Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization

This paper presents a new algorithm named spherical vector-based particle swarm optimization (SPSO) to deal with the problem of path planning for unmanned aerial vehicles (UAVs) in complicated environments subjected to multiple threats. A cost function is first formulated to convert the path plannin...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 107; p. 107376
Main Authors Phung, Manh Duong, Ha, Quang Phuc
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a new algorithm named spherical vector-based particle swarm optimization (SPSO) to deal with the problem of path planning for unmanned aerial vehicles (UAVs) in complicated environments subjected to multiple threats. A cost function is first formulated to convert the path planning into an optimization problem that incorporates requirements and constraints for the feasible and safe operation of the UAV. SPSO is then used to find the optimal path that minimizes the cost function by efficiently searching the configuration space of the UAV via the correspondence between the particle position and the speed, turn angle and climb/dive angle of the UAV. To evaluate the performance of SPSO, eight benchmarking scenarios have been generated from real digital elevation model maps. The results show that the proposed SPSO outperforms not only other particle swarm optimization (PSO) variants including the classic PSO, phase angle-encoded PSO and quantum-behave PSO but also other state-of-the-art metaheuristic optimization algorithms including the genetic algorithm (GA), artificial bee colony (ABC), and differential evolution (DE) in most scenarios. In addition, experiments have been conducted to demonstrate the validity of the generated paths for real UAV operations. Source code of the algorithm can be found at https://github.com/duongpm/SPSO. •Formulation of a new cost function that converts the path planning into an optimization problem in which safe operation of UAVs is guaranteed.•Development of a new algorithm named spherical vector-based particle swarm optimization (SPSO) for UAV path planning that outperforms other PSO variants and state-of-the-art metaheuristic algorithms.•Successful implementation of SPSO to generate paths for real UAV operations.
AbstractList This paper presents a new algorithm named spherical vector-based particle swarm optimization (SPSO) to deal with the problem of path planning for unmanned aerial vehicles (UAVs) in complicated environments subjected to multiple threats. A cost function is first formulated to convert the path planning into an optimization problem that incorporates requirements and constraints for the feasible and safe operation of the UAV. SPSO is then used to find the optimal path that minimizes the cost function by efficiently searching the configuration space of the UAV via the correspondence between the particle position and the speed, turn angle and climb/dive angle of the UAV. To evaluate the performance of SPSO, eight benchmarking scenarios have been generated from real digital elevation model maps. The results show that the proposed SPSO outperforms not only other particle swarm optimization (PSO) variants including the classic PSO, phase angle-encoded PSO and quantum-behave PSO but also other state-of-the-art metaheuristic optimization algorithms including the genetic algorithm (GA), artificial bee colony (ABC), and differential evolution (DE) in most scenarios. In addition, experiments have been conducted to demonstrate the validity of the generated paths for real UAV operations. Source code of the algorithm can be found at https://github.com/duongpm/SPSO. •Formulation of a new cost function that converts the path planning into an optimization problem in which safe operation of UAVs is guaranteed.•Development of a new algorithm named spherical vector-based particle swarm optimization (SPSO) for UAV path planning that outperforms other PSO variants and state-of-the-art metaheuristic algorithms.•Successful implementation of SPSO to generate paths for real UAV operations.
ArticleNumber 107376
Author Ha, Quang Phuc
Phung, Manh Duong
Author_xml – sequence: 1
  givenname: Manh Duong
  orcidid: 0000-0001-5247-6180
  surname: Phung
  fullname: Phung, Manh Duong
  email: manhduong.phung@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo NSW 2007, Australia
– sequence: 2
  givenname: Quang Phuc
  surname: Ha
  fullname: Ha, Quang Phuc
  email: quang.ha@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo NSW 2007, Australia
BookMark eNp9kE1LAzEQhoNUsK3-AU_7B7Ym-5HNgpdS_IKCB63gKUyTWZuyzS5JaKm_3qz15KGnyUzyDG-eCRnZziIht4zOGGX8bjsD36lZRjMWB1Ve8QsyZqLK0poLNornkou0qAt-RSbeb2mE6kyMyecbNBiOKdoNWIU6Wc0_kh7CJulbsNbYr-RgYuf7DTqjoE32qELn0jX4-LoHF4xqMfEHcLuk64PZmW8IprPX5LKB1uPNX52S1ePD--I5Xb4-vSzmy1TllIZ0XVQ0BtaVBsaxFsiUZgy1LlHHPJRVlNVUNaIQTOWAZa55HW_rXPEsb6p8SsRpr3Kd9w4bqUz4TRAcmFYyKgdFcisHRXJQJE-KIpr9Q3tnduCO56H7E4TxU3uDTnplcHBnXFQjdWfO4T9A5YPW
CitedBy_id crossref_primary_10_3390_drones8080397
crossref_primary_10_1038_s44172_023_00104_0
crossref_primary_10_1016_j_jocs_2023_102149
crossref_primary_10_1631_FITEE_2000632
crossref_primary_10_1155_2022_1632698
crossref_primary_10_3390_sym15071432
crossref_primary_10_1016_j_eswa_2025_127010
crossref_primary_10_1016_j_asoc_2023_110319
crossref_primary_10_3390_app14156621
crossref_primary_10_3390_biomimetics9090519
crossref_primary_10_1080_03772063_2023_2175053
crossref_primary_10_3390_aerospace9020056
crossref_primary_10_1007_s44196_024_00511_x
crossref_primary_10_1109_ACCESS_2024_3387569
crossref_primary_10_1155_2023_3837615
crossref_primary_10_1109_ACCESS_2022_3203072
crossref_primary_10_1007_s10846_025_02240_5
crossref_primary_10_3390_app12199709
crossref_primary_10_1109_ACCESS_2024_3384976
crossref_primary_10_1109_TITS_2023_3281522
crossref_primary_10_20473_amnt_v7i1_2023_98_111
crossref_primary_10_1109_ACCESS_2023_3290174
crossref_primary_10_1016_j_engappai_2022_105410
crossref_primary_10_1016_j_autcon_2024_105689
crossref_primary_10_1109_TAES_2024_3434777
crossref_primary_10_1007_s10489_024_05502_1
crossref_primary_10_1109_ACCESS_2023_3293203
crossref_primary_10_3389_fnbot_2021_770361
crossref_primary_10_3390_app12188977
crossref_primary_10_3390_biomimetics10030180
crossref_primary_10_1007_s11227_024_06365_6
crossref_primary_10_1016_j_adhoc_2022_103068
crossref_primary_10_1002_dac_5641
crossref_primary_10_1016_j_swevo_2023_101375
crossref_primary_10_3390_drones8090501
crossref_primary_10_3788_LOP241281
crossref_primary_10_3233_JIFS_231280
crossref_primary_10_1007_s10846_024_02108_0
crossref_primary_10_1016_j_engappai_2023_105942
crossref_primary_10_3390_drones8050192
crossref_primary_10_1016_j_oceaneng_2021_110121
crossref_primary_10_1007_s11227_024_06414_0
crossref_primary_10_1016_j_eswa_2024_124955
crossref_primary_10_1038_s41598_024_81100_y
crossref_primary_10_1109_TASE_2024_3371102
crossref_primary_10_1007_s00500_024_09691_2
crossref_primary_10_1016_j_dt_2023_04_010
crossref_primary_10_1016_j_asoc_2024_111455
crossref_primary_10_3390_drones8020051
crossref_primary_10_1155_2023_6568359
crossref_primary_10_1109_ACCESS_2024_3367753
crossref_primary_10_1109_ACCESS_2025_3543175
crossref_primary_10_36548_jucct_2022_3_007
crossref_primary_10_1016_j_heliyon_2023_e14784
crossref_primary_10_7717_peerj_cs_2691
crossref_primary_10_1177_09544100241288723
crossref_primary_10_1007_s10489_024_05436_8
crossref_primary_10_1007_s00521_022_06998_9
crossref_primary_10_3390_robotics13080117
crossref_primary_10_1109_ACCESS_2023_3262160
crossref_primary_10_1109_ACCESS_2024_3376235
crossref_primary_10_1002_acs_3686
crossref_primary_10_3390_drones7070452
crossref_primary_10_1016_j_oceaneng_2024_117285
crossref_primary_10_1109_JIOT_2022_3182798
crossref_primary_10_1016_j_knosys_2024_112084
crossref_primary_10_1109_JIOT_2024_3459918
crossref_primary_10_3390_biomimetics9070388
crossref_primary_10_1016_j_compeleceng_2024_110034
crossref_primary_10_1109_OJVT_2024_3391380
crossref_primary_10_1007_s10462_022_10281_7
crossref_primary_10_1007_s10489_024_06036_2
crossref_primary_10_3390_drones8070316
crossref_primary_10_3390_math11091987
crossref_primary_10_1016_j_eswa_2024_125388
crossref_primary_10_1109_TITS_2023_3336008
crossref_primary_10_1016_j_apm_2024_03_001
crossref_primary_10_1155_2022_5692350
crossref_primary_10_1109_ACCESS_2022_3233822
crossref_primary_10_3390_electronics13010068
crossref_primary_10_3390_app132011305
crossref_primary_10_3390_drones7020084
crossref_primary_10_1109_JIOT_2024_3446664
crossref_primary_10_1038_s41598_024_79323_0
crossref_primary_10_1016_j_jii_2024_100742
crossref_primary_10_1109_TAES_2024_3364139
crossref_primary_10_1109_ACCESS_2024_3457957
crossref_primary_10_3390_biomimetics9090567
crossref_primary_10_3390_electronics13132532
crossref_primary_10_1016_j_ins_2024_121029
crossref_primary_10_3390_app13063833
crossref_primary_10_3390_electronics13234598
crossref_primary_10_1109_ACCESS_2022_3166632
crossref_primary_10_3390_drones8100588
crossref_primary_10_3390_en18071587
crossref_primary_10_12677_csa_2024_149189
crossref_primary_10_1109_OJCOMS_2024_3489873
crossref_primary_10_1109_TAES_2024_3449795
crossref_primary_10_1109_JIOT_2023_3324963
crossref_primary_10_1016_j_engappai_2023_106672
crossref_primary_10_1007_s13369_022_07204_7
crossref_primary_10_54097_fcis_v3i1_6344
crossref_primary_10_1109_ACCESS_2024_3450676
crossref_primary_10_1016_j_engappai_2022_105182
crossref_primary_10_1007_s11227_025_07002_6
crossref_primary_10_1007_s13042_023_01998_0
crossref_primary_10_1016_j_asoc_2021_107978
crossref_primary_10_1016_j_ast_2022_107623
crossref_primary_10_1016_j_trpro_2025_03_081
crossref_primary_10_1038_s41598_023_28087_0
crossref_primary_10_1109_ACCESS_2025_3550572
crossref_primary_10_1016_j_apenergy_2022_119114
crossref_primary_10_1007_s11768_023_00139_w
crossref_primary_10_1007_s00500_024_09935_1
crossref_primary_10_1007_s12243_023_00950_1
crossref_primary_10_1016_j_knosys_2024_112632
crossref_primary_10_3390_math11163620
crossref_primary_10_1007_s10586_024_04892_8
crossref_primary_10_2174_0126662558295501240418093550
crossref_primary_10_1155_2022_4925416
crossref_primary_10_3390_sym17030356
crossref_primary_10_1109_ACCESS_2023_3234057
crossref_primary_10_1016_j_compeleceng_2023_108947
crossref_primary_10_1016_j_aei_2024_102354
crossref_primary_10_3390_s23156873
crossref_primary_10_1016_j_ast_2024_109088
crossref_primary_10_3390_drones7120687
crossref_primary_10_1016_j_ins_2024_120887
crossref_primary_10_1016_j_ins_2023_120000
crossref_primary_10_1109_COMST_2024_3395358
crossref_primary_10_3390_s24041193
crossref_primary_10_1371_journal_pone_0316836
crossref_primary_10_1088_1361_6501_ad1977
crossref_primary_10_1177_00368504251321714
crossref_primary_10_1016_j_jnlest_2024_100279
crossref_primary_10_1007_s41693_024_00135_9
crossref_primary_10_23919_CSMS_2024_0013
crossref_primary_10_1007_s10586_024_04290_0
crossref_primary_10_1109_ACCESS_2022_3215131
crossref_primary_10_1109_OJITS_2024_3486155
crossref_primary_10_1007_s00521_024_10945_1
crossref_primary_10_1016_j_oceaneng_2023_115040
crossref_primary_10_3390_drones6050134
crossref_primary_10_3390_sym13061071
crossref_primary_10_1109_TITS_2021_3131473
crossref_primary_10_1155_2022_2521737
crossref_primary_10_1016_j_comcom_2024_108007
crossref_primary_10_1109_TAI_2024_3373390
crossref_primary_10_3390_s24082518
crossref_primary_10_1016_j_isatra_2024_04_010
crossref_primary_10_1007_s42235_024_00596_2
crossref_primary_10_1186_s10033_024_01014_8
crossref_primary_10_1007_s00500_025_10481_7
crossref_primary_10_1016_j_asoc_2024_112269
crossref_primary_10_1007_s10462_023_10481_9
crossref_primary_10_1088_1361_6501_ad66f5
crossref_primary_10_1155_2021_4511252
crossref_primary_10_1016_j_asoc_2022_108495
crossref_primary_10_3390_s22186843
crossref_primary_10_3390_drones7100633
crossref_primary_10_1016_j_engappai_2023_107817
crossref_primary_10_3390_drones8060221
crossref_primary_10_3390_drones8100601
crossref_primary_10_3390_app14062418
crossref_primary_10_14529_mmph240203
crossref_primary_10_1016_j_asoc_2025_113075
crossref_primary_10_1016_j_apm_2025_115979
crossref_primary_10_1016_j_eswa_2023_120946
crossref_primary_10_1016_j_compeleceng_2022_108461
crossref_primary_10_1016_j_dt_2021_07_008
crossref_primary_10_1007_s11831_022_09742_7
crossref_primary_10_1016_j_eswa_2022_116605
crossref_primary_10_3390_s22124467
crossref_primary_10_1016_j_eswa_2023_121597
crossref_primary_10_1038_s41598_025_85912_4
crossref_primary_10_1109_ACCESS_2021_3098706
crossref_primary_10_3390_app14114461
crossref_primary_10_1016_j_asoc_2021_108322
crossref_primary_10_1016_j_ins_2023_119977
crossref_primary_10_1016_j_anucene_2021_108948
crossref_primary_10_3390_drones6050126
crossref_primary_10_1007_s11629_024_9055_4
crossref_primary_10_1111_exsy_13224
crossref_primary_10_1007_s10462_024_11008_6
crossref_primary_10_1016_j_eswa_2023_120713
crossref_primary_10_3390_drones8110644
crossref_primary_10_3390_rs16214019
crossref_primary_10_3390_drones8090435
crossref_primary_10_1016_j_eswa_2024_123481
crossref_primary_10_1016_j_asoc_2024_111718
crossref_primary_10_1049_cth2_12766
crossref_primary_10_3390_biomimetics9050271
crossref_primary_10_3390_machines11100980
crossref_primary_10_1109_TAES_2022_3231244
crossref_primary_10_12677_CSA_2022_1212270
crossref_primary_10_1007_s12652_024_04854_3
crossref_primary_10_1177_09544100241233323
crossref_primary_10_1109_ACCESS_2022_3213035
crossref_primary_10_1016_j_autcon_2023_105005
crossref_primary_10_3390_drones8050205
crossref_primary_10_3390_a18010018
crossref_primary_10_3390_jmse12101845
crossref_primary_10_1007_s13369_024_09365_z
crossref_primary_10_1016_j_eij_2024_100556
crossref_primary_10_3390_drones8110675
crossref_primary_10_1016_j_asoc_2023_110413
crossref_primary_10_1016_j_engappai_2023_107002
crossref_primary_10_4018_IJSIR_307105
crossref_primary_10_1109_ACCESS_2024_3380004
crossref_primary_10_1109_JIOT_2023_3284828
crossref_primary_10_1177_01423312231167200
crossref_primary_10_3390_drones8050201
crossref_primary_10_1007_s42405_025_00913_x
crossref_primary_10_1063_5_0222940
crossref_primary_10_1080_0305215X_2024_2366484
crossref_primary_10_3390_pr10122606
crossref_primary_10_1080_0305215X_2023_2269844
crossref_primary_10_1109_ACCESS_2025_3527509
crossref_primary_10_1016_j_aei_2024_102947
crossref_primary_10_1016_j_eswa_2023_119941
crossref_primary_10_1016_j_asoc_2025_112773
crossref_primary_10_1109_JIOT_2024_3364230
crossref_primary_10_12677_mos_2024_133263
crossref_primary_10_3390_drones7030170
crossref_primary_10_1109_JSEN_2024_3516124
crossref_primary_10_1016_j_compeleceng_2023_108893
crossref_primary_10_1016_j_jksuci_2023_101811
crossref_primary_10_3390_biomimetics10040201
crossref_primary_10_3390_electronics13214233
crossref_primary_10_3390_ijgi11020112
crossref_primary_10_1016_j_eswa_2023_120254
crossref_primary_10_32604_cmc_2024_058294
Cites_doi 10.1016/j.asoc.2020.106443
10.1016/j.asoc.2020.106705
10.1109/TSMC.2013.2248146
10.1109/LRA.2018.2883375
10.1109/ACCESS.2018.2854712
10.1007/s00500-013-1147-y
10.1016/j.ast.2015.08.006
10.2514/1.5791
10.1109/TSSC.1968.300136
10.1177/0954410019844434
10.1109/JIOT.2017.2717078
10.1109/TII.2012.2198665
10.1016/j.neucom.2012.09.019
10.1049/el.2015.1244
10.1109/TEVC.2018.2878221
10.1016/j.asoc.2020.106193
10.1109/JSYST.2019.2922290
10.1109/TGRS.2016.2585184
10.1109/IROS.2009.5354455
10.1007/s13369-018-03713-6
10.1109/TVT.2016.2623666
10.1109/21.148426
10.1109/TAES.2018.2807558
10.1016/j.ast.2010.04.008
10.1137/S0097539795290477
10.1109/7.869506
10.1162/EVCO_a_00049
10.1002/asjc.960
10.1016/j.asoc.2007.05.007
10.1023/A:1008202821328
10.1631/jzus.A071278
10.1016/j.asoc.2020.106312
10.1016/j.mechmachtheory.2020.104140
10.1109/TITS.2017.2673778
10.1080/00207721.2014.929191
10.1109/TSMCA.2011.2159586
10.1016/j.autcon.2017.04.013
10.1109/TPWRS.2003.814889
10.1016/j.asoc.2014.06.034
10.1109/TRA.2002.805653
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107376
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107376
S1568494621002994
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-b470073d7da16e98e1cd11edd5edced0170190cf8481c3ae53d69dd593c623f73
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:10:15 EDT 2025
Tue Jul 01 01:50:09 EDT 2025
Fri Feb 23 02:44:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Particle swarm optimization
Path planning
UAV
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-b470073d7da16e98e1cd11edd5edced0170190cf8481c3ae53d69dd593c623f73
ORCID 0000-0001-5247-6180
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107376
crossref_primary_10_1016_j_asoc_2021_107376
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References McLain, Beard (b7) 2005; 28
(b31) 2001
Fu, Ding, Zhou, Hu (b26) 2013; 43
Zhang, Gong, Sun, Geng (b36) 2014; 18
Hart, Nilsson, Raphael (b11) 1968; 4
bo Chen, chen Luo, song Mei, qiao Yu, long Su (b20) 2016; 47
Beard, McLain, Goodrich, Anderson (b6) 2002; 18
Fu, Ding, Zhou (b30) 2012; 42
Roberge, Tarbouchi, Labonte (b24) 2018; 54
Di, Zhou, Duan (b22) 2015; 46
Heidari, Saska (b21) 2021; 156
Sun, Wu, Yang, Huang, Li, Li (b27) 2016; 54
Storn, Price (b46) 1997; 11
Luo, Yu, Mei, Zhang (b19) 2015; 17
Lin, Saripalli (b10) 2017; 18
.
Penin, Giordano, Chaumette (b12) 2019; 4
Li, Deng, Luo, Lin, Yan, Ming (b14) 2016; 65
Tang, Sun, Lu, Lao (b18) 2019; 233
Hoang, Phung, Dinh, Ha (b2) 2020; 14
Lalwani, Sharma, Satapathy, Deep, Bansal (b34) 2019; 44
Karaboga, Basturk (b45) 2008; 8
Geoscience Australia (b43) 2015
Geng, Sun, Gong, Zhang (b38) 2016; 31
Eberhart, Shi (b33) 1998
Eppstein (b8) 1998; 28
Hakli, Uguz (b48) 2014; 23
L. Lin, M.A. Goodrich, UAV intelligent path planning for Wilderness Search and Rescue, in: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 709–714
Szczerba, Galkowski, Glicktein, Ternullo (b13) 2000; 36
Zhang, Gong, Zhang (b37) 2013; 103
Song, Pan, Chu (b23) 2020; 94
Das, Jena (b35) 2020; 92
Yu, Chen, Gu, Yuan, Zhang, Zhang (b29) 2019; 23
Pettersson, Doherty (b9) 2006; 17
Gaing (b32) 2003; 18
Roberge, Tarbouchi, Labonte (b25) 2013; 9
Hoang, Phung, Dinh, Ha (b40) 2018
Li, Liu, Yang (b47) 2020; 91
Yin, Xiao, Cao, Xi, Yang, Wu (b5) 2018; 5
Hsu, Lachenbruch (b44) 2005
Kwak, Sung (b15) 2018; 6
Zhong, Li, Qian (b39) 2008; 9
Sun, Liu, Yao, Qi (b16) 2015; 51
Barraquand, Langlois, Latombe (b17) 1992; 22
Sun, Fang, Wu, Palade, Xu (b41) 2012; 20
Xu, Duan, Liu (b28) 2010; 14
Phung, Quach, Dinh, Ha (b1) 2017; 81
Phung, Ha (b3) 2020
Clerc (b42) 2004
Yu (10.1016/j.asoc.2021.107376_b29) 2019; 23
Kwak (10.1016/j.asoc.2021.107376_b15) 2018; 6
Song (10.1016/j.asoc.2021.107376_b23) 2020; 94
Hoang (10.1016/j.asoc.2021.107376_b40) 2018
Phung (10.1016/j.asoc.2021.107376_b3) 2020
Tang (10.1016/j.asoc.2021.107376_b18) 2019; 233
Xu (10.1016/j.asoc.2021.107376_b28) 2010; 14
bo Chen (10.1016/j.asoc.2021.107376_b20) 2016; 47
Roberge (10.1016/j.asoc.2021.107376_b25) 2013; 9
Sun (10.1016/j.asoc.2021.107376_b27) 2016; 54
Li (10.1016/j.asoc.2021.107376_b47) 2020; 91
Storn (10.1016/j.asoc.2021.107376_b46) 1997; 11
Beard (10.1016/j.asoc.2021.107376_b6) 2002; 18
Sun (10.1016/j.asoc.2021.107376_b41) 2012; 20
Sun (10.1016/j.asoc.2021.107376_b16) 2015; 51
Di (10.1016/j.asoc.2021.107376_b22) 2015; 46
Phung (10.1016/j.asoc.2021.107376_b1) 2017; 81
Geng (10.1016/j.asoc.2021.107376_b38) 2016; 31
Fu (10.1016/j.asoc.2021.107376_b30) 2012; 42
Eberhart (10.1016/j.asoc.2021.107376_b33) 1998
Geoscience Australia (10.1016/j.asoc.2021.107376_b43) 2015
Hakli (10.1016/j.asoc.2021.107376_b48) 2014; 23
Li (10.1016/j.asoc.2021.107376_b14) 2016; 65
Barraquand (10.1016/j.asoc.2021.107376_b17) 1992; 22
Lalwani (10.1016/j.asoc.2021.107376_b34) 2019; 44
Hoang (10.1016/j.asoc.2021.107376_b2) 2020; 14
Pettersson (10.1016/j.asoc.2021.107376_b9) 2006; 17
Das (10.1016/j.asoc.2021.107376_b35) 2020; 92
McLain (10.1016/j.asoc.2021.107376_b7) 2005; 28
Zhong (10.1016/j.asoc.2021.107376_b39) 2008; 9
Karaboga (10.1016/j.asoc.2021.107376_b45) 2008; 8
(10.1016/j.asoc.2021.107376_b31) 2001
Penin (10.1016/j.asoc.2021.107376_b12) 2019; 4
Zhang (10.1016/j.asoc.2021.107376_b36) 2014; 18
10.1016/j.asoc.2021.107376_b4
Gaing (10.1016/j.asoc.2021.107376_b32) 2003; 18
Clerc (10.1016/j.asoc.2021.107376_b42) 2004
Yin (10.1016/j.asoc.2021.107376_b5) 2018; 5
Hart (10.1016/j.asoc.2021.107376_b11) 1968; 4
Zhang (10.1016/j.asoc.2021.107376_b37) 2013; 103
Hsu (10.1016/j.asoc.2021.107376_b44) 2005
Lin (10.1016/j.asoc.2021.107376_b10) 2017; 18
Luo (10.1016/j.asoc.2021.107376_b19) 2015; 17
Szczerba (10.1016/j.asoc.2021.107376_b13) 2000; 36
Roberge (10.1016/j.asoc.2021.107376_b24) 2018; 54
Fu (10.1016/j.asoc.2021.107376_b26) 2013; 43
Heidari (10.1016/j.asoc.2021.107376_b21) 2021; 156
Eppstein (10.1016/j.asoc.2021.107376_b8) 1998; 28
References_xml – start-page: 5239
  year: 2018
  end-page: 5244
  ident: b40
  article-title: Angle-encoded swarm optimization for UAV formation path planning
  publication-title: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 20
  start-page: 349
  year: 2012
  end-page: 393
  ident: b41
  article-title: Quantum-behaved particle swarm optimization: Analysis of individual particle behavior and parameter selection
  publication-title: Evol. Comput.
– volume: 17
  start-page: 395
  year: 2006
  end-page: 405
  ident: b9
  article-title: Probabilistic roadmap based path planning for an autonomous unmanned helicopter
  publication-title: J. Intell. Fuzzy Systems
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b46
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 18
  start-page: 911
  year: 2002
  end-page: 922
  ident: b6
  article-title: Coordinated target assignment and intercept for unmanned air vehicles
  publication-title: IEEE Trans. Robot. Autom.
– volume: 28
  start-page: 150
  year: 2005
  end-page: 161
  ident: b7
  article-title: Coordination variables, coordination functions, and cooperative timing missions
  publication-title: J. Guid. Control Dyn.
– volume: 4
  start-page: 153
  year: 2019
  end-page: 160
  ident: b12
  article-title: Minimum-time trajectory planning under intermittent measurements
  publication-title: IEEE Robot. Autom. Lett.
– volume: 22
  start-page: 224
  year: 1992
  end-page: 241
  ident: b17
  article-title: Numerical potential field techniques for robot path planning
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2020
  ident: b3
  article-title: Motion-encoded particle swarm optimization for moving target search using UAVs
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 617
  year: 2019
  end-page: 631
  ident: b29
  article-title: ACO-A*: Ant colony optimization plus A* for 3-D traveling in environments with dense obstacles
  publication-title: IEEE Trans. Evol. Comput.
– volume: 43
  start-page: 1451
  year: 2013
  end-page: 1465
  ident: b26
  article-title: Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 47
  start-page: 1407
  year: 2016
  end-page: 1420
  ident: b20
  article-title: UAV path planning using artificial potential field method updated by optimal control theory
  publication-title: Internat. J. Systems Sci.
– volume: 14
  start-page: 2925
  year: 2020
  end-page: 2936
  ident: b2
  article-title: System architecture for real-time surface inspection using multiple UAVs
  publication-title: IEEE Syst. J.
– volume: 6
  start-page: 37947
  year: 2018
  end-page: 37955
  ident: b15
  article-title: Autonomous UAV flight control for GPS-based navigation
  publication-title: IEEE Access
– volume: 94
  year: 2020
  ident: b23
  article-title: A parallel compact cuckoo search algorithm for three-dimensional path planning
  publication-title: Appl. Soft Comput.
– volume: 54
  start-page: 2105
  year: 2018
  end-page: 2117
  ident: b24
  article-title: Fast genetic algorithm path planner for fixed-wing military UAV using GPU
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 103
  start-page: 172
  year: 2013
  end-page: 185
  ident: b37
  article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization
  publication-title: Neurocomputing
– volume: 23
  start-page: 333
  year: 2014
  end-page: 345
  ident: b48
  article-title: A novel particle swarm optimization algorithm with levy flight
  publication-title: Appl. Soft Comput.
– volume: 36
  start-page: 869
  year: 2000
  end-page: 878
  ident: b13
  article-title: Robust algorithm for real-time route planning
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: b45
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 1187
  year: 2003
  end-page: 1195
  ident: b32
  article-title: Particle swarm optimization to solving the economic dispatch considering the generator constraints
  publication-title: IEEE Trans. Power Syst.
– volume: 65
  start-page: 9585
  year: 2016
  end-page: 9596
  ident: b14
  article-title: A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems
  publication-title: IEEE Trans. Veh. Technol.
– year: 2005
  ident: b44
  article-title: Paired t Test
  publication-title: Encyclopedia of Biostatistics
– year: 2001
  ident: b31
  article-title: Swarm Intelligence
– volume: 44
  start-page: 2899
  year: 2019
  end-page: 2923
  ident: b34
  article-title: A survey on parallel particle swarm optimization algorithms
  publication-title: Arab. J. Sci. Eng.
– volume: 156
  year: 2021
  ident: b21
  article-title: Collision-free trajectory planning of multi-rotor UAVs in a wind condition based on modified potential field
  publication-title: Mech. Mach. Theory
– volume: 18
  start-page: 1337
  year: 2014
  end-page: 1352
  ident: b36
  article-title: Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis
  publication-title: Soft Comput.
– volume: 18
  start-page: 3179
  year: 2017
  end-page: 3192
  ident: b10
  article-title: Sampling-based path planning for UAV collision avoidance
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 219
  year: 2004
  end-page: 239
  ident: b42
  article-title: Discrete particle swarm optimization, illustrated by the traveling salesman problem
  publication-title: New Optimization Techniques in Engineering
– volume: 233
  start-page: 6032
  year: 2019
  end-page: 6043
  ident: b18
  article-title: Optimized artificial potential field algorithm to multi-unmanned aerial vehicle coordinated trajectory planning and collision avoidance in three-dimensional environment
  publication-title: Proc. Inst. Mech. Eng. G
– volume: 92
  year: 2020
  ident: b35
  article-title: Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 786
  year: 2008
  end-page: 790
  ident: b39
  article-title: -PSO: a new strategy of particle swarm optimization
  publication-title: J. Zhejiang Univ.-Sci. A
– volume: 42
  start-page: 511
  year: 2012
  end-page: 526
  ident: b30
  article-title: Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV
  publication-title: IEEE Trans. Syst. Man Cybern. A
– volume: 28
  start-page: 652
  year: 1998
  end-page: 673
  ident: b8
  article-title: Finding the k shortest paths
  publication-title: SIAM J. Comput.
– volume: 54
  start-page: 6444
  year: 2016
  end-page: 6457
  ident: b27
  article-title: Path planning for GEO-UAV bistatic SAR using constrained adaptive multiobjective differential evolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 1600
  year: 2015
  end-page: 1610
  ident: b19
  article-title: UAV path planning in mixed-obstacle environment via artificial potential field method improved by additional control force
  publication-title: Asian J. Control
– reference: L. Lin, M.A. Goodrich, UAV intelligent path planning for Wilderness Search and Rescue, in: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 709–714,
– volume: 31
  start-page: 100
  year: 2016
  end-page: 110
  ident: b38
  article-title: Solving robot path planning in an environment with terrains based on interval multi-objective PSO
  publication-title: Int. J. Robot. Autom.
– volume: 14
  start-page: 535
  year: 2010
  end-page: 541
  ident: b28
  article-title: Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning
  publication-title: Aerosp. Sci. Technol.
– start-page: 611
  year: 1998
  end-page: 616
  ident: b33
  article-title: Comparison between genetic algorithms and particle swarm optimization
  publication-title: Evolutionary Programming VII
– reference: .
– volume: 91
  year: 2020
  ident: b47
  article-title: Influence of initialization on the performance of metaheuristic optimizers
  publication-title: Appl. Soft Comput.
– volume: 81
  start-page: 25
  year: 2017
  end-page: 33
  ident: b1
  article-title: Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection
  publication-title: Autom. Constr.
– volume: 9
  start-page: 132
  year: 2013
  end-page: 141
  ident: b25
  article-title: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning
  publication-title: IEEE Trans. Ind. Inf.
– volume: 5
  start-page: 546
  year: 2018
  end-page: 558
  ident: b5
  article-title: Offline and online search: UAV multiobjective path planning under dynamic urban environment
  publication-title: IEEE Internet Things J.
– year: 2015
  ident: b43
  article-title: Digital elevation model (DEM) of Australia derived from LiDAR 5 metre grid
– volume: 46
  start-page: 386
  year: 2015
  end-page: 397
  ident: b22
  article-title: Potential field based receding horizon motion planning for centrality-aware multiple UAV cooperative surveillance
  publication-title: Aerosp. Sci. Technol.
– volume: 4
  start-page: 100
  year: 1968
  end-page: 107
  ident: b11
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
– volume: 51
  start-page: 1490
  year: 2015
  end-page: 1492
  ident: b16
  article-title: Triple-stage path prediction algorithm for real-time mission planning of multi-UAV
  publication-title: Electron. Lett.
– volume: 94
  year: 2020
  ident: 10.1016/j.asoc.2021.107376_b23
  article-title: A parallel compact cuckoo search algorithm for three-dimensional path planning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106443
– year: 2020
  ident: 10.1016/j.asoc.2021.107376_b3
  article-title: Motion-encoded particle swarm optimization for moving target search using UAVs
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106705
– start-page: 219
  year: 2004
  ident: 10.1016/j.asoc.2021.107376_b42
  article-title: Discrete particle swarm optimization, illustrated by the traveling salesman problem
– volume: 43
  start-page: 1451
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2021.107376_b26
  article-title: Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2013.2248146
– volume: 4
  start-page: 153
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107376_b12
  article-title: Minimum-time trajectory planning under intermittent measurements
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2883375
– volume: 6
  start-page: 37947
  year: 2018
  ident: 10.1016/j.asoc.2021.107376_b15
  article-title: Autonomous UAV flight control for GPS-based navigation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2854712
– volume: 18
  start-page: 1337
  issue: 7
  year: 2014
  ident: 10.1016/j.asoc.2021.107376_b36
  article-title: Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis
  publication-title: Soft Comput.
  doi: 10.1007/s00500-013-1147-y
– volume: 46
  start-page: 386
  year: 2015
  ident: 10.1016/j.asoc.2021.107376_b22
  article-title: Potential field based receding horizon motion planning for centrality-aware multiple UAV cooperative surveillance
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.08.006
– volume: 28
  start-page: 150
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2021.107376_b7
  article-title: Coordination variables, coordination functions, and cooperative timing missions
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.5791
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 10.1016/j.asoc.2021.107376_b11
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– start-page: 611
  year: 1998
  ident: 10.1016/j.asoc.2021.107376_b33
  article-title: Comparison between genetic algorithms and particle swarm optimization
– volume: 233
  start-page: 6032
  issue: 16
  year: 2019
  ident: 10.1016/j.asoc.2021.107376_b18
  article-title: Optimized artificial potential field algorithm to multi-unmanned aerial vehicle coordinated trajectory planning and collision avoidance in three-dimensional environment
  publication-title: Proc. Inst. Mech. Eng. G
  doi: 10.1177/0954410019844434
– volume: 5
  start-page: 546
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2021.107376_b5
  article-title: Offline and online search: UAV multiobjective path planning under dynamic urban environment
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2717078
– volume: 9
  start-page: 132
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2021.107376_b25
  article-title: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2012.2198665
– volume: 103
  start-page: 172
  year: 2013
  ident: 10.1016/j.asoc.2021.107376_b37
  article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.019
– volume: 51
  start-page: 1490
  issue: 19
  year: 2015
  ident: 10.1016/j.asoc.2021.107376_b16
  article-title: Triple-stage path prediction algorithm for real-time mission planning of multi-UAV
  publication-title: Electron. Lett.
  doi: 10.1049/el.2015.1244
– volume: 23
  start-page: 617
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2021.107376_b29
  article-title: ACO-A*: Ant colony optimization plus A* for 3-D traveling in environments with dense obstacles
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2878221
– volume: 31
  start-page: 100
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2021.107376_b38
  article-title: Solving robot path planning in an environment with terrains based on interval multi-objective PSO
  publication-title: Int. J. Robot. Autom.
– volume: 91
  year: 2020
  ident: 10.1016/j.asoc.2021.107376_b47
  article-title: Influence of initialization on the performance of metaheuristic optimizers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106193
– volume: 14
  start-page: 2925
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2021.107376_b2
  article-title: System architecture for real-time surface inspection using multiple UAVs
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2019.2922290
– volume: 54
  start-page: 6444
  issue: 11
  year: 2016
  ident: 10.1016/j.asoc.2021.107376_b27
  article-title: Path planning for GEO-UAV bistatic SAR using constrained adaptive multiobjective differential evolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2585184
– year: 2015
  ident: 10.1016/j.asoc.2021.107376_b43
– ident: 10.1016/j.asoc.2021.107376_b4
  doi: 10.1109/IROS.2009.5354455
– year: 2001
  ident: 10.1016/j.asoc.2021.107376_b31
– volume: 44
  start-page: 2899
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2021.107376_b34
  article-title: A survey on parallel particle swarm optimization algorithms
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-018-03713-6
– volume: 65
  start-page: 9585
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2021.107376_b14
  article-title: A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2623666
– volume: 22
  start-page: 224
  issue: 2
  year: 1992
  ident: 10.1016/j.asoc.2021.107376_b17
  article-title: Numerical potential field techniques for robot path planning
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.148426
– volume: 54
  start-page: 2105
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2021.107376_b24
  article-title: Fast genetic algorithm path planner for fixed-wing military UAV using GPU
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2018.2807558
– volume: 14
  start-page: 535
  issue: 8
  year: 2010
  ident: 10.1016/j.asoc.2021.107376_b28
  article-title: Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2010.04.008
– volume: 28
  start-page: 652
  issue: 2
  year: 1998
  ident: 10.1016/j.asoc.2021.107376_b8
  article-title: Finding the k shortest paths
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795290477
– volume: 36
  start-page: 869
  issue: 3
  year: 2000
  ident: 10.1016/j.asoc.2021.107376_b13
  article-title: Robust algorithm for real-time route planning
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.869506
– volume: 20
  start-page: 349
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2021.107376_b41
  article-title: Quantum-behaved particle swarm optimization: Analysis of individual particle behavior and parameter selection
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00049
– volume: 17
  start-page: 1600
  issue: 5
  year: 2015
  ident: 10.1016/j.asoc.2021.107376_b19
  article-title: UAV path planning in mixed-obstacle environment via artificial potential field method improved by additional control force
  publication-title: Asian J. Control
  doi: 10.1002/asjc.960
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2021.107376_b45
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2021.107376_b46
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 9
  start-page: 786
  issue: 6
  year: 2008
  ident: 10.1016/j.asoc.2021.107376_b39
  article-title: θ-PSO: a new strategy of particle swarm optimization
  publication-title: J. Zhejiang Univ.-Sci. A
  doi: 10.1631/jzus.A071278
– volume: 92
  year: 2020
  ident: 10.1016/j.asoc.2021.107376_b35
  article-title: Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106312
– volume: 156
  year: 2021
  ident: 10.1016/j.asoc.2021.107376_b21
  article-title: Collision-free trajectory planning of multi-rotor UAVs in a wind condition based on modified potential field
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.104140
– volume: 17
  start-page: 395
  issue: 4
  year: 2006
  ident: 10.1016/j.asoc.2021.107376_b9
  article-title: Probabilistic roadmap based path planning for an autonomous unmanned helicopter
  publication-title: J. Intell. Fuzzy Systems
– volume: 18
  start-page: 3179
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2021.107376_b10
  article-title: Sampling-based path planning for UAV collision avoidance
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2673778
– volume: 47
  start-page: 1407
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2021.107376_b20
  article-title: UAV path planning using artificial potential field method updated by optimal control theory
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2014.929191
– volume: 42
  start-page: 511
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2021.107376_b30
  article-title: Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV
  publication-title: IEEE Trans. Syst. Man Cybern. A
  doi: 10.1109/TSMCA.2011.2159586
– volume: 81
  start-page: 25
  year: 2017
  ident: 10.1016/j.asoc.2021.107376_b1
  article-title: Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.04.013
– volume: 18
  start-page: 1187
  issue: 3
  year: 2003
  ident: 10.1016/j.asoc.2021.107376_b32
  article-title: Particle swarm optimization to solving the economic dispatch considering the generator constraints
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2003.814889
– year: 2005
  ident: 10.1016/j.asoc.2021.107376_b44
  article-title: Paired t Test
– start-page: 5239
  year: 2018
  ident: 10.1016/j.asoc.2021.107376_b40
  article-title: Angle-encoded swarm optimization for UAV formation path planning
– volume: 23
  start-page: 333
  year: 2014
  ident: 10.1016/j.asoc.2021.107376_b48
  article-title: A novel particle swarm optimization algorithm with levy flight
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.034
– volume: 18
  start-page: 911
  issue: 6
  year: 2002
  ident: 10.1016/j.asoc.2021.107376_b6
  article-title: Coordinated target assignment and intercept for unmanned air vehicles
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/TRA.2002.805653
SSID ssj0016928
Score 2.6753707
Snippet This paper presents a new algorithm named spherical vector-based particle swarm optimization (SPSO) to deal with the problem of path planning for unmanned...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107376
SubjectTerms Particle swarm optimization
Path planning
UAV
Title Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization
URI https://dx.doi.org/10.1016/j.asoc.2021.107376
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENmcZ5OR6riqq8KkQpKlOU-CGKaFq1AcTCb8eXOBVIqANTFOesROfL-WzffR9CpylNdcSUR1QkGFCY-SSiIiCSM9dhgHklYUP_th_2hv7VKBjVUKeqhYG0Suv7S59eeGvb0rLabM3G49bArDwin_uhCyiinAMmqO8zsPLzr2WaBw15wa8KwgSkbeFMmeOVGA2YNaJLTQPzAHfkr8npx4TT3UIbNlLE7fJjtlFNZTtos2JhwPan3EVPg0Sr_JOo7Lk4zcfD9iMGomE8s4REGDZb8QIABGBI8HuxU09gApNGsnwBXnwk8wmeGhcysbWZe2jYvXjo9IglTCDCc5ycpD6DkzfJZEJDxSNFhaRUSRlArqd0Cux1R2iA0BdeogJPhtw85Z4wUZBm3j6qZ9NMHSDsau64ytXCLDd8FSUmagm4dlJHc6lDFTYQrTQVC4smDqQWr3GVNvYSg3Zj0G5careBzpZ9ZiWWxkrpoBqA-JdFxMbZr-h3-M9-R2gd7srkvmNUz-dv6sQEHHnaLCyqidbanfubO7heXvf63xYE1ts
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFH7iGGDhRpTTA0zINM7tgQFxqAXapRSVKSQ-RBEtFS0gFv4UfxC_xKlAQgxIrLGdOM9P77A_fw9gN2OZjiPlURWLCEuY-TRmIqCSR64TIeeVxA39RjOstf3zTtCZgI_yLgzCKq3tL2x6bq3tk6qVZnXQ7VZbJvOIfe6HLrKIcu5bZOWFens1edvwsH5iFnnPdc9Or45r1JYWoMJznBHN_AjPqGQkUxYqHismJGNKygBRkdLJWcodoZFsXnipCjwZctPKPWHiBR155r2TMO0bc4FlEw7ex7gSFvK8oCvOjuL07E2dAlSWGpGbpNRl5kHkIdHJT97wi4c7W4A5G5qSo-LvF2FC9Zdgviz7QKwVWIabVqrV6I2q_l0OHyDto2uClY3JwFZAIri7S4bIWIA6QF7yowGKHlOansUHyPA1feqRR2OzevYy6Aq0_0WMqzDVf-yrNSCu5o6rXC1MfuOrODVhUsC1kzmaSx2qsAKslFQiLH05VtF4SEqc2n2C0k1Qukkh3Qrsj8cMCvKOX3sH5QIk31QwMd7ll3Hrfxy3AzO1q8ZlcllvXmzALLYUyMJNmBo9PastE-2Msu1cuwjc_rc6fwJeCxFp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety-enhanced+UAV+path+planning+with+spherical+vector-based+particle+swarm+optimization&rft.jtitle=Applied+soft+computing&rft.au=Phung%2C+Manh+Duong&rft.au=Ha%2C+Quang+Phuc&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=107&rft_id=info:doi/10.1016%2Fj.asoc.2021.107376&rft.externalDocID=S1568494621002994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon