Numerical analysis of Mg2Si/Si heterojunction DG-TFET for low power/high performance applications: Impact of non- idealities

In the advanced technology nodes, conventional MOSFETs are being replaced by tunnel field effect transistors (TFETs), due to its potential of achieving subthreshold swing (SS) less than 60 mV/decade. However, certain constraints are to be met to improve the performance of TFET in terms of higher ON...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 139; p. 106397
Main Authors Madan, Jaya, Dassi, Minaxi, Pandey, Rahul, Chaujar, Rishu, Sharma, Rajnish
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2020
Subjects
Online AccessGet full text
ISSN0749-6036
1096-3677
DOI10.1016/j.spmi.2020.106397

Cover

Loading…
Abstract In the advanced technology nodes, conventional MOSFETs are being replaced by tunnel field effect transistors (TFETs), due to its potential of achieving subthreshold swing (SS) less than 60 mV/decade. However, certain constraints are to be met to improve the performance of TFET in terms of higher ON current (ION) and lower threshold voltage (Vth). Here, in this paper, magnesium silicide/silicon (Mg2Si/Si) heterojunction double gate TFET (Mg2Si/Si HDG-TFET) is explored and is simultaneously compared with conventional silicon double gate TFET (Si DG-TFET). Results depict superior performance of Mg2Si/Si HDG-TFET as compared to conventional Si DG-TFET, in terms of dc characteristics, i.e., ION, Vth, SS, and ION/IOFF ratio. Obtained Vth (0.26 V), SS (10.05mV/decade) and ION/IOFF ratio (1013) for the case of Mg2Si HDG-TFET shows an improvement of 77%, 49% and 10 decades respectively compared to counterpart i.e., Si DG-TFET. In particular, this improvement in the performance of Mg2Si/Si HDG-TFET over Si DG-TFET is attributed to staggered type-II heterojunction interface at the source-channel junction, which leads to reduction of the width for interband tunneling barrier and hence, improves ION. This viability of the device is also determined by analyzing the impact of non-idealities present in the device. In this respect, the Gaussian and tail defects are considered in the bulk of Mg2Si. The results reveal that the Gaussian defects alter the device characteristics mainly in the subthreshold regime, whereas, in the ON state, the impact of defects is minimal. Further, it is obtained that the device is much immune for tail defects in comparison with the Gaussian defects. The CV analysis reveals a marginal degradation in parasitic capacitances for Mg2Si/Si HDG-TFET as compared to Si DG-TFET. However, this degradation can be overlooked against the remarkably enhanced drain current. Thus, the device overcomes the bottleneck of TFET and provides high ION and low Vth without degrading the other performance parameters and hence is suitable for low power analog and digital applications. •Mg2Si/Si heterojunction DG-TFET has been proposed.•Impact of presence of non-idealities such as Gaussian and tail defects is analyzed.•Staggered type-II heterojunction interface of Mg2Si/Si conquer bottleneck of TFET.•Proposed device is suitable for low power analog and digital applications.
AbstractList In the advanced technology nodes, conventional MOSFETs are being replaced by tunnel field effect transistors (TFETs), due to its potential of achieving subthreshold swing (SS) less than 60 mV/decade. However, certain constraints are to be met to improve the performance of TFET in terms of higher ON current (ION) and lower threshold voltage (Vth). Here, in this paper, magnesium silicide/silicon (Mg2Si/Si) heterojunction double gate TFET (Mg2Si/Si HDG-TFET) is explored and is simultaneously compared with conventional silicon double gate TFET (Si DG-TFET). Results depict superior performance of Mg2Si/Si HDG-TFET as compared to conventional Si DG-TFET, in terms of dc characteristics, i.e., ION, Vth, SS, and ION/IOFF ratio. Obtained Vth (0.26 V), SS (10.05mV/decade) and ION/IOFF ratio (1013) for the case of Mg2Si HDG-TFET shows an improvement of 77%, 49% and 10 decades respectively compared to counterpart i.e., Si DG-TFET. In particular, this improvement in the performance of Mg2Si/Si HDG-TFET over Si DG-TFET is attributed to staggered type-II heterojunction interface at the source-channel junction, which leads to reduction of the width for interband tunneling barrier and hence, improves ION. This viability of the device is also determined by analyzing the impact of non-idealities present in the device. In this respect, the Gaussian and tail defects are considered in the bulk of Mg2Si. The results reveal that the Gaussian defects alter the device characteristics mainly in the subthreshold regime, whereas, in the ON state, the impact of defects is minimal. Further, it is obtained that the device is much immune for tail defects in comparison with the Gaussian defects. The CV analysis reveals a marginal degradation in parasitic capacitances for Mg2Si/Si HDG-TFET as compared to Si DG-TFET. However, this degradation can be overlooked against the remarkably enhanced drain current. Thus, the device overcomes the bottleneck of TFET and provides high ION and low Vth without degrading the other performance parameters and hence is suitable for low power analog and digital applications. •Mg2Si/Si heterojunction DG-TFET has been proposed.•Impact of presence of non-idealities such as Gaussian and tail defects is analyzed.•Staggered type-II heterojunction interface of Mg2Si/Si conquer bottleneck of TFET.•Proposed device is suitable for low power analog and digital applications.
ArticleNumber 106397
Author Chaujar, Rishu
Pandey, Rahul
Madan, Jaya
Dassi, Minaxi
Sharma, Rajnish
Author_xml – sequence: 1
  givenname: Jaya
  surname: Madan
  fullname: Madan, Jaya
  email: jaya.madan@chitkara.edu.in
  organization: VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
– sequence: 2
  givenname: Minaxi
  surname: Dassi
  fullname: Dassi, Minaxi
  organization: Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India
– sequence: 3
  givenname: Rahul
  surname: Pandey
  fullname: Pandey, Rahul
  email: rahul.pandey@chitkara.edu.in
  organization: VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
– sequence: 4
  givenname: Rishu
  surname: Chaujar
  fullname: Chaujar, Rishu
  organization: Department of Applied Physics, Delhi Technological University, Delhi, India
– sequence: 5
  givenname: Rajnish
  surname: Sharma
  fullname: Sharma, Rajnish
  email: rajnish.sharma@chitkarauniversity.edu.in
  organization: VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
BookMark eNp9kMFOwkAURScGExH9AVfzA4XplE5b48agIgnqAlxPptM38EjbaWaKhMSPtxVXLli95Cbn5r5zTQa1rYGQu5CNQxaKyW7smwrHnPE-EFGWXJBhyDIRRCJJBmTIkmkWCBaJK3Lt_Y4xlk3DZEi-3_cVONSqpKpW5dGjp9bQtw1f4WSFdAstOLvb17pFW9OnebB-eV5TYx0t7YE29gBussXNljbgurRStQaqmqbsOnvE39NF1Sjd9rXd6oBiAarEFsHfkEujSg-3f3dEPrvy2Wuw_JgvZo_LQEeMtUHOtZgaEcbdYyrNslSZ3ORZGqdKMR0VEeM5aMZFbqKCx4qlpoCpKOJQ8DyJ82hE0lOvdtZ7B0ZqbH_XtU5hKUMme4tyJ3uLsrcoTxY7lP9DG4eVcsfz0MMJgu6pLwQnvUboxBToQLeysHgO_wE8pI-n
CitedBy_id crossref_primary_10_1109_JSEN_2022_3194653
crossref_primary_10_1088_1361_6641_ac7ede
crossref_primary_10_1007_s12633_022_01663_1
crossref_primary_10_1088_1757_899X_1033_1_012018
crossref_primary_10_1007_s10854_021_06823_4
crossref_primary_10_1080_02564602_2021_2012284
crossref_primary_10_1007_s12633_023_02386_7
crossref_primary_10_1088_1361_6641_abaa5b
crossref_primary_10_1007_s10854_022_07860_3
crossref_primary_10_1007_s12633_021_01006_6
crossref_primary_10_1016_j_micrna_2025_208084
crossref_primary_10_1109_OJNANO_2022_3224462
crossref_primary_10_1088_1742_6596_1710_1_012003
crossref_primary_10_1007_s12596_024_02045_z
crossref_primary_10_1016_j_micrna_2023_207565
crossref_primary_10_1016_j_mseb_2024_117557
crossref_primary_10_1007_s11664_020_08538_4
crossref_primary_10_1016_j_mseb_2024_117356
crossref_primary_10_1088_1674_1056_acd5c0
crossref_primary_10_1088_1361_6641_ac38bb
crossref_primary_10_1007_s10854_021_07597_5
crossref_primary_10_1007_s42341_023_00449_5
crossref_primary_10_1016_j_micrna_2023_207629
crossref_primary_10_3390_photonics8110509
crossref_primary_10_1007_s10825_023_02051_7
Cites_doi 10.1109/TED.2010.2052167
10.1088/2053-1591/ab07cb
10.1109/TED.2016.2606762
10.1109/TED.2019.2898444
10.1109/LED.2008.2007599
10.1109/LED.2007.901273
10.1038/srep09843
10.1016/j.spmi.2016.09.050
10.1007/s00339-019-2900-6
10.1016/j.spmi.2016.12.034
10.1109/LED.2011.2164512
10.1038/nature10679
10.1007/s00339-018-2158-4
10.1063/1.3684615
10.1002/pssa.200723528
10.1063/1.1668321
10.1016/j.vacuum.2009.06.055
10.1016/j.microrel.2014.01.023
10.1063/1.3574363
10.1007/s00542-016-2872-9
10.1063/1.4905423
10.1109/TED.2011.2148118
10.1007/s00542-017-3446-1
10.1109/LED.2010.2061214
10.1109/TED.2007.899389
10.1016/j.tsf.2007.02.049
10.1016/j.sse.2004.04.006
10.1007/s00542-017-3436-3
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2020.106397
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2020_106397
S0749603619318774
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-b2c64f615063a8998afbfb9858aa0c3d302bec026bf3d25a08fde46d5162b75b3
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Tue Jul 01 01:35:14 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
Fri Feb 23 02:47:53 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords DG-TFET
Staggered type heterojunction
Tunnel FET
Magnesium silicide
Band to band tunneling
Bulk defects
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-b2c64f615063a8998afbfb9858aa0c3d302bec026bf3d25a08fde46d5162b75b3
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2020_106397
crossref_primary_10_1016_j_spmi_2020_106397
elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106397
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Superlattices and microstructures
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nirschl, Wang, Weber, Sedlmeir, Heinrich, Kakoschke, Schrufer, Holz, Pacha, Schulz (bib16) 2004
Madan, Chaujar (bib19) 2016; 100
Shekhar, Madan, Chaujar (bib24) 2018; 124
Choi, Park, Lee, Liu (bib13) 2007; 28
Ionescu, Riel (bib9) 2011; 479
Verhulst, Vandenberghe, Maex, De Gendt, Heyns, Groeseneken (bib5) 2008; 29
Satyala, Vashaee (bib28) 2012; 100
Madan, Chaujar (bib4) 2017; 102
Ahangari (bib10) 2019; 6
Rewari, Nath, Haldar, Deswal, Gupta (bib35) 2019; 25
Elnaggar, Shaker, Fedawy (bib27) 2019
Madan, Pandey, Sharma, Chaujar (bib11) 2019; 125
Ionescu, Riel (bib1) 2011; 479
Aydin, Zaslavsky, Luryi, Cristoloveanu, Mariolle, Fraboulet, Deleonibus (bib2) 2004; 84
Hu, Sato, Hosono, Tatsuoka (bib29) 2009; 83
Moselund, Cutaia, Schmid, Borg, Sant, Schenk, Riel (bib23) 2016; 63
Manual (bib32) 2010
Choi, Lee (bib3) 2010; 57
Knoch, Appenzeller (bib6) 2008; 205
Avci, Young (bib33) 2013
Kim, Agarwal, Jacobson, Matheu, Hu, Liu (bib15) 2010; 31
Goel, Rewari, Verma, Gupta (bib8) 2019; 66
Boucart, Ionescu (bib17) 2007; 54
Hanna, Fahad, Hussain (bib22) 2015; 5
Cui, Liang, Xu (bib20) 2011; 98
Paras, Chauhan (bib34) 2019
Rewari, Nath, Haldar, Deswal, Gupta (bib12) 2019; 25
Hanna, Hussain (bib21) 2015; 117
Wang, Hilsenbeck, Nirschl, Oswald, Stepper, Weis, Schmitt-Landsiedel, Hansch (bib7) 2004; 48
Galkin, Vavanova, Maslov, Galkin, Gerasimenko, Kaidalova (bib30) 2007; 515
Shih, Chien (bib14) 2011; 32
Jeon, Loh, Patel, Kang, Oh, Bowonder, Park, Park, Smith, Majhi (bib25) 2010
Wu, Hasegawa, Kakushima, Ohmori, Watanabe, Nishiyama, Sugii, Wakabayashi, Tsutsui, Kataoka (bib26) 2014; 54
Madan, Gupta, Chaujar (bib18) 2017; 23
Tura, Zhang, Liu, Xie, Woo (bib31) 2011; 58
Kim (10.1016/j.spmi.2020.106397_bib15) 2010; 31
Moselund (10.1016/j.spmi.2020.106397_bib23) 2016; 63
Ionescu (10.1016/j.spmi.2020.106397_bib9) 2011; 479
Ahangari (10.1016/j.spmi.2020.106397_bib10) 2019; 6
Boucart (10.1016/j.spmi.2020.106397_bib17) 2007; 54
Jeon (10.1016/j.spmi.2020.106397_bib25) 2010
Paras (10.1016/j.spmi.2020.106397_bib34) 2019
Hu (10.1016/j.spmi.2020.106397_bib29) 2009; 83
Manual (10.1016/j.spmi.2020.106397_bib32) 2010
Madan (10.1016/j.spmi.2020.106397_bib11) 2019; 125
Rewari (10.1016/j.spmi.2020.106397_bib12) 2019; 25
Wu (10.1016/j.spmi.2020.106397_bib26) 2014; 54
Choi (10.1016/j.spmi.2020.106397_bib13) 2007; 28
Nirschl (10.1016/j.spmi.2020.106397_bib16) 2004
Hanna (10.1016/j.spmi.2020.106397_bib21) 2015; 117
Verhulst (10.1016/j.spmi.2020.106397_bib5) 2008; 29
Wang (10.1016/j.spmi.2020.106397_bib7) 2004; 48
Cui (10.1016/j.spmi.2020.106397_bib20) 2011; 98
Elnaggar (10.1016/j.spmi.2020.106397_bib27) 2019
Avci (10.1016/j.spmi.2020.106397_bib33) 2013
Tura (10.1016/j.spmi.2020.106397_bib31) 2011; 58
Madan (10.1016/j.spmi.2020.106397_bib18) 2017; 23
Satyala (10.1016/j.spmi.2020.106397_bib28) 2012; 100
Aydin (10.1016/j.spmi.2020.106397_bib2) 2004; 84
Galkin (10.1016/j.spmi.2020.106397_bib30) 2007; 515
Goel (10.1016/j.spmi.2020.106397_bib8) 2019; 66
Hanna (10.1016/j.spmi.2020.106397_bib22) 2015; 5
Choi (10.1016/j.spmi.2020.106397_bib3) 2010; 57
Knoch (10.1016/j.spmi.2020.106397_bib6) 2008; 205
Madan (10.1016/j.spmi.2020.106397_bib19) 2016; 100
Ionescu (10.1016/j.spmi.2020.106397_bib1) 2011; 479
Shih (10.1016/j.spmi.2020.106397_bib14) 2011; 32
Madan (10.1016/j.spmi.2020.106397_bib4) 2017; 102
Shekhar (10.1016/j.spmi.2020.106397_bib24) 2018; 124
Rewari (10.1016/j.spmi.2020.106397_bib35) 2019; 25
References_xml – start-page: 121
  year: 2010
  end-page: 122
  ident: bib25
  article-title: Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing, 2010 Symposium on VLSI Technology
– volume: 102
  start-page: 17
  year: 2017
  end-page: 26
  ident: bib4
  article-title: Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance
  publication-title: Superlattice Microstruct.
– volume: 48
  start-page: 2281
  year: 2004
  end-page: 2286
  ident: bib7
  article-title: Complementary tunneling transistor for low power application
  publication-title: Solid State Electron.
– volume: 515
  start-page: 8230
  year: 2007
  end-page: 8236
  ident: bib30
  article-title: Solid phase growth and properties of Mg2Si films on Si (111)
  publication-title: Thin Solid Films
– volume: 58
  start-page: 1907
  year: 2011
  end-page: 1913
  ident: bib31
  article-title: Vertical silicon pnpn tunnel nMOSFET with MBE-grown tunneling junction
  publication-title: IEEE Trans. Electron Devices
– volume: 124
  start-page: 739
  year: 2018
  ident: bib24
  article-title: Source/Gate Material-Engineered Double Gate TFET for improved RF and linearity performance: a numerical simulation
  publication-title: Appl. Phys. A
– year: 2019
  ident: bib34
  article-title: A novel vertical tunneling based Ge-source TFET with enhanced DC and RF characteristics for prospect low power applications
  publication-title: Microelectron. Eng.
– volume: 5
  start-page: 9843
  year: 2015
  ident: bib22
  article-title: InAs/Si hetero-junction nanotube tunnel transistors
  publication-title: Sci. Rep.
– volume: 63
  start-page: 4233
  year: 2016
  end-page: 4239
  ident: bib23
  article-title: Lateral InAs/Si p-type tunnel FETs integrated on Si—Part 1: experimental devices
  publication-title: IEEE Trans. Electron Devices
– year: 2019
  ident: bib27
  article-title: A Comprehensive Investigation of TFETs with Semiconducting Silicide Source: Impact of Gate Drain Underlap and Interface Traps
– volume: 117
  year: 2015
  ident: bib21
  article-title: Si/Ge hetero-structure nanotube tunnel field effect transistor
  publication-title: J. Appl. Phys.
– volume: 125
  start-page: 600
  year: 2019
  ident: bib11
  article-title: Impact of metal silicide source electrode on polarity gate induced source in junctionless TFET
  publication-title: Appl. Phys. A
– volume: 66
  start-page: 2437
  year: 2019
  end-page: 2445
  ident: bib8
  article-title: Temperature-dependent gate-induced drain leakages assessment of dual-metal nanowire field-effect transistor—analytical model
  publication-title: IEEE Trans. Electron Devices
– start-page: 195
  year: 2004
  end-page: 198
  ident: bib16
  article-title: The tunneling field effect transistor (TFET) as an add-on for ultra-low-voltage analog and digital processes, Electron Devices meeting
  publication-title: 2004. IEDM Technical Digest. IEEE International, IEEE
– volume: 6
  year: 2019
  ident: bib10
  article-title: Design and analysis of energy efficient semi-junctionless n+ n+ p heterojunction p-channel tunnel field effect transistor
  publication-title: Mater. Res. Express
– volume: 25
  start-page: 1537
  year: 2019
  end-page: 1546
  ident: bib35
  article-title: Novel design to improve band to band tunneling and gate induced drain leakages (GIDL) in cylindrical gate all around (GAA) MOSFET
  publication-title: Microsyst. Technol.
– volume: 98
  year: 2011
  ident: bib20
  article-title: Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 1527
  year: 2019
  end-page: 1536
  ident: bib12
  article-title: Hafnium oxide based cylindrical junctionless double surrounding gate (CJLDSG) MOSFET for high speed, high frequency digital and analog applications
  publication-title: Microsyst. Technol.
– volume: 54
  start-page: 899
  year: 2014
  end-page: 904
  ident: bib26
  article-title: A novel hetero-junction Tunnel-FET using Semiconducting silicide–Silicon contact and its scalability
  publication-title: Microelectron. Reliab.
– volume: 83
  start-page: 1494
  year: 2009
  end-page: 1497
  ident: bib29
  article-title: Growth condition dependence of structural and electrical properties of Mg2Si layers grown on silicon substrates
  publication-title: Vacuum
– volume: 28
  start-page: 743
  year: 2007
  end-page: 745
  ident: bib13
  article-title: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec
  publication-title: IEEE Electron. Device Lett.
– volume: 100
  year: 2012
  ident: bib28
  article-title: The effect of crystallite size on thermoelectric properties of bulk nanostructured magnesium silicide (Mg2Si) compounds
  publication-title: Appl. Phys. Lett.
– volume: 54
  start-page: 1725
  year: 2007
  end-page: 1733
  ident: bib17
  article-title: Double-gate tunnel FET with high-k gate dielectric
  publication-title: IEEE Trans. Electron Devices
– volume: 32
  start-page: 1498
  year: 2011
  end-page: 1500
  ident: bib14
  article-title: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction
  publication-title: IEEE Electron. Device Lett.
– volume: 31
  start-page: 1107
  year: 2010
  end-page: 1109
  ident: bib15
  article-title: Tunnel field effect transistor with raised germanium source
  publication-title: IEEE Electron. Device Lett.
– volume: 100
  start-page: 401
  year: 2016
  end-page: 408
  ident: bib19
  article-title: Palladium gate all around - hetero dielectric -tunnel FET based highly sensitive hydrogen gas sensor
  publication-title: Superlattice Microstruct.
– volume: 205
  start-page: 679
  year: 2008
  end-page: 694
  ident: bib6
  article-title: Tunneling phenomena in carbon nanotube field‐effect transistors
  publication-title: Phys. Status Solidi
– volume: 479
  start-page: 329
  year: 2011
  end-page: 337
  ident: bib1
  article-title: Tunnel field-effect transistors as energy-efficient electronic switches
  publication-title: Nature
– volume: 57
  start-page: 2317
  year: 2010
  end-page: 2319
  ident: bib3
  article-title: Hetero-gate-dielectric tunneling field-effect transistors
  publication-title: IEEE Trans. Electron Devices
– volume: 479
  start-page: 329
  year: 2011
  ident: bib9
  article-title: Tunnel field-effect transistors as energy-efficient electronic switches
  publication-title: Nature
– volume: 23
  start-page: 4091
  year: 2017
  end-page: 4098
  ident: bib18
  article-title: Mathematical modeling insight of hetero gate dielectric-dual material gate-GAA-tunnel FET for VLSI/analog applications
  publication-title: Microsyst. Technol.
– year: 2010
  ident: bib32
  publication-title: ATLAS User’S. “Device Simulation Software.”
– volume: 84
  start-page: 1780
  year: 2004
  end-page: 1782
  ident: bib2
  article-title: Lateral interband tunneling transistor in silicon-on-insulator
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 1398
  year: 2008
  end-page: 1401
  ident: bib5
  article-title: Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates
  publication-title: IEEE Electron. Device Lett.
– start-page: 4.3. 1
  year: 2013
  end-page: 4.3. 4
  ident: bib33
  article-title: Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length
  publication-title: 2013 IEEE International Electron Devices Meeting, IEEE
– volume: 57
  start-page: 2317
  issue: 9
  year: 2010
  ident: 10.1016/j.spmi.2020.106397_bib3
  article-title: Hetero-gate-dielectric tunneling field-effect transistors
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2010.2052167
– volume: 6
  issue: 6
  year: 2019
  ident: 10.1016/j.spmi.2020.106397_bib10
  article-title: Design and analysis of energy efficient semi-junctionless n+ n+ p heterojunction p-channel tunnel field effect transistor
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab07cb
– start-page: 195
  year: 2004
  ident: 10.1016/j.spmi.2020.106397_bib16
  article-title: The tunneling field effect transistor (TFET) as an add-on for ultra-low-voltage analog and digital processes, Electron Devices meeting
– volume: 63
  start-page: 4233
  issue: 11
  year: 2016
  ident: 10.1016/j.spmi.2020.106397_bib23
  article-title: Lateral InAs/Si p-type tunnel FETs integrated on Si—Part 1: experimental devices
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2016.2606762
– volume: 66
  start-page: 2437
  issue: 5
  year: 2019
  ident: 10.1016/j.spmi.2020.106397_bib8
  article-title: Temperature-dependent gate-induced drain leakages assessment of dual-metal nanowire field-effect transistor—analytical model
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2898444
– volume: 29
  start-page: 1398
  issue: 12
  year: 2008
  ident: 10.1016/j.spmi.2020.106397_bib5
  article-title: Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2008.2007599
– volume: 28
  start-page: 743
  issue: 8
  year: 2007
  ident: 10.1016/j.spmi.2020.106397_bib13
  article-title: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2007.901273
– start-page: 4.3. 1
  year: 2013
  ident: 10.1016/j.spmi.2020.106397_bib33
  article-title: Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length
– volume: 5
  start-page: 9843
  year: 2015
  ident: 10.1016/j.spmi.2020.106397_bib22
  article-title: InAs/Si hetero-junction nanotube tunnel transistors
  publication-title: Sci. Rep.
  doi: 10.1038/srep09843
– volume: 100
  start-page: 401
  year: 2016
  ident: 10.1016/j.spmi.2020.106397_bib19
  article-title: Palladium gate all around - hetero dielectric -tunnel FET based highly sensitive hydrogen gas sensor
  publication-title: Superlattice Microstruct.
  doi: 10.1016/j.spmi.2016.09.050
– start-page: 121
  year: 2010
  ident: 10.1016/j.spmi.2020.106397_bib25
– volume: 125
  start-page: 600
  issue: 9
  year: 2019
  ident: 10.1016/j.spmi.2020.106397_bib11
  article-title: Impact of metal silicide source electrode on polarity gate induced source in junctionless TFET
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2900-6
– year: 2019
  ident: 10.1016/j.spmi.2020.106397_bib27
– volume: 102
  start-page: 17
  year: 2017
  ident: 10.1016/j.spmi.2020.106397_bib4
  article-title: Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance
  publication-title: Superlattice Microstruct.
  doi: 10.1016/j.spmi.2016.12.034
– volume: 32
  start-page: 1498
  issue: 11
  year: 2011
  ident: 10.1016/j.spmi.2020.106397_bib14
  article-title: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2011.2164512
– volume: 479
  start-page: 329
  issue: 7373
  year: 2011
  ident: 10.1016/j.spmi.2020.106397_bib1
  article-title: Tunnel field-effect transistors as energy-efficient electronic switches
  publication-title: Nature
  doi: 10.1038/nature10679
– volume: 124
  start-page: 739
  issue: 11
  year: 2018
  ident: 10.1016/j.spmi.2020.106397_bib24
  article-title: Source/Gate Material-Engineered Double Gate TFET for improved RF and linearity performance: a numerical simulation
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-018-2158-4
– volume: 100
  issue: 7
  year: 2012
  ident: 10.1016/j.spmi.2020.106397_bib28
  article-title: The effect of crystallite size on thermoelectric properties of bulk nanostructured magnesium silicide (Mg2Si) compounds
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3684615
– volume: 205
  start-page: 679
  issue: 4
  year: 2008
  ident: 10.1016/j.spmi.2020.106397_bib6
  article-title: Tunneling phenomena in carbon nanotube field‐effect transistors
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.200723528
– volume: 84
  start-page: 1780
  issue: 10
  year: 2004
  ident: 10.1016/j.spmi.2020.106397_bib2
  article-title: Lateral interband tunneling transistor in silicon-on-insulator
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1668321
– volume: 83
  start-page: 1494
  issue: 12
  year: 2009
  ident: 10.1016/j.spmi.2020.106397_bib29
  article-title: Growth condition dependence of structural and electrical properties of Mg2Si layers grown on silicon substrates
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2009.06.055
– year: 2019
  ident: 10.1016/j.spmi.2020.106397_bib34
  article-title: A novel vertical tunneling based Ge-source TFET with enhanced DC and RF characteristics for prospect low power applications
  publication-title: Microelectron. Eng.
– volume: 54
  start-page: 899
  issue: 5
  year: 2014
  ident: 10.1016/j.spmi.2020.106397_bib26
  article-title: A novel hetero-junction Tunnel-FET using Semiconducting silicide–Silicon contact and its scalability
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2014.01.023
– volume: 98
  issue: 14
  year: 2011
  ident: 10.1016/j.spmi.2020.106397_bib20
  article-title: Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3574363
– volume: 23
  start-page: 4091
  issue: 9
  year: 2017
  ident: 10.1016/j.spmi.2020.106397_bib18
  article-title: Mathematical modeling insight of hetero gate dielectric-dual material gate-GAA-tunnel FET for VLSI/analog applications
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-016-2872-9
– volume: 117
  issue: 1
  year: 2015
  ident: 10.1016/j.spmi.2020.106397_bib21
  article-title: Si/Ge hetero-structure nanotube tunnel field effect transistor
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4905423
– volume: 58
  start-page: 1907
  issue: 7
  year: 2011
  ident: 10.1016/j.spmi.2020.106397_bib31
  article-title: Vertical silicon pnpn tunnel nMOSFET with MBE-grown tunneling junction
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2011.2148118
– volume: 25
  start-page: 1537
  issue: 5
  year: 2019
  ident: 10.1016/j.spmi.2020.106397_bib35
  article-title: Novel design to improve band to band tunneling and gate induced drain leakages (GIDL) in cylindrical gate all around (GAA) MOSFET
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-017-3446-1
– volume: 479
  start-page: 329
  issue: 7373
  year: 2011
  ident: 10.1016/j.spmi.2020.106397_bib9
  article-title: Tunnel field-effect transistors as energy-efficient electronic switches
  publication-title: Nature
  doi: 10.1038/nature10679
– volume: 31
  start-page: 1107
  issue: 10
  year: 2010
  ident: 10.1016/j.spmi.2020.106397_bib15
  article-title: Tunnel field effect transistor with raised germanium source
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2010.2061214
– volume: 54
  start-page: 1725
  issue: 7
  year: 2007
  ident: 10.1016/j.spmi.2020.106397_bib17
  article-title: Double-gate tunnel FET with high-k gate dielectric
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2007.899389
– volume: 515
  start-page: 8230
  issue: 22
  year: 2007
  ident: 10.1016/j.spmi.2020.106397_bib30
  article-title: Solid phase growth and properties of Mg2Si films on Si (111)
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.02.049
– volume: 48
  start-page: 2281
  issue: 12
  year: 2004
  ident: 10.1016/j.spmi.2020.106397_bib7
  article-title: Complementary tunneling transistor for low power application
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2004.04.006
– year: 2010
  ident: 10.1016/j.spmi.2020.106397_bib32
– volume: 25
  start-page: 1527
  issue: 5
  year: 2019
  ident: 10.1016/j.spmi.2020.106397_bib12
  article-title: Hafnium oxide based cylindrical junctionless double surrounding gate (CJLDSG) MOSFET for high speed, high frequency digital and analog applications
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-017-3436-3
SSID ssj0009417
Score 2.0451539
Snippet In the advanced technology nodes, conventional MOSFETs are being replaced by tunnel field effect transistors (TFETs), due to its potential of achieving...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106397
SubjectTerms Band to band tunneling
Bulk defects
DG-TFET
Magnesium silicide
Staggered type heterojunction
Tunnel FET
Title Numerical analysis of Mg2Si/Si heterojunction DG-TFET for low power/high performance applications: Impact of non- idealities
URI https://dx.doi.org/10.1016/j.spmi.2020.106397
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCMGCeIq3PLAhU9eJk5QNlUcLahdAYov8hFSljaCIBfHbucsDioQ6MMayncR38X0Xf3dHyFEYSWOVt0xxyxn4XzFTUgqmYwv4VWAROfyh3-tHnfvw-kE-zJF2HQuDtMpq7y_39GK3rloa1Wo28ixr3ILxA_gdgAcAegkoBiPYwxi1_OTzh-bRCouqu9iZYe8qcKbkeL3mzxn4iAIb8ITrb-M0ZXAuV8lKhRTpWfkwa2TOjdbJUrsu0LZOFgv2pnndIB_9t_LgZUhVlWSEjj3tPYpbeIOMPiHnZTwAE4ZioOdX7O7y4o4CXqXD8TvNsVJaAxMX0_wnjoBOn22f0m4RTonTjsYjRjPrEMGDn71J7mGydodVZRWYCTifMC1MFHpMBB8FCt0t5bXXrUQmSnET2IALECz4ZtoHVkjFE29dGFnZjISOpQ62yDzcyW0TKppeO8vhm44BifFWEoS65UxifJg4Z9wOadbrmZoq5ziWvhimNblskKIMUpRBWspghxx_j8nLjBsze8taTOkvvUnBJMwYt_vPcXtkGa9KFto-mZ-8vLkDgCUTfVjo3SFZOOvedPpfvS7h9w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RoAouCGgr3t1Db9Uqm7XXcbihtJAAyYUgcbP22RqFxIIgLv3xnYnXPKSKQ6_rnbW9s975xjvzDcC3NFPW6eC4Fk5w9L-6XCsluek6xK-SisjRD_3ROBtcp-c36mYF-k0uDIVVxr2_3tOXu3VsacfZbFdl2b5C44fwO0EPANclopgPsErsVKoFqyfDi8H4hXs3XRbepf6cBGLuTB3m9VDdlegmSmqgQ65_26dXNud0EzYiWGQn9fNswYqfbcNav6nRtg0flwGc9uET_Bk_1mcvU6YjzwibBzb6Ja_wJUr2m8Je5rdoxUgT7McZn5z-nDCErGw6f2IVFUtrE3cxq15SCdjr4-1jNlxmVNKws_mMs9J5AvHoan-GaxysP-CxsgK3iRALbqTN0kBc8FmiyePSwQTTy1WutbCJS4RE3aJ7ZkLipNIiD86nmVOdTJquMskXaOGd_A4w2QnGO4GfdRfBmOjlSWp63uY2pLn31u9Cp5nPwkbacap-MS2a-LLbgnRQkA6KWge78P1ZpqpJN97trRo1FW-WToFW4R25vf-U-wprg8nosrgcji_2YZ2u1EFpB9Ba3D_6Q0QpC3MUV-Ffg0LkqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+Mg2Si%2FSi+heterojunction+DG-TFET+for+low+power%2Fhigh+performance+applications%3A+Impact+of+non-+idealities&rft.jtitle=Superlattices+and+microstructures&rft.au=Madan%2C+Jaya&rft.au=Dassi%2C+Minaxi&rft.au=Pandey%2C+Rahul&rft.au=Chaujar%2C+Rishu&rft.date=2020-03-01&rft.issn=0749-6036&rft.volume=139&rft.spage=106397&rft_id=info:doi/10.1016%2Fj.spmi.2020.106397&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2020_106397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon