Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis

Support vector machine (SVM) is a widely used pattern classification method that its classification accuracy is greatly influenced by both kernel parameter setting and feature selection. Therefore, in this study, to perform parameter optimization and feature selection simultaneously for SVM, we prop...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 88; p. 105946
Main Authors Wang, Mingjing, Chen, Huiling
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Support vector machine (SVM) is a widely used pattern classification method that its classification accuracy is greatly influenced by both kernel parameter setting and feature selection. Therefore, in this study, to perform parameter optimization and feature selection simultaneously for SVM, we propose an improved whale optimization algorithm (CMWOA), which combines chaotic and multi-swarm strategies. Using several well-known medical diagnosis problems of breast cancer, diabetes, and erythemato-squamous, the proposed SVM model, termed CMWOAFS-SVM, was compared with multiple competitive SVM models based on other optimization algorithms including the original algorithm, particle swarm optimization, bacterial foraging optimization, and genetic algorithms. The experimental results demonstrate that CMWOAFS-SVM significantly outperformed all the other competitors in terms of classification performance and feature subset size. [Display omitted] •A multi-swarms with stratified mechanism is introduced to construct a multi-swarms WOA.•Chaos population initialization and self-adaption chaotic disturbance mechanism are introduced.•The proposed method has tackled the parameter optimization and feature selection.
AbstractList Support vector machine (SVM) is a widely used pattern classification method that its classification accuracy is greatly influenced by both kernel parameter setting and feature selection. Therefore, in this study, to perform parameter optimization and feature selection simultaneously for SVM, we propose an improved whale optimization algorithm (CMWOA), which combines chaotic and multi-swarm strategies. Using several well-known medical diagnosis problems of breast cancer, diabetes, and erythemato-squamous, the proposed SVM model, termed CMWOAFS-SVM, was compared with multiple competitive SVM models based on other optimization algorithms including the original algorithm, particle swarm optimization, bacterial foraging optimization, and genetic algorithms. The experimental results demonstrate that CMWOAFS-SVM significantly outperformed all the other competitors in terms of classification performance and feature subset size. [Display omitted] •A multi-swarms with stratified mechanism is introduced to construct a multi-swarms WOA.•Chaos population initialization and self-adaption chaotic disturbance mechanism are introduced.•The proposed method has tackled the parameter optimization and feature selection.
ArticleNumber 105946
Author Chen, Huiling
Wang, Mingjing
Author_xml – sequence: 1
  givenname: Mingjing
  surname: Wang
  fullname: Wang, Mingjing
  email: mingjingwang@duytan.edu.vn
  organization: Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
– sequence: 2
  givenname: Huiling
  orcidid: 0000-0002-7714-9693
  surname: Chen
  fullname: Chen, Huiling
  email: chenhuiling.jlu@gmail.com
  organization: College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP2BX8isWdFNCXxDopoXuhCyNmwm2ZSQlof36yqSrLrKay4UzzJwFmQ12AEJuOUs549XdLlXe6jRjXMSiFEV1Qea8XmWJqGo-i7ms6qSI_RVZeL9jERJZPSef662yATXt913AxB-V6-lxqzqgdgzY4w842ljrAxjq9-NoXaAH0ME62iu9xQFoO2UwqFVHDaqvwXr01-SyVZ2Hm7-5JB9Pj-_rl2Tz9vy6ftgkOmcsJE1p2IpB1jZQqLLJTdk21QrKnKvciLyIZ9cqywsBrRHMaFbWmdHAGmDAjWnyJclOe7Wz3jto5eiwV-5bciYnN3InJzdyciNPbiJU_4M0BhXQDsEp7M6j9ycU4lMHBCe9Rhh0_N9FLdJYPIf_ApMBhHs
CitedBy_id crossref_primary_10_1155_2021_8899188
crossref_primary_10_1007_s00366_020_01028_5
crossref_primary_10_1155_2021_5545307
crossref_primary_10_1016_j_matcom_2020_06_012
crossref_primary_10_1007_s11468_021_01520_8
crossref_primary_10_1007_s11770_024_1039_1
crossref_primary_10_1016_j_eswa_2020_113486
crossref_primary_10_3390_math10224197
crossref_primary_10_1007_s00521_025_11016_9
crossref_primary_10_1016_j_bspc_2021_103223
crossref_primary_10_1016_j_matcom_2021_04_006
crossref_primary_10_1155_2020_4968063
crossref_primary_10_3390_jcm12206489
crossref_primary_10_1016_j_jksuci_2021_09_019
crossref_primary_10_1007_s00500_021_06101_9
crossref_primary_10_3390_s22218281
crossref_primary_10_1016_j_compbiomed_2021_104698
crossref_primary_10_1016_j_compbiomed_2023_106631
crossref_primary_10_1016_j_bspc_2023_105879
crossref_primary_10_1016_j_knosys_2023_111351
crossref_primary_10_3390_math11163496
crossref_primary_10_1007_s00366_020_01152_2
crossref_primary_10_35940_ijitee_F9906_0511622
crossref_primary_10_1016_j_bspc_2024_107431
crossref_primary_10_1007_s10462_020_09860_3
crossref_primary_10_1515_revic_2021_0007
crossref_primary_10_1016_j_tws_2020_106840
crossref_primary_10_1016_j_ijleo_2021_168513
crossref_primary_10_1007_s12668_023_01075_4
crossref_primary_10_1140_epjp_s13360_020_00764_3
crossref_primary_10_1016_j_microc_2025_112709
crossref_primary_10_1038_s41598_021_96501_6
crossref_primary_10_37394_232016_2022_17_30
crossref_primary_10_1016_j_egyr_2021_08_191
crossref_primary_10_1016_j_neucom_2022_10_078
crossref_primary_10_3390_en14051331
crossref_primary_10_1016_j_energy_2021_121164
crossref_primary_10_1155_2021_5551320
crossref_primary_10_1007_s00500_023_09283_6
crossref_primary_10_1016_j_compbiomed_2022_106227
crossref_primary_10_1016_j_eswa_2022_116511
crossref_primary_10_1080_00051144_2021_2014037
crossref_primary_10_3390_electronics10172115
crossref_primary_10_1016_j_egyr_2021_07_041
crossref_primary_10_1016_j_eswa_2023_121844
crossref_primary_10_1007_s11277_021_08368_5
crossref_primary_10_3390_math10020276
crossref_primary_10_1016_j_knosys_2021_107529
crossref_primary_10_1007_s10562_020_03333_6
crossref_primary_10_1007_s00366_020_01140_6
crossref_primary_10_1007_s00366_021_01542_0
crossref_primary_10_1016_j_compbiomed_2023_107293
crossref_primary_10_1016_j_compstruct_2020_112737
crossref_primary_10_1007_s10044_023_01203_6
crossref_primary_10_1007_s11468_021_01527_1
crossref_primary_10_3389_fevo_2023_1122682
crossref_primary_10_1007_s00366_020_01083_y
crossref_primary_10_1016_j_compstruct_2020_113146
crossref_primary_10_1016_j_neucom_2020_10_038
crossref_primary_10_3390_catal11091099
crossref_primary_10_1007_s00366_020_01234_1
crossref_primary_10_1155_2021_8500572
crossref_primary_10_3390_electronics10232975
crossref_primary_10_3390_electronics10212689
crossref_primary_10_3390_su13179990
crossref_primary_10_1007_s00366_021_01363_1
crossref_primary_10_1007_s12065_022_00776_1
crossref_primary_10_1109_ACCESS_2021_3079204
crossref_primary_10_1155_2021_6636794
crossref_primary_10_1111_exsy_12914
crossref_primary_10_1016_j_engappai_2021_104653
crossref_primary_10_3390_diagnostics11101870
crossref_primary_10_1016_j_tws_2020_107111
crossref_primary_10_1016_j_eswa_2020_114369
crossref_primary_10_1007_s00366_020_01200_x
crossref_primary_10_1002_cnm_3525
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_1080_10106049_2021_1948109
crossref_primary_10_3390_e25081128
crossref_primary_10_3390_math8091636
crossref_primary_10_3390_s21196654
crossref_primary_10_1016_j_compstruct_2020_112990
crossref_primary_10_1016_j_bspc_2023_104638
crossref_primary_10_1007_s42823_021_00276_9
crossref_primary_10_1007_s00366_021_01448_x
crossref_primary_10_1016_j_energy_2021_121865
crossref_primary_10_1002_int_22658
crossref_primary_10_1016_j_renene_2020_11_152
crossref_primary_10_1016_j_envpol_2020_115216
crossref_primary_10_3390_bioengineering12030238
crossref_primary_10_1016_j_asoc_2020_106672
crossref_primary_10_32604_cmc_2022_024989
crossref_primary_10_1016_j_matcom_2020_09_027
crossref_primary_10_1016_j_eswa_2020_114418
crossref_primary_10_1155_2021_8878686
crossref_primary_10_1016_j_rico_2023_100276
crossref_primary_10_1007_s00521_020_05231_9
crossref_primary_10_1016_j_infrared_2022_104180
crossref_primary_10_3934_mbe_2022184
crossref_primary_10_1515_ijcre_2021_0168
crossref_primary_10_1016_j_aej_2024_09_109
crossref_primary_10_1155_2021_4988577
crossref_primary_10_1016_j_est_2024_114497
crossref_primary_10_1155_2021_9974219
crossref_primary_10_1002_int_22744
crossref_primary_10_3390_en14041196
crossref_primary_10_1007_s11082_021_03168_4
crossref_primary_10_1007_s00366_021_01289_8
crossref_primary_10_1007_s42235_021_0068_1
crossref_primary_10_1007_s42235_022_00297_8
crossref_primary_10_1080_07391102_2020_1760939
crossref_primary_10_1016_j_measurement_2020_108032
crossref_primary_10_1109_ACCESS_2020_3003366
crossref_primary_10_3390_math10224387
crossref_primary_10_1007_s13204_021_02159_x
crossref_primary_10_1016_j_bspc_2022_103701
crossref_primary_10_1155_2021_5425569
crossref_primary_10_1016_j_eswax_2020_100032
crossref_primary_10_1007_s00366_020_01166_w
crossref_primary_10_1016_j_jmrt_2021_05_013
crossref_primary_10_1155_2021_1188414
crossref_primary_10_1007_s11042_023_15186_3
crossref_primary_10_1111_coin_12522
crossref_primary_10_1155_2020_4873501
crossref_primary_10_1155_2021_6675638
crossref_primary_10_1007_s00366_020_01252_z
crossref_primary_10_1016_j_cscee_2023_100428
crossref_primary_10_1016_j_autcon_2024_105361
crossref_primary_10_3390_app10093251
crossref_primary_10_1007_s00366_020_01088_7
crossref_primary_10_1007_s11276_021_02804_x
crossref_primary_10_1111_exsy_12785
crossref_primary_10_1002_for_2870
crossref_primary_10_1016_j_compbiomed_2021_104910
crossref_primary_10_3390_math12233872
crossref_primary_10_1007_s00366_020_01042_7
crossref_primary_10_1515_ijcre_2021_0145
crossref_primary_10_1016_j_enconman_2020_112764
crossref_primary_10_1016_j_eswa_2022_117993
crossref_primary_10_1016_j_inffus_2021_11_006
crossref_primary_10_1016_j_compbiomed_2022_105885
crossref_primary_10_1080_15397734_2020_1815543
crossref_primary_10_1007_s00366_021_01388_6
crossref_primary_10_1007_s00366_020_01130_8
crossref_primary_10_1080_15397734_2020_1815544
crossref_primary_10_1038_s41598_022_05913_5
crossref_primary_10_1186_s12951_021_00896_3
crossref_primary_10_1093_jcde_qwac014
crossref_primary_10_1155_2021_9048808
crossref_primary_10_1155_2023_6992441
crossref_primary_10_1109_ACCESS_2020_3018866
crossref_primary_10_1109_ACCESS_2020_3010589
crossref_primary_10_1038_s41598_022_17076_4
crossref_primary_10_3390_app12094776
crossref_primary_10_1016_j_compstruct_2020_112947
crossref_primary_10_1038_s41598_024_57278_6
crossref_primary_10_1016_j_eswa_2021_114629
crossref_primary_10_1016_j_asoc_2020_106347
crossref_primary_10_1016_j_egyr_2020_10_005
crossref_primary_10_1016_j_jksuci_2020_08_003
crossref_primary_10_1038_s41598_021_93167_y
crossref_primary_10_1016_j_asoc_2020_106903
crossref_primary_10_1016_j_compbiomed_2024_108258
crossref_primary_10_1016_j_eswa_2021_114864
crossref_primary_10_1109_ACCESS_2020_2982796
crossref_primary_10_1016_j_egyr_2021_01_001
crossref_primary_10_1016_j_eswa_2022_119002
crossref_primary_10_1109_ACCESS_2024_3350336
crossref_primary_10_1007_s00366_021_01282_1
crossref_primary_10_1016_j_eswa_2022_117864
crossref_primary_10_1089_big_2019_0111
crossref_primary_10_1109_ACCESS_2021_3077616
crossref_primary_10_1007_s00366_021_01377_9
crossref_primary_10_1016_j_enconman_2020_113751
crossref_primary_10_1016_j_enconman_2021_114223
crossref_primary_10_1109_ACCESS_2021_3097206
crossref_primary_10_1007_s13132_024_01998_7
crossref_primary_10_1109_ACCESS_2021_3105485
crossref_primary_10_1016_j_euromechsol_2020_104091
crossref_primary_10_1016_j_knosys_2021_107629
crossref_primary_10_1155_2021_9984840
crossref_primary_10_3390_polym16182629
crossref_primary_10_1007_s00366_020_01024_9
crossref_primary_10_1007_s00366_020_01277_4
crossref_primary_10_1155_2021_6315010
crossref_primary_10_3390_electronics10182214
crossref_primary_10_1080_17455030_2020_1831099
crossref_primary_10_1515_revic_2020_0007
crossref_primary_10_1155_2021_8130378
crossref_primary_10_54525_tbbmd_1167316
crossref_primary_10_4236_jamp_2024_126134
crossref_primary_10_1155_2021_6363571
crossref_primary_10_61435_ijred_2024_60119
crossref_primary_10_1016_j_asoc_2023_110034
crossref_primary_10_3389_fphys_2023_1267011
crossref_primary_10_3233_THC_240052
crossref_primary_10_7717_peerj_cs_1557
crossref_primary_10_1016_j_aej_2023_10_029
crossref_primary_10_1109_ACCESS_2020_3028600
crossref_primary_10_1007_s00366_020_01118_4
crossref_primary_10_31590_ejosat_1017054
crossref_primary_10_3390_coatings11101173
crossref_primary_10_1155_2021_5516819
crossref_primary_10_1109_ACCESS_2025_3526640
crossref_primary_10_1007_s00521_023_08244_2
crossref_primary_10_1016_j_rsase_2020_100461
crossref_primary_10_3934_mbe_2022659
crossref_primary_10_1016_j_ins_2023_119122
crossref_primary_10_1109_ACCESS_2022_3144065
crossref_primary_10_1080_19475705_2021_1914753
crossref_primary_10_1007_s11468_021_01550_2
crossref_primary_10_1016_j_est_2021_102996
crossref_primary_10_1007_s11082_021_03112_6
crossref_primary_10_1155_2020_6084917
crossref_primary_10_1109_ACCESS_2021_3065307
crossref_primary_10_1016_j_jhydrol_2021_126211
crossref_primary_10_32604_cmc_2024_055079
crossref_primary_10_1016_j_eswa_2020_113897
crossref_primary_10_1016_j_eswa_2021_115655
crossref_primary_10_1016_j_bspc_2020_102259
crossref_primary_10_1080_10916466_2021_1989464
crossref_primary_10_1109_TCDS_2021_3073368
crossref_primary_10_1016_j_eswa_2021_115651
crossref_primary_10_1016_j_energy_2020_117804
crossref_primary_10_32604_csse_2023_028269
crossref_primary_10_1007_s00366_020_01167_9
crossref_primary_10_1109_ACCESS_2020_2981968
crossref_primary_10_1016_j_compbiomed_2022_106189
crossref_primary_10_1016_j_saa_2022_121788
crossref_primary_10_3390_electronics11020209
crossref_primary_10_1007_s00521_022_07814_0
crossref_primary_10_3390_app112311192
crossref_primary_10_1002_cpe_6646
crossref_primary_10_1007_s00366_020_01144_2
crossref_primary_10_1016_j_jestch_2020_12_003
crossref_primary_10_1093_jcde_qwae089
crossref_primary_10_1016_j_eswa_2020_113428
crossref_primary_10_1109_ACCESS_2020_2983451
crossref_primary_10_1007_s00289_022_04626_z
crossref_primary_10_1186_s40537_025_01116_7
crossref_primary_10_1080_17517575_2020_1830307
crossref_primary_10_1007_s10489_022_04155_2
crossref_primary_10_1007_s00500_022_07608_5
crossref_primary_10_1515_ijcre_2021_0069
crossref_primary_10_1016_j_eswa_2022_118642
crossref_primary_10_1016_j_engappai_2023_106868
crossref_primary_10_1016_j_asoc_2023_110055
crossref_primary_10_1016_j_enconman_2020_113661
crossref_primary_10_1007_s00366_020_01110_y
crossref_primary_10_1109_ACCESS_2021_3052800
crossref_primary_10_1016_j_infrared_2022_104317
crossref_primary_10_1080_15397734_2020_1784201
crossref_primary_10_1109_ACCESS_2021_3108447
crossref_primary_10_1155_2021_6636955
crossref_primary_10_3390_electronics12112505
crossref_primary_10_1016_j_mlwa_2021_100054
crossref_primary_10_1016_j_measurement_2020_108837
crossref_primary_10_1093_bib_bbac194
crossref_primary_10_1016_j_compbiomed_2021_104609
crossref_primary_10_3390_sym12101651
crossref_primary_10_1371_journal_pone_0290332
crossref_primary_10_1155_2021_5569701
crossref_primary_10_1007_s13042_022_01537_3
crossref_primary_10_1111_exsy_12996
crossref_primary_10_1016_j_asoc_2024_112271
crossref_primary_10_1016_j_heliyon_2023_e22561
crossref_primary_10_1088_1402_4896_ad1739
crossref_primary_10_1109_ACCESS_2020_3044548
crossref_primary_10_1007_s40745_024_00571_y
crossref_primary_10_7717_peerj_cs_1405
crossref_primary_10_1016_j_compbiomed_2021_105015
crossref_primary_10_3390_jmse9050524
crossref_primary_10_1080_15397734_2020_1772088
crossref_primary_10_1631_FITEE_2200237
crossref_primary_10_1016_j_gsf_2021_101230
crossref_primary_10_1109_ACCESS_2022_3145244
crossref_primary_10_1007_s00366_021_01356_0
crossref_primary_10_1016_j_ejrh_2021_100848
crossref_primary_10_1155_2021_5567638
crossref_primary_10_3389_fncom_2021_684373
crossref_primary_10_3390_su13042336
crossref_primary_10_1155_2022_7413081
crossref_primary_10_1007_s00500_020_05183_1
crossref_primary_10_1080_10255842_2021_2012655
crossref_primary_10_1140_epjp_s13360_021_01972_1
crossref_primary_10_1049_cmu2_12274
crossref_primary_10_1016_j_scs_2021_103164
crossref_primary_10_1038_s41598_022_08875_w
crossref_primary_10_1007_s10948_021_05932_9
crossref_primary_10_1080_15376494_2020_1824284
crossref_primary_10_1155_2021_5564269
crossref_primary_10_1016_j_knosys_2020_106511
crossref_primary_10_1007_s11468_022_01611_0
crossref_primary_10_1016_j_knosys_2020_106510
crossref_primary_10_1371_journal_pone_0306090
crossref_primary_10_1016_j_apm_2020_05_019
crossref_primary_10_1002_er_7316
crossref_primary_10_1002_ett_4139
crossref_primary_10_3390_su13179898
crossref_primary_10_1016_j_cscee_2023_100372
crossref_primary_10_3390_e23030338
crossref_primary_10_1016_j_compbiomed_2021_105181
crossref_primary_10_1016_j_engappai_2022_105226
crossref_primary_10_1016_j_eswa_2020_113617
crossref_primary_10_1016_j_aej_2023_07_066
crossref_primary_10_1016_j_eswa_2020_113974
crossref_primary_10_1007_s00354_022_00158_2
crossref_primary_10_1016_j_knosys_2022_109615
crossref_primary_10_1109_ACCESS_2020_2988717
crossref_primary_10_1007_s42235_023_00447_6
crossref_primary_10_1016_j_compbiomed_2021_104427
crossref_primary_10_29001_2073_8552_2020_35_4_22_31
crossref_primary_10_1016_j_egyr_2020_12_013
crossref_primary_10_3390_en14061649
crossref_primary_10_1080_07391102_2020_1758211
crossref_primary_10_1109_ACCESS_2021_3052835
crossref_primary_10_1007_s40747_025_01791_2
crossref_primary_10_1080_10106049_2021_1926558
crossref_primary_10_1111_os_13406
crossref_primary_10_1155_2022_5245622
crossref_primary_10_1007_s11709_021_0785_x
crossref_primary_10_3390_e22121406
crossref_primary_10_1109_ACCESS_2020_3007336
crossref_primary_10_1155_2021_5583125
crossref_primary_10_1109_ACCESS_2022_3212067
crossref_primary_10_1007_s00366_021_01359_x
crossref_primary_10_1007_s42235_021_00114_8
crossref_primary_10_1016_j_infrared_2022_104488
crossref_primary_10_1109_ACCESS_2020_3024108
crossref_primary_10_1007_s40515_023_00343_w
crossref_primary_10_1007_s00366_020_01119_3
crossref_primary_10_1016_j_engappai_2021_104608
crossref_primary_10_3390_s22114204
crossref_primary_10_1109_ACCESS_2020_3014309
crossref_primary_10_1007_s00500_020_05439_w
crossref_primary_10_1155_2021_5598267
crossref_primary_10_1155_2023_3140270
crossref_primary_10_1016_j_cogsys_2020_04_001
crossref_primary_10_1016_j_asoc_2021_107574
crossref_primary_10_3390_en14185919
crossref_primary_10_1007_s00366_020_01074_z
crossref_primary_10_1007_s10586_021_03412_2
crossref_primary_10_1007_s42235_024_00590_8
crossref_primary_10_1016_j_cmpb_2021_106444
crossref_primary_10_1007_s00366_020_01243_0
crossref_primary_10_29130_dubited_1016209
crossref_primary_10_1016_j_eswa_2020_113510
crossref_primary_10_1016_j_bspc_2021_103034
crossref_primary_10_1109_ACCESS_2024_3351943
crossref_primary_10_1016_j_compbiomed_2021_105054
crossref_primary_10_1109_ACCESS_2020_3047455
crossref_primary_10_1016_j_asoc_2024_111811
crossref_primary_10_1155_2021_4236572
crossref_primary_10_1016_j_sajce_2023_08_006
crossref_primary_10_1016_j_jksuci_2020_12_011
crossref_primary_10_3390_su132011466
crossref_primary_10_1007_s40430_020_02613_x
crossref_primary_10_1109_ACCESS_2020_2978102
crossref_primary_10_1155_2021_4759461
Cites_doi 10.1016/j.eswa.2019.03.043
10.1016/j.eswa.2011.01.120
10.1155/2017/9512741
10.1016/j.knosys.2016.01.002
10.1111/j.1468-0394.2007.00418.x
10.1016/j.eswa.2014.01.021
10.1109/ACCESS.2017.2741521
10.1080/00207721.2013.801096
10.1016/j.apm.2019.03.046
10.1109/TSMC.2016.2569474
10.1016/j.ins.2014.02.123
10.1007/s10916-018-1055-x
10.1016/j.eswa.2004.08.009
10.1016/j.apm.2019.02.004
10.1007/s10489-007-0073-z
10.1186/s12859-019-2771-z
10.1016/j.camwa.2006.07.013
10.1016/j.eswa.2007.02.002
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2019.113018
10.1109/ACCESS.2018.2876996
10.1038/s41598-017-10890-1
10.1016/j.compbiolchem.2018.11.017
10.1016/j.compbiomed.2015.02.003
10.1016/j.neucom.2017.04.060
10.1007/s00521-019-04015-0
10.1016/j.eswa.2011.03.066
10.1023/A:1012487302797
10.1162/089976603321891855
10.1145/1961189.1961199
10.1109/ACCESS.2019.2902306
10.1007/s10916-011-9723-0
10.1145/130385.130401
10.1016/j.eswa.2005.09.024
10.1080/15397734.2016.1213639
10.1093/brain/awm319
10.1016/j.neucom.2017.04.053
10.1016/j.apenergy.2017.05.029
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105946
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105946
S1568494619307276
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-b5d070e2fbe4a5b3d5fb67e531a3d9345688a2349efd90dc0582dce0be0e1ddb3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:11:26 EDT 2025
Tue Jul 01 01:50:04 EDT 2025
Fri Feb 23 02:49:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-swarm
Whale optimization algorithm
Support vector machine
Medical diagnosis
Model selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-b5d070e2fbe4a5b3d5fb67e531a3d9345688a2349efd90dc0582dce0be0e1ddb3
ORCID 0000-0002-7714-9693
ParticipantIDs crossref_primary_10_1016_j_asoc_2019_105946
crossref_citationtrail_10_1016_j_asoc_2019_105946
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105946
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kaveh, Ghazaan (b31) 2017; 45
Chen (b18) 2019
Shen (b49) 2016; 96
Hu (b54) 2015; 59
Chen (b3) 2011; 38
Liu (b47) 2015; 46
Fu (b14) 2014
Xu (b44) 2019; 129
Huang (b17) 2019; 20
Gold, Sollich (b11) 2002; 55
Saremi, Mirjalili, Lewis (b39) 2014
Heidari (b24) 2019
Elaziz (b28) 2017; 7
B.E. Boser, A training algorithm for optimal margin classifiers, in: ACM Fifth Workshop on Computational Lerning Theory, Pittsburgh, 1992.
Chen (b19) 2011; 38
Wang (b34) 2017; 267
Chen (b40) 2019
Zhang (b42) 2019; 7
Chen (b13) 2014; 239
Huang, Wang (b16) 2006; 31
Chen (b22) 2019; 71
Yu (b43) 2019
Klöppel (b52) 2008; 131
Oliva, Aziz, Hassanien (b27) 2017; 200
Harikarthik, Palanisamy, Ramanathan (b29) 2017
Guyon (b51) 2002; 46
Hassan, Hassanien (b30) 2017
Zhang (b45) 2018; 6
Shin, Lee, Kim (b6) 2005; 28
Mirjalili, Lewis (b21) 2016; 95
Rahnamayan, Tizhoosh, Salama (b36) 2007; 53
Zhao (b41) 2019; 78
Frieb, Harrison (b5) 1998
Chen (b23) 2019
Maglogiannis, Zafiropoulos, Anagnostopoulos (b8) 2009; 30
Luo (b25) 2019; 73
B. Scholkopf, C.J.C. Burges, A.J. Smola, Advances in Kernel Methods - Support Vector Learning. 174 (4) (1998) 1097-105.
Li (b20) 2017; 2017
Mafarja, Mirjalili (b32) 2017; 260
Wang (b46) 2014; 274
Chen (b7) 2012; 36
Huang, Huang, Wang (b38) 2017; 47
Karthikeyan, Alli (b48) 2018; 42
Chen (b4) 2011; 38
Vapnik, Vladimir (b2) 2002; 8
Cai, Gu, Chen (b15) 2017; 5
Chen (b50) 2014; 239
Wu (b33) 2017
Chang, Lin (b12) 2011; 2
Aljarah, Faris, Mirjalili (b26) 2016
El-Dahshan (b53) 2014; 41
Keerthi, Lin (b10) 2003; 15
Uuml, Beyli (b9) 2007; 24
Coelho, Mariani (b37) 2008; 34
Chen (10.1016/j.asoc.2019.105946_b3) 2011; 38
Huang (10.1016/j.asoc.2019.105946_b16) 2006; 31
Rahnamayan (10.1016/j.asoc.2019.105946_b36) 2007; 53
Mirjalili (10.1016/j.asoc.2019.105946_b21) 2016; 95
Huang (10.1016/j.asoc.2019.105946_b17) 2019; 20
Gold (10.1016/j.asoc.2019.105946_b11) 2002; 55
Xu (10.1016/j.asoc.2019.105946_b44) 2019; 129
Cai (10.1016/j.asoc.2019.105946_b15) 2017; 5
Wang (10.1016/j.asoc.2019.105946_b46) 2014; 274
Fu (10.1016/j.asoc.2019.105946_b14) 2014
Chen (10.1016/j.asoc.2019.105946_b23) 2019
Maglogiannis (10.1016/j.asoc.2019.105946_b8) 2009; 30
Kaveh (10.1016/j.asoc.2019.105946_b31) 2017; 45
Shen (10.1016/j.asoc.2019.105946_b49) 2016; 96
Frieb (10.1016/j.asoc.2019.105946_b5) 1998
Shin (10.1016/j.asoc.2019.105946_b6) 2005; 28
Klöppel (10.1016/j.asoc.2019.105946_b52) 2008; 131
Vapnik (10.1016/j.asoc.2019.105946_b2) 2002; 8
Karthikeyan (10.1016/j.asoc.2019.105946_b48) 2018; 42
Elaziz (10.1016/j.asoc.2019.105946_b28) 2017; 7
10.1016/j.asoc.2019.105946_b1
Chang (10.1016/j.asoc.2019.105946_b12) 2011; 2
10.1016/j.asoc.2019.105946_b35
El-Dahshan (10.1016/j.asoc.2019.105946_b53) 2014; 41
Oliva (10.1016/j.asoc.2019.105946_b27) 2017; 200
Huang (10.1016/j.asoc.2019.105946_b38) 2017; 47
Yu (10.1016/j.asoc.2019.105946_b43) 2019
Keerthi (10.1016/j.asoc.2019.105946_b10) 2003; 15
Zhang (10.1016/j.asoc.2019.105946_b42) 2019; 7
Chen (10.1016/j.asoc.2019.105946_b19) 2011; 38
Chen (10.1016/j.asoc.2019.105946_b18) 2019
Chen (10.1016/j.asoc.2019.105946_b40) 2019
Luo (10.1016/j.asoc.2019.105946_b25) 2019; 73
Harikarthik (10.1016/j.asoc.2019.105946_b29) 2017
Saremi (10.1016/j.asoc.2019.105946_b39) 2014
Chen (10.1016/j.asoc.2019.105946_b7) 2012; 36
Chen (10.1016/j.asoc.2019.105946_b50) 2014; 239
Guyon (10.1016/j.asoc.2019.105946_b51) 2002; 46
Wang (10.1016/j.asoc.2019.105946_b34) 2017; 267
Mafarja (10.1016/j.asoc.2019.105946_b32) 2017; 260
Zhao (10.1016/j.asoc.2019.105946_b41) 2019; 78
Chen (10.1016/j.asoc.2019.105946_b4) 2011; 38
Uuml (10.1016/j.asoc.2019.105946_b9) 2007; 24
Heidari (10.1016/j.asoc.2019.105946_b24) 2019
Chen (10.1016/j.asoc.2019.105946_b22) 2019; 71
Aljarah (10.1016/j.asoc.2019.105946_b26) 2016
Zhang (10.1016/j.asoc.2019.105946_b45) 2018; 6
Coelho (10.1016/j.asoc.2019.105946_b37) 2008; 34
Hassan (10.1016/j.asoc.2019.105946_b30) 2017
Chen (10.1016/j.asoc.2019.105946_b13) 2014; 239
Li (10.1016/j.asoc.2019.105946_b20) 2017; 2017
Hu (10.1016/j.asoc.2019.105946_b54) 2015; 59
Wu (10.1016/j.asoc.2019.105946_b33) 2017
Liu (10.1016/j.asoc.2019.105946_b47) 2015; 46
References_xml – volume: 15
  start-page: 1667
  year: 2003
  ident: b10
  article-title: Asymptotic behaviors of support vector machines with Gaussian kernel
  publication-title: Neural Comput.
– volume: 20
  start-page: 290
  year: 2019
  ident: b17
  article-title: A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features
  publication-title: BMC Bioinformatics
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: b52
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
– volume: 129
  start-page: 135
  year: 2019
  end-page: 155
  ident: b44
  article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
  publication-title: Expert Syst. Appl.
– volume: 47
  start-page: 1229
  year: 2017
  end-page: 1240
  ident: b38
  article-title: Chaos and bifurcation control of torque-stiffness-controlled dynamic bipedal walking
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 8
  year: 2002
  ident: b2
  article-title: The nature of statistical learning theory
  publication-title: IEEE Trans. Neural Netw.
– year: 2017
  ident: b33
  article-title: Path planning for solar-powered UAV in urban environment
  publication-title: Neurocomputing
– year: 2019
  ident: b40
  article-title: Parameters identification of photovoltaic cells and modules using diversification-enriched harris hawks optimization with chaotic drifts
  publication-title: J. Cleaner Prod.
– volume: 239
  start-page: 180
  year: 2014
  end-page: 197
  ident: b13
  article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy
  publication-title: Appl. Math. Comput.
– volume: 7
  year: 2017
  ident: b28
  article-title: Analysis of bioactive amino acids from fish hydrolysates with a new bioinformatic intelligent system approach
  publication-title: Sci. Rep.
– reference: B.E. Boser, A training algorithm for optimal margin classifiers, in: ACM Fifth Workshop on Computational Lerning Theory, Pittsburgh, 1992.
– start-page: 1
  year: 2017
  end-page: 10
  ident: b29
  article-title: Optimal test suite selection in regression testing with testcase prioritization using modified Ann and Whale optimization algorithm
  publication-title: Cluster Comput.
– year: 2019
  ident: b43
  article-title: Chaos-enhanced synchronized bat optimizer
  publication-title: Appl. Math. Model.
– year: 1998
  ident: b5
  article-title: Support vector neural networks
– volume: 38
  start-page: 9014
  year: 2011
  end-page: 9022
  ident: b4
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Syst. Appl.
– volume: 267
  start-page: 69
  year: 2017
  end-page: 84
  ident: b34
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b21
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– year: 2019
  ident: b24
  article-title: An enhanced associative learning-based exploratory whale optimizer for global optimization
  publication-title: Neural Comput. Appl.
– volume: 46
  start-page: 919
  year: 2015
  end-page: 931
  ident: b47
  article-title: A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection
  publication-title: Internat. J. Systems Sci.
– volume: 55
  start-page: 221
  year: 2002
  end-page: 249
  ident: b11
  article-title: Model selection for support vector machine classification
  publication-title: Neurocomputing
– volume: 45
  start-page: 345
  year: 2017
  end-page: 362
  ident: b31
  article-title: Enhanced whale optimization algorithm for sizing optimization of skeletal structures
  publication-title: Mech. Based Des. Struct. Mach.
– volume: 200
  start-page: 141
  year: 2017
  end-page: 154
  ident: b27
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energy
– volume: 5
  start-page: 17188
  year: 2017
  end-page: 17200
  ident: b15
  article-title: A new hybrid intelligent framework for predicting parkinson’s disease
  publication-title: IEEE Access
– volume: 6
  start-page: 64905
  year: 2018
  end-page: 64919
  ident: b45
  article-title: Chaos enhanced bacterial foraging optimization for global optimization
  publication-title: IEEE Access
– volume: 96
  start-page: 61
  year: 2016
  end-page: 75
  ident: b49
  article-title: Evolving support vector machines using fruit fly optimization for medical data classification
  publication-title: Knowl.-Based Syst.
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: b32
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– reference: B. Scholkopf, C.J.C. Burges, A.J. Smola, Advances in Kernel Methods - Support Vector Learning. 174 (4) (1998) 1097-105.
– volume: 34
  start-page: 1905
  year: 2008
  end-page: 1913
  ident: b37
  article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2017
  end-page: 8
  ident: b30
  article-title: Retinal fundus vasculature multilevel segmentation using whale optimization algorithm
  publication-title: Signal Image Video Process.
– volume: 31
  start-page: 231
  year: 2006
  end-page: 240
  ident: b16
  article-title: A GA-based feature selection and parameters optimizationfor support vector machines
  publication-title: Expert Syst. Appl.
– volume: 274
  start-page: 17
  year: 2014
  end-page: 34
  ident: b46
  article-title: Chaotic krill herd algorithm
  publication-title: Inform. Sci.
– volume: 38
  start-page: 11796
  year: 2011
  end-page: 11803
  ident: b3
  article-title: A new hybrid method based on local fisher discriminant analysis and support vector machines for hepatitis disease diagnosis
  publication-title: Expert Syst. Appl.
– volume: 71
  start-page: 45
  year: 2019
  end-page: 59
  ident: b22
  article-title: A balanced whale optimization algorithm for constrained engineering design problems
  publication-title: Appl. Math. Model.
– year: 2019
  ident: b23
  article-title: An efficient double adaptive random spare reinforced whale optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 53
  start-page: 1605
  year: 2007
  end-page: 1614
  ident: b36
  article-title: A novel population initialization method for accelerating evolutionary algorithms
  publication-title: Comput. Math. Appl.
– volume: 2017
  start-page: 15
  year: 2017
  ident: b20
  article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis
  publication-title: Comput. Math. Methods Med.
– volume: 41
  start-page: 5526
  year: 2014
  end-page: 5545
  ident: b53
  article-title: Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 17
  year: 2007
  end-page: 31
  ident: b9
  article-title: Comparison of different classification algorithms in clinical decision-making
  publication-title: Expert Syst.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: b12
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 73
  start-page: 109
  year: 2019
  end-page: 123
  ident: b25
  article-title: Multi-strategy boosted mutative whale-inspired optimization approaches
  publication-title: Appl. Math. Model.
– start-page: 42
  year: 2014
  end-page: 49
  ident: b14
  article-title: A New Evolutionary Support Vector Machine with Application To Parkinson’s Disease Diagnosis
– volume: 239
  start-page: 180
  year: 2014
  end-page: 197
  ident: b50
  article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy
  publication-title: Appl. Math. Comput.
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: b51
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– start-page: 1077
  year: 2014
  end-page: 1097
  ident: b39
  article-title: Biogeography-Based Optimisation with Chaos
– volume: 42
  year: 2018
  ident: b48
  article-title: Feature selection and parameters optimization of support vector machines based on hybrid glowworm swarm optimization for classification of diabetic retinopathy
  publication-title: J. Med. Syst.
– volume: 78
  start-page: 481
  year: 2019
  end-page: 490
  ident: b41
  article-title: Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients
  publication-title: Comput. Biol. Chem.
– volume: 30
  start-page: 24
  year: 2009
  end-page: 36
  ident: b8
  article-title: An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers
  publication-title: Appl. Intell.
– start-page: 1
  year: 2016
  end-page: 15
  ident: b26
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
– volume: 38
  start-page: 9014
  year: 2011
  end-page: 9022
  ident: b19
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Syst. Appl.
– volume: 59
  start-page: 116
  year: 2015
  end-page: 124
  ident: b54
  article-title: An efficient machine learning approach for diagnosis of paraquat-poisoned patients
  publication-title: Comput. Biol. Med.
– year: 2019
  ident: b18
  article-title: Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines
  publication-title: Expert Syst. Appl.
– volume: 28
  start-page: 127
  year: 2005
  end-page: 135
  ident: b6
  article-title: An application of support vector machines in bankruptcy prediction model
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 2505
  year: 2012
  end-page: 2519
  ident: b7
  article-title: Support vector machine based diagnostic system for breast Cancer using swarm intelligence
  publication-title: J. Med. Syst.
– volume: 7
  start-page: 31243
  year: 2019
  end-page: 31261
  ident: b42
  article-title: Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers
  publication-title: IEEE Access
– year: 2019
  ident: 10.1016/j.asoc.2019.105946_b18
  article-title: Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines
  publication-title: Expert Syst. Appl.
– volume: 129
  start-page: 135
  year: 2019
  ident: 10.1016/j.asoc.2019.105946_b44
  article-title: An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.043
– volume: 8
  issue: 6
  year: 2002
  ident: 10.1016/j.asoc.2019.105946_b2
  article-title: The nature of statistical learning theory
  publication-title: IEEE Trans. Neural Netw.
– volume: 38
  start-page: 9014
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2019.105946_b4
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.120
– volume: 2017
  start-page: 15
  year: 2017
  ident: 10.1016/j.asoc.2019.105946_b20
  article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2017/9512741
– year: 2017
  ident: 10.1016/j.asoc.2019.105946_b33
  article-title: Path planning for solar-powered UAV in urban environment
  publication-title: Neurocomputing
– volume: 96
  start-page: 61
  year: 2016
  ident: 10.1016/j.asoc.2019.105946_b49
  article-title: Evolving support vector machines using fruit fly optimization for medical data classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.01.002
– volume: 24
  start-page: 17
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2019.105946_b9
  article-title: Comparison of different classification algorithms in clinical decision-making
  publication-title: Expert Syst.
  doi: 10.1111/j.1468-0394.2007.00418.x
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2019.105946_b26
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
– volume: 41
  start-page: 5526
  issue: 11
  year: 2014
  ident: 10.1016/j.asoc.2019.105946_b53
  article-title: Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.021
– start-page: 1077
  year: 2014
  ident: 10.1016/j.asoc.2019.105946_b39
– year: 1998
  ident: 10.1016/j.asoc.2019.105946_b5
– volume: 55
  start-page: 221
  issue: 1
  year: 2002
  ident: 10.1016/j.asoc.2019.105946_b11
  article-title: Model selection for support vector machine classification
  publication-title: Neurocomputing
– volume: 5
  start-page: 17188
  year: 2017
  ident: 10.1016/j.asoc.2019.105946_b15
  article-title: A new hybrid intelligent framework for predicting parkinson’s disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2741521
– volume: 46
  start-page: 919
  issue: 5
  year: 2015
  ident: 10.1016/j.asoc.2019.105946_b47
  article-title: A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2013.801096
– volume: 73
  start-page: 109
  year: 2019
  ident: 10.1016/j.asoc.2019.105946_b25
  article-title: Multi-strategy boosted mutative whale-inspired optimization approaches
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.03.046
– volume: 47
  start-page: 1229
  issue: 7
  year: 2017
  ident: 10.1016/j.asoc.2019.105946_b38
  article-title: Chaos and bifurcation control of torque-stiffness-controlled dynamic bipedal walking
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2569474
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105946_b30
  article-title: Retinal fundus vasculature multilevel segmentation using whale optimization algorithm
  publication-title: Signal Image Video Process.
– volume: 274
  start-page: 17
  year: 2014
  ident: 10.1016/j.asoc.2019.105946_b46
  article-title: Chaotic krill herd algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.02.123
– volume: 42
  issue: 10
  year: 2018
  ident: 10.1016/j.asoc.2019.105946_b48
  article-title: Feature selection and parameters optimization of support vector machines based on hybrid glowworm swarm optimization for classification of diabetic retinopathy
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1055-x
– volume: 28
  start-page: 127
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2019.105946_b6
  article-title: An application of support vector machines in bankruptcy prediction model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2004.08.009
– volume: 239
  start-page: 180
  issue: 8
  year: 2014
  ident: 10.1016/j.asoc.2019.105946_b13
  article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy
  publication-title: Appl. Math. Comput.
– volume: 71
  start-page: 45
  year: 2019
  ident: 10.1016/j.asoc.2019.105946_b22
  article-title: A balanced whale optimization algorithm for constrained engineering design problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.02.004
– start-page: 42
  year: 2014
  ident: 10.1016/j.asoc.2019.105946_b14
– volume: 30
  start-page: 24
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2019.105946_b8
  article-title: An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-007-0073-z
– volume: 20
  start-page: 290
  issue: 8
  year: 2019
  ident: 10.1016/j.asoc.2019.105946_b17
  article-title: A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2771-z
– volume: 53
  start-page: 1605
  issue: 10
  year: 2007
  ident: 10.1016/j.asoc.2019.105946_b36
  article-title: A novel population initialization method for accelerating evolutionary algorithms
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.07.013
– volume: 34
  start-page: 1905
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2019.105946_b37
  article-title: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.02.002
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.asoc.2019.105946_b21
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2019
  ident: 10.1016/j.asoc.2019.105946_b23
  article-title: An efficient double adaptive random spare reinforced whale optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113018
– volume: 6
  start-page: 64905
  year: 2018
  ident: 10.1016/j.asoc.2019.105946_b45
  article-title: Chaos enhanced bacterial foraging optimization for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2876996
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105946_b28
  article-title: Analysis of bioactive amino acids from fish hydrolysates with a new bioinformatic intelligent system approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10890-1
– volume: 78
  start-page: 481
  year: 2019
  ident: 10.1016/j.asoc.2019.105946_b41
  article-title: Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2018.11.017
– ident: 10.1016/j.asoc.2019.105946_b35
– volume: 59
  start-page: 116
  issue: C
  year: 2015
  ident: 10.1016/j.asoc.2019.105946_b54
  article-title: An efficient machine learning approach for diagnosis of paraquat-poisoned patients
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.02.003
– year: 2019
  ident: 10.1016/j.asoc.2019.105946_b40
  article-title: Parameters identification of photovoltaic cells and modules using diversification-enriched harris hawks optimization with chaotic drifts
  publication-title: J. Cleaner Prod.
– volume: 267
  start-page: 69
  year: 2017
  ident: 10.1016/j.asoc.2019.105946_b34
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– year: 2019
  ident: 10.1016/j.asoc.2019.105946_b43
  article-title: Chaos-enhanced synchronized bat optimizer
  publication-title: Appl. Math. Model.
– year: 2019
  ident: 10.1016/j.asoc.2019.105946_b24
  article-title: An enhanced associative learning-based exploratory whale optimizer for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04015-0
– volume: 38
  start-page: 11796
  issue: 9
  year: 2011
  ident: 10.1016/j.asoc.2019.105946_b3
  article-title: A new hybrid method based on local fisher discriminant analysis and support vector machines for hepatitis disease diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.03.066
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 10.1016/j.asoc.2019.105946_b51
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 15
  start-page: 1667
  issue: 7
  year: 2003
  ident: 10.1016/j.asoc.2019.105946_b10
  article-title: Asymptotic behaviors of support vector machines with Gaussian kernel
  publication-title: Neural Comput.
  doi: 10.1162/089976603321891855
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2019.105946_b12
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105946_b29
  article-title: Optimal test suite selection in regression testing with testcase prioritization using modified Ann and Whale optimization algorithm
  publication-title: Cluster Comput.
– volume: 7
  start-page: 31243
  year: 2019
  ident: 10.1016/j.asoc.2019.105946_b42
  article-title: Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902306
– volume: 239
  start-page: 180
  year: 2014
  ident: 10.1016/j.asoc.2019.105946_b50
  article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy
  publication-title: Appl. Math. Comput.
– volume: 36
  start-page: 2505
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2019.105946_b7
  article-title: Support vector machine based diagnostic system for breast Cancer using swarm intelligence
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9723-0
– volume: 38
  start-page: 9014
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2019.105946_b19
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.120
– ident: 10.1016/j.asoc.2019.105946_b1
  doi: 10.1145/130385.130401
– volume: 31
  start-page: 231
  issue: 2
  year: 2006
  ident: 10.1016/j.asoc.2019.105946_b16
  article-title: A GA-based feature selection and parameters optimizationfor support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.09.024
– volume: 45
  start-page: 345
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2019.105946_b31
  article-title: Enhanced whale optimization algorithm for sizing optimization of skeletal structures
  publication-title: Mech. Based Des. Struct. Mach.
  doi: 10.1080/15397734.2016.1213639
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2019.105946_b52
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 260
  start-page: 302
  year: 2017
  ident: 10.1016/j.asoc.2019.105946_b32
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 200
  start-page: 141
  year: 2017
  ident: 10.1016/j.asoc.2019.105946_b27
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.029
SSID ssj0016928
Score 2.6721616
Snippet Support vector machine (SVM) is a widely used pattern classification method that its classification accuracy is greatly influenced by both kernel parameter...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105946
SubjectTerms Medical diagnosis
Model selection
Multi-swarm
Support vector machine
Whale optimization algorithm
Title Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis
URI https://dx.doi.org/10.1016/j.asoc.2019.105946
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OBNYveRfeRYiqW-iqiF3pbNZpZW7IM-LHjwtzuzj6IgPXjaZZnA8jGZfJN8mWHs0gfbTz3tCpUqKWSSgggVWAKZvgIbTOBne7qPXb_Tk3d9r19hrfIuDMkqi9ifx_QsWhdfGgWajelw2HjBzCOUSmIGgH7qBFR2W8qAvPz6ay3zsH2V9VclY0HWxcWZXOMVIwIk71LU7lYRCf5rcfqx4LT32E7BFHkz_5l9VoHxAdstuzDwYlIesn5rEE_QhmfaQDFfxbMRXw0w8PMJxoPR8BOtkUvTviafL6dEuPlHtlnPR5mUEnhK7_mRDTe5-G44P2K99s1rqyOKfgkicS1rIbRncAKDk2qQMeJvvFT7AeAsi12jXKRKYRg7rlSQGmWZxPJCxyRgabDANka7x6w6nozhhHGpjePpwJhAImUxQRz6BoJYKxkmdBZbY3YJVJQUxcSpp8V7VKrG3iICNyJwoxzcGrtaj5nmpTQ2Wnsl_tEvh4gw1m8Yd_rPcWds26FUOpOXnbPqYraEC-QbC13PHKrOtpqt54cnet7ed7rf2bvX6A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HvTiW3y7B2-yNE02jz2WYkl99KKF3kI2O6EV-6CtFvz1ziaboiA9eAthBsKX3dlvZ77dAbgNsBHkvvK4zKXgIsuRRxIdTkxfYgN1GBQ53eduEPfEQ9_vb0CrOgtjZJU29pcxvYjW9k3dolmfDof1F9p5REIK2gHQOHXDYBO2zO1Ufg22mp3HuLsqJgSyaLFq7LlxsGdnSplXSiAYhZc0HW-l4cF_rU8_1pz2Puxassia5fccwAaOD2GvasTA7Lw8gn5rkE7IhhXyQD5fprMRWw4o9rMJhYTR8IusiU6b1Cabf0wN52afRb6ejQo1JbLcPJdVG6ZL_d1wfgy99v1rK-a2ZQLPPMdZcOVrmsPo5gpFSr9A-7kKQqSJlnpaesSWoih1PSEx19LRmeNHrs7QUehgQ2vlnUBtPBnjKTChtOurUOtQEGvRYRoFGsNUSRFlphx7Bo0KqCSz94mbthbvSSUce0sMuIkBNynBPYO7lc-0vE1jrbVf4Z_8GhMJhfs1fuf_9LuB7fj1-Sl56nQfL2DHNTvrQm12CbXF7AOviH4s1LUdXt-EetkE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+multi-swarm+whale+optimizer+boosted+support+vector+machine+for+medical+diagnosis&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Mingjing&rft.au=Chen%2C+Huiling&rft.date=2020-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=88&rft_id=info:doi/10.1016%2Fj.asoc.2019.105946&rft.externalDocID=S1568494619307276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon