorder diagnosis using the relational graph attention network
•Define that each subject sample is a node, and each node corresponds to its own feature vector.•Construct an initial population graph using several information that may strongly influence the correlation between subjects of autism.•Combine the correlation of nodes in feature information and edges t...
Saved in:
Published in | Biomedical signal processing and control Vol. 85; p. 105090 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Define that each subject sample is a node, and each node corresponds to its own feature vector.•Construct an initial population graph using several information that may strongly influence the correlation between subjects of autism.•Combine the correlation of nodes in feature information and edges to obtain the importance of neighbor nodes to central nodes.•The attention coefficient is adopted by the relational graph attention convolutional layer to aggregate the information of neighbor nodes and complete the autism prediction for the designated subjects.
Autism spectrum disorder (ASD) is a common neurodegenerative disorder, and its effective identification will facilitate medical diagnosis and treatment. Geometric deep learning methods, such as Graph Convolutional Neural Networks (GCN), have recently been proven to deliver generalized solutions for disease prediction.
To enrich the valid information in ASD prediction, we explore various methods for constructing the population graph: Phenotype-Edge (P-Edge), fMRI-Edge (F-Edge) and phenotype combined with fMRI-Edge (PF-Edge). In addition, Graph Attention Networks (GAT) is introduced to capture correlation between subjects on graph’s node-features, which is ignored by previous GCN-based methods. However, the originally proposed architecture of GAT does not consider the edge-features. To exploit the structural information encoded in the edge-features, relation-aware attention is further introduced by Relational Graph Attention Network (RGAT) based on GAT. Based on three graph structures and RGAT, three ASD prediction models are proposed: RGAT involving P-Edge (p-RGAT), RGAT involving F-Edge (f-RGAT), and RGAT involving PF-Edge (pf-RGAT).
GAT achieves an accuracy of 71.6% on the graph with only “site” and “sex” edge-features, but fails on the graph with more diverse edge-features. RGAT not only obtains stable predictions on different population graphs, but also learns more diverse edge-features while improving the accuracy by 1.4% compared to previous GCN.
The further introduction of relation-aware attention through RGAT based on GAT gives the ASD prediction model the ability to learn more diverse information, while improves the model's generalization ability. This will facilitate the expansion of more valid structural information for the field of ASD prediction. |
---|---|
AbstractList | •Define that each subject sample is a node, and each node corresponds to its own feature vector.•Construct an initial population graph using several information that may strongly influence the correlation between subjects of autism.•Combine the correlation of nodes in feature information and edges to obtain the importance of neighbor nodes to central nodes.•The attention coefficient is adopted by the relational graph attention convolutional layer to aggregate the information of neighbor nodes and complete the autism prediction for the designated subjects.
Autism spectrum disorder (ASD) is a common neurodegenerative disorder, and its effective identification will facilitate medical diagnosis and treatment. Geometric deep learning methods, such as Graph Convolutional Neural Networks (GCN), have recently been proven to deliver generalized solutions for disease prediction.
To enrich the valid information in ASD prediction, we explore various methods for constructing the population graph: Phenotype-Edge (P-Edge), fMRI-Edge (F-Edge) and phenotype combined with fMRI-Edge (PF-Edge). In addition, Graph Attention Networks (GAT) is introduced to capture correlation between subjects on graph’s node-features, which is ignored by previous GCN-based methods. However, the originally proposed architecture of GAT does not consider the edge-features. To exploit the structural information encoded in the edge-features, relation-aware attention is further introduced by Relational Graph Attention Network (RGAT) based on GAT. Based on three graph structures and RGAT, three ASD prediction models are proposed: RGAT involving P-Edge (p-RGAT), RGAT involving F-Edge (f-RGAT), and RGAT involving PF-Edge (pf-RGAT).
GAT achieves an accuracy of 71.6% on the graph with only “site” and “sex” edge-features, but fails on the graph with more diverse edge-features. RGAT not only obtains stable predictions on different population graphs, but also learns more diverse edge-features while improving the accuracy by 1.4% compared to previous GCN.
The further introduction of relation-aware attention through RGAT based on GAT gives the ASD prediction model the ability to learn more diverse information, while improves the model's generalization ability. This will facilitate the expansion of more valid structural information for the field of ASD prediction. |
ArticleNumber | 105090 |
Author | Gu, Xiaoai Cheng, Yu Xie, Lihao Tang, Lin Xia, Yujing Liu, Lin |
Author_xml | – sequence: 1 givenname: Xiaoai orcidid: 0000-0003-4598-8991 surname: Gu fullname: Gu, Xiaoai organization: School of Information, Yunnan Normal University, Kunming 650092, Yunnan, China – sequence: 2 givenname: Lihao surname: Xie fullname: Xie, Lihao organization: School of Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China – sequence: 3 givenname: Yujing surname: Xia fullname: Xia, Yujing organization: School of Information, Yunnan Normal University, Kunming 650092, Yunnan, China – sequence: 4 givenname: Yu surname: Cheng fullname: Cheng, Yu organization: School of Information, Yunnan Normal University, Kunming 650092, Yunnan, China – sequence: 5 givenname: Lin surname: Liu fullname: Liu, Lin organization: School of Information, Yunnan Normal University, Kunming 650092, Yunnan, China – sequence: 6 givenname: Lin orcidid: 0000-0001-5517-0793 surname: Tang fullname: Tang, Lin email: Maitanweng2@163.com organization: Key Laboratory of Education, Yunnan Normal University, Kunming 650092, Yunnan, China |
BookMark | eNp9kMtOwzAQRb0oEm3hB1j5B1LsOEltiU1V8ZIqdQNry49J65Lake2C-HsSyopFVzNzpTOaOTM08cEDQneULCihzf1hoVNvFiUp2RDURJAJmtJl1RSciOoazVI6EFLxJa2maLs6ZZeOOPVgcjwdsXUpRAtxaNTOh-QSPiXndzjvAUfoVHbBqw7vour3WOUMfkywh_wV4scNumpVl-D2r87R-9Pj2_ql2GyfX9erTWEYIbnQpl0aQQ2pmxo4a4SpRatAcCtqxUugWms-zLa02nLCbNsSzqC0VAtbG8bmiJ_3mhhSitBK4_LvbTkq10lK5ChDHuQoQ44y5FnGgJb_0D66o4rfl6GHMwTDU58OokzGgTdgXRzMSRvcJfwHjtp_kw |
CitedBy_id | crossref_primary_10_1016_j_patter_2024_101081 crossref_primary_10_1016_j_bspc_2024_106364 crossref_primary_10_3389_fncom_2024_1388083 crossref_primary_10_1155_hbe2_1496105 crossref_primary_10_1016_j_bspc_2024_106337 crossref_primary_10_1109_TII_2024_3431074 crossref_primary_10_1016_j_bspc_2024_107467 |
Cites_doi | 10.1371/journal.pone.0168224 10.1016/j.neuroimage.2016.10.045 10.1109/ISBI.2019.8759531 10.1016/j.ipm.2020.102439 10.1007/s10803-014-2344-y 10.1016/j.neuroimage.2009.12.047 10.1016/j.neuroimage.2006.01.021 10.3389/fgene.2018.00018 10.3389/fnhum.2013.00599 10.1097/00004703-200604002-00005 10.1016/j.nicl.2017.08.017 10.1038/s41398-020-01015-w 10.1016/j.rasd.2007.03.002 10.1109/TASLP.2020.3042009 10.1007/s10803-017-3054-z 10.1016/j.nicl.2014.12.013 10.1038/mp.2013.78 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2023.105090 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2023_105090 S1746809423005232 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SST SSV SSZ T5K UNMZH ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c300t-bcf7c91c0565e8369c59fae98d95a82e1bbb8ae9d2dbd803dff083e2d1b9d5c33 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:18 EDT 2025 Thu Apr 24 22:55:58 EDT 2025 Sun Apr 06 06:53:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Relation-aware attention ASD prediction More diverse structural information |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-bcf7c91c0565e8369c59fae98d95a82e1bbb8ae9d2dbd803dff083e2d1b9d5c33 |
ORCID | 0000-0001-5517-0793 0000-0003-4598-8991 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2023_105090 crossref_primary_10_1016_j_bspc_2023_105090 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | T.A. Song, S.R. Chowdhury, F. Yang, et al., Graph convolutional neural networks for Alzheimer’s disease classification[C], in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), IEEE, 2019, pp. 414–417. Wang, Govindaraj, Gorriz (b0070) 2021 Maenner, Yeargin-Allsopp, Van Naarden (b0040) 2016; 11 Zhang, Satapathy, Guttery (b0075) 2021; 58 Zhao, Zhou, Ou-Yang (b0080) 2019; 2019 Parisot, Ktena, Ferrante (b0090) 2017 Craddock, Sikka, Cheung (b0115) 2013; 42 Defferrard, Bresson, Vandergheynst (b0065) 2016; 29 Abraham, Milham, Di Martino (b0130) 2017; 147 Taylor, Eapen, Maybery (b0015) 2017; 47 Bai, Liu, Zhang (b0110) 2020; 29 Nielsen, Zielinski, Fletcher (b0050) 2013; 7 P. Veličković, G. Cucurull, A. Casanova, et al., Graph attention networks[J], arXiv preprint arXiv:1710.10903, 2017. Desikan, Ségonne, Fischl (b0125) 2006; 31 Matson, Wilkins, González (b0010) 2008; 2 Di Martino, Yan, Li (b0055) 2014; 19 Wiggins, Baio, Rice (b0025) 2006; 27 Liu, Yu, Raj (b0030) 2015 Jiao, Chen, Ke (b0035) 2010; 50 Arya, Olij, Gupta (b0100) 2020 Karten, Hirsch (b0005) 2015; 45 de Belen, Bednarz, Sowmya (b0020) 2020; 10 Bi, Wang, Shu (b0045) 2018; 9 Kazi, Shekarforoush, Krishna (b0095) 2019 Heinsfeld, Franco, Craddock (b0060) 2018; 17 Plitt, Barnes, Martin (b0120) 2015; 7 Wang (10.1016/j.bspc.2023.105090_b0070) 2021 Parisot (10.1016/j.bspc.2023.105090_b0090) 2017 Desikan (10.1016/j.bspc.2023.105090_b0125) 2006; 31 Zhang (10.1016/j.bspc.2023.105090_b0075) 2021; 58 Heinsfeld (10.1016/j.bspc.2023.105090_b0060) 2018; 17 Kazi (10.1016/j.bspc.2023.105090_b0095) 2019 Defferrard (10.1016/j.bspc.2023.105090_b0065) 2016; 29 Jiao (10.1016/j.bspc.2023.105090_b0035) 2010; 50 Bai (10.1016/j.bspc.2023.105090_b0110) 2020; 29 Plitt (10.1016/j.bspc.2023.105090_b0120) 2015; 7 Liu (10.1016/j.bspc.2023.105090_b0030) 2015 Craddock (10.1016/j.bspc.2023.105090_b0115) 2013; 42 Karten (10.1016/j.bspc.2023.105090_b0005) 2015; 45 10.1016/j.bspc.2023.105090_b0105 Bi (10.1016/j.bspc.2023.105090_b0045) 2018; 9 Matson (10.1016/j.bspc.2023.105090_b0010) 2008; 2 10.1016/j.bspc.2023.105090_b0085 Arya (10.1016/j.bspc.2023.105090_b0100) 2020 Zhao (10.1016/j.bspc.2023.105090_b0080) 2019; 2019 Maenner (10.1016/j.bspc.2023.105090_b0040) 2016; 11 de Belen (10.1016/j.bspc.2023.105090_b0020) 2020; 10 Wiggins (10.1016/j.bspc.2023.105090_b0025) 2006; 27 Taylor (10.1016/j.bspc.2023.105090_b0015) 2017; 47 Nielsen (10.1016/j.bspc.2023.105090_b0050) 2013; 7 Di Martino (10.1016/j.bspc.2023.105090_b0055) 2014; 19 Abraham (10.1016/j.bspc.2023.105090_b0130) 2017; 147 |
References_xml | – volume: 42 start-page: 10.3389 year: 2013 ident: b0115 article-title: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac)[J] publication-title: Front. Neuroinform. – start-page: 177 year: 2017 end-page: 185 ident: b0090 article-title: Spectral graph convolutions for population-based disease prediction[C], in: International conference on medical image computing and computer-assisted intervention – volume: 27 start-page: S79 year: 2006 end-page: S87 ident: b0025 article-title: Examination of the time between first evaluation and first autism spectrum diagnosis in a population-based sample[J] publication-title: J. Dev. Behav. Pediatr. – volume: 50 start-page: 589 year: 2010 end-page: 599 ident: b0035 article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness[J] publication-title: Neuroimage – start-page: 44 year: 2020 end-page: 61 ident: b0100 article-title: Fusing structural and functional mris using graph convolutional networks for autism classification[C] publication-title: Medical Imaging with Deep Learning, PMLR – volume: 29 start-page: 3844 year: 2016 end-page: 3852 ident: b0065 article-title: Convolutional neural networks on graphs with fast localized spectral filtering[J] publication-title: Adv. Neural Inf. Proces. Syst. – volume: 7 start-page: 359 year: 2015 end-page: 366 ident: b0120 article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards[J] publication-title: NeuroImage: Clin. – volume: 10 start-page: 1 year: 2020 end-page: 20 ident: b0020 article-title: Computer vision in autism spectrum disorder research: a systematic review of published studies from 2009 to 2019[J] publication-title: Transl. Psychiatry – start-page: 1 year: 2021 end-page: 14 ident: b0070 article-title: Explainable diagnosis of secondary pulmonary tuberculosis by graph rank-based average pooling neural network[J] publication-title: J. Ambient Intell. Hum. Comput. – volume: 7 start-page: 599 year: 2013 ident: b0050 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results[J] publication-title: Front. Hum. Neurosci. – volume: 45 start-page: 1905 year: 2015 end-page: 1914 ident: b0005 article-title: Brief report: anomalous neural deactivations and functional connectivity during receptive language in autism spectrum disorder: a functional MRI study[J] publication-title: J. Autism Dev. Disord. – volume: 47 start-page: 1551 year: 2017 end-page: 1558 ident: b0015 article-title: Brief report: an exploratory study of the diagnostic reliability for autism spectrum disorder[J] publication-title: J. Autism Dev. Disord. – reference: T.A. Song, S.R. Chowdhury, F. Yang, et al., Graph convolutional neural networks for Alzheimer’s disease classification[C], in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), IEEE, 2019, pp. 414–417. – volume: 147 start-page: 736 year: 2017 end-page: 745 ident: b0130 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example[J] publication-title: Neuroimage – volume: 2 start-page: 75 year: 2008 end-page: 84 ident: b0010 article-title: Early identification and diagnosis in autism spectrum disorders in young children and infants: how early is too early?[J] publication-title: Res. Autism Spectr. Disord. – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: b0055 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[J] publication-title: Mol. Psychiatry – volume: 58 year: 2021 ident: b0075 article-title: Improved breast cancer classification through combining graph convolutional network and convolutional neural network[J] publication-title: Inf. Process. Manag. – volume: 17 start-page: 16 year: 2018 end-page: 23 ident: b0060 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset[J] publication-title: NeuroImage: Clinical – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: b0125 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J] publication-title: Neuroimage – volume: 2019 start-page: 1598 year: 2019 end-page: 1601 ident: b0080 article-title: Graph convolutional network analysis for mild cognitive impairment prediction[C]//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI publication-title: IEEE – start-page: 73 year: 2019 end-page: 85 ident: b0095 article-title: InceptionGCN: receptive field aware graph convolutional network for disease prediction[C], in: International Conference on Information Processing in Medical Imaging – volume: 29 start-page: 503 year: 2020 end-page: 514 ident: b0110 article-title: Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J] publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – start-page: 649 year: 2015 end-page: 655 ident: b0030 article-title: Efficient autism spectrum disorder prediction with eye movement: a machine learning framework[C]//2015 International conference on affective computing and intelligent interaction (ACII) publication-title: IEEE – reference: P. Veličković, G. Cucurull, A. Casanova, et al., Graph attention networks[J], arXiv preprint arXiv:1710.10903, 2017. – volume: 11 start-page: e0168224 year: 2016 ident: b0040 article-title: Development of a machine learning algorithm for the surveillance of autism spectrum disorder[J] publication-title: PLoS One – volume: 9 start-page: 18 year: 2018 ident: b0045 article-title: Classification of autism spectrum disorder using random support vector machine cluster[J] publication-title: Front. Genet. – volume: 11 start-page: e0168224 issue: 12 year: 2016 ident: 10.1016/j.bspc.2023.105090_b0040 article-title: Development of a machine learning algorithm for the surveillance of autism spectrum disorder[J] publication-title: PLoS One doi: 10.1371/journal.pone.0168224 – volume: 147 start-page: 736 year: 2017 ident: 10.1016/j.bspc.2023.105090_b0130 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example[J] publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.045 – ident: 10.1016/j.bspc.2023.105090_b0085 doi: 10.1109/ISBI.2019.8759531 – volume: 58 issue: 2 year: 2021 ident: 10.1016/j.bspc.2023.105090_b0075 article-title: Improved breast cancer classification through combining graph convolutional network and convolutional neural network[J] publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2020.102439 – ident: 10.1016/j.bspc.2023.105090_b0105 – volume: 45 start-page: 1905 issue: 6 year: 2015 ident: 10.1016/j.bspc.2023.105090_b0005 article-title: Brief report: anomalous neural deactivations and functional connectivity during receptive language in autism spectrum disorder: a functional MRI study[J] publication-title: J. Autism Dev. Disord. doi: 10.1007/s10803-014-2344-y – volume: 50 start-page: 589 issue: 2 year: 2010 ident: 10.1016/j.bspc.2023.105090_b0035 article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness[J] publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.047 – volume: 31 start-page: 968 issue: 3 year: 2006 ident: 10.1016/j.bspc.2023.105090_b0125 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J] publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.105090_b0070 article-title: Explainable diagnosis of secondary pulmonary tuberculosis by graph rank-based average pooling neural network[J] publication-title: J. Ambient Intell. Hum. Comput. – volume: 42 start-page: 10.3389 year: 2013 ident: 10.1016/j.bspc.2023.105090_b0115 article-title: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac)[J] publication-title: Front. Neuroinform. – volume: 9 start-page: 18 year: 2018 ident: 10.1016/j.bspc.2023.105090_b0045 article-title: Classification of autism spectrum disorder using random support vector machine cluster[J] publication-title: Front. Genet. doi: 10.3389/fgene.2018.00018 – volume: 7 start-page: 599 year: 2013 ident: 10.1016/j.bspc.2023.105090_b0050 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results[J] publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00599 – volume: 27 start-page: S79 issue: 2 year: 2006 ident: 10.1016/j.bspc.2023.105090_b0025 article-title: Examination of the time between first evaluation and first autism spectrum diagnosis in a population-based sample[J] publication-title: J. Dev. Behav. Pediatr. doi: 10.1097/00004703-200604002-00005 – volume: 29 start-page: 3844 year: 2016 ident: 10.1016/j.bspc.2023.105090_b0065 article-title: Convolutional neural networks on graphs with fast localized spectral filtering[J] publication-title: Adv. Neural Inf. Proces. Syst. – volume: 17 start-page: 16 year: 2018 ident: 10.1016/j.bspc.2023.105090_b0060 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset[J] publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2017.08.017 – start-page: 44 year: 2020 ident: 10.1016/j.bspc.2023.105090_b0100 article-title: Fusing structural and functional mris using graph convolutional networks for autism classification[C] publication-title: Medical Imaging with Deep Learning, PMLR – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.bspc.2023.105090_b0020 article-title: Computer vision in autism spectrum disorder research: a systematic review of published studies from 2009 to 2019[J] publication-title: Transl. Psychiatry doi: 10.1038/s41398-020-01015-w – volume: 2 start-page: 75 issue: 1 year: 2008 ident: 10.1016/j.bspc.2023.105090_b0010 article-title: Early identification and diagnosis in autism spectrum disorders in young children and infants: how early is too early?[J] publication-title: Res. Autism Spectr. Disord. doi: 10.1016/j.rasd.2007.03.002 – volume: 29 start-page: 503 year: 2020 ident: 10.1016/j.bspc.2023.105090_b0110 article-title: Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J] publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2020.3042009 – volume: 2019 start-page: 1598 year: 2019 ident: 10.1016/j.bspc.2023.105090_b0080 article-title: Graph convolutional network analysis for mild cognitive impairment prediction[C]//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI publication-title: IEEE – start-page: 649 year: 2015 ident: 10.1016/j.bspc.2023.105090_b0030 article-title: Efficient autism spectrum disorder prediction with eye movement: a machine learning framework[C]//2015 International conference on affective computing and intelligent interaction (ACII) publication-title: IEEE – volume: 47 start-page: 1551 issue: 5 year: 2017 ident: 10.1016/j.bspc.2023.105090_b0015 article-title: Brief report: an exploratory study of the diagnostic reliability for autism spectrum disorder[J] publication-title: J. Autism Dev. Disord. doi: 10.1007/s10803-017-3054-z – start-page: 73 year: 2019 ident: 10.1016/j.bspc.2023.105090_b0095 – volume: 7 start-page: 359 year: 2015 ident: 10.1016/j.bspc.2023.105090_b0120 article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards[J] publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2014.12.013 – volume: 19 start-page: 659 issue: 6 year: 2014 ident: 10.1016/j.bspc.2023.105090_b0055 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[J] publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.78 – start-page: 177 year: 2017 ident: 10.1016/j.bspc.2023.105090_b0090 |
SSID | ssj0048714 |
Score | 2.3572967 |
Snippet | •Define that each subject sample is a node, and each node corresponds to its own feature vector.•Construct an initial population graph using several... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105090 |
SubjectTerms | ASD prediction More diverse structural information Relation-aware attention |
Title | Autism spectrum disorder diagnosis using the relational graph attention network |
URI | https://dx.doi.org/10.1016/j.bspc.2023.105090 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywodAmthN7rCqqAqIMUKlbFL9QEQ1VW1Z-O2fHqYqEOrDFkS9Kzqe7L9bn7xC6ThSXlmZFZB2zndKujYSUJsqE7QoDNdv6dkBPo3Q4pg8TNmmgfn0WxtEqQ-6vcrrP1uFOJ3izM59OOy-ApVMOfycJ8XubLg9Tmrkov_1e0zwAj3t9bzc5crPDwZmK4yWXcydjmBDX7rbr8vJfxWmj4AwO0H5AirhXvcwhapjyCO1t6Aceo-cehM1yhv1xycXXDOugpQkXnkE3XWJHbH_DAPPwIvDe4KFepho7aU1PdsRlRQY_QePB3Wt_GIUOCZGCj15FUtlMiVgBimGGk1QoJmxhBNeCFTwxsZSSw1gnWmreJdrCkhCT6FgKzRQhp6hZfpbmDGFJEmNpUsSWawqgpMhSKVMmVcaMZqlsobh2Ta6CfLjrYvGR1zyx99y5M3fuzCt3ttDN2mZeiWdsnc1qj-e_QiCH7L7F7vyfdhdo140qNt8lasI6mStAGCvZ9iHURju9-8fh6Ach1tHo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YENhTYPJ_ZYVVQF2jLQSt2s-IWKaKjasvLbOTtOVSTUgS2Pc5ScL-cv0XffIXQbSSpMkuWBscz2JGmagAmhg4yZJtOwZhvXDqg_SLuj5GlMxjXUrmphLK3S5_4yp7ts7Y80vDcbs8mk8QpYOqXwdRLF7t8m5OHtBF5f28bg_nvF8wBA7gS-rXVgzX3lTEnyEouZ1TGMYtvvtmkT81-r09qK0zlA-x4q4lZ5N4eoposjtLcmIHiMXloQN4spdvWS868pVl5MEzYchW6ywJbZ_oYB5-G5J77BRZ1ONbbamo7tiIuSDX6CRp2HYbsb-BYJgYSnXgZCmkyyUAKMIZrGKZOEmVwzqhjJaaRDIQSFfRUpoWgzVgbmJNaRCgVTRMbxKdoqPgt9hrCII22SKA8NVQmgkjxLhUiJkBnRiqSijsLKNVx6_XDbxuKDV0Sxd27dya07eenOOrpbjZmV6hkbrUnlcf4rBjik9w3jzv857gbtdIf9Hu89Dp4v0K49U1L7LtEWzJm-ArixFNcunH4AF-rTdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autism+spectrum+disorder+diagnosis+using+the+relational+graph+attention+network&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Gu%2C+Xiaoai&rft.au=Xie%2C+Lihao&rft.au=Xia%2C+Yujing&rft.au=Cheng%2C+Yu&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=85&rft_id=info:doi/10.1016%2Fj.bspc.2023.105090&rft.externalDocID=S1746809423005232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |