UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking

Effective multi-object tracking (MOT) methods have been developed in recent years for a wide range of applications including visual surveillance and behavior understanding. Existing performance evaluations of MOT methods usually separate the tracking step from the detection step by using one single...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 193; p. 102907
Main Authors Wen, Longyin, Du, Dawei, Cai, Zhaowei, Lei, Zhen, Chang, Ming-Ching, Qi, Honggang, Lim, Jongwoo, Yang, Ming-Hsuan, Lyu, Siwei
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Effective multi-object tracking (MOT) methods have been developed in recent years for a wide range of applications including visual surveillance and behavior understanding. Existing performance evaluations of MOT methods usually separate the tracking step from the detection step by using one single predefined setting of object detection for comparisons. In this work, we propose a new University at Albany DEtection and TRACking (UA-DETRAC) dataset for comprehensive performance evaluation of MOT systems especially on detectors. The UA-DETRAC benchmark dataset consists of 100 challenging videos captured from real-world traffic scenes (over 140,000 frames with rich annotations, including illumination, vehicle type, occlusion, truncation ratio, and vehicle bounding boxes) for multi-object detection and tracking. We evaluate complete MOT systems constructed from combinations of state-of-the-art object detection and tracking methods. Our analysis shows the complex effects of detection accuracy on MOT system performance. Based on these observations, we propose effective and informative evaluation metrics for MOT systems that consider the effect of object detection for comprehensive performance analysis. •New large scale dataset for both detection and multi-object tracking evaluation.•New protocol and evaluation metrics for multi-object tracking.•Comprehensive evaluation of complete multi-object tracking systems.
AbstractList Effective multi-object tracking (MOT) methods have been developed in recent years for a wide range of applications including visual surveillance and behavior understanding. Existing performance evaluations of MOT methods usually separate the tracking step from the detection step by using one single predefined setting of object detection for comparisons. In this work, we propose a new University at Albany DEtection and TRACking (UA-DETRAC) dataset for comprehensive performance evaluation of MOT systems especially on detectors. The UA-DETRAC benchmark dataset consists of 100 challenging videos captured from real-world traffic scenes (over 140,000 frames with rich annotations, including illumination, vehicle type, occlusion, truncation ratio, and vehicle bounding boxes) for multi-object detection and tracking. We evaluate complete MOT systems constructed from combinations of state-of-the-art object detection and tracking methods. Our analysis shows the complex effects of detection accuracy on MOT system performance. Based on these observations, we propose effective and informative evaluation metrics for MOT systems that consider the effect of object detection for comprehensive performance analysis. •New large scale dataset for both detection and multi-object tracking evaluation.•New protocol and evaluation metrics for multi-object tracking.•Comprehensive evaluation of complete multi-object tracking systems.
ArticleNumber 102907
Author Cai, Zhaowei
Lei, Zhen
Qi, Honggang
Lyu, Siwei
Du, Dawei
Chang, Ming-Ching
Yang, Ming-Hsuan
Lim, Jongwoo
Wen, Longyin
Author_xml – sequence: 1
  givenname: Longyin
  surname: Wen
  fullname: Wen, Longyin
  organization: JD Finance America Corporation, Mountain View, CA, USA
– sequence: 2
  givenname: Dawei
  surname: Du
  fullname: Du, Dawei
  organization: Computer Science Department, University at Albany, State University of New York, Albany, NY, USA
– sequence: 3
  givenname: Zhaowei
  surname: Cai
  fullname: Cai, Zhaowei
  organization: Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA
– sequence: 4
  givenname: Zhen
  surname: Lei
  fullname: Lei, Zhen
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Ming-Ching
  surname: Chang
  fullname: Chang, Ming-Ching
  organization: Computer Science Department, University at Albany, State University of New York, Albany, NY, USA
– sequence: 6
  givenname: Honggang
  surname: Qi
  fullname: Qi, Honggang
  organization: School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Jongwoo
  surname: Lim
  fullname: Lim, Jongwoo
  organization: Division of Computer Science and Engineering, Hanyang University, Seoul, Korea
– sequence: 8
  givenname: Ming-Hsuan
  surname: Yang
  fullname: Yang, Ming-Hsuan
  organization: School of Engineering, University of California at Merced, CA, USA
– sequence: 9
  givenname: Siwei
  surname: Lyu
  fullname: Lyu, Siwei
  email: slyu@albany.edu
  organization: Computer Science Department, University at Albany, State University of New York, Albany, NY, USA
BookMark eNp9kE1OwzAQRr0oEm3hAqx8gRQ7TuIGsYlK-ZEqVULt2nLsMThN48pxi7g9DmXFoqvRjOaN5nsTNOpcBwjdUTKjhBb3zUyd7HGWknQYpCXhIzSmhPOE0Sy9RpO-bwihNCvpGK23VfK03LxXiwdc4Q6-cA2d-txLv8Oy0_jgXXDKtdg4j_fHNtjE1Q2ogDWEWKzrfveCl2pnu48bdGVk28PtX52i7fNys3hNVuuXt0W1ShQjJCR1DZzwjAHNCddSsoJmuuCqzE0OaQYlI8Cl0lSbOZXZvOTU5BpiZ0pW84JNUXq-q7zrew9GHLyNX38LSsSgQTRi0CAGDeKsIULzf5CyQQ4Z4vu2vYw-nlGIoU4WvOiVjaZAWx81CO3sJfwHfjl8ew
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3397013
crossref_primary_10_1007_s11042_023_14839_7
crossref_primary_10_1109_ACCESS_2021_3064603
crossref_primary_10_1016_j_engappai_2024_107972
crossref_primary_10_1155_2023_7974201
crossref_primary_10_1109_TITS_2023_3304288
crossref_primary_10_1007_s44267_023_00030_x
crossref_primary_10_3390_app14167071
crossref_primary_10_1016_j_neunet_2024_106539
crossref_primary_10_1109_OJITS_2025_3538037
crossref_primary_10_1038_s41598_024_70695_x
crossref_primary_10_1155_2022_4488400
crossref_primary_10_1109_TII_2023_3316184
crossref_primary_10_1177_03611981241246255
crossref_primary_10_32628_CSEIT2174106
crossref_primary_10_1109_ACCESS_2022_3143365
crossref_primary_10_1016_j_ssci_2024_106563
crossref_primary_10_1049_cvi2_70010
crossref_primary_10_1007_s11263_020_01375_2
crossref_primary_10_1007_s00138_025_01668_x
crossref_primary_10_1007_s11042_023_14661_1
crossref_primary_10_1007_s13735_025_00355_x
crossref_primary_10_1007_s10462_025_11186_x
crossref_primary_10_1117_1_JEI_31_5_051602
crossref_primary_10_1007_s11263_022_01711_8
crossref_primary_10_1109_ACCESS_2021_3060821
crossref_primary_10_3390_s23042208
crossref_primary_10_1016_j_knosys_2023_111325
crossref_primary_10_1016_j_cviu_2022_103433
crossref_primary_10_1016_j_dsp_2024_104507
crossref_primary_10_1007_s13198_024_02311_0
crossref_primary_10_1016_j_engappai_2024_109138
crossref_primary_10_1109_TMC_2024_3465434
crossref_primary_10_1007_s11042_023_16373_y
crossref_primary_10_1007_s11042_023_16102_5
crossref_primary_10_1016_j_neucom_2024_127635
crossref_primary_10_3390_s23239295
crossref_primary_10_1007_s11831_022_09764_1
crossref_primary_10_1117_1_JEI_33_6_063008
crossref_primary_10_1142_S0218213023500550
crossref_primary_10_1007_s13748_022_00290_6
crossref_primary_10_1049_itr2_12227
crossref_primary_10_1088_2631_8695_ad507d
crossref_primary_10_1007_s42979_022_01130_z
crossref_primary_10_1117_1_JEI_32_6_063023
crossref_primary_10_1109_TIV_2023_3318070
crossref_primary_10_1007_s11042_022_13469_9
crossref_primary_10_1109_OJITS_2025_3532389
crossref_primary_10_1109_TPAMI_2022_3168781
crossref_primary_10_1007_s00530_024_01407_8
crossref_primary_10_3390_rs14163853
crossref_primary_10_1016_j_eswa_2023_121020
crossref_primary_10_1109_TWC_2024_3519325
crossref_primary_10_1109_OJITS_2022_3147744
crossref_primary_10_1109_ACCESS_2025_3538556
crossref_primary_10_3390_app12199408
crossref_primary_10_1109_TCDS_2021_3073694
crossref_primary_10_3390_s24010249
crossref_primary_10_1109_TVT_2021_3065250
crossref_primary_10_3390_s23104832
crossref_primary_10_1007_s11760_024_03007_5
crossref_primary_10_1109_TITS_2022_3225709
crossref_primary_10_1016_j_patcog_2022_109107
crossref_primary_10_1007_s11042_024_19145_4
crossref_primary_10_1109_TMM_2021_3130414
crossref_primary_10_3390_a13050114
crossref_primary_10_1007_s10489_020_01815_z
crossref_primary_10_1145_3624478
crossref_primary_10_1109_ACCESS_2022_3184031
crossref_primary_10_1109_MITS_2022_3201400
crossref_primary_10_1109_TITS_2024_3360875
crossref_primary_10_3390_telecom4030024
crossref_primary_10_1109_TCSVT_2022_3168279
crossref_primary_10_1016_j_patcog_2024_111151
crossref_primary_10_1145_3645107
crossref_primary_10_3390_app131810225
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_1109_OJEMB_2023_3288470
crossref_primary_10_1109_ACCESS_2025_3534098
crossref_primary_10_1007_s11554_021_01131_w
crossref_primary_10_1049_cit2_12406
crossref_primary_10_3390_s21134564
crossref_primary_10_1109_TITS_2024_3359755
crossref_primary_10_1109_JSEN_2024_3449329
crossref_primary_10_1117_1_JEI_31_4_043008
crossref_primary_10_1109_TVT_2023_3332132
crossref_primary_10_3390_app12157473
crossref_primary_10_1007_s11042_023_17397_0
crossref_primary_10_1109_LRA_2022_3199026
crossref_primary_10_1109_TITS_2023_3316691
crossref_primary_10_1109_COMST_2023_3323091
crossref_primary_10_1109_MNET_2024_3398724
crossref_primary_10_1186_s13673_020_00219_9
crossref_primary_10_3390_s24248126
crossref_primary_10_1007_s12293_025_00440_y
crossref_primary_10_3390_rs14215513
crossref_primary_10_1016_j_patcog_2024_110721
crossref_primary_10_1109_ACCESS_2022_3160424
crossref_primary_10_1038_s41598_023_50306_x
crossref_primary_10_1049_tje2_70056
crossref_primary_10_1016_j_eswa_2022_119366
crossref_primary_10_3390_app14052124
crossref_primary_10_1016_j_jksuci_2023_101657
crossref_primary_10_1016_j_neucom_2024_127328
crossref_primary_10_1016_j_patcog_2022_108847
crossref_primary_10_1109_TKDE_2020_3048606
crossref_primary_10_3390_app14167383
crossref_primary_10_1007_s00521_023_08963_6
crossref_primary_10_1016_j_compeleceng_2021_107366
crossref_primary_10_1038_s41598_024_82356_0
crossref_primary_10_1109_ACCESS_2021_3053546
crossref_primary_10_1016_j_eswa_2024_125872
crossref_primary_10_1007_s11042_023_16243_7
crossref_primary_10_1016_j_aei_2021_101429
crossref_primary_10_1109_TITS_2024_3435775
crossref_primary_10_1145_3632181
crossref_primary_10_1016_j_cag_2022_03_012
crossref_primary_10_1007_s12204_021_2349_6
crossref_primary_10_1117_1_JEI_33_2_023041
crossref_primary_10_3390_s23083852
crossref_primary_10_1007_s42421_020_00026_9
crossref_primary_10_1109_ACCESS_2021_3139896
crossref_primary_10_1109_ACCESS_2021_3069216
crossref_primary_10_3390_electronics12234720
crossref_primary_10_1007_s11042_023_16337_2
crossref_primary_10_12720_jait_14_6_1261_1272
crossref_primary_10_3390_s24041182
crossref_primary_10_1109_ACCESS_2022_3207282
crossref_primary_10_1061_JTEPBS_TEENG_8341
crossref_primary_10_1109_TITS_2023_3264573
crossref_primary_10_1109_TPAMI_2021_3119563
crossref_primary_10_1109_TITS_2022_3206709
crossref_primary_10_1109_TITS_2023_3315222
crossref_primary_10_1016_j_eswa_2024_124661
crossref_primary_10_1109_TKDE_2021_3094997
crossref_primary_10_1109_JSTARS_2024_3443268
crossref_primary_10_3390_s23020724
crossref_primary_10_1109_ACCESS_2020_3038643
crossref_primary_10_1007_s11227_024_06121_w
crossref_primary_10_1109_ACCESS_2023_3345220
crossref_primary_10_1109_ACCESS_2024_3507713
crossref_primary_10_1016_j_eswa_2023_121209
crossref_primary_10_3390_math10050733
crossref_primary_10_3390_s21041116
crossref_primary_10_1016_j_neucom_2022_04_087
crossref_primary_10_1007_s11042_023_14812_4
crossref_primary_10_1007_s10489_020_02171_8
crossref_primary_10_1016_j_isprsjprs_2022_07_022
crossref_primary_10_1109_TITS_2022_3149277
crossref_primary_10_1007_s42154_023_00258_9
crossref_primary_10_1016_j_eswa_2024_125653
crossref_primary_10_1080_21680566_2024_2380915
crossref_primary_10_1186_s40537_022_00581_8
crossref_primary_10_1109_TGRS_2023_3271645
crossref_primary_10_3390_app13063995
crossref_primary_10_1007_s11554_024_01457_1
crossref_primary_10_1007_s12204_021_2348_7
crossref_primary_10_1109_ACCESS_2023_3347791
crossref_primary_10_3390_electronics13030541
crossref_primary_10_1109_TITS_2023_3258683
crossref_primary_10_3390_nano13243139
crossref_primary_10_1109_TITS_2023_3264796
crossref_primary_10_1016_j_ins_2021_03_027
crossref_primary_10_3390_su15031950
crossref_primary_10_1016_j_aei_2025_103165
crossref_primary_10_1016_j_imavis_2020_103932
crossref_primary_10_1007_s11263_020_01393_0
crossref_primary_10_32604_cmc_2023_038910
crossref_primary_10_1007_s11263_022_01629_1
crossref_primary_10_1016_j_eswa_2022_118992
crossref_primary_10_1007_s00530_024_01661_w
crossref_primary_10_1109_TIP_2023_3280010
crossref_primary_10_1109_ACCESS_2022_3144153
crossref_primary_10_1002_dac_5593
crossref_primary_10_1049_ipr2_13207
crossref_primary_10_1186_s10033_023_00962_x
crossref_primary_10_11834_jig_220026
crossref_primary_10_3390_s24227138
crossref_primary_10_14778_3598581_3598599
crossref_primary_10_1016_j_neucom_2023_126558
crossref_primary_10_1177_09544070241287582
crossref_primary_10_1109_TNNLS_2021_3136907
crossref_primary_10_1007_s11042_023_17949_4
crossref_primary_10_1051_itmconf_20235402006
crossref_primary_10_1016_j_inffus_2024_102429
crossref_primary_10_3390_rs15174310
crossref_primary_10_3390_s22155667
crossref_primary_10_1109_ACCESS_2023_3292881
crossref_primary_10_1111_exsy_12930
crossref_primary_10_1109_TITS_2020_3001638
crossref_primary_10_1109_TITS_2024_3411647
crossref_primary_10_3390_s24134045
crossref_primary_10_3390_vehicles6010007
crossref_primary_10_3390_s24227376
crossref_primary_10_1109_TCSVT_2024_3398658
crossref_primary_10_1016_j_cviu_2024_103957
crossref_primary_10_3390_s24134282
crossref_primary_10_3390_math10132199
crossref_primary_10_1016_j_iatssr_2023_10_001
crossref_primary_10_1142_S0218001421500282
crossref_primary_10_3390_su142316126
crossref_primary_10_1109_TITS_2021_3099729
crossref_primary_10_3390_wevj15060255
crossref_primary_10_1007_s10489_023_05084_4
crossref_primary_10_1109_ACCESS_2023_3262466
crossref_primary_10_1088_1361_6501_ad5ea6
crossref_primary_10_1109_TITS_2022_3150715
crossref_primary_10_1109_ACCESS_2024_3512794
crossref_primary_10_3390_app122312476
crossref_primary_10_3390_jimaging10070171
crossref_primary_10_1016_j_engappai_2024_109606
crossref_primary_10_3233_JIFS_233899
crossref_primary_10_3390_electronics10192406
crossref_primary_10_4236_ojapps_2024_1412234
crossref_primary_10_3390_math12101467
crossref_primary_10_1021_acs_inorgchem_4c03151
crossref_primary_10_1109_TWC_2022_3214499
crossref_primary_10_1109_JIOT_2024_3424235
crossref_primary_10_1109_JIOT_2024_3362851
crossref_primary_10_3390_app10175763
crossref_primary_10_1007_s10489_024_05641_5
crossref_primary_10_1016_j_eswa_2023_120253
crossref_primary_10_3390_electronics13153033
Cites_doi 10.1109/ICCV.2013.286
10.1109/TAC.2008.2008327
10.1109/CVPR.2009.5206848
10.1109/CVPR.2012.6248074
10.1109/CVPR.2014.453
10.1109/AVSS.2017.8078516
10.1109/CVPR.2015.7298706
10.1109/JOE.1983.1145560
10.1109/CVPR.2016.596
10.1109/PETS-WINTER.2009.5399556
10.1109/ICCV.2015.169
10.1109/CVPR.2015.7299138
10.1109/CVPR.2011.5995311
10.1109/CVPR.2015.7299036
10.1007/978-3-030-01249-6_23
10.1007/978-3-540-74549-5_2
10.1109/ICCV.2003.1238663
10.1109/CVPR.2011.5995468
10.1109/AVSS.2017.8078518
10.1109/CVPR.2011.5995395
10.1109/ICCV.2007.4409092
10.1007/978-3-642-33709-3_25
10.1109/CVPR.2009.5206735
10.1109/CVPRW.2014.39
10.1109/CVPR.2019.00533
10.1109/ICCV.2009.5459260
10.1007/978-3-642-33718-5_35
10.1109/TPAMI.2011.21
10.1109/ICME.2017.8019461
10.1109/CVPR.2014.169
10.1109/CVPRW.2018.00141
10.1109/TPAMI.2005.223
10.1007/s11263-014-0733-5
10.1007/978-3-540-69568-4_1
10.1109/CVPR.2014.320
10.1007/s11263-019-01157-5
10.1109/CVPR.2008.4587583
10.1109/CVPR.2015.7299034
10.1109/CVPRW.2013.111
10.1109/CVPR.2018.00442
10.1109/IVS.2008.4621297
10.1109/TAC.1979.1102177
10.1109/TPAMI.2009.167
10.1109/CVPR.2016.91
10.1007/978-3-319-10602-1_26
10.1109/CVPR.2009.5206661
10.1109/TPAMI.2010.232
10.1007/s11263-013-0620-5
10.1109/CVPR.2008.4587586
10.1109/ICCV.2015.533
10.1109/CVPR.2014.81
10.1109/CVPR.2007.383180
10.1109/TPAMI.2012.159
10.1109/TPAMI.2013.185
10.1109/CVPR.2014.450
10.1109/ICCV.2015.349
10.1007/s11263-011-0437-z
10.1109/CVPR.2011.5995604
10.1007/11744047_33
10.1109/CVPR.2014.159
10.1007/978-3-319-46493-0_22
10.1109/CVPRW.2009.5206638
10.1109/ICCV.2011.6126456
10.1109/AVSS.2018.8639089
10.1109/CVPR.2012.6247893
10.1109/CVPR.2014.167
10.1109/CVPR.2011.5995667
10.1109/TPAMI.2011.155
10.1109/TPAMI.2015.2509979
10.1109/TIP.2019.2922095
10.1109/TPAMI.2015.2389824
10.1023/A:1008078328650
10.1109/AVSS.2017.8078560
10.1177/0278364916679498
10.1023/B:VISI.0000013087.49260.fb
10.1109/TPAMI.2017.2732350
10.1007/978-3-642-33783-3_8
10.1109/TPAMI.2016.2577031
10.1007/978-3-319-46493-0_32
10.1109/CVPR.2015.7298809
10.1109/CVPR.2018.00745
10.1109/AVSS.2015.7301755
10.1109/TPAMI.2014.2300479
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.cviu.2020.102907
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
ExternalDocumentID 10_1016_j_cviu_2020_102907
S1077314220300035
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABEFU
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRPL
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SST
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AABNK
AAYWO
AAYXX
ABFNM
ACRLP
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BJAXD
CITATION
SPC
ID FETCH-LOGICAL-c300t-bbe70743e1507daa3614d67c95f5e24e930e7acd1df81a48971f5dedf8f93b763
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Thu Apr 24 22:52:19 EDT 2025
Tue Jul 01 04:32:07 EDT 2025
Sun Apr 06 06:54:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Benchmark
Evaluation protocol
Object tracking
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-bbe70743e1507daa3614d67c95f5e24e930e7acd1df81a48971f5dedf8f93b763
ParticipantIDs crossref_primary_10_1016_j_cviu_2020_102907
crossref_citationtrail_10_1016_j_cviu_2020_102907
elsevier_sciencedirect_doi_10_1016_j_cviu_2020_102907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Computer vision and image understanding
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Andriyenko, A., Schindler, K., Roth, S., 2012. Discrete-continuous optimization for multi-target tracking, In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1926–1933.
Bashir, F., Porikli, F., 2006. Performance evaluation of object detection and tracking systems. In: PETS.
Ren, He, Girshick, Sun (b67) 2017; 39
Maddern, Pascoe, Linegar, Newman (b54) 2017; 36
Wu, Kan, Shan, Chen (b85) 2019; 127
Delong, Osokin, Isack, Boykov (b17) 2012; 96
Everingham, Eslami, Gool, Williams, Winn, Zisserman (b24) 2015; 111
Uijlings, van de Sande, Gevers, Smeulders (b77) 2013; 104
Rezatofighi, S.H., Milan, A., Zhang, Z., Shi, Q., Dick, A.R., Reid, I.D., 2015. Joint probabilistic data association revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3047–3055.
Wen, Lei, Lyu, Li, Yang (b80) 2016; 38
Wu, Z., Fuller, N.W., Theriault, D.H., Betke, M., 2014. A thermal infrared video benchmark for visual analysis. In: Workshops in Conjunction with IEEE Conference on Computer Vision and Pattern Recognition, pp. 201–208.
Lyu, S., Chang, M., Du, D., Wen, L., Qi, H., Li, Y., Wei, Y., Ke, L., Hu, T., Coco, M.D., Carcagnì, P., et al., 2017. UA-DETRAC 2017: Report of AVSS2017 & IWT4S challenge on advanced traffic monitoring. In: AVSS, pp. 1–7.
Geiger, Lauer, Wojek, Stiller, Urtasun (b29) 2014; 36
Yong, Meng, Zuo, Zhang (b91) 2018; 40
Viola, Jones (b78) 2004; 57
Li, Y., Huang, C., Nevatia, R., 2009. Learning to associate: Hybridboosted multi-target tracker for crowded scene. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2953–2960.
Andriluka, M., Roth, S., Schiele, B., 2008. People-tracking-by-detection and people-detection-by-tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893.
Dalal, N., Triggs, B., Schmid, C., 2006. Human detection using oriented histograms of flow and appearance. In: Proceedings of European Conference on Computer Vision, pp. 428–441.
Wen, L., Li, W., Lei, Z., Yi, D., Li, S.Z., 2014. Multiple target tracking based on undirected hierarchical relation hypergraph. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3457–3464.
Yang, B., Nevatia, R., 2012. Online learned discriminative part-based appearance models for multi-human tracking. In: Proceedings of European Conference on Computer Vision, pp. 484–498.
Dicle, C., Camps, O.I., Sznaier, M., 2013. The way they move: Tracking multiple targets with similar appearance. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2304–2311.
Felzenszwalb, Girshick, McAllester, Ramanan (b25) 2010; 32
Zitnick, C.L., Dollár, P., 2014. Edge boxes: Locating object proposals from edges. In: Proceedings of European Conference on Computer Vision, pp. 391–405.
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (b69) 2015
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F., 2009. ImageNet: A large-scale hierarchical image database. In: CVPR, pp. 248–255.
Bae, S.H., Yoon, K., 2014. Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1218–1225.
Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z., 2018. Single-Shot Refinement Neural Network for Object Detection. In: CVPR, pp. 4203–4212.
Wang, L., Lu, Y., Wang, H., Zheng, Y., Ye, H., Xue, X., 2017. Evolving boxes for fast vehicle detection. In: ICME, pp. 1135–1140.
Yan, J., Lei, Z., Wen, L., Li, S.Z., 2014. The fastest deformable part model for object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2497–2504.
Ess, A., Leibe, B., Gool, L.J.V., 2007. Depth and appearance for mobile scene analysis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1–8.
Milan, Leal-Taixé, Reid, Roth, Schindler (b56) 2016
T: Multiple people multiple parts tracker. In: Proceedings of European Conference on Computer Vision, pp. 100–114.
Wen, Wu, Wang, Chen, Li (b82) 2016
Girshick, R.B., 2015. Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision.
Ouyang, W., Wang, X., 2012. A discriminative deep model for pedestrian detection with occlusion handling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3258–3265.
Pirsiavash, H., Ramanan, D., Fowlkes, C.C., 2011. Globally-optimal greedy algorithms for tracking a variable number of objects. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1201–1208.
Isard, Blake (b40) 1998; 29
Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z., 2007. Face detection based on multi-block LBP representation. In: Proceedings of International Conference on Biometrics, pp. 11–18.
Leal-Taixé, Milan, Reid, Roth, Schindler (b48) 2015
Berclaz, Fleuret, Türetken, Fua (b8) 2011; 33
Mikami, D., Otsuka, K., Yamato, J., 2009. Memory-based particle filter for face pose tracking robust under complex dynamics. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 999–1006.
Izadinia, H., Saleemi, I., Li, W., Shah, M., 2012. (MP)
Khan, Balch, Dellaert (b43) 2005; 27
Tang, S., Andres, B., Andriluka, M., Schiele, B., 2015. Subgraph decomposition for multi-target tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5033–5041.
Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Zhang, W., Huang, Q., Tian, Q., 2018. The unmanned aerial vehicle benchmark: object detection and tracking. In: ECCV, pp. 375–391.
Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141.
Redmon, Farhadi (b65) 2018
Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Kim, C., Li, F., Ciptadi, A., Rehg, J.M., 2015. Multiple hypothesis tracking revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4696–4704.
Wojek, C., Walk, S., Schiele, B., 2009. Multi-cue onboard pedestrian detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 794–801.
Andriyenko, A., Schindler, K., 2011. Multi-target tracking by continuous energy minimization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 1265–1272.
Breitenstein, Reichlin, Leibe, Koller-Meier, Gool (b10) 2011; 33
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b35) 2017
Yu, Xian, Chen, Liu, Liao, Madhavan, Darrell (b92) 2018
Overett, G., Petersson, L., Brewer, N., Andersson, L., Pettersson, N., 2008. A new pedestrian dataset for supervised learning. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 373–378.
Reid (b66) 1979; 24
Hwang, S., Park, J., Kim, N., Choi, Y., Kweon, I.S., 2015. Multispectral pedestrian detection: Benchmark dataset and baseline. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Fortmann, Shalom, Scheffe (b27) 1983; 8
Yang, S., Luo, P., Loy, C.C., Tang, X., 2016. WIDER FACE: A face detection benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525–5533.
Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S., 2014. Learning an image-based motion context for multiple people tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3542–3549.
Shi, X., Ling, H., Hu, W., Yuan, C., Xing, J., 2014. Multi-target tracking with motion context in tensor power iteration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3518–3525.
Amin, S., Galasso, F., 2017. Geometric proposals for faster R-CNN. In: AVSS, pp. 1–6.
Huang, Li, Nevatia (b38) 2013; 35
Krizhevsky, Sutskever, Hinton (b45) 2012
Zamir, A.R., Dehghan, A., Shah, M., 2012. GMCP-Tracker: Global multi-object tracking using generalized minimum clique graphs. In: Proceedings of European Conference on Computer Vision, pp. 343–356.
Lyu, S., Chang, M., Du, D., Li, W., Wei, Y., Coco, M.D., Carcagnì, P., et al., 2018. UA-DETRAC 2018: Report of AVSS2018 & IWT4S challenge on advanced traffic monitoring. In: AVSS, pp. 1–6.
Milan, A., Schindler, K., Roth, S., 2013. Challenges of ground truth evaluation of multi-target tracking. In: Workshops in Conjunction with IEEE Conference on Computer Vision and Pattern Recognition, pp. 735–742.
Solera, F., Calderara, S., Cucchiara, R., 2015. Towards the evaluation of reproducible robustness in tracking-by-detection. In: Proceedings of IEEE International Conference on Advanced Video and Signal-Based Surveillance.
Girshick, R.B., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587.
Bochinski, E., Eiselein, V., Sikora, T., 2017. High-Speed tracking-by-detection without using image information. In: AVSS, pp. 1–6.
Stiefelhagen, R., Bernardin, K., Bowers, R., Garofolo, J.S., Mostefa, D., Soundararajan, P., 2006. The CLEAR 2006 evaluation. In: International Evaluation Workshop on Classification of Events, Activities and Relationships, pp. 1–44.
Lampert, C.H., Blaschko, M.B., Hofmann, T., 2008. Beyond sliding windows: Object localization by efficient subwindow search. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Yang, M., Liu, Y., Wen, L., You, Z., Li, S.Z., 2014. A probabilistic framework for multitarget tracking with mutual occlusions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1298–1305.
Zhang, X., Zou, J., Ming, X., He, K., Sun, J., 2015. Efficient and accurate approximatio
Everingham (10.1016/j.cviu.2020.102907_b24) 2015; 111
10.1016/j.cviu.2020.102907_b4
10.1016/j.cviu.2020.102907_b3
10.1016/j.cviu.2020.102907_b23
10.1016/j.cviu.2020.102907_b6
10.1016/j.cviu.2020.102907_b26
10.1016/j.cviu.2020.102907_b5
10.1016/j.cviu.2020.102907_b7
10.1016/j.cviu.2020.102907_b22
10.1016/j.cviu.2020.102907_b9
Breitenstein (10.1016/j.cviu.2020.102907_b10) 2011; 33
Wu (10.1016/j.cviu.2020.102907_b85) 2019; 127
10.1016/j.cviu.2020.102907_b39
Redmon (10.1016/j.cviu.2020.102907_b65) 2018
10.1016/j.cviu.2020.102907_b34
10.1016/j.cviu.2020.102907_b37
10.1016/j.cviu.2020.102907_b36
Fu (10.1016/j.cviu.2020.102907_b28) 2019; 28
10.1016/j.cviu.2020.102907_b31
10.1016/j.cviu.2020.102907_b30
Leven (10.1016/j.cviu.2020.102907_b49) 2009; 54
10.1016/j.cviu.2020.102907_b32
Ren (10.1016/j.cviu.2020.102907_b67) 2017; 39
Russakovsky (10.1016/j.cviu.2020.102907_b69) 2015
Yu (10.1016/j.cviu.2020.102907_b92) 2018
Fortmann (10.1016/j.cviu.2020.102907_b27) 1983; 8
Milan (10.1016/j.cviu.2020.102907_b56) 2016
10.1016/j.cviu.2020.102907_b89
10.1016/j.cviu.2020.102907_b86
10.1016/j.cviu.2020.102907_b88
10.1016/j.cviu.2020.102907_b87
10.1016/j.cviu.2020.102907_b81
10.1016/j.cviu.2020.102907_b84
Leal-Taixé (10.1016/j.cviu.2020.102907_b48) 2015
10.1016/j.cviu.2020.102907_b83
Felzenszwalb (10.1016/j.cviu.2020.102907_b25) 2010; 32
Viola (10.1016/j.cviu.2020.102907_b78) 2004; 57
Uijlings (10.1016/j.cviu.2020.102907_b77) 2013; 104
10.1016/j.cviu.2020.102907_b16
10.1016/j.cviu.2020.102907_b19
Reid (10.1016/j.cviu.2020.102907_b66) 1979; 24
10.1016/j.cviu.2020.102907_b18
10.1016/j.cviu.2020.102907_b12
Dollár (10.1016/j.cviu.2020.102907_b21) 2012; 34
10.1016/j.cviu.2020.102907_b15
10.1016/j.cviu.2020.102907_b14
10.1016/j.cviu.2020.102907_b97
Krizhevsky (10.1016/j.cviu.2020.102907_b45) 2012
10.1016/j.cviu.2020.102907_b96
10.1016/j.cviu.2020.102907_b11
10.1016/j.cviu.2020.102907_b98
Wen (10.1016/j.cviu.2020.102907_b80) 2016; 38
10.1016/j.cviu.2020.102907_b93
10.1016/j.cviu.2020.102907_b95
10.1016/j.cviu.2020.102907_b94
10.1016/j.cviu.2020.102907_b2
10.1016/j.cviu.2020.102907_b1
10.1016/j.cviu.2020.102907_b90
Huang (10.1016/j.cviu.2020.102907_b38) 2013; 35
Geiger (10.1016/j.cviu.2020.102907_b29) 2014; 36
He (10.1016/j.cviu.2020.102907_b33) 2015; 37
Khan (10.1016/j.cviu.2020.102907_b43) 2005; 27
10.1016/j.cviu.2020.102907_b68
10.1016/j.cviu.2020.102907_b64
10.1016/j.cviu.2020.102907_b63
Berclaz (10.1016/j.cviu.2020.102907_b8) 2011; 33
10.1016/j.cviu.2020.102907_b62
10.1016/j.cviu.2020.102907_b61
10.1016/j.cviu.2020.102907_b79
10.1016/j.cviu.2020.102907_b75
Howard (10.1016/j.cviu.2020.102907_b35) 2017
10.1016/j.cviu.2020.102907_b74
10.1016/j.cviu.2020.102907_b76
10.1016/j.cviu.2020.102907_b71
10.1016/j.cviu.2020.102907_b70
10.1016/j.cviu.2020.102907_b73
10.1016/j.cviu.2020.102907_b72
Delong (10.1016/j.cviu.2020.102907_b17) 2012; 96
10.1016/j.cviu.2020.102907_b46
10.1016/j.cviu.2020.102907_b47
10.1016/j.cviu.2020.102907_b42
Wen (10.1016/j.cviu.2020.102907_b82) 2016
10.1016/j.cviu.2020.102907_b41
10.1016/j.cviu.2020.102907_b44
Patino (10.1016/j.cviu.2020.102907_b60) 2017
Cai (10.1016/j.cviu.2020.102907_b13) 2015
Dollár (10.1016/j.cviu.2020.102907_b20) 2014; 36
10.1016/j.cviu.2020.102907_b57
10.1016/j.cviu.2020.102907_b59
10.1016/j.cviu.2020.102907_b58
10.1016/j.cviu.2020.102907_b53
10.1016/j.cviu.2020.102907_b52
10.1016/j.cviu.2020.102907_b55
10.1016/j.cviu.2020.102907_b51
10.1016/j.cviu.2020.102907_b50
Isard (10.1016/j.cviu.2020.102907_b40) 1998; 29
Yong (10.1016/j.cviu.2020.102907_b91) 2018; 40
Maddern (10.1016/j.cviu.2020.102907_b54) 2017; 36
References_xml – reference: Izadinia, H., Saleemi, I., Li, W., Shah, M., 2012. (MP)
– reference: Lyu, S., Chang, M., Du, D., Wen, L., Qi, H., Li, Y., Wei, Y., Ke, L., Hu, T., Coco, M.D., Carcagnì, P., et al., 2017. UA-DETRAC 2017: Report of AVSS2017 & IWT4S challenge on advanced traffic monitoring. In: AVSS, pp. 1–7.
– reference: Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Zhang, W., Huang, Q., Tian, Q., 2018. The unmanned aerial vehicle benchmark: object detection and tracking. In: ECCV, pp. 375–391.
– reference: Ouyang, W., Wang, X., 2012. A discriminative deep model for pedestrian detection with occlusion handling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3258–3265.
– reference: Girshick, R.B., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587.
– reference: Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F., 2009. ImageNet: A large-scale hierarchical image database. In: CVPR, pp. 248–255.
– volume: 33
  start-page: 1806
  year: 2011
  end-page: 1819
  ident: b8
  article-title: Multiple object tracking using k-shortest paths optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Sivic, J., Zisserman, A., 2003. Video Google: A text retrieval approach to object matching in videos. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1470–1477.
– reference: Bashir, F., Porikli, F., 2006. Performance evaluation of object detection and tracking systems. In: PETS.
– volume: 36
  start-page: 1532
  year: 2014
  end-page: 1545
  ident: b20
  article-title: Fast feature pyramids for object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Ess, A., Leibe, B., Gool, L.J.V., 2007. Depth and appearance for mobile scene analysis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1–8.
– volume: 111
  start-page: 98
  year: 2015
  end-page: 136
  ident: b24
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vis.
– start-page: 1106
  year: 2012
  end-page: 1114
  ident: b45
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– reference: Pirsiavash, H., Ramanan, D., Fowlkes, C.C., 2011. Globally-optimal greedy algorithms for tracking a variable number of objects. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1201–1208.
– volume: 28
  start-page: 6077
  year: 2019
  end-page: 6090
  ident: b28
  article-title: Foreground gating and background refining network for surveillance object detection
  publication-title: Trans. Image Process.
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: b33
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 173
  year: 1983
  end-page: 184
  ident: b27
  article-title: Sonar tracking of multiple targets using joint probabilistic data association
  publication-title: IEEE J. Ocean. Eng.
– reference: Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L., 2011. Who are you with and where are you going?. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1345–1352.
– reference: T: Multiple people multiple parts tracker. In: Proceedings of European Conference on Computer Vision, pp. 100–114.
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: b67
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Yang, M., Liu, Y., Wen, L., You, Z., Li, S.Z., 2014. A probabilistic framework for multitarget tracking with mutual occlusions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1298–1305.
– reference: Andriluka, M., Roth, S., Schiele, B., 2008. People-tracking-by-detection and people-detection-by-tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Yan, J., Lei, Z., Wen, L., Li, S.Z., 2014. The fastest deformable part model for object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2497–2504.
– reference: Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z., 2018. Single-Shot Refinement Neural Network for Object Detection. In: CVPR, pp. 4203–4212.
– reference: Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: ICLR.
– volume: 29
  start-page: 5
  year: 1998
  end-page: 28
  ident: b40
  article-title: Condensation - conditional density propagation for visual tracking
  publication-title: Int. J. Comput. Vis.
– volume: 104
  start-page: 154
  year: 2013
  end-page: 171
  ident: b77
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
– reference: Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z., 2007. Face detection based on multi-block LBP representation. In: Proceedings of International Conference on Biometrics, pp. 11–18.
– volume: 32
  start-page: 1627
  year: 2010
  end-page: 1645
  ident: b25
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A., 2016. XNOR-Net: Imagenet classification using binary convolutional neural networks. In: Proceedings of European Conference on Computer Vision, pp. 525–542.
– volume: 36
  start-page: 1012
  year: 2014
  end-page: 1025
  ident: b29
  article-title: 3D traffic scene understanding from movable platforms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Li, Y., Huang, C., Nevatia, R., 2009. Learning to associate: Hybridboosted multi-target tracker for crowded scene. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2953–2960.
– reference: Dicle, C., Camps, O.I., Sznaier, M., 2013. The way they move: Tracking multiple targets with similar appearance. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2304–2311.
– reference: Dalal, N., Triggs, B., Schmid, C., 2006. Human detection using oriented histograms of flow and appearance. In: Proceedings of European Conference on Computer Vision, pp. 428–441.
– reference: Yang, S., Luo, P., Loy, C.C., Tang, X., 2016. WIDER FACE: A face detection benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525–5533.
– reference: Zitnick, C.L., Dollár, P., 2014. Edge boxes: Locating object proposals from edges. In: Proceedings of European Conference on Computer Vision, pp. 391–405.
– year: 2015
  ident: b48
  article-title: Motchallenge 2015: Towards a benchmark for multi-target tracking
– year: 2017
  ident: b35
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– volume: 36
  start-page: 3
  year: 2017
  end-page: 15
  ident: b54
  article-title: 1 year, 1000 km: The oxford robot car dataset
  publication-title: I. J. Robotics Res.
– reference: Zamir, A.R., Dehghan, A., Shah, M., 2012. GMCP-Tracker: Global multi-object tracking using generalized minimum clique graphs. In: Proceedings of European Conference on Computer Vision, pp. 343–356.
– year: 2015
  ident: b13
  article-title: Learning complexity-aware Cascades for deep pedestrian detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: Dehghan, A., Assari, S.M., Shah, M., 2015. GMMCP-Tracker:globally optimal generalized maximum multi clique problem for multiple object tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
– volume: 57
  start-page: 137
  year: 2004
  end-page: 154
  ident: b78
  article-title: Robust real-time face detection
  publication-title: Int. J. Comput. Vis.
– reference: Milan, A., Schindler, K., Roth, S., 2013. Challenges of ground truth evaluation of multi-target tracking. In: Workshops in Conjunction with IEEE Conference on Computer Vision and Pattern Recognition, pp. 735–742.
– year: 2018
  ident: b65
  article-title: Yolov3: An incremental improvement
– reference: Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361.
– reference: Pellegrini, S., Ess, A., Schindler, K., Gool, L.J.V., 2009. You’ll never walk alone: Modeling social behavior for multi-target tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 261–268.
– reference: Andriyenko, A., Schindler, K., 2011. Multi-target tracking by continuous energy minimization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 1265–1272.
– year: 2016
  ident: b56
  article-title: Mot16: A benchmark for multi-object tracking
– volume: 33
  start-page: 1820
  year: 2011
  end-page: 1833
  ident: b10
  article-title: Online multi-person tracking-by-detection from a single, uncalibrated Camera
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141.
– reference: Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N., 2016. A unified multi-scale deep convolutional neural network for fast object detection. In: Proceedings of European Conference on Computer Vision, pp. 354–370.
– reference: Solera, F., Calderara, S., Cucchiara, R., 2015. Towards the evaluation of reproducible robustness in tracking-by-detection. In: Proceedings of IEEE International Conference on Advanced Video and Signal-Based Surveillance.
– reference: Hosang, J.H., Omran, M., Benenson, R., Schiele, B., 2015. Taking a deeper look at pedestrians. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 4073–4082.
– volume: 38
  start-page: 1983
  year: 2016
  end-page: 1996
  ident: b80
  article-title: Exploiting hierarchical dense structures on hypergraphs for multi-object tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Bochinski, E., Eiselein, V., Sikora, T., 2017. High-Speed tracking-by-detection without using image information. In: AVSS, pp. 1–6.
– reference: Tang, S., Andres, B., Andriluka, M., Schiele, B., 2015. Subgraph decomposition for multi-target tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5033–5041.
– reference: Overett, G., Petersson, L., Brewer, N., Andersson, L., Pettersson, N., 2008. A new pedestrian dataset for supervised learning. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 373–378.
– reference: Stiefelhagen, R., Bernardin, K., Bowers, R., Garofolo, J.S., Mostefa, D., Soundararajan, P., 2006. The CLEAR 2006 evaluation. In: International Evaluation Workshop on Classification of Events, Activities and Relationships, pp. 1–44.
– volume: 34
  start-page: 743
  year: 2012
  end-page: 761
  ident: b21
  article-title: Pedestrian detection: An evaluation of the state of the art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  start-page: 1805
  year: 2005
  end-page: 1918
  ident: b43
  article-title: MCMC-based particle filtering for tracking a variable number of interacting targets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Benfold, B., Reid, I., 2011. Stable multi-target tracking in real-time surveillance video. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3457–3464.
– reference: Amin, S., Galasso, F., 2017. Geometric proposals for faster R-CNN. In: AVSS, pp. 1–6.
– year: 2017
  ident: b60
  article-title: Pets2016 dataset website
– reference: Mikami, D., Otsuka, K., Yamato, J., 2009. Memory-based particle filter for face pose tracking robust under complex dynamics. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 999–1006.
– volume: 54
  start-page: 370
  year: 2009
  end-page: 375
  ident: b49
  article-title: Unscented kalman filters for multiple target tracking with symmetric measurement equations
  publication-title: IEEE Trans. Automat. Control
– reference: Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893.
– reference: Hwang, S., Park, J., Kim, N., Choi, Y., Kweon, I.S., 2015. Multispectral pedestrian detection: Benchmark dataset and baseline. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Liu, W., Liao, S., Ren, W., Hu, W., Yu, Y., 2019. High-level semantic feature detection: A new perspective for pedestrian detection. In: CVPR, pp. 5187–5196.
– reference: Wu, Z., Fuller, N.W., Theriault, D.H., Betke, M., 2014. A thermal infrared video benchmark for visual analysis. In: Workshops in Conjunction with IEEE Conference on Computer Vision and Pattern Recognition, pp. 201–208.
– volume: 35
  start-page: 898
  year: 2013
  end-page: 910
  ident: b38
  article-title: Multiple target tracking by learning-based hierarchical association of detection responses
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Wen, L., Li, W., Lei, Z., Yi, D., Li, S.Z., 2014. Multiple target tracking based on undirected hierarchical relation hypergraph. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3457–3464.
– reference: Jiang, H., Fels, S., Little, J.J., 2007. A linear programming approach for multiple object tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Zhang, L., Li, Y., Nevatia, R., 2008. Global data association for multi-object tracking using network flows. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Andriyenko, A., Schindler, K., Roth, S., 2012. Discrete-continuous optimization for multi-target tracking, In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1926–1933.
– reference: Wang, L., Lu, Y., Wang, H., Zheng, Y., Ye, H., Xue, X., 2017. Evolving boxes for fast vehicle detection. In: ICME, pp. 1135–1140.
– reference: van de Sande, K.E.A., Uijlings, J.R.R., Gevers, T., Smeulders, A.W.M., 2011. Segmentation as selective search for object recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1879–1886.
– reference: Zhang, X., Zou, J., Ming, X., He, K., Sun, J., 2015. Efficient and accurate approximations of nonlinear convolutional networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1984–1992.
– reference: Bae, S.H., Yoon, K., 2014. Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1218–1225.
– reference: Shi, X., Ling, H., Hu, W., Yuan, C., Xing, J., 2014. Multi-target tracking with motion context in tensor power iteration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3518–3525.
– start-page: 2074
  year: 2016
  end-page: 2082
  ident: b82
  article-title: Learning structured sparsity in deep neural networks
  publication-title: Advances in Neural Information Processing Systems
– reference: Lampert, C.H., Blaschko, M.B., Hofmann, T., 2008. Beyond sliding windows: Object localization by efficient subwindow search. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Yang, B., Nevatia, R., 2012. Online learned discriminative part-based appearance models for multi-human tracking. In: Proceedings of European Conference on Computer Vision, pp. 484–498.
– year: 2018
  ident: b92
  article-title: BDD100K: A diverse driving video database with scalable annotation tooling
– reference: Rezatofighi, S.H., Milan, A., Zhang, Z., Shi, Q., Dick, A.R., Reid, I.D., 2015. Joint probabilistic data association revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3047–3055.
– volume: 96
  start-page: 1
  year: 2012
  end-page: 27
  ident: b17
  article-title: Fast approximate energy minimization with label costs
  publication-title: Int. J. Comput. Vis.
– reference: Girshick, R.B., 2015. Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision.
– reference: Wojek, C., Walk, S., Schiele, B., 2009. Multi-cue onboard pedestrian detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 794–801.
– reference: Brendel, W., Amer, M.R., Todorovic, S., 2011. Multiobject tracking as maximum weight independent set. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1273–1280.
– start-page: 1
  year: 2015
  end-page: 42
  ident: b69
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– reference: Kim, C., Li, F., Ciptadi, A., Rehg, J.M., 2015. Multiple hypothesis tracking revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4696–4704.
– reference: Lyu, S., Chang, M., Du, D., Li, W., Wei, Y., Coco, M.D., Carcagnì, P., et al., 2018. UA-DETRAC 2018: Report of AVSS2018 & IWT4S challenge on advanced traffic monitoring. In: AVSS, pp. 1–6.
– reference: Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Ferryman, J.M., Shahrokni, A., 2009. PETS2009: Dataset and challenge. In: Proceedings of IEEE International Conference on Advanced Video and Signal-Based Surveillance, pp. 1–6.
– reference: Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S., 2014. Learning an image-based motion context for multiple people tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3542–3549.
– volume: 24
  start-page: 843
  year: 1979
  end-page: 854
  ident: b66
  article-title: An algorithm for tracking multiple targets
  publication-title: IEEE Trans. Automat. Control
– volume: 127
  start-page: 560
  year: 2019
  end-page: 578
  ident: b85
  article-title: Hierarchical attention for part-aware face detection
  publication-title: Int. J. Comput. Vis.
– reference: Huang, X., Cheng, X., Geng, Q., Cao, B., Zhou, D., Wang, P., Lin, Y., Yang, R., 2018. The apolloscape dataset for autonomous driving. In: CVPRWorkshops, pp. 954–960.
– volume: 40
  start-page: 1726
  year: 2018
  end-page: 1740
  ident: b91
  article-title: Robust online matrix factorization for dynamic background subtraction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.cviu.2020.102907_b19
  doi: 10.1109/ICCV.2013.286
– volume: 54
  start-page: 370
  issue: 2
  year: 2009
  ident: 10.1016/j.cviu.2020.102907_b49
  article-title: Unscented kalman filters for multiple target tracking with symmetric measurement equations
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2008.2008327
– ident: 10.1016/j.cviu.2020.102907_b18
  doi: 10.1109/CVPR.2009.5206848
– ident: 10.1016/j.cviu.2020.102907_b30
  doi: 10.1109/CVPR.2012.6248074
– ident: 10.1016/j.cviu.2020.102907_b47
  doi: 10.1109/CVPR.2014.453
– ident: 10.1016/j.cviu.2020.102907_b9
  doi: 10.1109/AVSS.2017.8078516
– ident: 10.1016/j.cviu.2020.102907_b39
  doi: 10.1109/CVPR.2015.7298706
– volume: 8
  start-page: 173
  issue: 3
  year: 1983
  ident: 10.1016/j.cviu.2020.102907_b27
  article-title: Sonar tracking of multiple targets using joint probabilistic data association
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.1983.1145560
– year: 2017
  ident: 10.1016/j.cviu.2020.102907_b60
– ident: 10.1016/j.cviu.2020.102907_b89
  doi: 10.1109/CVPR.2016.596
– ident: 10.1016/j.cviu.2020.102907_b26
  doi: 10.1109/PETS-WINTER.2009.5399556
– ident: 10.1016/j.cviu.2020.102907_b31
  doi: 10.1109/ICCV.2015.169
– ident: 10.1016/j.cviu.2020.102907_b76
  doi: 10.1109/CVPR.2015.7299138
– ident: 10.1016/j.cviu.2020.102907_b6
– ident: 10.1016/j.cviu.2020.102907_b3
  doi: 10.1109/CVPR.2011.5995311
– ident: 10.1016/j.cviu.2020.102907_b16
  doi: 10.1109/CVPR.2015.7299036
– ident: 10.1016/j.cviu.2020.102907_b22
  doi: 10.1007/978-3-030-01249-6_23
– ident: 10.1016/j.cviu.2020.102907_b94
  doi: 10.1007/978-3-540-74549-5_2
– ident: 10.1016/j.cviu.2020.102907_b73
  doi: 10.1109/ICCV.2003.1238663
– ident: 10.1016/j.cviu.2020.102907_b86
  doi: 10.1109/CVPR.2011.5995468
– ident: 10.1016/j.cviu.2020.102907_b1
  doi: 10.1109/AVSS.2017.8078518
– ident: 10.1016/j.cviu.2020.102907_b11
  doi: 10.1109/CVPR.2011.5995395
– ident: 10.1016/j.cviu.2020.102907_b23
  doi: 10.1109/ICCV.2007.4409092
– ident: 10.1016/j.cviu.2020.102907_b93
  doi: 10.1007/978-3-642-33709-3_25
– ident: 10.1016/j.cviu.2020.102907_b50
  doi: 10.1109/CVPR.2009.5206735
– ident: 10.1016/j.cviu.2020.102907_b84
  doi: 10.1109/CVPRW.2014.39
– ident: 10.1016/j.cviu.2020.102907_b51
  doi: 10.1109/CVPR.2019.00533
– ident: 10.1016/j.cviu.2020.102907_b61
  doi: 10.1109/ICCV.2009.5459260
– ident: 10.1016/j.cviu.2020.102907_b58
– ident: 10.1016/j.cviu.2020.102907_b90
  doi: 10.1007/978-3-642-33718-5_35
– volume: 33
  start-page: 1806
  issue: 9
  year: 2011
  ident: 10.1016/j.cviu.2020.102907_b8
  article-title: Multiple object tracking using k-shortest paths optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.21
– ident: 10.1016/j.cviu.2020.102907_b79
  doi: 10.1109/ICME.2017.8019461
– year: 2015
  ident: 10.1016/j.cviu.2020.102907_b13
  article-title: Learning complexity-aware Cascades for deep pedestrian detection
– ident: 10.1016/j.cviu.2020.102907_b88
  doi: 10.1109/CVPR.2014.169
– year: 2018
  ident: 10.1016/j.cviu.2020.102907_b65
– ident: 10.1016/j.cviu.2020.102907_b37
  doi: 10.1109/CVPRW.2018.00141
– volume: 27
  start-page: 1805
  issue: 11
  year: 2005
  ident: 10.1016/j.cviu.2020.102907_b43
  article-title: MCMC-based particle filtering for tracking a variable number of interacting targets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.223
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 10.1016/j.cviu.2020.102907_b24
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– ident: 10.1016/j.cviu.2020.102907_b75
  doi: 10.1007/978-3-540-69568-4_1
– ident: 10.1016/j.cviu.2020.102907_b87
  doi: 10.1109/CVPR.2014.320
– volume: 127
  start-page: 560
  issue: 6–7
  year: 2019
  ident: 10.1016/j.cviu.2020.102907_b85
  article-title: Hierarchical attention for part-aware face detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01157-5
– ident: 10.1016/j.cviu.2020.102907_b2
  doi: 10.1109/CVPR.2008.4587583
– ident: 10.1016/j.cviu.2020.102907_b34
  doi: 10.1109/CVPR.2015.7299034
– ident: 10.1016/j.cviu.2020.102907_b57
  doi: 10.1109/CVPRW.2013.111
– ident: 10.1016/j.cviu.2020.102907_b72
– year: 2016
  ident: 10.1016/j.cviu.2020.102907_b56
– ident: 10.1016/j.cviu.2020.102907_b96
  doi: 10.1109/CVPR.2018.00442
– ident: 10.1016/j.cviu.2020.102907_b59
  doi: 10.1109/IVS.2008.4621297
– volume: 24
  start-page: 843
  year: 1979
  ident: 10.1016/j.cviu.2020.102907_b66
  article-title: An algorithm for tracking multiple targets
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1979.1102177
– volume: 32
  start-page: 1627
  issue: 9
  year: 2010
  ident: 10.1016/j.cviu.2020.102907_b25
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.167
– ident: 10.1016/j.cviu.2020.102907_b64
  doi: 10.1109/CVPR.2016.91
– ident: 10.1016/j.cviu.2020.102907_b98
  doi: 10.1007/978-3-319-10602-1_26
– start-page: 1106
  year: 2012
  ident: 10.1016/j.cviu.2020.102907_b45
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 1
  year: 2015
  ident: 10.1016/j.cviu.2020.102907_b69
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– ident: 10.1016/j.cviu.2020.102907_b55
  doi: 10.1109/CVPR.2009.5206661
– volume: 33
  start-page: 1820
  issue: 9
  year: 2011
  ident: 10.1016/j.cviu.2020.102907_b10
  article-title: Online multi-person tracking-by-detection from a single, uncalibrated Camera
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.232
– volume: 104
  start-page: 154
  issue: 2
  year: 2013
  ident: 10.1016/j.cviu.2020.102907_b77
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– ident: 10.1016/j.cviu.2020.102907_b46
  doi: 10.1109/CVPR.2008.4587586
– year: 2018
  ident: 10.1016/j.cviu.2020.102907_b92
– ident: 10.1016/j.cviu.2020.102907_b44
  doi: 10.1109/ICCV.2015.533
– ident: 10.1016/j.cviu.2020.102907_b32
  doi: 10.1109/CVPR.2014.81
– ident: 10.1016/j.cviu.2020.102907_b42
  doi: 10.1109/CVPR.2007.383180
– volume: 35
  start-page: 898
  issue: 4
  year: 2013
  ident: 10.1016/j.cviu.2020.102907_b38
  article-title: Multiple target tracking by learning-based hierarchical association of detection responses
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.159
– volume: 36
  start-page: 1012
  issue: 5
  year: 2014
  ident: 10.1016/j.cviu.2020.102907_b29
  article-title: 3D traffic scene understanding from movable platforms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.185
– ident: 10.1016/j.cviu.2020.102907_b95
– ident: 10.1016/j.cviu.2020.102907_b71
  doi: 10.1109/CVPR.2014.450
– year: 2017
  ident: 10.1016/j.cviu.2020.102907_b35
– ident: 10.1016/j.cviu.2020.102907_b68
  doi: 10.1109/ICCV.2015.349
– volume: 96
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.cviu.2020.102907_b17
  article-title: Fast approximate energy minimization with label costs
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-011-0437-z
– ident: 10.1016/j.cviu.2020.102907_b62
  doi: 10.1109/CVPR.2011.5995604
– ident: 10.1016/j.cviu.2020.102907_b15
  doi: 10.1007/11744047_33
– ident: 10.1016/j.cviu.2020.102907_b5
  doi: 10.1109/CVPR.2014.159
– ident: 10.1016/j.cviu.2020.102907_b12
  doi: 10.1007/978-3-319-46493-0_22
– ident: 10.1016/j.cviu.2020.102907_b83
  doi: 10.1109/CVPRW.2009.5206638
– ident: 10.1016/j.cviu.2020.102907_b70
  doi: 10.1109/ICCV.2011.6126456
– ident: 10.1016/j.cviu.2020.102907_b52
  doi: 10.1109/AVSS.2018.8639089
– ident: 10.1016/j.cviu.2020.102907_b4
  doi: 10.1109/CVPR.2012.6247893
– ident: 10.1016/j.cviu.2020.102907_b81
  doi: 10.1109/CVPR.2014.167
– ident: 10.1016/j.cviu.2020.102907_b7
  doi: 10.1109/CVPR.2011.5995667
– volume: 34
  start-page: 743
  issue: 4
  year: 2012
  ident: 10.1016/j.cviu.2020.102907_b21
  article-title: Pedestrian detection: An evaluation of the state of the art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.155
– volume: 38
  start-page: 1983
  issue: 10
  year: 2016
  ident: 10.1016/j.cviu.2020.102907_b80
  article-title: Exploiting hierarchical dense structures on hypergraphs for multi-object tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2509979
– volume: 28
  start-page: 6077
  issue: 12
  year: 2019
  ident: 10.1016/j.cviu.2020.102907_b28
  article-title: Foreground gating and background refining network for surveillance object detection
  publication-title: Trans. Image Process.
  doi: 10.1109/TIP.2019.2922095
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.cviu.2020.102907_b33
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 29
  start-page: 5
  issue: 1
  year: 1998
  ident: 10.1016/j.cviu.2020.102907_b40
  article-title: Condensation - conditional density propagation for visual tracking
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1008078328650
– ident: 10.1016/j.cviu.2020.102907_b53
  doi: 10.1109/AVSS.2017.8078560
– volume: 36
  start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.cviu.2020.102907_b54
  article-title: 1 year, 1000 km: The oxford robot car dataset
  publication-title: I. J. Robotics Res.
  doi: 10.1177/0278364916679498
– volume: 57
  start-page: 137
  issue: 2
  year: 2004
  ident: 10.1016/j.cviu.2020.102907_b78
  article-title: Robust real-time face detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000013087.49260.fb
– volume: 40
  start-page: 1726
  issue: 7
  year: 2018
  ident: 10.1016/j.cviu.2020.102907_b91
  article-title: Robust online matrix factorization for dynamic background subtraction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2732350
– ident: 10.1016/j.cviu.2020.102907_b41
  doi: 10.1007/978-3-642-33783-3_8
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.cviu.2020.102907_b67
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: 10.1016/j.cviu.2020.102907_b14
– ident: 10.1016/j.cviu.2020.102907_b63
  doi: 10.1007/978-3-319-46493-0_32
– ident: 10.1016/j.cviu.2020.102907_b97
  doi: 10.1109/CVPR.2015.7298809
– ident: 10.1016/j.cviu.2020.102907_b36
  doi: 10.1109/CVPR.2018.00745
– start-page: 2074
  year: 2016
  ident: 10.1016/j.cviu.2020.102907_b82
  article-title: Learning structured sparsity in deep neural networks
– ident: 10.1016/j.cviu.2020.102907_b74
  doi: 10.1109/AVSS.2015.7301755
– year: 2015
  ident: 10.1016/j.cviu.2020.102907_b48
– volume: 36
  start-page: 1532
  issue: 8
  year: 2014
  ident: 10.1016/j.cviu.2020.102907_b20
  article-title: Fast feature pyramids for object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2300479
SSID ssj0011491
Score 2.6943223
Snippet Effective multi-object tracking (MOT) methods have been developed in recent years for a wide range of applications including visual surveillance and behavior...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102907
SubjectTerms Benchmark
Evaluation protocol
Object detection
Object tracking
Title UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking
URI https://dx.doi.org/10.1016/j.cviu.2020.102907
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KXvTgoyrWR9mDN1nbvBNvobZUxQraQm8h2d1gfaSlph797c4km1JBehBy2WU2hMlk5tvNNzMAF5YhhXKlySnNktsydXhgmgk5w0ApugxKTn4YuP2RfTd2xjXoVLkwRKvUvr_06YW31jMtrc3WbDJpPePGxbPoCAPtlH6IUQa77ZGVX30vaR4I94uueSTMSVonzpQcL_E1WeAe0SwqGATUUvav4LQScHp7sKORIgvLh9mHmsrqsKtRI9Pf5CdOVY0Zqrk6bK9UGTyAx1HIb7rDp7BzzUKGMJolKPbyEc_fWJxJRqUapmgPDPErKwiGfJrQ8QyTKi-YWlkhl89jQQfrhzDqdYedPtd9FLhAzeQ8SZRHSEER-JNxbGFIlq4nAid1lGmrwGorLxbSkKlvxLYfeEbqSIWjNLASdEBHsJFNM3UMTLlty29LjOrSsvFefizQCqhbmRAuijfAqBQYCV1knHpdvEcVm-w1IqVHpPSoVHoDLpdrZmWJjbXSTvVeol-GEmEMWLPu5J_rTmGLRiVZ5ww28vlCnSMOyZNmYWhN2Axv7_uDH8Gs2wo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSDD9SIzz14Mw30Tb01CAF5mCgk3pp2dxvxUQgWf78z7ZZgYjiY9NLtbLOZTmdmZ7-ZAbgxdcGlIwyN0iw1S8S25hlGRMrQk5IunZKThyOnO7EeXuyXErSKXBiCVSrdn-v0TFurkbriZn0-ndafcePimhTCQDmlA7EtqFB1KrsMFb_X745Whwm4CdBz6CGF5CxD5c7kMC_-PV3iNtHIihh41FX2L_u0ZnM6B7CnnEXm5-s5hJJMqrCvHEemfssvHCp6MxRjVdhdKzR4BI8TX7tvj5_81h3zGXrSLEKy189w8c7CRDCq1jBDkWDowrIMY6jNIorQMCHTDKyVZHTpIuQUWz-GSac9bnU11UpB48icVIsi6ZKzIMn_E2FoolUWjss9O7alYUnPbEg35EIXcVMPrabn6rEtJN7FnhmhDjqBcjJL5Ckw6TTMZkOgYRemhe9qhhwFgRqWce4geQ30goEBV3XGqd3FR1AAyt4CYnpATA9yptfgdjVnnlfZ2EhtF98l-CUrAZqBDfPO_jnvGra74-EgGPRG_XPYoSc5ducCyuliKS_RLUmjKyV2P1Nt3bs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UA-DETRAC%3A+A+new+benchmark+and+protocol+for+multi-object+detection+and+tracking&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Wen%2C+Longyin&rft.au=Du%2C+Dawei&rft.au=Cai%2C+Zhaowei&rft.au=Lei%2C+Zhen&rft.date=2020-04-01&rft.issn=1077-3142&rft.volume=193&rft.spage=102907&rft_id=info:doi/10.1016%2Fj.cviu.2020.102907&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2020_102907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon