Fault diagnosis of rolling bearing of wind turbines based on the Variational Mode Decomposition and Deep Convolutional Neural Networks

Machine learning techniques have been successfully applied in intelligent fault diagnosis of rolling bearings in recent years. However, in the real world industrial application, the dissimilarity of data due to changes in the working conditions and data acquisition environment often cause a poor per...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 95; p. 106515
Main Authors Xu, Zifei, Li, Chun, Yang, Yang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning techniques have been successfully applied in intelligent fault diagnosis of rolling bearings in recent years. However, in the real world industrial application, the dissimilarity of data due to changes in the working conditions and data acquisition environment often cause a poor performance of the existing fault diagnosis methods. Consequently, to address these inadequacies, this paper developed a novel method by integrating the Convolutional Neural Networks (CNNs) with the Variational Mode Decomposition (VMD) algorithms. Named as “Variational Mode Decomposition with Deep Convolutional Neural Networks (VMD-DCNNs)”, the method, in an end-to-end way, directly processes raw vibration signals without artificial experiences and manual intervention to realize the fault diagnosis of rolling bearings. In addition, the CNN technique is used to extract features from each Intrinsic Mode Function (IMF) in order to address the deficiency in extracting features from a single source and to achieve an effective and efficient fault diagnosis of rolling bearings under different environments and states. The value of parameter K of the VMD-DCNNs model is optimized by considering time complexity and generalization ability of the model. Lastly, bearing experiments are conducted to verify the superiority of the VMD-DCNNs in diagnosing fault under different conditions. The visualizations of the signals in the convolutional layer explain the reasonability in selecting the value of parameter K and they also indicate that the translational invariances in a raw IMF component have been learned by the VMD-DCNNs model. •A novel fault diagnosis method is developed by integrating the Convolutional Neural Networks (CNNs) with the Variational Mode Decomposition (VMD) algorithms.•The proposed VMD-DCNNs method directly works on raw vibration signals.•The proposed VMD-DCNNs method has a good extrapolation performance under different scenarios.•Different IMF mode generated by VMD has a similar translation invariances learning by VMD-DCNNs model.
AbstractList Machine learning techniques have been successfully applied in intelligent fault diagnosis of rolling bearings in recent years. However, in the real world industrial application, the dissimilarity of data due to changes in the working conditions and data acquisition environment often cause a poor performance of the existing fault diagnosis methods. Consequently, to address these inadequacies, this paper developed a novel method by integrating the Convolutional Neural Networks (CNNs) with the Variational Mode Decomposition (VMD) algorithms. Named as “Variational Mode Decomposition with Deep Convolutional Neural Networks (VMD-DCNNs)”, the method, in an end-to-end way, directly processes raw vibration signals without artificial experiences and manual intervention to realize the fault diagnosis of rolling bearings. In addition, the CNN technique is used to extract features from each Intrinsic Mode Function (IMF) in order to address the deficiency in extracting features from a single source and to achieve an effective and efficient fault diagnosis of rolling bearings under different environments and states. The value of parameter K of the VMD-DCNNs model is optimized by considering time complexity and generalization ability of the model. Lastly, bearing experiments are conducted to verify the superiority of the VMD-DCNNs in diagnosing fault under different conditions. The visualizations of the signals in the convolutional layer explain the reasonability in selecting the value of parameter K and they also indicate that the translational invariances in a raw IMF component have been learned by the VMD-DCNNs model. •A novel fault diagnosis method is developed by integrating the Convolutional Neural Networks (CNNs) with the Variational Mode Decomposition (VMD) algorithms.•The proposed VMD-DCNNs method directly works on raw vibration signals.•The proposed VMD-DCNNs method has a good extrapolation performance under different scenarios.•Different IMF mode generated by VMD has a similar translation invariances learning by VMD-DCNNs model.
ArticleNumber 106515
Author Li, Chun
Xu, Zifei
Yang, Yang
Author_xml – sequence: 1
  givenname: Zifei
  orcidid: 0000-0003-2661-517X
  surname: Xu
  fullname: Xu, Zifei
  organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
– sequence: 2
  givenname: Chun
  orcidid: 0000-0002-8133-3952
  surname: Li
  fullname: Li, Chun
  email: lichunusst@163.com
  organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
– sequence: 3
  givenname: Yang
  orcidid: 0000-0002-6251-0837
  surname: Yang
  fullname: Yang, Yang
  organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
BookMark eNp9kM1OAjEUhbvARERfwFVfAGznj5nEjQH_EtSNum1u2ztYHFvSFokv4HPbAVYuWJ3k5Hwn954zMrDOIiGXnE0449XVagLBqUnGst6oSl4OyJCXVT0umqI6JWchrFgKNlk9JL93sOki1QaW1gUTqGupd11n7JJKBN9rsrbGaho3XhqLgUoIqKmzNH4gfU8hiMZZ6OiT00jnqNzXOpX1JoUEzhHXdObst-s2h-QzbvxO4tb5z3BOTlroAl4cdETe7m5fZw_jxcv94-xmMVY5Y3Es5bRpeFXrpHlTMJ0halmUjZzKXFaZQqwZAM8Yb1VbTYGXAFmtyvR9XhSQj0i971XeheCxFcrE3fXRg-kEZ6LfUKxEv6HoNxT7DROa_UPX3nyB_zkOXe8hTE99G_QiKINWoTYeVRTamWP4Hz0Hkgg
CitedBy_id crossref_primary_10_1016_j_ymssp_2023_110171
crossref_primary_10_1177_10775463231175267
crossref_primary_10_23919_JSEE_2023_000109
crossref_primary_10_1109_ACCESS_2022_3191331
crossref_primary_10_1016_j_measurement_2021_109273
crossref_primary_10_3390_app12157535
crossref_primary_10_1016_j_knosys_2024_111479
crossref_primary_10_1088_1361_6501_ac87c4
crossref_primary_10_1016_j_engappai_2022_105269
crossref_primary_10_1016_j_promfg_2021_06_091
crossref_primary_10_1016_j_grets_2024_100153
crossref_primary_10_1016_j_measurement_2023_113028
crossref_primary_10_1177_09574565211055785
crossref_primary_10_1016_j_asoc_2022_108900
crossref_primary_10_1016_j_pes_2025_100061
crossref_primary_10_3390_machines10060481
crossref_primary_10_1016_j_aei_2024_102806
crossref_primary_10_3390_s24144638
crossref_primary_10_1016_j_ymssp_2021_107963
crossref_primary_10_1016_j_measurement_2022_112318
crossref_primary_10_1109_JSEN_2024_3409768
crossref_primary_10_1007_s40997_024_00783_w
crossref_primary_10_1007_s42417_022_00793_5
crossref_primary_10_1016_j_renene_2023_01_095
crossref_primary_10_1177_14750902221143827
crossref_primary_10_1007_s40430_025_05458_4
crossref_primary_10_1016_j_ress_2025_110998
crossref_primary_10_3390_electronics12081816
crossref_primary_10_1016_j_heliyon_2023_e19737
crossref_primary_10_1177_14759217221092828
crossref_primary_10_1016_j_engappai_2021_104401
crossref_primary_10_1109_TIM_2023_3250308
crossref_primary_10_1016_j_measurement_2024_116468
crossref_primary_10_1016_j_renene_2021_10_024
crossref_primary_10_1016_j_renene_2022_08_093
crossref_primary_10_1016_j_cogr_2024_12_001
crossref_primary_10_1016_j_measurement_2022_112346
crossref_primary_10_1155_2021_5544031
crossref_primary_10_1088_1361_6501_ad6470
crossref_primary_10_1016_j_measurement_2022_111935
crossref_primary_10_1088_1361_6501_ad662e
crossref_primary_10_1109_JSEN_2023_3311092
crossref_primary_10_1016_j_asoc_2021_108064
crossref_primary_10_1016_j_jobe_2020_102043
crossref_primary_10_1016_j_ymssp_2024_111314
crossref_primary_10_1109_JSEN_2023_3319537
crossref_primary_10_1155_2023_1639287
crossref_primary_10_1016_j_jmsy_2021_03_022
crossref_primary_10_1016_j_eswa_2022_117716
crossref_primary_10_1109_TIM_2020_3048799
crossref_primary_10_1016_j_measurement_2022_110798
crossref_primary_10_1016_j_isatra_2021_10_023
crossref_primary_10_3390_app12178414
crossref_primary_10_3390_app14073129
crossref_primary_10_1016_j_rser_2023_114039
crossref_primary_10_3390_s21165494
crossref_primary_10_21595_jve_2022_22471
crossref_primary_10_3390_en15093340
crossref_primary_10_1016_j_jobe_2022_104718
crossref_primary_10_1007_s13369_024_09359_x
crossref_primary_10_1016_j_apacoust_2021_108614
crossref_primary_10_3390_machines12070428
crossref_primary_10_3390_en17163897
crossref_primary_10_3390_s23208489
crossref_primary_10_1007_s13349_023_00715_3
crossref_primary_10_1016_j_engappai_2021_104544
crossref_primary_10_1007_s00477_025_02921_5
crossref_primary_10_1016_j_measurement_2022_111950
crossref_primary_10_1007_s00521_021_05736_x
crossref_primary_10_1016_j_energy_2024_130419
crossref_primary_10_1016_j_measurement_2020_108655
crossref_primary_10_1177_10775463251319376
crossref_primary_10_1016_j_inffus_2022_06_005
crossref_primary_10_1007_s10845_023_02221_1
crossref_primary_10_1016_j_ress_2023_109720
crossref_primary_10_1109_TEC_2021_3085909
crossref_primary_10_1111_exsy_13291
crossref_primary_10_1016_j_asoc_2021_108207
crossref_primary_10_1016_j_knosys_2021_107213
crossref_primary_10_1016_j_asoc_2021_107755
crossref_primary_10_3390_s24123953
crossref_primary_10_1109_ACCESS_2022_3219480
crossref_primary_10_1109_JSEN_2024_3466895
crossref_primary_10_1109_TSIPN_2023_3328275
crossref_primary_10_1016_j_ymssp_2021_108616
crossref_primary_10_1155_2022_8946094
crossref_primary_10_1142_S0219455425500658
crossref_primary_10_1016_j_renene_2023_01_056
crossref_primary_10_1016_j_engappai_2024_109548
crossref_primary_10_1177_01423312231157118
crossref_primary_10_1007_s00170_021_08448_7
crossref_primary_10_1016_j_asoc_2025_112785
crossref_primary_10_1088_1361_6501_ac27ea
crossref_primary_10_1109_TIM_2024_3365166
crossref_primary_10_3390_e23060697
crossref_primary_10_1016_j_asoc_2023_110921
crossref_primary_10_1007_s11071_021_07032_8
crossref_primary_10_1007_s10489_022_03562_9
crossref_primary_10_3390_a18020058
crossref_primary_10_1016_j_measurement_2022_111177
crossref_primary_10_1016_j_engappai_2023_105970
crossref_primary_10_21595_jve_2021_22067
crossref_primary_10_3389_fenrg_2021_747622
crossref_primary_10_1016_j_jmsy_2023_02_018
crossref_primary_10_1016_j_dsp_2022_103777
crossref_primary_10_1016_j_engappai_2022_105735
crossref_primary_10_1007_s42417_022_00630_9
crossref_primary_10_3233_JCM_215594
crossref_primary_10_21595_jve_2022_22564
crossref_primary_10_1016_j_measurement_2022_111180
crossref_primary_10_1088_1361_6501_ac6661
crossref_primary_10_1016_j_asoc_2022_109554
crossref_primary_10_1109_ACCESS_2023_3267089
crossref_primary_10_1109_TIM_2022_3225910
crossref_primary_10_3389_fenrg_2022_823395
crossref_primary_10_3390_s22197644
crossref_primary_10_1016_j_ast_2021_106758
crossref_primary_10_1016_j_isatra_2024_08_033
crossref_primary_10_1007_s11071_022_07314_9
crossref_primary_10_1109_TIM_2021_3067187
crossref_primary_10_1088_1361_6501_ac8dad
crossref_primary_10_1177_14759217231192363
crossref_primary_10_1109_LSP_2025_3548466
crossref_primary_10_1007_s11265_023_01845_z
crossref_primary_10_1016_j_asoc_2020_106992
Cites_doi 10.1109/TIM.2018.2828739
10.1016/j.measurement.2018.08.002
10.1016/j.energy.2019.03.057
10.5271/sjweh.3711
10.1109/TIM.2013.2258769
10.1016/j.measurement.2017.08.036
10.3390/s131216950
10.1109/TIE.2018.2844805
10.1016/j.asoc.2017.01.015
10.1016/j.knosys.2017.10.024
10.1109/ChiCC.2016.7554407
10.1016/j.measurement.2019.106941
10.1109/TSP.2013.2288675
10.1016/j.ymssp.2017.06.022
10.1016/j.energy.2018.01.055
10.1109/TCST.2014.2364956
10.1016/j.ymssp.2019.02.056
10.1109/TIP.2006.875247
10.1016/j.measurement.2013.10.041
10.1016/j.jsv.2017.04.036
10.1186/s10033-019-0356-4
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106515
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2020_106515
S1568494620304543
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c300t-bb799168db793940d2eedb459b7b3b62cee80aa1201fcf67a15aa28c5568344a3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:06 EDT 2025
Thu Apr 24 22:56:01 EDT 2025
Sun Apr 06 06:53:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Fault diagnosis
VariationaL Mode Decomposition
Convolutional Neural Networks
Rolling bearing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-bb799168db793940d2eedb459b7b3b62cee80aa1201fcf67a15aa28c5568344a3
ORCID 0000-0002-6251-0837
0000-0003-2661-517X
0000-0002-8133-3952
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106515
crossref_primary_10_1016_j_asoc_2020_106515
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Su (b14) 2014; 48
Lei (b11) 2013; 13
Li, Jiancheng (b31) 2013; 62
Chen, Yang, Cui (b15) 2019; 174
Pengfei (b28) 2019
Badihi, Zhang, Hong (b9) 2015; 23
Zhang (b21) 2018; 100
Lei, Li, Lin (b10) 2013; 13
Xiaoxia Zheng, et al. Variational mode decomposition applied to offshore wind turbine rolling bearing fault diagnosis, in: Chinese Control Conference, 2016, pp. 6673–6677.
Wang, Lei, Li, Li (b27) 2018
Inderpreet Singh, S. Bahel, S.B. Narang, AWGN channel modeling using MATLAB, in: International Conference on Emerginging Technologies in Electronics and Communication, ICETEC 2013, 2013.
Yong (b24) 2018; 130
Li (b18) 2020; 153
Gilboa, Sochen, Zeevi (b23) 2006; 15
Li (b25) 2019; 126
Global Wind Energy Council (GWEC) (b1) 2019
International Energy Agency (IEA) (b2) 2019
Haidong (b19) 2018; 140
Sheng (b6) 2016
Jiang (b29) 2019; 66
Lin (b4) 2018
Freiberg (b3) 2018; 44
Gu (b17) 2020
.
Dragomiretskiy, Zosso (b22) 2014; 62
Yang, Liu, Chen (b12) 2018; 67
Glowacz (b7) 2018
Hu (b8) 2019; 32
Long (b20) 2017; PP
Li, Li, Zhang (b5) 2017
Qiu (b13) 2017; 54
Glowacz (10.1016/j.asoc.2020.106515_b7) 2018
10.1016/j.asoc.2020.106515_b26
Zhang (10.1016/j.asoc.2020.106515_b21) 2018; 100
Chen (10.1016/j.asoc.2020.106515_b15) 2019; 174
Yang (10.1016/j.asoc.2020.106515_b12) 2018; 67
Qiu (10.1016/j.asoc.2020.106515_b13) 2017; 54
Gu (10.1016/j.asoc.2020.106515_b17) 2020
Long (10.1016/j.asoc.2020.106515_b20) 2017; PP
Li (10.1016/j.asoc.2020.106515_b5) 2017
Lei (10.1016/j.asoc.2020.106515_b11) 2013; 13
Global Wind Energy Council (GWEC) (10.1016/j.asoc.2020.106515_b1) 2019
Badihi (10.1016/j.asoc.2020.106515_b9) 2015; 23
Pengfei (10.1016/j.asoc.2020.106515_b28) 2019
Dragomiretskiy (10.1016/j.asoc.2020.106515_b22) 2014; 62
Sheng (10.1016/j.asoc.2020.106515_b6) 2016
Li (10.1016/j.asoc.2020.106515_b31) 2013; 62
Hu (10.1016/j.asoc.2020.106515_b8) 2019; 32
Jiang (10.1016/j.asoc.2020.106515_b29) 2019; 66
Li (10.1016/j.asoc.2020.106515_b25) 2019; 126
Gilboa (10.1016/j.asoc.2020.106515_b23) 2006; 15
Su (10.1016/j.asoc.2020.106515_b14) 2014; 48
10.1016/j.asoc.2020.106515_b16
Li (10.1016/j.asoc.2020.106515_b18) 2020; 153
Lin (10.1016/j.asoc.2020.106515_b4) 2018
Lei (10.1016/j.asoc.2020.106515_b10) 2013; 13
Haidong (10.1016/j.asoc.2020.106515_b19) 2018; 140
10.1016/j.asoc.2020.106515_b30
International Energy Agency (IEA) (10.1016/j.asoc.2020.106515_b2) 2019
Yong (10.1016/j.asoc.2020.106515_b24) 2018; 130
Freiberg (10.1016/j.asoc.2020.106515_b3) 2018; 44
Wang (10.1016/j.asoc.2020.106515_b27) 2018
References_xml – volume: 23
  start-page: 1351
  year: 2015
  end-page: 1372
  ident: b9
  article-title: Wind turbine fault diagnosis and fault-tolerant torque load control against actuator faults
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 13
  start-page: 16950
  year: 2013
  end-page: 16964
  ident: b11
  article-title: Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition
  publication-title: Sensors
– volume: 48
  start-page: 136
  year: 2014
  end-page: 148
  ident: b14
  article-title: Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier
  publication-title: Measurement
– volume: 67
  start-page: 2616
  year: 2018
  end-page: 2627
  ident: b12
  article-title: Sparse time-frequency representation for incipient fault diagnosis of wind turbine drive train
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2019
  ident: b28
  article-title: Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform
  publication-title: Comput. Ind.
– volume: 100
  start-page: 439
  year: 2018
  end-page: 453
  ident: b21
  article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
  publication-title: Mech. Syst. Signal Process.
– reference: Inderpreet Singh, S. Bahel, S.B. Narang, AWGN channel modeling using MATLAB, in: International Conference on Emerginging Technologies in Electronics and Communication, ICETEC 2013, 2013.
– volume: 13
  start-page: 16950
  year: 2013
  end-page: 16964
  ident: b10
  article-title: Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition
  publication-title: Sensors
– volume: 32
  start-page: 1
  year: 2019
  end-page: 12
  ident: b8
  article-title: A new method of wind turbine bearing fault diagnosis based on multi-masking empirical mode decomposition and fuzzy C-means clustering
  publication-title: Chin. J. Mech. Eng.
– volume: 54
  start-page: 246
  year: 2017
  end-page: 255
  ident: b13
  article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting
  publication-title: Appl. Soft Comput.
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b22
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: PP
  start-page: 1
  year: 2017
  ident: b20
  article-title: A new convolutional neural network based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 1
  year: 2018
  end-page: 9
  ident: b7
  article-title: Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals
  publication-title: Measurement
– volume: 62
  start-page: 2659
  year: 2013
  end-page: 2672
  ident: b31
  article-title: Not fully overlapping allan variance and total variance for inertial sensor stochastic error analysis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 130
  start-page: 94
  year: 2018
  end-page: 104
  ident: b24
  article-title: Study on planetary gear fault diagnosis based on variational mode decomposition and deep neural networks
  publication-title: Measurement
– year: 2019
  ident: b1
– year: 2020
  ident: b17
  article-title: Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and teager energy operator
  publication-title: Measurement
– start-page: 139
  year: 2017
  end-page: 151
  ident: b5
  article-title: Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution
  publication-title: J. Sound Vib.
– year: 2016
  ident: b6
  article-title: Wind Turbine Gearbox Reliability Database, Condition Monitoring, and O & M Research Update (Conference Paper) NREL/PR-5000e63868
– volume: 126
  start-page: 568
  year: 2019
  end-page: 589
  ident: b25
  article-title: Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– reference: .
– volume: 174
  start-page: 1100
  year: 2019
  end-page: 1109
  ident: b15
  article-title: Vibration fault diagnosis of wind turbine based on variational mode decomposition and energy entropy
  publication-title: Energy
– reference: Xiaoxia Zheng, et al. Variational mode decomposition applied to offshore wind turbine rolling bearing fault diagnosis, in: Chinese Control Conference, 2016, pp. 6673–6677.
– volume: 66
  start-page: 3196
  year: 2019
  end-page: 3207
  ident: b29
  article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Trans. Ind. Electron.
– volume: 44
  start-page: 351
  year: 2018
  end-page: 369
  ident: b3
  article-title: Health effects of wind turbines in working environments – a scoping review
  publication-title: Scand. J. Work Environ. Health
– volume: 153
  year: 2020
  ident: b18
  article-title: Multiscale local feature learning based on BP network for rolling bearing intelligent fault diagnosis
  publication-title: Measurement
– volume: 140
  start-page: 1
  year: 2018
  end-page: 14
  ident: b19
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
  publication-title: Knowl. Based Syst.
– year: 2019
  ident: b2
  article-title: Offshore Wind Outlook 2019
– start-page: 812
  year: 2018
  end-page: 825
  ident: b4
  article-title: Coordinated pitch & torque control of large-scale wind turbine based on Pareto efficiency analysis
  publication-title: Energy
– volume: 15
  start-page: 2281
  year: 2006
  end-page: 2289
  ident: b23
  article-title: Variational denoising of partly textured images by spatially varying constraints
  publication-title: IEEE Trans. Image Process.
– start-page: 1
  year: 2018
  end-page: 12
  ident: b27
  article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings
  publication-title: IEEE Trans. Reliab.
– year: 2016
  ident: 10.1016/j.asoc.2020.106515_b6
– volume: 67
  start-page: 2616
  issue: 11
  year: 2018
  ident: 10.1016/j.asoc.2020.106515_b12
  article-title: Sparse time-frequency representation for incipient fault diagnosis of wind turbine drive train
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2828739
– volume: 130
  start-page: 94
  year: 2018
  ident: 10.1016/j.asoc.2020.106515_b24
  article-title: Study on planetary gear fault diagnosis based on variational mode decomposition and deep neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.002
– volume: 174
  start-page: 1100
  year: 2019
  ident: 10.1016/j.asoc.2020.106515_b15
  article-title: Vibration fault diagnosis of wind turbine based on variational mode decomposition and energy entropy
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.057
– volume: 153
  issue: Mar. 1
  year: 2020
  ident: 10.1016/j.asoc.2020.106515_b18
  article-title: Multiscale local feature learning based on BP network for rolling bearing intelligent fault diagnosis
  publication-title: Measurement
– year: 2019
  ident: 10.1016/j.asoc.2020.106515_b1
– year: 2019
  ident: 10.1016/j.asoc.2020.106515_b2
– ident: 10.1016/j.asoc.2020.106515_b30
– volume: 44
  start-page: 351
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2020.106515_b3
  article-title: Health effects of wind turbines in working environments – a scoping review
  publication-title: Scand. J. Work Environ. Health
  doi: 10.5271/sjweh.3711
– year: 2019
  ident: 10.1016/j.asoc.2020.106515_b28
  article-title: Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform
  publication-title: Comput. Ind.
– volume: 62
  start-page: 2659
  issue: 10
  year: 2013
  ident: 10.1016/j.asoc.2020.106515_b31
  article-title: Not fully overlapping allan variance and total variance for inertial sensor stochastic error analysis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2258769
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106515_b7
  article-title: Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.08.036
– volume: 13
  start-page: 16950
  issue: 12
  year: 2013
  ident: 10.1016/j.asoc.2020.106515_b11
  article-title: Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition
  publication-title: Sensors
  doi: 10.3390/s131216950
– volume: 66
  start-page: 3196
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2020.106515_b29
  article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2844805
– volume: 54
  start-page: 246
  year: 2017
  ident: 10.1016/j.asoc.2020.106515_b13
  article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.015
– volume: 140
  start-page: 1
  issue: Jan. 15
  year: 2018
  ident: 10.1016/j.asoc.2020.106515_b19
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.10.024
– ident: 10.1016/j.asoc.2020.106515_b16
  doi: 10.1109/ChiCC.2016.7554407
– year: 2020
  ident: 10.1016/j.asoc.2020.106515_b17
  article-title: Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and teager energy operator
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.106941
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2020.106515_b22
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 100
  start-page: 439
  issue: FEB.1
  year: 2018
  ident: 10.1016/j.asoc.2020.106515_b21
  article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.06.022
– start-page: 812
  year: 2018
  ident: 10.1016/j.asoc.2020.106515_b4
  article-title: Coordinated pitch & torque control of large-scale wind turbine based on Pareto efficiency analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.055
– volume: PP
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.asoc.2020.106515_b20
  article-title: A new convolutional neural network based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
– volume: 23
  start-page: 1351
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2020.106515_b9
  article-title: Wind turbine fault diagnosis and fault-tolerant torque load control against actuator faults
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2364956
– volume: 126
  start-page: 568
  issue: JUL.1
  year: 2019
  ident: 10.1016/j.asoc.2020.106515_b25
  article-title: Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.02.056
– volume: 13
  start-page: 16950
  issue: 12
  year: 2013
  ident: 10.1016/j.asoc.2020.106515_b10
  article-title: Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition
  publication-title: Sensors
  doi: 10.3390/s131216950
– volume: 15
  start-page: 2281
  issue: 8
  year: 2006
  ident: 10.1016/j.asoc.2020.106515_b23
  article-title: Variational denoising of partly textured images by spatially varying constraints
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.875247
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106515_b27
  article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings
  publication-title: IEEE Trans. Reliab.
– volume: 48
  start-page: 136
  year: 2014
  ident: 10.1016/j.asoc.2020.106515_b14
  article-title: Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.10.041
– start-page: 139
  year: 2017
  ident: 10.1016/j.asoc.2020.106515_b5
  article-title: Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.04.036
– ident: 10.1016/j.asoc.2020.106515_b26
– volume: 32
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106515_b8
  article-title: A new method of wind turbine bearing fault diagnosis based on multi-masking empirical mode decomposition and fuzzy C-means clustering
  publication-title: Chin. J. Mech. Eng.
  doi: 10.1186/s10033-019-0356-4
SSID ssj0016928
Score 2.6087992
Snippet Machine learning techniques have been successfully applied in intelligent fault diagnosis of rolling bearings in recent years. However, in the real world...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106515
SubjectTerms Convolutional Neural Networks
Deep learning
Fault diagnosis
Rolling bearing
VariationaL Mode Decomposition
Title Fault diagnosis of rolling bearing of wind turbines based on the Variational Mode Decomposition and Deep Convolutional Neural Networks
URI https://dx.doi.org/10.1016/j.asoc.2020.106515
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD2wotHHsPMaqpSqvCgFF3SI7caSiKqn6gI2R381d7FQgoQ5Mp1h3UuQ7-zsnn-8IuQDM9CLpCwjeNIIDigtrzotcRwvJMiG050m8nPww8PtDfjsSoxrpVHdhkFZp936zp5e7tR1p2tlsTsfj5jOcPEIecZ-Vf_s4VvzkPMAov_pc0TxcPyr7q6Kyg9r24ozheEmYATgjMhzAnuB_g9MPwOntkC2bKdK2eZldUtP5HtmuujBQuyj3yVdPLicLmhrO3HhOi4zOTKltqiCOUcLQBxy-KeCLQp47RfBKaZFTyP_oKyjZb4IUe6PRrkamuaVzUQmGXa2ntFPk7zZSQRPLepSi5JHPD8iwd_3S6Tu2u4KTeK3WwlEqwNwwTEFie_SUAVwqLiIVKE_5DNAzbEnpQoaQJZkfSFdIycIES5Z5nEvvkNTzItdHBN45k7CONWdM8TB1TSPSVHAmg8SPxDFxq2mNE1t6HDtgTOKKY_YWoytidEVsXHFMLlc2U1N4Y622qLwV_wqfGJBhjd3JP-1OySY-GVbfGakvZkt9DtnJQjXK8GuQjXbn6f4R5c1df_ANhg3mEw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWDhjXjjASYU2jh2mgwMiFKV58JDbMFOHKkIpRUtVCyM_CH-IHexg0BCDEhMlly7cu-c-3zp5_sAthEzg1iFEjdvFmOC4uMzF8S-Z6TiuZQmCBRdTj6_CDvX4uRW3o7Be3UXhmiVLvbbmF5Ga9dTd9as97vd-iVmHpGIRcjLf_tEpWB9al5GmLcN9o9b6OQdzttHV4cdz0kLeGnQaAw9rZt0MIoybEkbPOOIFVrIWDd1oEOO0BE1lPIRHvM0D5vKl0rxKKV6XYEQKsDvHYcJgeGCZBP2Xj95JX4Yl4KutDqPludu6lhSmUKTY1LKqYNEyH9Gwy8I156FaXc0ZQf218_BmCnmYaaSfWAuCizAW1s9PQxZZkl63QHr5ezR1vZmGo1DLXaNMNtnCGiaiPWM0DJjvYLhgZPd4CD3EpKRGBtrGaK2O_4YUzixZUyfHfaKZ_do4EiqI1I2JXF9sAjX_2LzJagVvcIsA645Vxg4jOBciyjzrfJpJgVXzTSM5Qr4lVmT1NU6J8mNh6Qitd0n5IqEXJFYV6zA7uecvq308etoWXkr-bZfE4SiX-at_nHeFkx2rs7PkrPji9M1mKJPLKVwHWrDxyezgUejod4styKDu__e-x9tkSA9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+of+rolling+bearing+of+wind+turbines+based+on+the+Variational+Mode+Decomposition+and+Deep+Convolutional+Neural+Networks&rft.jtitle=Applied+soft+computing&rft.au=Xu%2C+Zifei&rft.au=Li%2C+Chun&rft.au=Yang%2C+Yang&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=95&rft_id=info:doi/10.1016%2Fj.asoc.2020.106515&rft.externalDocID=S1568494620304543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon