Fault diagnosis of rolling bearing of wind turbines based on the Variational Mode Decomposition and Deep Convolutional Neural Networks
Machine learning techniques have been successfully applied in intelligent fault diagnosis of rolling bearings in recent years. However, in the real world industrial application, the dissimilarity of data due to changes in the working conditions and data acquisition environment often cause a poor per...
Saved in:
Published in | Applied soft computing Vol. 95; p. 106515 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning techniques have been successfully applied in intelligent fault diagnosis of rolling bearings in recent years. However, in the real world industrial application, the dissimilarity of data due to changes in the working conditions and data acquisition environment often cause a poor performance of the existing fault diagnosis methods. Consequently, to address these inadequacies, this paper developed a novel method by integrating the Convolutional Neural Networks (CNNs) with the Variational Mode Decomposition (VMD) algorithms. Named as “Variational Mode Decomposition with Deep Convolutional Neural Networks (VMD-DCNNs)”, the method, in an end-to-end way, directly processes raw vibration signals without artificial experiences and manual intervention to realize the fault diagnosis of rolling bearings. In addition, the CNN technique is used to extract features from each Intrinsic Mode Function (IMF) in order to address the deficiency in extracting features from a single source and to achieve an effective and efficient fault diagnosis of rolling bearings under different environments and states. The value of parameter K of the VMD-DCNNs model is optimized by considering time complexity and generalization ability of the model. Lastly, bearing experiments are conducted to verify the superiority of the VMD-DCNNs in diagnosing fault under different conditions. The visualizations of the signals in the convolutional layer explain the reasonability in selecting the value of parameter K and they also indicate that the translational invariances in a raw IMF component have been learned by the VMD-DCNNs model.
•A novel fault diagnosis method is developed by integrating the Convolutional Neural Networks (CNNs) with the Variational Mode Decomposition (VMD) algorithms.•The proposed VMD-DCNNs method directly works on raw vibration signals.•The proposed VMD-DCNNs method has a good extrapolation performance under different scenarios.•Different IMF mode generated by VMD has a similar translation invariances learning by VMD-DCNNs model. |
---|---|
AbstractList | Machine learning techniques have been successfully applied in intelligent fault diagnosis of rolling bearings in recent years. However, in the real world industrial application, the dissimilarity of data due to changes in the working conditions and data acquisition environment often cause a poor performance of the existing fault diagnosis methods. Consequently, to address these inadequacies, this paper developed a novel method by integrating the Convolutional Neural Networks (CNNs) with the Variational Mode Decomposition (VMD) algorithms. Named as “Variational Mode Decomposition with Deep Convolutional Neural Networks (VMD-DCNNs)”, the method, in an end-to-end way, directly processes raw vibration signals without artificial experiences and manual intervention to realize the fault diagnosis of rolling bearings. In addition, the CNN technique is used to extract features from each Intrinsic Mode Function (IMF) in order to address the deficiency in extracting features from a single source and to achieve an effective and efficient fault diagnosis of rolling bearings under different environments and states. The value of parameter K of the VMD-DCNNs model is optimized by considering time complexity and generalization ability of the model. Lastly, bearing experiments are conducted to verify the superiority of the VMD-DCNNs in diagnosing fault under different conditions. The visualizations of the signals in the convolutional layer explain the reasonability in selecting the value of parameter K and they also indicate that the translational invariances in a raw IMF component have been learned by the VMD-DCNNs model.
•A novel fault diagnosis method is developed by integrating the Convolutional Neural Networks (CNNs) with the Variational Mode Decomposition (VMD) algorithms.•The proposed VMD-DCNNs method directly works on raw vibration signals.•The proposed VMD-DCNNs method has a good extrapolation performance under different scenarios.•Different IMF mode generated by VMD has a similar translation invariances learning by VMD-DCNNs model. |
ArticleNumber | 106515 |
Author | Li, Chun Xu, Zifei Yang, Yang |
Author_xml | – sequence: 1 givenname: Zifei orcidid: 0000-0003-2661-517X surname: Xu fullname: Xu, Zifei organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China – sequence: 2 givenname: Chun orcidid: 0000-0002-8133-3952 surname: Li fullname: Li, Chun email: lichunusst@163.com organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China – sequence: 3 givenname: Yang orcidid: 0000-0002-6251-0837 surname: Yang fullname: Yang, Yang organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China |
BookMark | eNp9kM1OAjEUhbvARERfwFVfAGznj5nEjQH_EtSNum1u2ztYHFvSFokv4HPbAVYuWJ3k5Hwn954zMrDOIiGXnE0449XVagLBqUnGst6oSl4OyJCXVT0umqI6JWchrFgKNlk9JL93sOki1QaW1gUTqGupd11n7JJKBN9rsrbGaho3XhqLgUoIqKmzNH4gfU8hiMZZ6OiT00jnqNzXOpX1JoUEzhHXdObst-s2h-QzbvxO4tb5z3BOTlroAl4cdETe7m5fZw_jxcv94-xmMVY5Y3Es5bRpeFXrpHlTMJ0halmUjZzKXFaZQqwZAM8Yb1VbTYGXAFmtyvR9XhSQj0i971XeheCxFcrE3fXRg-kEZ6LfUKxEv6HoNxT7DROa_UPX3nyB_zkOXe8hTE99G_QiKINWoTYeVRTamWP4Hz0Hkgg |
CitedBy_id | crossref_primary_10_1016_j_ymssp_2023_110171 crossref_primary_10_1177_10775463231175267 crossref_primary_10_23919_JSEE_2023_000109 crossref_primary_10_1109_ACCESS_2022_3191331 crossref_primary_10_1016_j_measurement_2021_109273 crossref_primary_10_3390_app12157535 crossref_primary_10_1016_j_knosys_2024_111479 crossref_primary_10_1088_1361_6501_ac87c4 crossref_primary_10_1016_j_engappai_2022_105269 crossref_primary_10_1016_j_promfg_2021_06_091 crossref_primary_10_1016_j_grets_2024_100153 crossref_primary_10_1016_j_measurement_2023_113028 crossref_primary_10_1177_09574565211055785 crossref_primary_10_1016_j_asoc_2022_108900 crossref_primary_10_1016_j_pes_2025_100061 crossref_primary_10_3390_machines10060481 crossref_primary_10_1016_j_aei_2024_102806 crossref_primary_10_3390_s24144638 crossref_primary_10_1016_j_ymssp_2021_107963 crossref_primary_10_1016_j_measurement_2022_112318 crossref_primary_10_1109_JSEN_2024_3409768 crossref_primary_10_1007_s40997_024_00783_w crossref_primary_10_1007_s42417_022_00793_5 crossref_primary_10_1016_j_renene_2023_01_095 crossref_primary_10_1177_14750902221143827 crossref_primary_10_1007_s40430_025_05458_4 crossref_primary_10_1016_j_ress_2025_110998 crossref_primary_10_3390_electronics12081816 crossref_primary_10_1016_j_heliyon_2023_e19737 crossref_primary_10_1177_14759217221092828 crossref_primary_10_1016_j_engappai_2021_104401 crossref_primary_10_1109_TIM_2023_3250308 crossref_primary_10_1016_j_measurement_2024_116468 crossref_primary_10_1016_j_renene_2021_10_024 crossref_primary_10_1016_j_renene_2022_08_093 crossref_primary_10_1016_j_cogr_2024_12_001 crossref_primary_10_1016_j_measurement_2022_112346 crossref_primary_10_1155_2021_5544031 crossref_primary_10_1088_1361_6501_ad6470 crossref_primary_10_1016_j_measurement_2022_111935 crossref_primary_10_1088_1361_6501_ad662e crossref_primary_10_1109_JSEN_2023_3311092 crossref_primary_10_1016_j_asoc_2021_108064 crossref_primary_10_1016_j_jobe_2020_102043 crossref_primary_10_1016_j_ymssp_2024_111314 crossref_primary_10_1109_JSEN_2023_3319537 crossref_primary_10_1155_2023_1639287 crossref_primary_10_1016_j_jmsy_2021_03_022 crossref_primary_10_1016_j_eswa_2022_117716 crossref_primary_10_1109_TIM_2020_3048799 crossref_primary_10_1016_j_measurement_2022_110798 crossref_primary_10_1016_j_isatra_2021_10_023 crossref_primary_10_3390_app12178414 crossref_primary_10_3390_app14073129 crossref_primary_10_1016_j_rser_2023_114039 crossref_primary_10_3390_s21165494 crossref_primary_10_21595_jve_2022_22471 crossref_primary_10_3390_en15093340 crossref_primary_10_1016_j_jobe_2022_104718 crossref_primary_10_1007_s13369_024_09359_x crossref_primary_10_1016_j_apacoust_2021_108614 crossref_primary_10_3390_machines12070428 crossref_primary_10_3390_en17163897 crossref_primary_10_3390_s23208489 crossref_primary_10_1007_s13349_023_00715_3 crossref_primary_10_1016_j_engappai_2021_104544 crossref_primary_10_1007_s00477_025_02921_5 crossref_primary_10_1016_j_measurement_2022_111950 crossref_primary_10_1007_s00521_021_05736_x crossref_primary_10_1016_j_energy_2024_130419 crossref_primary_10_1016_j_measurement_2020_108655 crossref_primary_10_1177_10775463251319376 crossref_primary_10_1016_j_inffus_2022_06_005 crossref_primary_10_1007_s10845_023_02221_1 crossref_primary_10_1016_j_ress_2023_109720 crossref_primary_10_1109_TEC_2021_3085909 crossref_primary_10_1111_exsy_13291 crossref_primary_10_1016_j_asoc_2021_108207 crossref_primary_10_1016_j_knosys_2021_107213 crossref_primary_10_1016_j_asoc_2021_107755 crossref_primary_10_3390_s24123953 crossref_primary_10_1109_ACCESS_2022_3219480 crossref_primary_10_1109_JSEN_2024_3466895 crossref_primary_10_1109_TSIPN_2023_3328275 crossref_primary_10_1016_j_ymssp_2021_108616 crossref_primary_10_1155_2022_8946094 crossref_primary_10_1142_S0219455425500658 crossref_primary_10_1016_j_renene_2023_01_056 crossref_primary_10_1016_j_engappai_2024_109548 crossref_primary_10_1177_01423312231157118 crossref_primary_10_1007_s00170_021_08448_7 crossref_primary_10_1016_j_asoc_2025_112785 crossref_primary_10_1088_1361_6501_ac27ea crossref_primary_10_1109_TIM_2024_3365166 crossref_primary_10_3390_e23060697 crossref_primary_10_1016_j_asoc_2023_110921 crossref_primary_10_1007_s11071_021_07032_8 crossref_primary_10_1007_s10489_022_03562_9 crossref_primary_10_3390_a18020058 crossref_primary_10_1016_j_measurement_2022_111177 crossref_primary_10_1016_j_engappai_2023_105970 crossref_primary_10_21595_jve_2021_22067 crossref_primary_10_3389_fenrg_2021_747622 crossref_primary_10_1016_j_jmsy_2023_02_018 crossref_primary_10_1016_j_dsp_2022_103777 crossref_primary_10_1016_j_engappai_2022_105735 crossref_primary_10_1007_s42417_022_00630_9 crossref_primary_10_3233_JCM_215594 crossref_primary_10_21595_jve_2022_22564 crossref_primary_10_1016_j_measurement_2022_111180 crossref_primary_10_1088_1361_6501_ac6661 crossref_primary_10_1016_j_asoc_2022_109554 crossref_primary_10_1109_ACCESS_2023_3267089 crossref_primary_10_1109_TIM_2022_3225910 crossref_primary_10_3389_fenrg_2022_823395 crossref_primary_10_3390_s22197644 crossref_primary_10_1016_j_ast_2021_106758 crossref_primary_10_1016_j_isatra_2024_08_033 crossref_primary_10_1007_s11071_022_07314_9 crossref_primary_10_1109_TIM_2021_3067187 crossref_primary_10_1088_1361_6501_ac8dad crossref_primary_10_1177_14759217231192363 crossref_primary_10_1109_LSP_2025_3548466 crossref_primary_10_1007_s11265_023_01845_z crossref_primary_10_1016_j_asoc_2020_106992 |
Cites_doi | 10.1109/TIM.2018.2828739 10.1016/j.measurement.2018.08.002 10.1016/j.energy.2019.03.057 10.5271/sjweh.3711 10.1109/TIM.2013.2258769 10.1016/j.measurement.2017.08.036 10.3390/s131216950 10.1109/TIE.2018.2844805 10.1016/j.asoc.2017.01.015 10.1016/j.knosys.2017.10.024 10.1109/ChiCC.2016.7554407 10.1016/j.measurement.2019.106941 10.1109/TSP.2013.2288675 10.1016/j.ymssp.2017.06.022 10.1016/j.energy.2018.01.055 10.1109/TCST.2014.2364956 10.1016/j.ymssp.2019.02.056 10.1109/TIP.2006.875247 10.1016/j.measurement.2013.10.041 10.1016/j.jsv.2017.04.036 10.1186/s10033-019-0356-4 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106515 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_asoc_2020_106515 S1568494620304543 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSV SSZ T5K UHS UNMZH ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c300t-bb799168db793940d2eedb459b7b3b62cee80aa1201fcf67a15aa28c5568344a3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:06 EDT 2025 Thu Apr 24 22:56:01 EDT 2025 Sun Apr 06 06:53:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Fault diagnosis VariationaL Mode Decomposition Convolutional Neural Networks Rolling bearing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-bb799168db793940d2eedb459b7b3b62cee80aa1201fcf67a15aa28c5568344a3 |
ORCID | 0000-0002-6251-0837 0000-0003-2661-517X 0000-0002-8133-3952 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106515 crossref_primary_10_1016_j_asoc_2020_106515 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106515 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Su (b14) 2014; 48 Lei (b11) 2013; 13 Li, Jiancheng (b31) 2013; 62 Chen, Yang, Cui (b15) 2019; 174 Pengfei (b28) 2019 Badihi, Zhang, Hong (b9) 2015; 23 Zhang (b21) 2018; 100 Lei, Li, Lin (b10) 2013; 13 Xiaoxia Zheng, et al. Variational mode decomposition applied to offshore wind turbine rolling bearing fault diagnosis, in: Chinese Control Conference, 2016, pp. 6673–6677. Wang, Lei, Li, Li (b27) 2018 Inderpreet Singh, S. Bahel, S.B. Narang, AWGN channel modeling using MATLAB, in: International Conference on Emerginging Technologies in Electronics and Communication, ICETEC 2013, 2013. Yong (b24) 2018; 130 Li (b18) 2020; 153 Gilboa, Sochen, Zeevi (b23) 2006; 15 Li (b25) 2019; 126 Global Wind Energy Council (GWEC) (b1) 2019 International Energy Agency (IEA) (b2) 2019 Haidong (b19) 2018; 140 Sheng (b6) 2016 Jiang (b29) 2019; 66 Lin (b4) 2018 Freiberg (b3) 2018; 44 Gu (b17) 2020 . Dragomiretskiy, Zosso (b22) 2014; 62 Yang, Liu, Chen (b12) 2018; 67 Glowacz (b7) 2018 Hu (b8) 2019; 32 Long (b20) 2017; PP Li, Li, Zhang (b5) 2017 Qiu (b13) 2017; 54 Glowacz (10.1016/j.asoc.2020.106515_b7) 2018 10.1016/j.asoc.2020.106515_b26 Zhang (10.1016/j.asoc.2020.106515_b21) 2018; 100 Chen (10.1016/j.asoc.2020.106515_b15) 2019; 174 Yang (10.1016/j.asoc.2020.106515_b12) 2018; 67 Qiu (10.1016/j.asoc.2020.106515_b13) 2017; 54 Gu (10.1016/j.asoc.2020.106515_b17) 2020 Long (10.1016/j.asoc.2020.106515_b20) 2017; PP Li (10.1016/j.asoc.2020.106515_b5) 2017 Lei (10.1016/j.asoc.2020.106515_b11) 2013; 13 Global Wind Energy Council (GWEC) (10.1016/j.asoc.2020.106515_b1) 2019 Badihi (10.1016/j.asoc.2020.106515_b9) 2015; 23 Pengfei (10.1016/j.asoc.2020.106515_b28) 2019 Dragomiretskiy (10.1016/j.asoc.2020.106515_b22) 2014; 62 Sheng (10.1016/j.asoc.2020.106515_b6) 2016 Li (10.1016/j.asoc.2020.106515_b31) 2013; 62 Hu (10.1016/j.asoc.2020.106515_b8) 2019; 32 Jiang (10.1016/j.asoc.2020.106515_b29) 2019; 66 Li (10.1016/j.asoc.2020.106515_b25) 2019; 126 Gilboa (10.1016/j.asoc.2020.106515_b23) 2006; 15 Su (10.1016/j.asoc.2020.106515_b14) 2014; 48 10.1016/j.asoc.2020.106515_b16 Li (10.1016/j.asoc.2020.106515_b18) 2020; 153 Lin (10.1016/j.asoc.2020.106515_b4) 2018 Lei (10.1016/j.asoc.2020.106515_b10) 2013; 13 Haidong (10.1016/j.asoc.2020.106515_b19) 2018; 140 10.1016/j.asoc.2020.106515_b30 International Energy Agency (IEA) (10.1016/j.asoc.2020.106515_b2) 2019 Yong (10.1016/j.asoc.2020.106515_b24) 2018; 130 Freiberg (10.1016/j.asoc.2020.106515_b3) 2018; 44 Wang (10.1016/j.asoc.2020.106515_b27) 2018 |
References_xml | – volume: 23 start-page: 1351 year: 2015 end-page: 1372 ident: b9 article-title: Wind turbine fault diagnosis and fault-tolerant torque load control against actuator faults publication-title: IEEE Trans. Control Syst. Technol. – volume: 13 start-page: 16950 year: 2013 end-page: 16964 ident: b11 article-title: Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition publication-title: Sensors – volume: 48 start-page: 136 year: 2014 end-page: 148 ident: b14 article-title: Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier publication-title: Measurement – volume: 67 start-page: 2616 year: 2018 end-page: 2627 ident: b12 article-title: Sparse time-frequency representation for incipient fault diagnosis of wind turbine drive train publication-title: IEEE Trans. Instrum. Meas. – year: 2019 ident: b28 article-title: Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform publication-title: Comput. Ind. – volume: 100 start-page: 439 year: 2018 end-page: 453 ident: b21 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mech. Syst. Signal Process. – reference: Inderpreet Singh, S. Bahel, S.B. Narang, AWGN channel modeling using MATLAB, in: International Conference on Emerginging Technologies in Electronics and Communication, ICETEC 2013, 2013. – volume: 13 start-page: 16950 year: 2013 end-page: 16964 ident: b10 article-title: Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition publication-title: Sensors – volume: 32 start-page: 1 year: 2019 end-page: 12 ident: b8 article-title: A new method of wind turbine bearing fault diagnosis based on multi-masking empirical mode decomposition and fuzzy C-means clustering publication-title: Chin. J. Mech. Eng. – volume: 54 start-page: 246 year: 2017 end-page: 255 ident: b13 article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting publication-title: Appl. Soft Comput. – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b22 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – volume: PP start-page: 1 year: 2017 ident: b20 article-title: A new convolutional neural network based data-driven fault diagnosis method publication-title: IEEE Trans. Ind. Electron. – start-page: 1 year: 2018 end-page: 9 ident: b7 article-title: Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals publication-title: Measurement – volume: 62 start-page: 2659 year: 2013 end-page: 2672 ident: b31 article-title: Not fully overlapping allan variance and total variance for inertial sensor stochastic error analysis publication-title: IEEE Trans. Instrum. Meas. – volume: 130 start-page: 94 year: 2018 end-page: 104 ident: b24 article-title: Study on planetary gear fault diagnosis based on variational mode decomposition and deep neural networks publication-title: Measurement – year: 2019 ident: b1 – year: 2020 ident: b17 article-title: Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and teager energy operator publication-title: Measurement – start-page: 139 year: 2017 end-page: 151 ident: b5 article-title: Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution publication-title: J. Sound Vib. – year: 2016 ident: b6 article-title: Wind Turbine Gearbox Reliability Database, Condition Monitoring, and O & M Research Update (Conference Paper) NREL/PR-5000e63868 – volume: 126 start-page: 568 year: 2019 end-page: 589 ident: b25 article-title: Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis publication-title: Mech. Syst. Signal Process. – reference: . – volume: 174 start-page: 1100 year: 2019 end-page: 1109 ident: b15 article-title: Vibration fault diagnosis of wind turbine based on variational mode decomposition and energy entropy publication-title: Energy – reference: Xiaoxia Zheng, et al. Variational mode decomposition applied to offshore wind turbine rolling bearing fault diagnosis, in: Chinese Control Conference, 2016, pp. 6673–6677. – volume: 66 start-page: 3196 year: 2019 end-page: 3207 ident: b29 article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox publication-title: IEEE Trans. Ind. Electron. – volume: 44 start-page: 351 year: 2018 end-page: 369 ident: b3 article-title: Health effects of wind turbines in working environments – a scoping review publication-title: Scand. J. Work Environ. Health – volume: 153 year: 2020 ident: b18 article-title: Multiscale local feature learning based on BP network for rolling bearing intelligent fault diagnosis publication-title: Measurement – volume: 140 start-page: 1 year: 2018 end-page: 14 ident: b19 article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine publication-title: Knowl. Based Syst. – year: 2019 ident: b2 article-title: Offshore Wind Outlook 2019 – start-page: 812 year: 2018 end-page: 825 ident: b4 article-title: Coordinated pitch & torque control of large-scale wind turbine based on Pareto efficiency analysis publication-title: Energy – volume: 15 start-page: 2281 year: 2006 end-page: 2289 ident: b23 article-title: Variational denoising of partly textured images by spatially varying constraints publication-title: IEEE Trans. Image Process. – start-page: 1 year: 2018 end-page: 12 ident: b27 article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings publication-title: IEEE Trans. Reliab. – year: 2016 ident: 10.1016/j.asoc.2020.106515_b6 – volume: 67 start-page: 2616 issue: 11 year: 2018 ident: 10.1016/j.asoc.2020.106515_b12 article-title: Sparse time-frequency representation for incipient fault diagnosis of wind turbine drive train publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2828739 – volume: 130 start-page: 94 year: 2018 ident: 10.1016/j.asoc.2020.106515_b24 article-title: Study on planetary gear fault diagnosis based on variational mode decomposition and deep neural networks publication-title: Measurement doi: 10.1016/j.measurement.2018.08.002 – volume: 174 start-page: 1100 year: 2019 ident: 10.1016/j.asoc.2020.106515_b15 article-title: Vibration fault diagnosis of wind turbine based on variational mode decomposition and energy entropy publication-title: Energy doi: 10.1016/j.energy.2019.03.057 – volume: 153 issue: Mar. 1 year: 2020 ident: 10.1016/j.asoc.2020.106515_b18 article-title: Multiscale local feature learning based on BP network for rolling bearing intelligent fault diagnosis publication-title: Measurement – year: 2019 ident: 10.1016/j.asoc.2020.106515_b1 – year: 2019 ident: 10.1016/j.asoc.2020.106515_b2 – ident: 10.1016/j.asoc.2020.106515_b30 – volume: 44 start-page: 351 issue: 4 year: 2018 ident: 10.1016/j.asoc.2020.106515_b3 article-title: Health effects of wind turbines in working environments – a scoping review publication-title: Scand. J. Work Environ. Health doi: 10.5271/sjweh.3711 – year: 2019 ident: 10.1016/j.asoc.2020.106515_b28 article-title: Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform publication-title: Comput. Ind. – volume: 62 start-page: 2659 issue: 10 year: 2013 ident: 10.1016/j.asoc.2020.106515_b31 article-title: Not fully overlapping allan variance and total variance for inertial sensor stochastic error analysis publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2013.2258769 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106515_b7 article-title: Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals publication-title: Measurement doi: 10.1016/j.measurement.2017.08.036 – volume: 13 start-page: 16950 issue: 12 year: 2013 ident: 10.1016/j.asoc.2020.106515_b11 article-title: Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition publication-title: Sensors doi: 10.3390/s131216950 – volume: 66 start-page: 3196 issue: 4 year: 2019 ident: 10.1016/j.asoc.2020.106515_b29 article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2844805 – volume: 54 start-page: 246 year: 2017 ident: 10.1016/j.asoc.2020.106515_b13 article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.015 – volume: 140 start-page: 1 issue: Jan. 15 year: 2018 ident: 10.1016/j.asoc.2020.106515_b19 article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.10.024 – ident: 10.1016/j.asoc.2020.106515_b16 doi: 10.1109/ChiCC.2016.7554407 – year: 2020 ident: 10.1016/j.asoc.2020.106515_b17 article-title: Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and teager energy operator publication-title: Measurement doi: 10.1016/j.measurement.2019.106941 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.asoc.2020.106515_b22 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 100 start-page: 439 issue: FEB.1 year: 2018 ident: 10.1016/j.asoc.2020.106515_b21 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.06.022 – start-page: 812 year: 2018 ident: 10.1016/j.asoc.2020.106515_b4 article-title: Coordinated pitch & torque control of large-scale wind turbine based on Pareto efficiency analysis publication-title: Energy doi: 10.1016/j.energy.2018.01.055 – volume: PP start-page: 1 issue: 99 year: 2017 ident: 10.1016/j.asoc.2020.106515_b20 article-title: A new convolutional neural network based data-driven fault diagnosis method publication-title: IEEE Trans. Ind. Electron. – volume: 23 start-page: 1351 issue: 4 year: 2015 ident: 10.1016/j.asoc.2020.106515_b9 article-title: Wind turbine fault diagnosis and fault-tolerant torque load control against actuator faults publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2364956 – volume: 126 start-page: 568 issue: JUL.1 year: 2019 ident: 10.1016/j.asoc.2020.106515_b25 article-title: Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.02.056 – volume: 13 start-page: 16950 issue: 12 year: 2013 ident: 10.1016/j.asoc.2020.106515_b10 article-title: Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition publication-title: Sensors doi: 10.3390/s131216950 – volume: 15 start-page: 2281 issue: 8 year: 2006 ident: 10.1016/j.asoc.2020.106515_b23 article-title: Variational denoising of partly textured images by spatially varying constraints publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.875247 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106515_b27 article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings publication-title: IEEE Trans. Reliab. – volume: 48 start-page: 136 year: 2014 ident: 10.1016/j.asoc.2020.106515_b14 article-title: Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier publication-title: Measurement doi: 10.1016/j.measurement.2013.10.041 – start-page: 139 year: 2017 ident: 10.1016/j.asoc.2020.106515_b5 article-title: Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.04.036 – ident: 10.1016/j.asoc.2020.106515_b26 – volume: 32 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.asoc.2020.106515_b8 article-title: A new method of wind turbine bearing fault diagnosis based on multi-masking empirical mode decomposition and fuzzy C-means clustering publication-title: Chin. J. Mech. Eng. doi: 10.1186/s10033-019-0356-4 |
SSID | ssj0016928 |
Score | 2.6087992 |
Snippet | Machine learning techniques have been successfully applied in intelligent fault diagnosis of rolling bearings in recent years. However, in the real world... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106515 |
SubjectTerms | Convolutional Neural Networks Deep learning Fault diagnosis Rolling bearing VariationaL Mode Decomposition |
Title | Fault diagnosis of rolling bearing of wind turbines based on the Variational Mode Decomposition and Deep Convolutional Neural Networks |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106515 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD2wotHHsPMaqpSqvCgFF3SI7caSiKqn6gI2R381d7FQgoQ5Mp1h3UuQ7-zsnn-8IuQDM9CLpCwjeNIIDigtrzotcRwvJMiG050m8nPww8PtDfjsSoxrpVHdhkFZp936zp5e7tR1p2tlsTsfj5jOcPEIecZ-Vf_s4VvzkPMAov_pc0TxcPyr7q6Kyg9r24ozheEmYATgjMhzAnuB_g9MPwOntkC2bKdK2eZldUtP5HtmuujBQuyj3yVdPLicLmhrO3HhOi4zOTKltqiCOUcLQBxy-KeCLQp47RfBKaZFTyP_oKyjZb4IUe6PRrkamuaVzUQmGXa2ntFPk7zZSQRPLepSi5JHPD8iwd_3S6Tu2u4KTeK3WwlEqwNwwTEFie_SUAVwqLiIVKE_5DNAzbEnpQoaQJZkfSFdIycIES5Z5nEvvkNTzItdHBN45k7CONWdM8TB1TSPSVHAmg8SPxDFxq2mNE1t6HDtgTOKKY_YWoytidEVsXHFMLlc2U1N4Y622qLwV_wqfGJBhjd3JP-1OySY-GVbfGakvZkt9DtnJQjXK8GuQjXbn6f4R5c1df_ANhg3mEw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWDhjXjjASYU2jh2mgwMiFKV58JDbMFOHKkIpRUtVCyM_CH-IHexg0BCDEhMlly7cu-c-3zp5_sAthEzg1iFEjdvFmOC4uMzF8S-Z6TiuZQmCBRdTj6_CDvX4uRW3o7Be3UXhmiVLvbbmF5Ga9dTd9as97vd-iVmHpGIRcjLf_tEpWB9al5GmLcN9o9b6OQdzttHV4cdz0kLeGnQaAw9rZt0MIoybEkbPOOIFVrIWDd1oEOO0BE1lPIRHvM0D5vKl0rxKKV6XYEQKsDvHYcJgeGCZBP2Xj95JX4Yl4KutDqPludu6lhSmUKTY1LKqYNEyH9Gwy8I156FaXc0ZQf218_BmCnmYaaSfWAuCizAW1s9PQxZZkl63QHr5ezR1vZmGo1DLXaNMNtnCGiaiPWM0DJjvYLhgZPd4CD3EpKRGBtrGaK2O_4YUzixZUyfHfaKZ_do4EiqI1I2JXF9sAjX_2LzJagVvcIsA645Vxg4jOBciyjzrfJpJgVXzTSM5Qr4lVmT1NU6J8mNh6Qitd0n5IqEXJFYV6zA7uecvq308etoWXkr-bZfE4SiX-at_nHeFkx2rs7PkrPji9M1mKJPLKVwHWrDxyezgUejod4styKDu__e-x9tkSA9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+of+rolling+bearing+of+wind+turbines+based+on+the+Variational+Mode+Decomposition+and+Deep+Convolutional+Neural+Networks&rft.jtitle=Applied+soft+computing&rft.au=Xu%2C+Zifei&rft.au=Li%2C+Chun&rft.au=Yang%2C+Yang&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=95&rft_id=info:doi/10.1016%2Fj.asoc.2020.106515&rft.externalDocID=S1568494620304543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |