Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis
Support vector machine (SVM) is a widely used pattern classification method that its classification accuracy is greatly influenced by both kernel parameter setting and feature selection. Therefore, in this study, to perform parameter optimization and feature selection simultaneously for SVM, we prop...
Saved in:
Published in | Applied soft computing Vol. 88; p. 105946 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Support vector machine (SVM) is a widely used pattern classification method that its classification accuracy is greatly influenced by both kernel parameter setting and feature selection. Therefore, in this study, to perform parameter optimization and feature selection simultaneously for SVM, we propose an improved whale optimization algorithm (CMWOA), which combines chaotic and multi-swarm strategies. Using several well-known medical diagnosis problems of breast cancer, diabetes, and erythemato-squamous, the proposed SVM model, termed CMWOAFS-SVM, was compared with multiple competitive SVM models based on other optimization algorithms including the original algorithm, particle swarm optimization, bacterial foraging optimization, and genetic algorithms. The experimental results demonstrate that CMWOAFS-SVM significantly outperformed all the other competitors in terms of classification performance and feature subset size.
[Display omitted]
•A multi-swarms with stratified mechanism is introduced to construct a multi-swarms WOA.•Chaos population initialization and self-adaption chaotic disturbance mechanism are introduced.•The proposed method has tackled the parameter optimization and feature selection. |
---|---|
AbstractList | Support vector machine (SVM) is a widely used pattern classification method that its classification accuracy is greatly influenced by both kernel parameter setting and feature selection. Therefore, in this study, to perform parameter optimization and feature selection simultaneously for SVM, we propose an improved whale optimization algorithm (CMWOA), which combines chaotic and multi-swarm strategies. Using several well-known medical diagnosis problems of breast cancer, diabetes, and erythemato-squamous, the proposed SVM model, termed CMWOAFS-SVM, was compared with multiple competitive SVM models based on other optimization algorithms including the original algorithm, particle swarm optimization, bacterial foraging optimization, and genetic algorithms. The experimental results demonstrate that CMWOAFS-SVM significantly outperformed all the other competitors in terms of classification performance and feature subset size.
[Display omitted]
•A multi-swarms with stratified mechanism is introduced to construct a multi-swarms WOA.•Chaos population initialization and self-adaption chaotic disturbance mechanism are introduced.•The proposed method has tackled the parameter optimization and feature selection. |
ArticleNumber | 105946 |
Author | Chen, Huiling Wang, Mingjing |
Author_xml | – sequence: 1 givenname: Mingjing surname: Wang fullname: Wang, Mingjing email: mingjingwang@duytan.edu.vn organization: Hangzhou Medical College, Hangzhou 310053, Zhejiang, China – sequence: 2 givenname: Huiling orcidid: 0000-0002-7714-9693 surname: Chen fullname: Chen, Huiling email: chenhuiling.jlu@gmail.com organization: College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China |
BookMark | eNp9kMtqwzAQRUVJoUnaH-hKP2BX8isWdFNCXxDopoXuhCyNmwm2ZSQlof36yqSrLrKay4UzzJwFmQ12AEJuOUs549XdLlXe6jRjXMSiFEV1Qea8XmWJqGo-i7ms6qSI_RVZeL9jERJZPSef662yATXt913AxB-V6-lxqzqgdgzY4w842ljrAxjq9-NoXaAH0ME62iu9xQFoO2UwqFVHDaqvwXr01-SyVZ2Hm7-5JB9Pj-_rl2Tz9vy6ftgkOmcsJE1p2IpB1jZQqLLJTdk21QrKnKvciLyIZ9cqywsBrRHMaFbWmdHAGmDAjWnyJclOe7Wz3jto5eiwV-5bciYnN3InJzdyciNPbiJU_4M0BhXQDsEp7M6j9ycU4lMHBCe9Rhh0_N9FLdJYPIf_ApMBhHs |
CitedBy_id | crossref_primary_10_1155_2021_8899188 crossref_primary_10_1007_s00366_020_01028_5 crossref_primary_10_1155_2021_5545307 crossref_primary_10_1016_j_matcom_2020_06_012 crossref_primary_10_1007_s11468_021_01520_8 crossref_primary_10_1007_s11770_024_1039_1 crossref_primary_10_1016_j_eswa_2020_113486 crossref_primary_10_3390_math10224197 crossref_primary_10_1007_s00521_025_11016_9 crossref_primary_10_1016_j_bspc_2021_103223 crossref_primary_10_1016_j_matcom_2021_04_006 crossref_primary_10_1155_2020_4968063 crossref_primary_10_3390_jcm12206489 crossref_primary_10_1016_j_jksuci_2021_09_019 crossref_primary_10_1007_s00500_021_06101_9 crossref_primary_10_3390_s22218281 crossref_primary_10_1016_j_compbiomed_2021_104698 crossref_primary_10_1016_j_compbiomed_2023_106631 crossref_primary_10_1016_j_bspc_2023_105879 crossref_primary_10_1016_j_knosys_2023_111351 crossref_primary_10_3390_math11163496 crossref_primary_10_1007_s00366_020_01152_2 crossref_primary_10_35940_ijitee_F9906_0511622 crossref_primary_10_1016_j_bspc_2024_107431 crossref_primary_10_1007_s10462_020_09860_3 crossref_primary_10_1515_revic_2021_0007 crossref_primary_10_1016_j_tws_2020_106840 crossref_primary_10_1016_j_ijleo_2021_168513 crossref_primary_10_1007_s12668_023_01075_4 crossref_primary_10_1140_epjp_s13360_020_00764_3 crossref_primary_10_1016_j_microc_2025_112709 crossref_primary_10_1038_s41598_021_96501_6 crossref_primary_10_37394_232016_2022_17_30 crossref_primary_10_1016_j_egyr_2021_08_191 crossref_primary_10_1016_j_neucom_2022_10_078 crossref_primary_10_3390_en14051331 crossref_primary_10_1016_j_energy_2021_121164 crossref_primary_10_1155_2021_5551320 crossref_primary_10_1007_s00500_023_09283_6 crossref_primary_10_1016_j_compbiomed_2022_106227 crossref_primary_10_1016_j_eswa_2022_116511 crossref_primary_10_1080_00051144_2021_2014037 crossref_primary_10_3390_electronics10172115 crossref_primary_10_1016_j_egyr_2021_07_041 crossref_primary_10_1016_j_eswa_2023_121844 crossref_primary_10_1007_s11277_021_08368_5 crossref_primary_10_3390_math10020276 crossref_primary_10_1016_j_knosys_2021_107529 crossref_primary_10_1007_s10562_020_03333_6 crossref_primary_10_1007_s00366_020_01140_6 crossref_primary_10_1007_s00366_021_01542_0 crossref_primary_10_1016_j_compbiomed_2023_107293 crossref_primary_10_1016_j_compstruct_2020_112737 crossref_primary_10_1007_s10044_023_01203_6 crossref_primary_10_1007_s11468_021_01527_1 crossref_primary_10_3389_fevo_2023_1122682 crossref_primary_10_1007_s00366_020_01083_y crossref_primary_10_1016_j_compstruct_2020_113146 crossref_primary_10_1016_j_neucom_2020_10_038 crossref_primary_10_3390_catal11091099 crossref_primary_10_1007_s00366_020_01234_1 crossref_primary_10_1155_2021_8500572 crossref_primary_10_3390_electronics10232975 crossref_primary_10_3390_electronics10212689 crossref_primary_10_3390_su13179990 crossref_primary_10_1007_s00366_021_01363_1 crossref_primary_10_1007_s12065_022_00776_1 crossref_primary_10_1109_ACCESS_2021_3079204 crossref_primary_10_1155_2021_6636794 crossref_primary_10_1111_exsy_12914 crossref_primary_10_1016_j_engappai_2021_104653 crossref_primary_10_3390_diagnostics11101870 crossref_primary_10_1016_j_tws_2020_107111 crossref_primary_10_1016_j_eswa_2020_114369 crossref_primary_10_1007_s00366_020_01200_x crossref_primary_10_1002_cnm_3525 crossref_primary_10_1016_j_knosys_2022_108664 crossref_primary_10_1080_10106049_2021_1948109 crossref_primary_10_3390_e25081128 crossref_primary_10_3390_math8091636 crossref_primary_10_3390_s21196654 crossref_primary_10_1016_j_compstruct_2020_112990 crossref_primary_10_1016_j_bspc_2023_104638 crossref_primary_10_1007_s42823_021_00276_9 crossref_primary_10_1007_s00366_021_01448_x crossref_primary_10_1016_j_energy_2021_121865 crossref_primary_10_1002_int_22658 crossref_primary_10_1016_j_renene_2020_11_152 crossref_primary_10_1016_j_envpol_2020_115216 crossref_primary_10_3390_bioengineering12030238 crossref_primary_10_1016_j_asoc_2020_106672 crossref_primary_10_32604_cmc_2022_024989 crossref_primary_10_1016_j_matcom_2020_09_027 crossref_primary_10_1016_j_eswa_2020_114418 crossref_primary_10_1155_2021_8878686 crossref_primary_10_1016_j_rico_2023_100276 crossref_primary_10_1007_s00521_020_05231_9 crossref_primary_10_1016_j_infrared_2022_104180 crossref_primary_10_3934_mbe_2022184 crossref_primary_10_1515_ijcre_2021_0168 crossref_primary_10_1016_j_aej_2024_09_109 crossref_primary_10_1155_2021_4988577 crossref_primary_10_1016_j_est_2024_114497 crossref_primary_10_1155_2021_9974219 crossref_primary_10_1002_int_22744 crossref_primary_10_3390_en14041196 crossref_primary_10_1007_s11082_021_03168_4 crossref_primary_10_1007_s00366_021_01289_8 crossref_primary_10_1007_s42235_021_0068_1 crossref_primary_10_1007_s42235_022_00297_8 crossref_primary_10_1080_07391102_2020_1760939 crossref_primary_10_1016_j_measurement_2020_108032 crossref_primary_10_1109_ACCESS_2020_3003366 crossref_primary_10_3390_math10224387 crossref_primary_10_1007_s13204_021_02159_x crossref_primary_10_1016_j_bspc_2022_103701 crossref_primary_10_1155_2021_5425569 crossref_primary_10_1016_j_eswax_2020_100032 crossref_primary_10_1007_s00366_020_01166_w crossref_primary_10_1016_j_jmrt_2021_05_013 crossref_primary_10_1155_2021_1188414 crossref_primary_10_1007_s11042_023_15186_3 crossref_primary_10_1111_coin_12522 crossref_primary_10_1155_2020_4873501 crossref_primary_10_1155_2021_6675638 crossref_primary_10_1007_s00366_020_01252_z crossref_primary_10_1016_j_cscee_2023_100428 crossref_primary_10_1016_j_autcon_2024_105361 crossref_primary_10_3390_app10093251 crossref_primary_10_1007_s00366_020_01088_7 crossref_primary_10_1007_s11276_021_02804_x crossref_primary_10_1111_exsy_12785 crossref_primary_10_1002_for_2870 crossref_primary_10_1016_j_compbiomed_2021_104910 crossref_primary_10_3390_math12233872 crossref_primary_10_1007_s00366_020_01042_7 crossref_primary_10_1515_ijcre_2021_0145 crossref_primary_10_1016_j_enconman_2020_112764 crossref_primary_10_1016_j_eswa_2022_117993 crossref_primary_10_1016_j_inffus_2021_11_006 crossref_primary_10_1016_j_compbiomed_2022_105885 crossref_primary_10_1080_15397734_2020_1815543 crossref_primary_10_1007_s00366_021_01388_6 crossref_primary_10_1007_s00366_020_01130_8 crossref_primary_10_1080_15397734_2020_1815544 crossref_primary_10_1038_s41598_022_05913_5 crossref_primary_10_1186_s12951_021_00896_3 crossref_primary_10_1093_jcde_qwac014 crossref_primary_10_1155_2021_9048808 crossref_primary_10_1155_2023_6992441 crossref_primary_10_1109_ACCESS_2020_3018866 crossref_primary_10_1109_ACCESS_2020_3010589 crossref_primary_10_1038_s41598_022_17076_4 crossref_primary_10_3390_app12094776 crossref_primary_10_1016_j_compstruct_2020_112947 crossref_primary_10_1038_s41598_024_57278_6 crossref_primary_10_1016_j_eswa_2021_114629 crossref_primary_10_1016_j_asoc_2020_106347 crossref_primary_10_1016_j_egyr_2020_10_005 crossref_primary_10_1016_j_jksuci_2020_08_003 crossref_primary_10_1038_s41598_021_93167_y crossref_primary_10_1016_j_asoc_2020_106903 crossref_primary_10_1016_j_compbiomed_2024_108258 crossref_primary_10_1016_j_eswa_2021_114864 crossref_primary_10_1109_ACCESS_2020_2982796 crossref_primary_10_1016_j_egyr_2021_01_001 crossref_primary_10_1016_j_eswa_2022_119002 crossref_primary_10_1109_ACCESS_2024_3350336 crossref_primary_10_1007_s00366_021_01282_1 crossref_primary_10_1016_j_eswa_2022_117864 crossref_primary_10_1089_big_2019_0111 crossref_primary_10_1109_ACCESS_2021_3077616 crossref_primary_10_1007_s00366_021_01377_9 crossref_primary_10_1016_j_enconman_2020_113751 crossref_primary_10_1016_j_enconman_2021_114223 crossref_primary_10_1109_ACCESS_2021_3097206 crossref_primary_10_1007_s13132_024_01998_7 crossref_primary_10_1109_ACCESS_2021_3105485 crossref_primary_10_1016_j_euromechsol_2020_104091 crossref_primary_10_1016_j_knosys_2021_107629 crossref_primary_10_1155_2021_9984840 crossref_primary_10_3390_polym16182629 crossref_primary_10_1007_s00366_020_01024_9 crossref_primary_10_1007_s00366_020_01277_4 crossref_primary_10_1155_2021_6315010 crossref_primary_10_3390_electronics10182214 crossref_primary_10_1080_17455030_2020_1831099 crossref_primary_10_1515_revic_2020_0007 crossref_primary_10_1155_2021_8130378 crossref_primary_10_54525_tbbmd_1167316 crossref_primary_10_4236_jamp_2024_126134 crossref_primary_10_1155_2021_6363571 crossref_primary_10_61435_ijred_2024_60119 crossref_primary_10_1016_j_asoc_2023_110034 crossref_primary_10_3389_fphys_2023_1267011 crossref_primary_10_3233_THC_240052 crossref_primary_10_7717_peerj_cs_1557 crossref_primary_10_1016_j_aej_2023_10_029 crossref_primary_10_1109_ACCESS_2020_3028600 crossref_primary_10_1007_s00366_020_01118_4 crossref_primary_10_31590_ejosat_1017054 crossref_primary_10_3390_coatings11101173 crossref_primary_10_1155_2021_5516819 crossref_primary_10_1109_ACCESS_2025_3526640 crossref_primary_10_1007_s00521_023_08244_2 crossref_primary_10_1016_j_rsase_2020_100461 crossref_primary_10_3934_mbe_2022659 crossref_primary_10_1016_j_ins_2023_119122 crossref_primary_10_1109_ACCESS_2022_3144065 crossref_primary_10_1080_19475705_2021_1914753 crossref_primary_10_1007_s11468_021_01550_2 crossref_primary_10_1016_j_est_2021_102996 crossref_primary_10_1007_s11082_021_03112_6 crossref_primary_10_1155_2020_6084917 crossref_primary_10_1109_ACCESS_2021_3065307 crossref_primary_10_1016_j_jhydrol_2021_126211 crossref_primary_10_32604_cmc_2024_055079 crossref_primary_10_1016_j_eswa_2020_113897 crossref_primary_10_1016_j_eswa_2021_115655 crossref_primary_10_1016_j_bspc_2020_102259 crossref_primary_10_1080_10916466_2021_1989464 crossref_primary_10_1109_TCDS_2021_3073368 crossref_primary_10_1016_j_eswa_2021_115651 crossref_primary_10_1016_j_energy_2020_117804 crossref_primary_10_32604_csse_2023_028269 crossref_primary_10_1007_s00366_020_01167_9 crossref_primary_10_1109_ACCESS_2020_2981968 crossref_primary_10_1016_j_compbiomed_2022_106189 crossref_primary_10_1016_j_saa_2022_121788 crossref_primary_10_3390_electronics11020209 crossref_primary_10_1007_s00521_022_07814_0 crossref_primary_10_3390_app112311192 crossref_primary_10_1002_cpe_6646 crossref_primary_10_1007_s00366_020_01144_2 crossref_primary_10_1016_j_jestch_2020_12_003 crossref_primary_10_1093_jcde_qwae089 crossref_primary_10_1016_j_eswa_2020_113428 crossref_primary_10_1109_ACCESS_2020_2983451 crossref_primary_10_1007_s00289_022_04626_z crossref_primary_10_1186_s40537_025_01116_7 crossref_primary_10_1080_17517575_2020_1830307 crossref_primary_10_1007_s10489_022_04155_2 crossref_primary_10_1007_s00500_022_07608_5 crossref_primary_10_1515_ijcre_2021_0069 crossref_primary_10_1016_j_eswa_2022_118642 crossref_primary_10_1016_j_engappai_2023_106868 crossref_primary_10_1016_j_asoc_2023_110055 crossref_primary_10_1016_j_enconman_2020_113661 crossref_primary_10_1007_s00366_020_01110_y crossref_primary_10_1109_ACCESS_2021_3052800 crossref_primary_10_1016_j_infrared_2022_104317 crossref_primary_10_1080_15397734_2020_1784201 crossref_primary_10_1109_ACCESS_2021_3108447 crossref_primary_10_1155_2021_6636955 crossref_primary_10_3390_electronics12112505 crossref_primary_10_1016_j_mlwa_2021_100054 crossref_primary_10_1016_j_measurement_2020_108837 crossref_primary_10_1093_bib_bbac194 crossref_primary_10_1016_j_compbiomed_2021_104609 crossref_primary_10_3390_sym12101651 crossref_primary_10_1371_journal_pone_0290332 crossref_primary_10_1155_2021_5569701 crossref_primary_10_1007_s13042_022_01537_3 crossref_primary_10_1111_exsy_12996 crossref_primary_10_1016_j_asoc_2024_112271 crossref_primary_10_1016_j_heliyon_2023_e22561 crossref_primary_10_1088_1402_4896_ad1739 crossref_primary_10_1109_ACCESS_2020_3044548 crossref_primary_10_1007_s40745_024_00571_y crossref_primary_10_7717_peerj_cs_1405 crossref_primary_10_1016_j_compbiomed_2021_105015 crossref_primary_10_3390_jmse9050524 crossref_primary_10_1080_15397734_2020_1772088 crossref_primary_10_1631_FITEE_2200237 crossref_primary_10_1016_j_gsf_2021_101230 crossref_primary_10_1109_ACCESS_2022_3145244 crossref_primary_10_1007_s00366_021_01356_0 crossref_primary_10_1016_j_ejrh_2021_100848 crossref_primary_10_1155_2021_5567638 crossref_primary_10_3389_fncom_2021_684373 crossref_primary_10_3390_su13042336 crossref_primary_10_1155_2022_7413081 crossref_primary_10_1007_s00500_020_05183_1 crossref_primary_10_1080_10255842_2021_2012655 crossref_primary_10_1140_epjp_s13360_021_01972_1 crossref_primary_10_1049_cmu2_12274 crossref_primary_10_1016_j_scs_2021_103164 crossref_primary_10_1038_s41598_022_08875_w crossref_primary_10_1007_s10948_021_05932_9 crossref_primary_10_1080_15376494_2020_1824284 crossref_primary_10_1155_2021_5564269 crossref_primary_10_1016_j_knosys_2020_106511 crossref_primary_10_1007_s11468_022_01611_0 crossref_primary_10_1016_j_knosys_2020_106510 crossref_primary_10_1371_journal_pone_0306090 crossref_primary_10_1016_j_apm_2020_05_019 crossref_primary_10_1002_er_7316 crossref_primary_10_1002_ett_4139 crossref_primary_10_3390_su13179898 crossref_primary_10_1016_j_cscee_2023_100372 crossref_primary_10_3390_e23030338 crossref_primary_10_1016_j_compbiomed_2021_105181 crossref_primary_10_1016_j_engappai_2022_105226 crossref_primary_10_1016_j_eswa_2020_113617 crossref_primary_10_1016_j_aej_2023_07_066 crossref_primary_10_1016_j_eswa_2020_113974 crossref_primary_10_1007_s00354_022_00158_2 crossref_primary_10_1016_j_knosys_2022_109615 crossref_primary_10_1109_ACCESS_2020_2988717 crossref_primary_10_1007_s42235_023_00447_6 crossref_primary_10_1016_j_compbiomed_2021_104427 crossref_primary_10_29001_2073_8552_2020_35_4_22_31 crossref_primary_10_1016_j_egyr_2020_12_013 crossref_primary_10_3390_en14061649 crossref_primary_10_1080_07391102_2020_1758211 crossref_primary_10_1109_ACCESS_2021_3052835 crossref_primary_10_1007_s40747_025_01791_2 crossref_primary_10_1080_10106049_2021_1926558 crossref_primary_10_1111_os_13406 crossref_primary_10_1155_2022_5245622 crossref_primary_10_1007_s11709_021_0785_x crossref_primary_10_3390_e22121406 crossref_primary_10_1109_ACCESS_2020_3007336 crossref_primary_10_1155_2021_5583125 crossref_primary_10_1109_ACCESS_2022_3212067 crossref_primary_10_1007_s00366_021_01359_x crossref_primary_10_1007_s42235_021_00114_8 crossref_primary_10_1016_j_infrared_2022_104488 crossref_primary_10_1109_ACCESS_2020_3024108 crossref_primary_10_1007_s40515_023_00343_w crossref_primary_10_1007_s00366_020_01119_3 crossref_primary_10_1016_j_engappai_2021_104608 crossref_primary_10_3390_s22114204 crossref_primary_10_1109_ACCESS_2020_3014309 crossref_primary_10_1007_s00500_020_05439_w crossref_primary_10_1155_2021_5598267 crossref_primary_10_1155_2023_3140270 crossref_primary_10_1016_j_cogsys_2020_04_001 crossref_primary_10_1016_j_asoc_2021_107574 crossref_primary_10_3390_en14185919 crossref_primary_10_1007_s00366_020_01074_z crossref_primary_10_1007_s10586_021_03412_2 crossref_primary_10_1007_s42235_024_00590_8 crossref_primary_10_1016_j_cmpb_2021_106444 crossref_primary_10_1007_s00366_020_01243_0 crossref_primary_10_29130_dubited_1016209 crossref_primary_10_1016_j_eswa_2020_113510 crossref_primary_10_1016_j_bspc_2021_103034 crossref_primary_10_1109_ACCESS_2024_3351943 crossref_primary_10_1016_j_compbiomed_2021_105054 crossref_primary_10_1109_ACCESS_2020_3047455 crossref_primary_10_1016_j_asoc_2024_111811 crossref_primary_10_1155_2021_4236572 crossref_primary_10_1016_j_sajce_2023_08_006 crossref_primary_10_1016_j_jksuci_2020_12_011 crossref_primary_10_3390_su132011466 crossref_primary_10_1007_s40430_020_02613_x crossref_primary_10_1109_ACCESS_2020_2978102 crossref_primary_10_1155_2021_4759461 |
Cites_doi | 10.1016/j.eswa.2019.03.043 10.1016/j.eswa.2011.01.120 10.1155/2017/9512741 10.1016/j.knosys.2016.01.002 10.1111/j.1468-0394.2007.00418.x 10.1016/j.eswa.2014.01.021 10.1109/ACCESS.2017.2741521 10.1080/00207721.2013.801096 10.1016/j.apm.2019.03.046 10.1109/TSMC.2016.2569474 10.1016/j.ins.2014.02.123 10.1007/s10916-018-1055-x 10.1016/j.eswa.2004.08.009 10.1016/j.apm.2019.02.004 10.1007/s10489-007-0073-z 10.1186/s12859-019-2771-z 10.1016/j.camwa.2006.07.013 10.1016/j.eswa.2007.02.002 10.1016/j.advengsoft.2016.01.008 10.1016/j.eswa.2019.113018 10.1109/ACCESS.2018.2876996 10.1038/s41598-017-10890-1 10.1016/j.compbiolchem.2018.11.017 10.1016/j.compbiomed.2015.02.003 10.1016/j.neucom.2017.04.060 10.1007/s00521-019-04015-0 10.1016/j.eswa.2011.03.066 10.1023/A:1012487302797 10.1162/089976603321891855 10.1145/1961189.1961199 10.1109/ACCESS.2019.2902306 10.1007/s10916-011-9723-0 10.1145/130385.130401 10.1016/j.eswa.2005.09.024 10.1080/15397734.2016.1213639 10.1093/brain/awm319 10.1016/j.neucom.2017.04.053 10.1016/j.apenergy.2017.05.029 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2019.105946 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2019_105946 S1568494619307276 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-b5d070e2fbe4a5b3d5fb67e531a3d9345688a2349efd90dc0582dce0be0e1ddb3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:11:26 EDT 2025 Tue Jul 01 01:50:04 EDT 2025 Fri Feb 23 02:49:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-swarm Whale optimization algorithm Support vector machine Medical diagnosis Model selection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-b5d070e2fbe4a5b3d5fb67e531a3d9345688a2349efd90dc0582dce0be0e1ddb3 |
ORCID | 0000-0002-7714-9693 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2019_105946 crossref_citationtrail_10_1016_j_asoc_2019_105946 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kaveh, Ghazaan (b31) 2017; 45 Chen (b18) 2019 Shen (b49) 2016; 96 Hu (b54) 2015; 59 Chen (b3) 2011; 38 Liu (b47) 2015; 46 Fu (b14) 2014 Xu (b44) 2019; 129 Huang (b17) 2019; 20 Gold, Sollich (b11) 2002; 55 Saremi, Mirjalili, Lewis (b39) 2014 Heidari (b24) 2019 Elaziz (b28) 2017; 7 B.E. Boser, A training algorithm for optimal margin classifiers, in: ACM Fifth Workshop on Computational Lerning Theory, Pittsburgh, 1992. Chen (b19) 2011; 38 Wang (b34) 2017; 267 Chen (b40) 2019 Zhang (b42) 2019; 7 Chen (b13) 2014; 239 Huang, Wang (b16) 2006; 31 Chen (b22) 2019; 71 Yu (b43) 2019 Klöppel (b52) 2008; 131 Oliva, Aziz, Hassanien (b27) 2017; 200 Harikarthik, Palanisamy, Ramanathan (b29) 2017 Guyon (b51) 2002; 46 Hassan, Hassanien (b30) 2017 Zhang (b45) 2018; 6 Shin, Lee, Kim (b6) 2005; 28 Mirjalili, Lewis (b21) 2016; 95 Rahnamayan, Tizhoosh, Salama (b36) 2007; 53 Zhao (b41) 2019; 78 Frieb, Harrison (b5) 1998 Chen (b23) 2019 Maglogiannis, Zafiropoulos, Anagnostopoulos (b8) 2009; 30 Luo (b25) 2019; 73 B. Scholkopf, C.J.C. Burges, A.J. Smola, Advances in Kernel Methods - Support Vector Learning. 174 (4) (1998) 1097-105. Li (b20) 2017; 2017 Mafarja, Mirjalili (b32) 2017; 260 Wang (b46) 2014; 274 Chen (b7) 2012; 36 Huang, Huang, Wang (b38) 2017; 47 Karthikeyan, Alli (b48) 2018; 42 Chen (b4) 2011; 38 Vapnik, Vladimir (b2) 2002; 8 Cai, Gu, Chen (b15) 2017; 5 Chen (b50) 2014; 239 Wu (b33) 2017 Chang, Lin (b12) 2011; 2 Aljarah, Faris, Mirjalili (b26) 2016 El-Dahshan (b53) 2014; 41 Keerthi, Lin (b10) 2003; 15 Uuml, Beyli (b9) 2007; 24 Coelho, Mariani (b37) 2008; 34 Chen (10.1016/j.asoc.2019.105946_b3) 2011; 38 Huang (10.1016/j.asoc.2019.105946_b16) 2006; 31 Rahnamayan (10.1016/j.asoc.2019.105946_b36) 2007; 53 Mirjalili (10.1016/j.asoc.2019.105946_b21) 2016; 95 Huang (10.1016/j.asoc.2019.105946_b17) 2019; 20 Gold (10.1016/j.asoc.2019.105946_b11) 2002; 55 Xu (10.1016/j.asoc.2019.105946_b44) 2019; 129 Cai (10.1016/j.asoc.2019.105946_b15) 2017; 5 Wang (10.1016/j.asoc.2019.105946_b46) 2014; 274 Fu (10.1016/j.asoc.2019.105946_b14) 2014 Chen (10.1016/j.asoc.2019.105946_b23) 2019 Maglogiannis (10.1016/j.asoc.2019.105946_b8) 2009; 30 Kaveh (10.1016/j.asoc.2019.105946_b31) 2017; 45 Shen (10.1016/j.asoc.2019.105946_b49) 2016; 96 Frieb (10.1016/j.asoc.2019.105946_b5) 1998 Shin (10.1016/j.asoc.2019.105946_b6) 2005; 28 Klöppel (10.1016/j.asoc.2019.105946_b52) 2008; 131 Vapnik (10.1016/j.asoc.2019.105946_b2) 2002; 8 Karthikeyan (10.1016/j.asoc.2019.105946_b48) 2018; 42 Elaziz (10.1016/j.asoc.2019.105946_b28) 2017; 7 10.1016/j.asoc.2019.105946_b1 Chang (10.1016/j.asoc.2019.105946_b12) 2011; 2 10.1016/j.asoc.2019.105946_b35 El-Dahshan (10.1016/j.asoc.2019.105946_b53) 2014; 41 Oliva (10.1016/j.asoc.2019.105946_b27) 2017; 200 Huang (10.1016/j.asoc.2019.105946_b38) 2017; 47 Yu (10.1016/j.asoc.2019.105946_b43) 2019 Keerthi (10.1016/j.asoc.2019.105946_b10) 2003; 15 Zhang (10.1016/j.asoc.2019.105946_b42) 2019; 7 Chen (10.1016/j.asoc.2019.105946_b19) 2011; 38 Chen (10.1016/j.asoc.2019.105946_b18) 2019 Chen (10.1016/j.asoc.2019.105946_b40) 2019 Luo (10.1016/j.asoc.2019.105946_b25) 2019; 73 Harikarthik (10.1016/j.asoc.2019.105946_b29) 2017 Saremi (10.1016/j.asoc.2019.105946_b39) 2014 Chen (10.1016/j.asoc.2019.105946_b7) 2012; 36 Chen (10.1016/j.asoc.2019.105946_b50) 2014; 239 Guyon (10.1016/j.asoc.2019.105946_b51) 2002; 46 Wang (10.1016/j.asoc.2019.105946_b34) 2017; 267 Mafarja (10.1016/j.asoc.2019.105946_b32) 2017; 260 Zhao (10.1016/j.asoc.2019.105946_b41) 2019; 78 Chen (10.1016/j.asoc.2019.105946_b4) 2011; 38 Uuml (10.1016/j.asoc.2019.105946_b9) 2007; 24 Heidari (10.1016/j.asoc.2019.105946_b24) 2019 Chen (10.1016/j.asoc.2019.105946_b22) 2019; 71 Aljarah (10.1016/j.asoc.2019.105946_b26) 2016 Zhang (10.1016/j.asoc.2019.105946_b45) 2018; 6 Coelho (10.1016/j.asoc.2019.105946_b37) 2008; 34 Hassan (10.1016/j.asoc.2019.105946_b30) 2017 Chen (10.1016/j.asoc.2019.105946_b13) 2014; 239 Li (10.1016/j.asoc.2019.105946_b20) 2017; 2017 Hu (10.1016/j.asoc.2019.105946_b54) 2015; 59 Wu (10.1016/j.asoc.2019.105946_b33) 2017 Liu (10.1016/j.asoc.2019.105946_b47) 2015; 46 |
References_xml | – volume: 15 start-page: 1667 year: 2003 ident: b10 article-title: Asymptotic behaviors of support vector machines with Gaussian kernel publication-title: Neural Comput. – volume: 20 start-page: 290 year: 2019 ident: b17 article-title: A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features publication-title: BMC Bioinformatics – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: b52 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain – volume: 129 start-page: 135 year: 2019 end-page: 155 ident: b44 article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks publication-title: Expert Syst. Appl. – volume: 47 start-page: 1229 year: 2017 end-page: 1240 ident: b38 article-title: Chaos and bifurcation control of torque-stiffness-controlled dynamic bipedal walking publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 8 year: 2002 ident: b2 article-title: The nature of statistical learning theory publication-title: IEEE Trans. Neural Netw. – year: 2017 ident: b33 article-title: Path planning for solar-powered UAV in urban environment publication-title: Neurocomputing – year: 2019 ident: b40 article-title: Parameters identification of photovoltaic cells and modules using diversification-enriched harris hawks optimization with chaotic drifts publication-title: J. Cleaner Prod. – volume: 239 start-page: 180 year: 2014 end-page: 197 ident: b13 article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy publication-title: Appl. Math. Comput. – volume: 7 year: 2017 ident: b28 article-title: Analysis of bioactive amino acids from fish hydrolysates with a new bioinformatic intelligent system approach publication-title: Sci. Rep. – reference: B.E. Boser, A training algorithm for optimal margin classifiers, in: ACM Fifth Workshop on Computational Lerning Theory, Pittsburgh, 1992. – start-page: 1 year: 2017 end-page: 10 ident: b29 article-title: Optimal test suite selection in regression testing with testcase prioritization using modified Ann and Whale optimization algorithm publication-title: Cluster Comput. – year: 2019 ident: b43 article-title: Chaos-enhanced synchronized bat optimizer publication-title: Appl. Math. Model. – year: 1998 ident: b5 article-title: Support vector neural networks – volume: 38 start-page: 9014 year: 2011 end-page: 9022 ident: b4 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Syst. Appl. – volume: 267 start-page: 69 year: 2017 end-page: 84 ident: b34 article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses publication-title: Neurocomputing – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b21 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – year: 2019 ident: b24 article-title: An enhanced associative learning-based exploratory whale optimizer for global optimization publication-title: Neural Comput. Appl. – volume: 46 start-page: 919 year: 2015 end-page: 931 ident: b47 article-title: A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection publication-title: Internat. J. Systems Sci. – volume: 55 start-page: 221 year: 2002 end-page: 249 ident: b11 article-title: Model selection for support vector machine classification publication-title: Neurocomputing – volume: 45 start-page: 345 year: 2017 end-page: 362 ident: b31 article-title: Enhanced whale optimization algorithm for sizing optimization of skeletal structures publication-title: Mech. Based Des. Struct. Mach. – volume: 200 start-page: 141 year: 2017 end-page: 154 ident: b27 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energy – volume: 5 start-page: 17188 year: 2017 end-page: 17200 ident: b15 article-title: A new hybrid intelligent framework for predicting parkinson’s disease publication-title: IEEE Access – volume: 6 start-page: 64905 year: 2018 end-page: 64919 ident: b45 article-title: Chaos enhanced bacterial foraging optimization for global optimization publication-title: IEEE Access – volume: 96 start-page: 61 year: 2016 end-page: 75 ident: b49 article-title: Evolving support vector machines using fruit fly optimization for medical data classification publication-title: Knowl.-Based Syst. – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b32 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – reference: B. Scholkopf, C.J.C. Burges, A.J. Smola, Advances in Kernel Methods - Support Vector Learning. 174 (4) (1998) 1097-105. – volume: 34 start-page: 1905 year: 2008 end-page: 1913 ident: b37 article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization publication-title: Expert Syst. Appl. – start-page: 1 year: 2017 end-page: 8 ident: b30 article-title: Retinal fundus vasculature multilevel segmentation using whale optimization algorithm publication-title: Signal Image Video Process. – volume: 31 start-page: 231 year: 2006 end-page: 240 ident: b16 article-title: A GA-based feature selection and parameters optimizationfor support vector machines publication-title: Expert Syst. Appl. – volume: 274 start-page: 17 year: 2014 end-page: 34 ident: b46 article-title: Chaotic krill herd algorithm publication-title: Inform. Sci. – volume: 38 start-page: 11796 year: 2011 end-page: 11803 ident: b3 article-title: A new hybrid method based on local fisher discriminant analysis and support vector machines for hepatitis disease diagnosis publication-title: Expert Syst. Appl. – volume: 71 start-page: 45 year: 2019 end-page: 59 ident: b22 article-title: A balanced whale optimization algorithm for constrained engineering design problems publication-title: Appl. Math. Model. – year: 2019 ident: b23 article-title: An efficient double adaptive random spare reinforced whale optimization algorithm publication-title: Expert Syst. Appl. – volume: 53 start-page: 1605 year: 2007 end-page: 1614 ident: b36 article-title: A novel population initialization method for accelerating evolutionary algorithms publication-title: Comput. Math. Appl. – volume: 2017 start-page: 15 year: 2017 ident: b20 article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis publication-title: Comput. Math. Methods Med. – volume: 41 start-page: 5526 year: 2014 end-page: 5545 ident: b53 article-title: Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm publication-title: Expert Syst. Appl. – volume: 24 start-page: 17 year: 2007 end-page: 31 ident: b9 article-title: Comparison of different classification algorithms in clinical decision-making publication-title: Expert Syst. – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: b12 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 73 start-page: 109 year: 2019 end-page: 123 ident: b25 article-title: Multi-strategy boosted mutative whale-inspired optimization approaches publication-title: Appl. Math. Model. – start-page: 42 year: 2014 end-page: 49 ident: b14 article-title: A New Evolutionary Support Vector Machine with Application To Parkinson’s Disease Diagnosis – volume: 239 start-page: 180 year: 2014 end-page: 197 ident: b50 article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy publication-title: Appl. Math. Comput. – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: b51 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – start-page: 1077 year: 2014 end-page: 1097 ident: b39 article-title: Biogeography-Based Optimisation with Chaos – volume: 42 year: 2018 ident: b48 article-title: Feature selection and parameters optimization of support vector machines based on hybrid glowworm swarm optimization for classification of diabetic retinopathy publication-title: J. Med. Syst. – volume: 78 start-page: 481 year: 2019 end-page: 490 ident: b41 article-title: Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients publication-title: Comput. Biol. Chem. – volume: 30 start-page: 24 year: 2009 end-page: 36 ident: b8 article-title: An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers publication-title: Appl. Intell. – start-page: 1 year: 2016 end-page: 15 ident: b26 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Comput. – volume: 38 start-page: 9014 year: 2011 end-page: 9022 ident: b19 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Syst. Appl. – volume: 59 start-page: 116 year: 2015 end-page: 124 ident: b54 article-title: An efficient machine learning approach for diagnosis of paraquat-poisoned patients publication-title: Comput. Biol. Med. – year: 2019 ident: b18 article-title: Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines publication-title: Expert Syst. Appl. – volume: 28 start-page: 127 year: 2005 end-page: 135 ident: b6 article-title: An application of support vector machines in bankruptcy prediction model publication-title: Expert Syst. Appl. – volume: 36 start-page: 2505 year: 2012 end-page: 2519 ident: b7 article-title: Support vector machine based diagnostic system for breast Cancer using swarm intelligence publication-title: J. Med. Syst. – volume: 7 start-page: 31243 year: 2019 end-page: 31261 ident: b42 article-title: Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers publication-title: IEEE Access – year: 2019 ident: 10.1016/j.asoc.2019.105946_b18 article-title: Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines publication-title: Expert Syst. Appl. – volume: 129 start-page: 135 year: 2019 ident: 10.1016/j.asoc.2019.105946_b44 article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.043 – volume: 8 issue: 6 year: 2002 ident: 10.1016/j.asoc.2019.105946_b2 article-title: The nature of statistical learning theory publication-title: IEEE Trans. Neural Netw. – volume: 38 start-page: 9014 issue: 7 year: 2011 ident: 10.1016/j.asoc.2019.105946_b4 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.120 – volume: 2017 start-page: 15 year: 2017 ident: 10.1016/j.asoc.2019.105946_b20 article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis publication-title: Comput. Math. Methods Med. doi: 10.1155/2017/9512741 – year: 2017 ident: 10.1016/j.asoc.2019.105946_b33 article-title: Path planning for solar-powered UAV in urban environment publication-title: Neurocomputing – volume: 96 start-page: 61 year: 2016 ident: 10.1016/j.asoc.2019.105946_b49 article-title: Evolving support vector machines using fruit fly optimization for medical data classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.01.002 – volume: 24 start-page: 17 issue: 1 year: 2007 ident: 10.1016/j.asoc.2019.105946_b9 article-title: Comparison of different classification algorithms in clinical decision-making publication-title: Expert Syst. doi: 10.1111/j.1468-0394.2007.00418.x – start-page: 1 year: 2016 ident: 10.1016/j.asoc.2019.105946_b26 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Comput. – volume: 41 start-page: 5526 issue: 11 year: 2014 ident: 10.1016/j.asoc.2019.105946_b53 article-title: Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.01.021 – start-page: 1077 year: 2014 ident: 10.1016/j.asoc.2019.105946_b39 – year: 1998 ident: 10.1016/j.asoc.2019.105946_b5 – volume: 55 start-page: 221 issue: 1 year: 2002 ident: 10.1016/j.asoc.2019.105946_b11 article-title: Model selection for support vector machine classification publication-title: Neurocomputing – volume: 5 start-page: 17188 year: 2017 ident: 10.1016/j.asoc.2019.105946_b15 article-title: A new hybrid intelligent framework for predicting parkinson’s disease publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2741521 – volume: 46 start-page: 919 issue: 5 year: 2015 ident: 10.1016/j.asoc.2019.105946_b47 article-title: A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection publication-title: Internat. J. Systems Sci. doi: 10.1080/00207721.2013.801096 – volume: 73 start-page: 109 year: 2019 ident: 10.1016/j.asoc.2019.105946_b25 article-title: Multi-strategy boosted mutative whale-inspired optimization approaches publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.03.046 – volume: 47 start-page: 1229 issue: 7 year: 2017 ident: 10.1016/j.asoc.2019.105946_b38 article-title: Chaos and bifurcation control of torque-stiffness-controlled dynamic bipedal walking publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2569474 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2019.105946_b30 article-title: Retinal fundus vasculature multilevel segmentation using whale optimization algorithm publication-title: Signal Image Video Process. – volume: 274 start-page: 17 year: 2014 ident: 10.1016/j.asoc.2019.105946_b46 article-title: Chaotic krill herd algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.02.123 – volume: 42 issue: 10 year: 2018 ident: 10.1016/j.asoc.2019.105946_b48 article-title: Feature selection and parameters optimization of support vector machines based on hybrid glowworm swarm optimization for classification of diabetic retinopathy publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1055-x – volume: 28 start-page: 127 issue: 1 year: 2005 ident: 10.1016/j.asoc.2019.105946_b6 article-title: An application of support vector machines in bankruptcy prediction model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2004.08.009 – volume: 239 start-page: 180 issue: 8 year: 2014 ident: 10.1016/j.asoc.2019.105946_b13 article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy publication-title: Appl. Math. Comput. – volume: 71 start-page: 45 year: 2019 ident: 10.1016/j.asoc.2019.105946_b22 article-title: A balanced whale optimization algorithm for constrained engineering design problems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.02.004 – start-page: 42 year: 2014 ident: 10.1016/j.asoc.2019.105946_b14 – volume: 30 start-page: 24 issue: 1 year: 2009 ident: 10.1016/j.asoc.2019.105946_b8 article-title: An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers publication-title: Appl. Intell. doi: 10.1007/s10489-007-0073-z – volume: 20 start-page: 290 issue: 8 year: 2019 ident: 10.1016/j.asoc.2019.105946_b17 article-title: A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2771-z – volume: 53 start-page: 1605 issue: 10 year: 2007 ident: 10.1016/j.asoc.2019.105946_b36 article-title: A novel population initialization method for accelerating evolutionary algorithms publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2006.07.013 – volume: 34 start-page: 1905 issue: 3 year: 2008 ident: 10.1016/j.asoc.2019.105946_b37 article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.02.002 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.asoc.2019.105946_b21 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – year: 2019 ident: 10.1016/j.asoc.2019.105946_b23 article-title: An efficient double adaptive random spare reinforced whale optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113018 – volume: 6 start-page: 64905 year: 2018 ident: 10.1016/j.asoc.2019.105946_b45 article-title: Chaos enhanced bacterial foraging optimization for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2876996 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.asoc.2019.105946_b28 article-title: Analysis of bioactive amino acids from fish hydrolysates with a new bioinformatic intelligent system approach publication-title: Sci. Rep. doi: 10.1038/s41598-017-10890-1 – volume: 78 start-page: 481 year: 2019 ident: 10.1016/j.asoc.2019.105946_b41 article-title: Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2018.11.017 – ident: 10.1016/j.asoc.2019.105946_b35 – volume: 59 start-page: 116 issue: C year: 2015 ident: 10.1016/j.asoc.2019.105946_b54 article-title: An efficient machine learning approach for diagnosis of paraquat-poisoned patients publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.02.003 – year: 2019 ident: 10.1016/j.asoc.2019.105946_b40 article-title: Parameters identification of photovoltaic cells and modules using diversification-enriched harris hawks optimization with chaotic drifts publication-title: J. Cleaner Prod. – volume: 267 start-page: 69 year: 2017 ident: 10.1016/j.asoc.2019.105946_b34 article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.060 – year: 2019 ident: 10.1016/j.asoc.2019.105946_b43 article-title: Chaos-enhanced synchronized bat optimizer publication-title: Appl. Math. Model. – year: 2019 ident: 10.1016/j.asoc.2019.105946_b24 article-title: An enhanced associative learning-based exploratory whale optimizer for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04015-0 – volume: 38 start-page: 11796 issue: 9 year: 2011 ident: 10.1016/j.asoc.2019.105946_b3 article-title: A new hybrid method based on local fisher discriminant analysis and support vector machines for hepatitis disease diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.03.066 – volume: 46 start-page: 389 issue: 1–3 year: 2002 ident: 10.1016/j.asoc.2019.105946_b51 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 15 start-page: 1667 issue: 7 year: 2003 ident: 10.1016/j.asoc.2019.105946_b10 article-title: Asymptotic behaviors of support vector machines with Gaussian kernel publication-title: Neural Comput. doi: 10.1162/089976603321891855 – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.asoc.2019.105946_b12 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2019.105946_b29 article-title: Optimal test suite selection in regression testing with testcase prioritization using modified Ann and Whale optimization algorithm publication-title: Cluster Comput. – volume: 7 start-page: 31243 year: 2019 ident: 10.1016/j.asoc.2019.105946_b42 article-title: Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902306 – volume: 239 start-page: 180 year: 2014 ident: 10.1016/j.asoc.2019.105946_b50 article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy publication-title: Appl. Math. Comput. – volume: 36 start-page: 2505 issue: 4 year: 2012 ident: 10.1016/j.asoc.2019.105946_b7 article-title: Support vector machine based diagnostic system for breast Cancer using swarm intelligence publication-title: J. Med. Syst. doi: 10.1007/s10916-011-9723-0 – volume: 38 start-page: 9014 issue: 7 year: 2011 ident: 10.1016/j.asoc.2019.105946_b19 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.120 – ident: 10.1016/j.asoc.2019.105946_b1 doi: 10.1145/130385.130401 – volume: 31 start-page: 231 issue: 2 year: 2006 ident: 10.1016/j.asoc.2019.105946_b16 article-title: A GA-based feature selection and parameters optimizationfor support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.024 – volume: 45 start-page: 345 issue: 3 year: 2017 ident: 10.1016/j.asoc.2019.105946_b31 article-title: Enhanced whale optimization algorithm for sizing optimization of skeletal structures publication-title: Mech. Based Des. Struct. Mach. doi: 10.1080/15397734.2016.1213639 – volume: 131 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.asoc.2019.105946_b52 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.asoc.2019.105946_b32 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 200 start-page: 141 year: 2017 ident: 10.1016/j.asoc.2019.105946_b27 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.029 |
SSID | ssj0016928 |
Score | 2.6721616 |
Snippet | Support vector machine (SVM) is a widely used pattern classification method that its classification accuracy is greatly influenced by both kernel parameter... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105946 |
SubjectTerms | Medical diagnosis Model selection Multi-swarm Support vector machine Whale optimization algorithm |
Title | Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis |
URI | https://dx.doi.org/10.1016/j.asoc.2019.105946 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OBNYveRfeRYiqW-iqiF3pbNZpZW7IM-LHjwtzuzj6IgPXjaZZnA8jGZfJN8mWHs0gfbTz3tCpUqKWSSgggVWAKZvgIbTOBne7qPXb_Tk3d9r19hrfIuDMkqi9ifx_QsWhdfGgWajelw2HjBzCOUSmIGgH7qBFR2W8qAvPz6ay3zsH2V9VclY0HWxcWZXOMVIwIk71LU7lYRCf5rcfqx4LT32E7BFHkz_5l9VoHxAdstuzDwYlIesn5rEE_QhmfaQDFfxbMRXw0w8PMJxoPR8BOtkUvTviafL6dEuPlHtlnPR5mUEnhK7_mRDTe5-G44P2K99s1rqyOKfgkicS1rIbRncAKDk2qQMeJvvFT7AeAsi12jXKRKYRg7rlSQGmWZxPJCxyRgabDANka7x6w6nozhhHGpjePpwJhAImUxQRz6BoJYKxkmdBZbY3YJVJQUxcSpp8V7VKrG3iICNyJwoxzcGrtaj5nmpTQ2Wnsl_tEvh4gw1m8Yd_rPcWds26FUOpOXnbPqYraEC-QbC13PHKrOtpqt54cnet7ed7rf2bvX6A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HvTiW3y7B2-yNE02jz2WYkl99KKF3kI2O6EV-6CtFvz1ziaboiA9eAthBsKX3dlvZ77dAbgNsBHkvvK4zKXgIsuRRxIdTkxfYgN1GBQ53eduEPfEQ9_vb0CrOgtjZJU29pcxvYjW9k3dolmfDof1F9p5REIK2gHQOHXDYBO2zO1Ufg22mp3HuLsqJgSyaLFq7LlxsGdnSplXSiAYhZc0HW-l4cF_rU8_1pz2Puxassia5fccwAaOD2GvasTA7Lw8gn5rkE7IhhXyQD5fprMRWw4o9rMJhYTR8IusiU6b1Cabf0wN52afRb6ejQo1JbLcPJdVG6ZL_d1wfgy99v1rK-a2ZQLPPMdZcOVrmsPo5gpFSr9A-7kKQqSJlnpaesSWoih1PSEx19LRmeNHrs7QUehgQ2vlnUBtPBnjKTChtOurUOtQEGvRYRoFGsNUSRFlphx7Bo0KqCSz94mbthbvSSUce0sMuIkBNynBPYO7lc-0vE1jrbVf4Z_8GhMJhfs1fuf_9LuB7fj1-Sl56nQfL2DHNTvrQm12CbXF7AOviH4s1LUdXt-EetkE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+multi-swarm+whale+optimizer+boosted+support+vector+machine+for+medical+diagnosis&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Mingjing&rft.au=Chen%2C+Huiling&rft.date=2020-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=88&rft_id=info:doi/10.1016%2Fj.asoc.2019.105946&rft.externalDocID=S1568494619307276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |