Numerical analysis of Mg2Si/Si heterojunction DG-TFET for low power/high performance applications: Impact of non- idealities
In the advanced technology nodes, conventional MOSFETs are being replaced by tunnel field effect transistors (TFETs), due to its potential of achieving subthreshold swing (SS) less than 60 mV/decade. However, certain constraints are to be met to improve the performance of TFET in terms of higher ON...
Saved in:
Published in | Superlattices and microstructures Vol. 139; p. 106397 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0749-6036 1096-3677 |
DOI | 10.1016/j.spmi.2020.106397 |
Cover
Loading…
Abstract | In the advanced technology nodes, conventional MOSFETs are being replaced by tunnel field effect transistors (TFETs), due to its potential of achieving subthreshold swing (SS) less than 60 mV/decade. However, certain constraints are to be met to improve the performance of TFET in terms of higher ON current (ION) and lower threshold voltage (Vth). Here, in this paper, magnesium silicide/silicon (Mg2Si/Si) heterojunction double gate TFET (Mg2Si/Si HDG-TFET) is explored and is simultaneously compared with conventional silicon double gate TFET (Si DG-TFET). Results depict superior performance of Mg2Si/Si HDG-TFET as compared to conventional Si DG-TFET, in terms of dc characteristics, i.e., ION, Vth, SS, and ION/IOFF ratio. Obtained Vth (0.26 V), SS (10.05mV/decade) and ION/IOFF ratio (1013) for the case of Mg2Si HDG-TFET shows an improvement of 77%, 49% and 10 decades respectively compared to counterpart i.e., Si DG-TFET. In particular, this improvement in the performance of Mg2Si/Si HDG-TFET over Si DG-TFET is attributed to staggered type-II heterojunction interface at the source-channel junction, which leads to reduction of the width for interband tunneling barrier and hence, improves ION. This viability of the device is also determined by analyzing the impact of non-idealities present in the device. In this respect, the Gaussian and tail defects are considered in the bulk of Mg2Si. The results reveal that the Gaussian defects alter the device characteristics mainly in the subthreshold regime, whereas, in the ON state, the impact of defects is minimal. Further, it is obtained that the device is much immune for tail defects in comparison with the Gaussian defects. The CV analysis reveals a marginal degradation in parasitic capacitances for Mg2Si/Si HDG-TFET as compared to Si DG-TFET. However, this degradation can be overlooked against the remarkably enhanced drain current. Thus, the device overcomes the bottleneck of TFET and provides high ION and low Vth without degrading the other performance parameters and hence is suitable for low power analog and digital applications.
•Mg2Si/Si heterojunction DG-TFET has been proposed.•Impact of presence of non-idealities such as Gaussian and tail defects is analyzed.•Staggered type-II heterojunction interface of Mg2Si/Si conquer bottleneck of TFET.•Proposed device is suitable for low power analog and digital applications. |
---|---|
AbstractList | In the advanced technology nodes, conventional MOSFETs are being replaced by tunnel field effect transistors (TFETs), due to its potential of achieving subthreshold swing (SS) less than 60 mV/decade. However, certain constraints are to be met to improve the performance of TFET in terms of higher ON current (ION) and lower threshold voltage (Vth). Here, in this paper, magnesium silicide/silicon (Mg2Si/Si) heterojunction double gate TFET (Mg2Si/Si HDG-TFET) is explored and is simultaneously compared with conventional silicon double gate TFET (Si DG-TFET). Results depict superior performance of Mg2Si/Si HDG-TFET as compared to conventional Si DG-TFET, in terms of dc characteristics, i.e., ION, Vth, SS, and ION/IOFF ratio. Obtained Vth (0.26 V), SS (10.05mV/decade) and ION/IOFF ratio (1013) for the case of Mg2Si HDG-TFET shows an improvement of 77%, 49% and 10 decades respectively compared to counterpart i.e., Si DG-TFET. In particular, this improvement in the performance of Mg2Si/Si HDG-TFET over Si DG-TFET is attributed to staggered type-II heterojunction interface at the source-channel junction, which leads to reduction of the width for interband tunneling barrier and hence, improves ION. This viability of the device is also determined by analyzing the impact of non-idealities present in the device. In this respect, the Gaussian and tail defects are considered in the bulk of Mg2Si. The results reveal that the Gaussian defects alter the device characteristics mainly in the subthreshold regime, whereas, in the ON state, the impact of defects is minimal. Further, it is obtained that the device is much immune for tail defects in comparison with the Gaussian defects. The CV analysis reveals a marginal degradation in parasitic capacitances for Mg2Si/Si HDG-TFET as compared to Si DG-TFET. However, this degradation can be overlooked against the remarkably enhanced drain current. Thus, the device overcomes the bottleneck of TFET and provides high ION and low Vth without degrading the other performance parameters and hence is suitable for low power analog and digital applications.
•Mg2Si/Si heterojunction DG-TFET has been proposed.•Impact of presence of non-idealities such as Gaussian and tail defects is analyzed.•Staggered type-II heterojunction interface of Mg2Si/Si conquer bottleneck of TFET.•Proposed device is suitable for low power analog and digital applications. |
ArticleNumber | 106397 |
Author | Chaujar, Rishu Pandey, Rahul Madan, Jaya Dassi, Minaxi Sharma, Rajnish |
Author_xml | – sequence: 1 givenname: Jaya surname: Madan fullname: Madan, Jaya email: jaya.madan@chitkara.edu.in organization: VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India – sequence: 2 givenname: Minaxi surname: Dassi fullname: Dassi, Minaxi organization: Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India – sequence: 3 givenname: Rahul surname: Pandey fullname: Pandey, Rahul email: rahul.pandey@chitkara.edu.in organization: VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India – sequence: 4 givenname: Rishu surname: Chaujar fullname: Chaujar, Rishu organization: Department of Applied Physics, Delhi Technological University, Delhi, India – sequence: 5 givenname: Rajnish surname: Sharma fullname: Sharma, Rajnish email: rajnish.sharma@chitkarauniversity.edu.in organization: VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India |
BookMark | eNp9kMFOwkAURScGExH9AVfzA4XplE5b48agIgnqAlxPptM38EjbaWaKhMSPtxVXLli95Cbn5r5zTQa1rYGQu5CNQxaKyW7smwrHnPE-EFGWXJBhyDIRRCJJBmTIkmkWCBaJK3Lt_Y4xlk3DZEi-3_cVONSqpKpW5dGjp9bQtw1f4WSFdAstOLvb17pFW9OnebB-eV5TYx0t7YE29gBussXNljbgurRStQaqmqbsOnvE39NF1Sjd9rXd6oBiAarEFsHfkEujSg-3f3dEPrvy2Wuw_JgvZo_LQEeMtUHOtZgaEcbdYyrNslSZ3ORZGqdKMR0VEeM5aMZFbqKCx4qlpoCpKOJQ8DyJ82hE0lOvdtZ7B0ZqbH_XtU5hKUMme4tyJ3uLsrcoTxY7lP9DG4eVcsfz0MMJgu6pLwQnvUboxBToQLeysHgO_wE8pI-n |
CitedBy_id | crossref_primary_10_1109_JSEN_2022_3194653 crossref_primary_10_1088_1361_6641_ac7ede crossref_primary_10_1007_s12633_022_01663_1 crossref_primary_10_1088_1757_899X_1033_1_012018 crossref_primary_10_1007_s10854_021_06823_4 crossref_primary_10_1080_02564602_2021_2012284 crossref_primary_10_1007_s12633_023_02386_7 crossref_primary_10_1088_1361_6641_abaa5b crossref_primary_10_1007_s10854_022_07860_3 crossref_primary_10_1007_s12633_021_01006_6 crossref_primary_10_1016_j_micrna_2025_208084 crossref_primary_10_1109_OJNANO_2022_3224462 crossref_primary_10_1088_1742_6596_1710_1_012003 crossref_primary_10_1007_s12596_024_02045_z crossref_primary_10_1016_j_micrna_2023_207565 crossref_primary_10_1016_j_mseb_2024_117557 crossref_primary_10_1007_s11664_020_08538_4 crossref_primary_10_1016_j_mseb_2024_117356 crossref_primary_10_1088_1674_1056_acd5c0 crossref_primary_10_1088_1361_6641_ac38bb crossref_primary_10_1007_s10854_021_07597_5 crossref_primary_10_1007_s42341_023_00449_5 crossref_primary_10_1016_j_micrna_2023_207629 crossref_primary_10_3390_photonics8110509 crossref_primary_10_1007_s10825_023_02051_7 |
Cites_doi | 10.1109/TED.2010.2052167 10.1088/2053-1591/ab07cb 10.1109/TED.2016.2606762 10.1109/TED.2019.2898444 10.1109/LED.2008.2007599 10.1109/LED.2007.901273 10.1038/srep09843 10.1016/j.spmi.2016.09.050 10.1007/s00339-019-2900-6 10.1016/j.spmi.2016.12.034 10.1109/LED.2011.2164512 10.1038/nature10679 10.1007/s00339-018-2158-4 10.1063/1.3684615 10.1002/pssa.200723528 10.1063/1.1668321 10.1016/j.vacuum.2009.06.055 10.1016/j.microrel.2014.01.023 10.1063/1.3574363 10.1007/s00542-016-2872-9 10.1063/1.4905423 10.1109/TED.2011.2148118 10.1007/s00542-017-3446-1 10.1109/LED.2010.2061214 10.1109/TED.2007.899389 10.1016/j.tsf.2007.02.049 10.1016/j.sse.2004.04.006 10.1007/s00542-017-3436-3 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2020.106397 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2020_106397 S0749603619318774 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-b2c64f615063a8998afbfb9858aa0c3d302bec026bf3d25a08fde46d5162b75b3 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:14 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 Fri Feb 23 02:47:53 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | DG-TFET Staggered type heterojunction Tunnel FET Magnesium silicide Band to band tunneling Bulk defects |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-b2c64f615063a8998afbfb9858aa0c3d302bec026bf3d25a08fde46d5162b75b3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2020_106397 crossref_primary_10_1016_j_spmi_2020_106397 elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106397 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Nirschl, Wang, Weber, Sedlmeir, Heinrich, Kakoschke, Schrufer, Holz, Pacha, Schulz (bib16) 2004 Madan, Chaujar (bib19) 2016; 100 Shekhar, Madan, Chaujar (bib24) 2018; 124 Choi, Park, Lee, Liu (bib13) 2007; 28 Ionescu, Riel (bib9) 2011; 479 Verhulst, Vandenberghe, Maex, De Gendt, Heyns, Groeseneken (bib5) 2008; 29 Satyala, Vashaee (bib28) 2012; 100 Madan, Chaujar (bib4) 2017; 102 Ahangari (bib10) 2019; 6 Rewari, Nath, Haldar, Deswal, Gupta (bib35) 2019; 25 Elnaggar, Shaker, Fedawy (bib27) 2019 Madan, Pandey, Sharma, Chaujar (bib11) 2019; 125 Ionescu, Riel (bib1) 2011; 479 Aydin, Zaslavsky, Luryi, Cristoloveanu, Mariolle, Fraboulet, Deleonibus (bib2) 2004; 84 Hu, Sato, Hosono, Tatsuoka (bib29) 2009; 83 Moselund, Cutaia, Schmid, Borg, Sant, Schenk, Riel (bib23) 2016; 63 Manual (bib32) 2010 Choi, Lee (bib3) 2010; 57 Knoch, Appenzeller (bib6) 2008; 205 Avci, Young (bib33) 2013 Kim, Agarwal, Jacobson, Matheu, Hu, Liu (bib15) 2010; 31 Goel, Rewari, Verma, Gupta (bib8) 2019; 66 Boucart, Ionescu (bib17) 2007; 54 Hanna, Fahad, Hussain (bib22) 2015; 5 Cui, Liang, Xu (bib20) 2011; 98 Paras, Chauhan (bib34) 2019 Rewari, Nath, Haldar, Deswal, Gupta (bib12) 2019; 25 Hanna, Hussain (bib21) 2015; 117 Wang, Hilsenbeck, Nirschl, Oswald, Stepper, Weis, Schmitt-Landsiedel, Hansch (bib7) 2004; 48 Galkin, Vavanova, Maslov, Galkin, Gerasimenko, Kaidalova (bib30) 2007; 515 Shih, Chien (bib14) 2011; 32 Jeon, Loh, Patel, Kang, Oh, Bowonder, Park, Park, Smith, Majhi (bib25) 2010 Wu, Hasegawa, Kakushima, Ohmori, Watanabe, Nishiyama, Sugii, Wakabayashi, Tsutsui, Kataoka (bib26) 2014; 54 Madan, Gupta, Chaujar (bib18) 2017; 23 Tura, Zhang, Liu, Xie, Woo (bib31) 2011; 58 Kim (10.1016/j.spmi.2020.106397_bib15) 2010; 31 Moselund (10.1016/j.spmi.2020.106397_bib23) 2016; 63 Ionescu (10.1016/j.spmi.2020.106397_bib9) 2011; 479 Ahangari (10.1016/j.spmi.2020.106397_bib10) 2019; 6 Boucart (10.1016/j.spmi.2020.106397_bib17) 2007; 54 Jeon (10.1016/j.spmi.2020.106397_bib25) 2010 Paras (10.1016/j.spmi.2020.106397_bib34) 2019 Hu (10.1016/j.spmi.2020.106397_bib29) 2009; 83 Manual (10.1016/j.spmi.2020.106397_bib32) 2010 Madan (10.1016/j.spmi.2020.106397_bib11) 2019; 125 Rewari (10.1016/j.spmi.2020.106397_bib12) 2019; 25 Wu (10.1016/j.spmi.2020.106397_bib26) 2014; 54 Choi (10.1016/j.spmi.2020.106397_bib13) 2007; 28 Nirschl (10.1016/j.spmi.2020.106397_bib16) 2004 Hanna (10.1016/j.spmi.2020.106397_bib21) 2015; 117 Verhulst (10.1016/j.spmi.2020.106397_bib5) 2008; 29 Wang (10.1016/j.spmi.2020.106397_bib7) 2004; 48 Cui (10.1016/j.spmi.2020.106397_bib20) 2011; 98 Elnaggar (10.1016/j.spmi.2020.106397_bib27) 2019 Avci (10.1016/j.spmi.2020.106397_bib33) 2013 Tura (10.1016/j.spmi.2020.106397_bib31) 2011; 58 Madan (10.1016/j.spmi.2020.106397_bib18) 2017; 23 Satyala (10.1016/j.spmi.2020.106397_bib28) 2012; 100 Aydin (10.1016/j.spmi.2020.106397_bib2) 2004; 84 Galkin (10.1016/j.spmi.2020.106397_bib30) 2007; 515 Goel (10.1016/j.spmi.2020.106397_bib8) 2019; 66 Hanna (10.1016/j.spmi.2020.106397_bib22) 2015; 5 Choi (10.1016/j.spmi.2020.106397_bib3) 2010; 57 Knoch (10.1016/j.spmi.2020.106397_bib6) 2008; 205 Madan (10.1016/j.spmi.2020.106397_bib19) 2016; 100 Ionescu (10.1016/j.spmi.2020.106397_bib1) 2011; 479 Shih (10.1016/j.spmi.2020.106397_bib14) 2011; 32 Madan (10.1016/j.spmi.2020.106397_bib4) 2017; 102 Shekhar (10.1016/j.spmi.2020.106397_bib24) 2018; 124 Rewari (10.1016/j.spmi.2020.106397_bib35) 2019; 25 |
References_xml | – start-page: 121 year: 2010 end-page: 122 ident: bib25 article-title: Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing, 2010 Symposium on VLSI Technology – volume: 102 start-page: 17 year: 2017 end-page: 26 ident: bib4 article-title: Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance publication-title: Superlattice Microstruct. – volume: 48 start-page: 2281 year: 2004 end-page: 2286 ident: bib7 article-title: Complementary tunneling transistor for low power application publication-title: Solid State Electron. – volume: 515 start-page: 8230 year: 2007 end-page: 8236 ident: bib30 article-title: Solid phase growth and properties of Mg2Si films on Si (111) publication-title: Thin Solid Films – volume: 58 start-page: 1907 year: 2011 end-page: 1913 ident: bib31 article-title: Vertical silicon pnpn tunnel nMOSFET with MBE-grown tunneling junction publication-title: IEEE Trans. Electron Devices – volume: 124 start-page: 739 year: 2018 ident: bib24 article-title: Source/Gate Material-Engineered Double Gate TFET for improved RF and linearity performance: a numerical simulation publication-title: Appl. Phys. A – year: 2019 ident: bib34 article-title: A novel vertical tunneling based Ge-source TFET with enhanced DC and RF characteristics for prospect low power applications publication-title: Microelectron. Eng. – volume: 5 start-page: 9843 year: 2015 ident: bib22 article-title: InAs/Si hetero-junction nanotube tunnel transistors publication-title: Sci. Rep. – volume: 63 start-page: 4233 year: 2016 end-page: 4239 ident: bib23 article-title: Lateral InAs/Si p-type tunnel FETs integrated on Si—Part 1: experimental devices publication-title: IEEE Trans. Electron Devices – year: 2019 ident: bib27 article-title: A Comprehensive Investigation of TFETs with Semiconducting Silicide Source: Impact of Gate Drain Underlap and Interface Traps – volume: 117 year: 2015 ident: bib21 article-title: Si/Ge hetero-structure nanotube tunnel field effect transistor publication-title: J. Appl. Phys. – volume: 125 start-page: 600 year: 2019 ident: bib11 article-title: Impact of metal silicide source electrode on polarity gate induced source in junctionless TFET publication-title: Appl. Phys. A – volume: 66 start-page: 2437 year: 2019 end-page: 2445 ident: bib8 article-title: Temperature-dependent gate-induced drain leakages assessment of dual-metal nanowire field-effect transistor—analytical model publication-title: IEEE Trans. Electron Devices – start-page: 195 year: 2004 end-page: 198 ident: bib16 article-title: The tunneling field effect transistor (TFET) as an add-on for ultra-low-voltage analog and digital processes, Electron Devices meeting publication-title: 2004. IEDM Technical Digest. IEEE International, IEEE – volume: 6 year: 2019 ident: bib10 article-title: Design and analysis of energy efficient semi-junctionless n+ n+ p heterojunction p-channel tunnel field effect transistor publication-title: Mater. Res. Express – volume: 25 start-page: 1537 year: 2019 end-page: 1546 ident: bib35 article-title: Novel design to improve band to band tunneling and gate induced drain leakages (GIDL) in cylindrical gate all around (GAA) MOSFET publication-title: Microsyst. Technol. – volume: 98 year: 2011 ident: bib20 article-title: Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation publication-title: Appl. Phys. Lett. – volume: 25 start-page: 1527 year: 2019 end-page: 1536 ident: bib12 article-title: Hafnium oxide based cylindrical junctionless double surrounding gate (CJLDSG) MOSFET for high speed, high frequency digital and analog applications publication-title: Microsyst. Technol. – volume: 54 start-page: 899 year: 2014 end-page: 904 ident: bib26 article-title: A novel hetero-junction Tunnel-FET using Semiconducting silicide–Silicon contact and its scalability publication-title: Microelectron. Reliab. – volume: 83 start-page: 1494 year: 2009 end-page: 1497 ident: bib29 article-title: Growth condition dependence of structural and electrical properties of Mg2Si layers grown on silicon substrates publication-title: Vacuum – volume: 28 start-page: 743 year: 2007 end-page: 745 ident: bib13 article-title: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec publication-title: IEEE Electron. Device Lett. – volume: 100 year: 2012 ident: bib28 article-title: The effect of crystallite size on thermoelectric properties of bulk nanostructured magnesium silicide (Mg2Si) compounds publication-title: Appl. Phys. Lett. – volume: 54 start-page: 1725 year: 2007 end-page: 1733 ident: bib17 article-title: Double-gate tunnel FET with high-k gate dielectric publication-title: IEEE Trans. Electron Devices – volume: 32 start-page: 1498 year: 2011 end-page: 1500 ident: bib14 article-title: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction publication-title: IEEE Electron. Device Lett. – volume: 31 start-page: 1107 year: 2010 end-page: 1109 ident: bib15 article-title: Tunnel field effect transistor with raised germanium source publication-title: IEEE Electron. Device Lett. – volume: 100 start-page: 401 year: 2016 end-page: 408 ident: bib19 article-title: Palladium gate all around - hetero dielectric -tunnel FET based highly sensitive hydrogen gas sensor publication-title: Superlattice Microstruct. – volume: 205 start-page: 679 year: 2008 end-page: 694 ident: bib6 article-title: Tunneling phenomena in carbon nanotube field‐effect transistors publication-title: Phys. Status Solidi – volume: 479 start-page: 329 year: 2011 end-page: 337 ident: bib1 article-title: Tunnel field-effect transistors as energy-efficient electronic switches publication-title: Nature – volume: 57 start-page: 2317 year: 2010 end-page: 2319 ident: bib3 article-title: Hetero-gate-dielectric tunneling field-effect transistors publication-title: IEEE Trans. Electron Devices – volume: 479 start-page: 329 year: 2011 ident: bib9 article-title: Tunnel field-effect transistors as energy-efficient electronic switches publication-title: Nature – volume: 23 start-page: 4091 year: 2017 end-page: 4098 ident: bib18 article-title: Mathematical modeling insight of hetero gate dielectric-dual material gate-GAA-tunnel FET for VLSI/analog applications publication-title: Microsyst. Technol. – year: 2010 ident: bib32 publication-title: ATLAS User’S. “Device Simulation Software.” – volume: 84 start-page: 1780 year: 2004 end-page: 1782 ident: bib2 article-title: Lateral interband tunneling transistor in silicon-on-insulator publication-title: Appl. Phys. Lett. – volume: 29 start-page: 1398 year: 2008 end-page: 1401 ident: bib5 article-title: Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates publication-title: IEEE Electron. Device Lett. – start-page: 4.3. 1 year: 2013 end-page: 4.3. 4 ident: bib33 article-title: Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length publication-title: 2013 IEEE International Electron Devices Meeting, IEEE – volume: 57 start-page: 2317 issue: 9 year: 2010 ident: 10.1016/j.spmi.2020.106397_bib3 article-title: Hetero-gate-dielectric tunneling field-effect transistors publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2010.2052167 – volume: 6 issue: 6 year: 2019 ident: 10.1016/j.spmi.2020.106397_bib10 article-title: Design and analysis of energy efficient semi-junctionless n+ n+ p heterojunction p-channel tunnel field effect transistor publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab07cb – start-page: 195 year: 2004 ident: 10.1016/j.spmi.2020.106397_bib16 article-title: The tunneling field effect transistor (TFET) as an add-on for ultra-low-voltage analog and digital processes, Electron Devices meeting – volume: 63 start-page: 4233 issue: 11 year: 2016 ident: 10.1016/j.spmi.2020.106397_bib23 article-title: Lateral InAs/Si p-type tunnel FETs integrated on Si—Part 1: experimental devices publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2016.2606762 – volume: 66 start-page: 2437 issue: 5 year: 2019 ident: 10.1016/j.spmi.2020.106397_bib8 article-title: Temperature-dependent gate-induced drain leakages assessment of dual-metal nanowire field-effect transistor—analytical model publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2019.2898444 – volume: 29 start-page: 1398 issue: 12 year: 2008 ident: 10.1016/j.spmi.2020.106397_bib5 article-title: Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2008.2007599 – volume: 28 start-page: 743 issue: 8 year: 2007 ident: 10.1016/j.spmi.2020.106397_bib13 article-title: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2007.901273 – start-page: 4.3. 1 year: 2013 ident: 10.1016/j.spmi.2020.106397_bib33 article-title: Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length – volume: 5 start-page: 9843 year: 2015 ident: 10.1016/j.spmi.2020.106397_bib22 article-title: InAs/Si hetero-junction nanotube tunnel transistors publication-title: Sci. Rep. doi: 10.1038/srep09843 – volume: 100 start-page: 401 year: 2016 ident: 10.1016/j.spmi.2020.106397_bib19 article-title: Palladium gate all around - hetero dielectric -tunnel FET based highly sensitive hydrogen gas sensor publication-title: Superlattice Microstruct. doi: 10.1016/j.spmi.2016.09.050 – start-page: 121 year: 2010 ident: 10.1016/j.spmi.2020.106397_bib25 – volume: 125 start-page: 600 issue: 9 year: 2019 ident: 10.1016/j.spmi.2020.106397_bib11 article-title: Impact of metal silicide source electrode on polarity gate induced source in junctionless TFET publication-title: Appl. Phys. A doi: 10.1007/s00339-019-2900-6 – year: 2019 ident: 10.1016/j.spmi.2020.106397_bib27 – volume: 102 start-page: 17 year: 2017 ident: 10.1016/j.spmi.2020.106397_bib4 article-title: Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance publication-title: Superlattice Microstruct. doi: 10.1016/j.spmi.2016.12.034 – volume: 32 start-page: 1498 issue: 11 year: 2011 ident: 10.1016/j.spmi.2020.106397_bib14 article-title: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2011.2164512 – volume: 479 start-page: 329 issue: 7373 year: 2011 ident: 10.1016/j.spmi.2020.106397_bib1 article-title: Tunnel field-effect transistors as energy-efficient electronic switches publication-title: Nature doi: 10.1038/nature10679 – volume: 124 start-page: 739 issue: 11 year: 2018 ident: 10.1016/j.spmi.2020.106397_bib24 article-title: Source/Gate Material-Engineered Double Gate TFET for improved RF and linearity performance: a numerical simulation publication-title: Appl. Phys. A doi: 10.1007/s00339-018-2158-4 – volume: 100 issue: 7 year: 2012 ident: 10.1016/j.spmi.2020.106397_bib28 article-title: The effect of crystallite size on thermoelectric properties of bulk nanostructured magnesium silicide (Mg2Si) compounds publication-title: Appl. Phys. Lett. doi: 10.1063/1.3684615 – volume: 205 start-page: 679 issue: 4 year: 2008 ident: 10.1016/j.spmi.2020.106397_bib6 article-title: Tunneling phenomena in carbon nanotube field‐effect transistors publication-title: Phys. Status Solidi doi: 10.1002/pssa.200723528 – volume: 84 start-page: 1780 issue: 10 year: 2004 ident: 10.1016/j.spmi.2020.106397_bib2 article-title: Lateral interband tunneling transistor in silicon-on-insulator publication-title: Appl. Phys. Lett. doi: 10.1063/1.1668321 – volume: 83 start-page: 1494 issue: 12 year: 2009 ident: 10.1016/j.spmi.2020.106397_bib29 article-title: Growth condition dependence of structural and electrical properties of Mg2Si layers grown on silicon substrates publication-title: Vacuum doi: 10.1016/j.vacuum.2009.06.055 – year: 2019 ident: 10.1016/j.spmi.2020.106397_bib34 article-title: A novel vertical tunneling based Ge-source TFET with enhanced DC and RF characteristics for prospect low power applications publication-title: Microelectron. Eng. – volume: 54 start-page: 899 issue: 5 year: 2014 ident: 10.1016/j.spmi.2020.106397_bib26 article-title: A novel hetero-junction Tunnel-FET using Semiconducting silicide–Silicon contact and its scalability publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2014.01.023 – volume: 98 issue: 14 year: 2011 ident: 10.1016/j.spmi.2020.106397_bib20 article-title: Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation publication-title: Appl. Phys. Lett. doi: 10.1063/1.3574363 – volume: 23 start-page: 4091 issue: 9 year: 2017 ident: 10.1016/j.spmi.2020.106397_bib18 article-title: Mathematical modeling insight of hetero gate dielectric-dual material gate-GAA-tunnel FET for VLSI/analog applications publication-title: Microsyst. Technol. doi: 10.1007/s00542-016-2872-9 – volume: 117 issue: 1 year: 2015 ident: 10.1016/j.spmi.2020.106397_bib21 article-title: Si/Ge hetero-structure nanotube tunnel field effect transistor publication-title: J. Appl. Phys. doi: 10.1063/1.4905423 – volume: 58 start-page: 1907 issue: 7 year: 2011 ident: 10.1016/j.spmi.2020.106397_bib31 article-title: Vertical silicon pnpn tunnel nMOSFET with MBE-grown tunneling junction publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2011.2148118 – volume: 25 start-page: 1537 issue: 5 year: 2019 ident: 10.1016/j.spmi.2020.106397_bib35 article-title: Novel design to improve band to band tunneling and gate induced drain leakages (GIDL) in cylindrical gate all around (GAA) MOSFET publication-title: Microsyst. Technol. doi: 10.1007/s00542-017-3446-1 – volume: 479 start-page: 329 issue: 7373 year: 2011 ident: 10.1016/j.spmi.2020.106397_bib9 article-title: Tunnel field-effect transistors as energy-efficient electronic switches publication-title: Nature doi: 10.1038/nature10679 – volume: 31 start-page: 1107 issue: 10 year: 2010 ident: 10.1016/j.spmi.2020.106397_bib15 article-title: Tunnel field effect transistor with raised germanium source publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2010.2061214 – volume: 54 start-page: 1725 issue: 7 year: 2007 ident: 10.1016/j.spmi.2020.106397_bib17 article-title: Double-gate tunnel FET with high-k gate dielectric publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2007.899389 – volume: 515 start-page: 8230 issue: 22 year: 2007 ident: 10.1016/j.spmi.2020.106397_bib30 article-title: Solid phase growth and properties of Mg2Si films on Si (111) publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.02.049 – volume: 48 start-page: 2281 issue: 12 year: 2004 ident: 10.1016/j.spmi.2020.106397_bib7 article-title: Complementary tunneling transistor for low power application publication-title: Solid State Electron. doi: 10.1016/j.sse.2004.04.006 – year: 2010 ident: 10.1016/j.spmi.2020.106397_bib32 – volume: 25 start-page: 1527 issue: 5 year: 2019 ident: 10.1016/j.spmi.2020.106397_bib12 article-title: Hafnium oxide based cylindrical junctionless double surrounding gate (CJLDSG) MOSFET for high speed, high frequency digital and analog applications publication-title: Microsyst. Technol. doi: 10.1007/s00542-017-3436-3 |
SSID | ssj0009417 |
Score | 2.0451539 |
Snippet | In the advanced technology nodes, conventional MOSFETs are being replaced by tunnel field effect transistors (TFETs), due to its potential of achieving... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106397 |
SubjectTerms | Band to band tunneling Bulk defects DG-TFET Magnesium silicide Staggered type heterojunction Tunnel FET |
Title | Numerical analysis of Mg2Si/Si heterojunction DG-TFET for low power/high performance applications: Impact of non- idealities |
URI | https://dx.doi.org/10.1016/j.spmi.2020.106397 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCMGCeIq3PLAhU9eJk5QNlUcLahdAYov8hFSljaCIBfHbucsDioQ6MMayncR38X0Xf3dHyFEYSWOVt0xxyxn4XzFTUgqmYwv4VWAROfyh3-tHnfvw-kE-zJF2HQuDtMpq7y_39GK3rloa1Wo28ixr3ILxA_gdgAcAegkoBiPYwxi1_OTzh-bRCouqu9iZYe8qcKbkeL3mzxn4iAIb8ITrb-M0ZXAuV8lKhRTpWfkwa2TOjdbJUrsu0LZOFgv2pnndIB_9t_LgZUhVlWSEjj3tPYpbeIOMPiHnZTwAE4ZioOdX7O7y4o4CXqXD8TvNsVJaAxMX0_wnjoBOn22f0m4RTonTjsYjRjPrEMGDn71J7mGydodVZRWYCTifMC1MFHpMBB8FCt0t5bXXrUQmSnET2IALECz4ZtoHVkjFE29dGFnZjISOpQ62yDzcyW0TKppeO8vhm44BifFWEoS65UxifJg4Z9wOadbrmZoq5ziWvhimNblskKIMUpRBWspghxx_j8nLjBsze8taTOkvvUnBJMwYt_vPcXtkGa9KFto-mZ-8vLkDgCUTfVjo3SFZOOvedPpfvS7h9w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RoAouCGgr3t1Db9Uqm7XXcbihtJAAyYUgcbP22RqFxIIgLv3xnYnXPKSKQ6_rnbW9s975xjvzDcC3NFPW6eC4Fk5w9L-6XCsluek6xK-SisjRD_3ROBtcp-c36mYF-k0uDIVVxr2_3tOXu3VsacfZbFdl2b5C44fwO0EPANclopgPsErsVKoFqyfDi8H4hXs3XRbepf6cBGLuTB3m9VDdlegmSmqgQ65_26dXNud0EzYiWGQn9fNswYqfbcNav6nRtg0flwGc9uET_Bk_1mcvU6YjzwibBzb6Ja_wJUr2m8Je5rdoxUgT7McZn5z-nDCErGw6f2IVFUtrE3cxq15SCdjr4-1jNlxmVNKws_mMs9J5AvHoan-GaxysP-CxsgK3iRALbqTN0kBc8FmiyePSwQTTy1WutbCJS4RE3aJ7ZkLipNIiD86nmVOdTJquMskXaOGd_A4w2QnGO4GfdRfBmOjlSWp63uY2pLn31u9Cp5nPwkbacap-MS2a-LLbgnRQkA6KWge78P1ZpqpJN97trRo1FW-WToFW4R25vf-U-wprg8nosrgcji_2YZ2u1EFpB9Ba3D_6Q0QpC3MUV-Ffg0LkqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+Mg2Si%2FSi+heterojunction+DG-TFET+for+low+power%2Fhigh+performance+applications%3A+Impact+of+non-+idealities&rft.jtitle=Superlattices+and+microstructures&rft.au=Madan%2C+Jaya&rft.au=Dassi%2C+Minaxi&rft.au=Pandey%2C+Rahul&rft.au=Chaujar%2C+Rishu&rft.date=2020-03-01&rft.issn=0749-6036&rft.volume=139&rft.spage=106397&rft_id=info:doi/10.1016%2Fj.spmi.2020.106397&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2020_106397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |