The magnetic behaviors and magnetocaloric effect of a nano-graphene bilayer: A Monte Carlo study
By means of the Monte Carlo simulation, the influence of exchange couplings and the applied magnetic field on the magnetic behaviors and magnetocaloric effect of a ferromagnetic mixed-spin (3/2, 5/2) nano-graphene bilayer have been investigated. It is found that the magnetic behaviors can be enhance...
Saved in:
Published in | Superlattices and microstructures Vol. 149; p. 106775 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By means of the Monte Carlo simulation, the influence of exchange couplings and the applied magnetic field on the magnetic behaviors and magnetocaloric effect of a ferromagnetic mixed-spin (3/2, 5/2) nano-graphene bilayer have been investigated. It is found that the magnetic behaviors can be enhanced by increasing the exchange couplings and the applied magnetic field. The internal energy decreases with increasing two physical parameters mentioned above. In addition, the maximums of the magnetic entropy change and adiabatic temperature change would appear near the critical temperature, the values of them increase with decreasing exchange couplings or increasing the applied magnetic field. The maximum of the -ΔSm can be found to be 0.293 for h = 3. Besides, the relative cooling power can be enhanced as the exchange couplings decrease or the applied magnetic field increases.
•The ferromagnetic mixed-spin (5/2, 3/2) nano-graphene bilayer has been investigated by Monte Carlo simulation.•Magnetic properties can be enhanced by increasing the exchange couplings and the applied magnetic field.•Magnetic entropy change and adiabatic temperature change increase with exchange couplings decreasing.•Magnetic entropy change and adiabatic temperature change increase with the applied magnetic field increasing.•The relative cooling power enhanced as exchange couplings decreases or the applied magnetic field increases. |
---|---|
AbstractList | By means of the Monte Carlo simulation, the influence of exchange couplings and the applied magnetic field on the magnetic behaviors and magnetocaloric effect of a ferromagnetic mixed-spin (3/2, 5/2) nano-graphene bilayer have been investigated. It is found that the magnetic behaviors can be enhanced by increasing the exchange couplings and the applied magnetic field. The internal energy decreases with increasing two physical parameters mentioned above. In addition, the maximums of the magnetic entropy change and adiabatic temperature change would appear near the critical temperature, the values of them increase with decreasing exchange couplings or increasing the applied magnetic field. The maximum of the -ΔSm can be found to be 0.293 for h = 3. Besides, the relative cooling power can be enhanced as the exchange couplings decrease or the applied magnetic field increases.
•The ferromagnetic mixed-spin (5/2, 3/2) nano-graphene bilayer has been investigated by Monte Carlo simulation.•Magnetic properties can be enhanced by increasing the exchange couplings and the applied magnetic field.•Magnetic entropy change and adiabatic temperature change increase with exchange couplings decreasing.•Magnetic entropy change and adiabatic temperature change increase with the applied magnetic field increasing.•The relative cooling power enhanced as exchange couplings decreases or the applied magnetic field increases. |
ArticleNumber | 106775 |
Author | Lv, Dan Gao, Zhong-yue Sun, Lei Wang, Wei Liu, Cong Xu, Bing-hui |
Author_xml | – sequence: 1 givenname: Lei surname: Sun fullname: Sun, Lei – sequence: 2 givenname: Wei surname: Wang fullname: Wang, Wei email: ww9803@126.com – sequence: 3 givenname: Cong surname: Liu fullname: Liu, Cong – sequence: 4 givenname: Bing-hui surname: Xu fullname: Xu, Bing-hui email: xvbh-lxy@sut.edu.cn – sequence: 5 givenname: Dan surname: Lv fullname: Lv, Dan – sequence: 6 givenname: Zhong-yue surname: Gao fullname: Gao, Zhong-yue |
BookMark | eNp9kM9uwjAMh6NpkwZsL7BTXqDMaUvaTrsgtH8S0y7snLmpA0ElQUmHxNuvFZx24GT5Z32W_Y3ZtfOOGHsQMBUg5ON2Gvc7O00hHQJZFLMrNhJQySTrm2s2giKvEgmZvGXjGLcAUOWiGLGf1Yb4DteOOqt5TRs8WB8iR9ecY6-x9aEfkjGkO-4NR-7Q-WQdcL8hR7y2LR4pPPE5__SuI77A0Hoeu9_meMduDLaR7s91wr5fX1aL92T59faxmC8TnQF0SZ3OSIAuNYiKMCWZSiyLAmeZMVhWlQRdZUbPjBSlzonyRuoSMl2jKDBPKZuw8rRXBx9jIKO07bCz_T0BbasEqMGU2qrBlBpMqZOpHk3_oftgdxiOl6HnE0T9UwdLQUVtyWlqbOg1qcbbS_gfMM6Fgw |
CitedBy_id | crossref_primary_10_1016_j_cjph_2024_01_023 crossref_primary_10_1016_j_micrna_2022_207238 crossref_primary_10_1016_j_vacuum_2021_110349 crossref_primary_10_1016_j_cjph_2023_07_006 crossref_primary_10_1016_j_jmgm_2021_107967 crossref_primary_10_1142_S0217984924501380 crossref_primary_10_1007_s11051_023_05788_1 crossref_primary_10_1016_j_jmmm_2022_169292 crossref_primary_10_1016_j_jmmm_2021_167820 crossref_primary_10_1016_j_synthmet_2020_116694 crossref_primary_10_1088_1402_4896_ad3683 crossref_primary_10_1016_j_physb_2022_413954 crossref_primary_10_1016_j_physb_2021_413512 crossref_primary_10_1088_1402_4896_ac39fe crossref_primary_10_1088_1572_9494_acf038 crossref_primary_10_1016_j_jmmm_2022_169607 crossref_primary_10_1016_j_commatsci_2024_113338 crossref_primary_10_1016_j_jmmm_2023_170932 crossref_primary_10_1140_epjp_s13360_023_03811_x crossref_primary_10_1142_S0217984923501993 crossref_primary_10_1140_epjp_s13360_021_01916_9 crossref_primary_10_1088_1572_9494_ac1663 crossref_primary_10_1016_j_physa_2023_129361 crossref_primary_10_1080_01411594_2022_2130309 crossref_primary_10_1016_j_micrna_2022_207299 crossref_primary_10_1140_epjp_s13360_021_01280_8 crossref_primary_10_1016_j_polymer_2021_123678 crossref_primary_10_1016_j_jmmm_2024_172443 crossref_primary_10_1007_s12648_024_03111_9 crossref_primary_10_1016_j_polymer_2021_124320 crossref_primary_10_1002_pssb_202200526 crossref_primary_10_1016_j_cjph_2024_02_041 crossref_primary_10_1088_1674_1056_ac11e2 crossref_primary_10_1016_j_jmmm_2021_168259 crossref_primary_10_1016_j_jmmm_2021_168774 crossref_primary_10_1140_epjp_s13360_022_02392_5 crossref_primary_10_1007_s00339_022_06328_9 crossref_primary_10_1016_j_cjph_2023_12_023 crossref_primary_10_1016_j_mssp_2024_108506 crossref_primary_10_1088_1572_9494_ad3220 crossref_primary_10_1016_j_polymer_2022_124756 crossref_primary_10_1088_1572_9494_ad3221 crossref_primary_10_1016_j_micrna_2022_207306 crossref_primary_10_1016_j_vacuum_2021_110410 crossref_primary_10_1016_j_micrna_2022_207429 crossref_primary_10_1007_s00339_022_05592_z crossref_primary_10_1140_epjb_s10051_024_00665_9 crossref_primary_10_1016_j_jmmm_2021_168967 crossref_primary_10_1016_j_physb_2021_413362 crossref_primary_10_1007_s10825_022_01984_9 crossref_primary_10_1088_1402_4896_abfc80 crossref_primary_10_1016_j_spmi_2021_106833 crossref_primary_10_1088_1402_4896_accfd1 |
Cites_doi | 10.1016/j.ceramint.2017.03.206 10.1016/j.jmmm.2012.06.048 10.1016/j.jmmm.2020.167306 10.1016/j.tsf.2013.02.044 10.1016/j.physa.2019.122932 10.1088/1361-648X/ab8e88 10.1016/j.physb.2019.411852 10.1016/j.jmmm.2015.10.019 10.1007/s10955-010-0025-6 10.1016/j.cplett.2016.12.070 10.1016/j.jpcs.2016.12.033 10.1016/j.jallcom.2020.156218 10.1063/1.4906056 10.1016/j.physa.2018.09.089 10.1103/PhysRevLett.87.146803 10.1002/andp.18812490510 10.1016/j.chemphys.2019.110442 10.1016/j.ssc.2020.113962 10.1016/j.spmi.2020.106701 10.1002/andp.19123441404 10.1016/j.physb.2015.09.015 10.1016/j.jmmm.2015.11.076 10.1016/j.jmmm.2018.01.067 10.1016/j.physleta.2019.05.025 10.1016/j.ssc.2006.09.013 10.1016/j.physe.2019.113850 10.1016/j.apsusc.2018.08.020 10.1063/1.5097264 10.1088/1361-6463/ab876c 10.1146/annurev-matsci-062910-100356 10.1016/j.jmmm.2018.06.011 10.1016/j.jmmm.2003.07.002 10.1016/j.carbon.2015.07.097 10.1103/PhysRevB.91.184405 10.1103/PhysRevLett.115.206803 10.1016/j.jmmm.2019.166263 10.1016/j.spmi.2014.12.015 10.1063/1.4801904 10.1016/j.jmmm.2020.167249 10.1016/j.vacuum.2015.06.013 10.1016/j.jmmm.2017.06.115 10.1039/D0CP02007A 10.1016/j.ssc.2017.09.004 10.1016/j.ssc.2017.12.015 10.1016/j.carbon.2019.01.088 10.1039/C4CS00141A 10.1016/j.tsf.2017.11.031 10.1016/j.jmmm.2017.01.004 10.1016/j.jmmm.2013.09.011 10.1016/j.physleta.2005.12.077 10.1016/j.physb.2018.03.052 10.1016/j.spmi.2019.106245 10.1016/j.chemphys.2019.110414 10.1016/j.jmmm.2017.06.063 10.1021/cr040416l 10.1016/j.carbon.2019.10.038 10.1063/1.1699114 10.1016/j.spmi.2019.106325 10.1038/srep10459 10.1016/j.cocom.2017.05.002 10.1016/j.jmmm.2019.165656 10.1016/j.jallcom.2018.01.223 10.1016/j.jpcs.2019.109174 10.1016/j.physleta.2013.09.027 10.1016/j.carbon.2020.06.082 10.1021/ja994478i 10.1016/j.ceramint.2020.06.064 10.1016/j.spmi.2020.106683 10.1038/35021028 10.1016/j.jallcom.2006.06.007 10.1039/D0TA02847A 10.1039/c3ta01289a 10.1140/epjp/s13360-020-00627-x |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2020.106775 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2020_106775 S0749603620313240 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-b25e10c8c019ea2e626a877a53ffa89960c93fc5f618c4ee4d6c803cba17a42e3 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Thu Apr 24 23:08:08 EDT 2025 Tue Jul 01 01:35:16 EDT 2025 Fri Feb 23 02:47:45 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Nano-graphene bilayer Magnetic behaviors Magnetocaloric effect Monte Carlo simulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-b25e10c8c019ea2e626a877a53ffa89960c93fc5f618c4ee4d6c803cba17a42e3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2020_106775 crossref_primary_10_1016_j_spmi_2020_106775 elsevier_sciencedirect_doi_10_1016_j_spmi_2020_106775 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Pakornchote, Ektarawong, Alling, Pinsook, Tancharakorn, Busayaporn, Bovornratanaraks (bib17) 2019; 146 Kadim, Masrour, Jabar (bib57) 2020; 499 Wang, Wu, Xie, Lv, Peng (bib66) 2020; 135 Mello, Dantas, Carrico (bib41) 2006; 140 Restrepo-Parra, Ramos-Rivera, Londoño-Navarro (bib51) 2014; 351 Sun, Wang, Li, Wang, Wu (bib59) 2020; 147 Yükse (bib70) 2020; 513 Oubla, Lamire, Boutahar, Lassri, Manoun, Hlil (bib45) 2016; 403 Okada, Oshiyama (bib10) 2001; 87 Bafekry, Obeid, Nguyen, Ghergherehchi, Bagheri Tagani (bib79) 2020; 8 Dung, Tuan, Thiet, Shin, Cho (bib39) 2012; 111 Wu, Wang, Lv, Chang, Li, Tian (bib65) 2020; 515 Metropolis, Rosenbluth, Rosenbluth, Teller (bib67) 1953; 21 Thanh, Manh, Ho, Telegin, Phan, Yu (bib44) 2016; 486 Boukhvalov, Katsnelson, Lichtenstein (bib9) 2008; 77 Chang, Wang, Lv, Geng, Liu, Huang (bib62) 2020; 46 Mañosa, Planesa, Acet (bib31) 2013; 1 Song, Li, Mackin, Zhang, Fang, Palacios, Zhu, Kong (bib3) 2015; 2104 Vo, Vu, Al-Qaisi, Tong, Le, Nguyen, Phuc, Luong, Jappor, Obeid, Hieu (bib5) 2020; 147 Thauer, Shi, Zhang, Chen, Deeg, Klingeler, Wenelska, Mijowska (bib75) 2020 Bafekry, Yagmurcukardes, Akgenc, Ghergherehchi, Nguyen (bib14) 2020; 53 El Rhazouani, Slassi, Ziat, Benyoussef (bib74) 2017; 104 Barman, Kaur (bib40) 2015; 120 Bafekry, Ghergherehchi, Farjami Shayesteh, Peeters (bib12) 2019; 526 Jiang, Yang, Guo (bib15) 2015; 95 Lv, Yang, Jiang, Wang, Gao, Tian (bib60) 2019; 514 Jabar, Masrour, Benyoussef, Hamedoun (bib69) 2017; 670 Morelli, Johann, Schammelt, McGrouther, Vrejoiu (bib22) 2013; 113 Lambert, El Hadri, Hamedoun, Benyoussef, Mounkachi, Mangin (bib33) 2017; 443 Hadimani, Silva, Pereira, Schlagel, Lograsso, Ren, Zhang, Jiles, Araújo (bib35) 2015; 106 Masrour, Bahmad, Benyoussef (bib18) 2012; 324 Cherif, Zemni, Dhahri, Oumezzine, Said, Vincent (bib43) 2007; 432 Weiss, Gold, Terner (bib25) 2006; 106 Roy, Patra, Kumar, Madhuri, Sharma (bib2) 2015; 726 Evans, Reed (bib24) 2000; 122 Erchidi Elyacoubi, Masrour, Jabar (bib52) 2018; 459 Kumar, Hussain, Khan, Koo (bib83) 2020; 845 Masrour, Jabar, Benyoussef, Hamedoun, Hlil (bib73) 2016; 401 Lin, Teng, Chiu, Suenaga (bib8) 2015; 115 El Rhazouani, Slassi, Ziat, Benyoussef (bib55) 2017; 104 Xu, Chu, Gan (bib1) 2015; 435 Wu, Wang, Wang, Li, Li, Xu (bib64) 2020; 136 Ennassiri, Tahiri, El Bounagui, Ez-Zahraouy, Benyoussef (bib53) 2018; 741 Alzate-Cardona, Sabogal-Suarez, Restrepo-Parra (bib29) 2017; 429 Zhou, Cher, Shen, Hu, Yuan (bib48) 2013; 377 Bafekry, Yagmurcukardes, Shahrokhi, Ghergherehchi (bib77) 2020; 168 Bafekry, Akgenc, Ghergherehchi, Peeters (bib78) 2020; 32 Jabar, Masrour (bib19) 2018; 539 Deviren, Keskin (bib27) 2010; 140 Franco, Blázquez, Ingale, Conde (bib30) 2012; 42 Teichert, Kucza, Yildirim, Yuzuak, Dincer, Behler, Weise, Helmich, Boehnke, Klimova, Waske, Elerman, Hutten (bib46) 2015; 91 Yang, Wang, Li, Wu, Yang, Yang (bib63) 2020; 539 Debye (bib72) 1912; 39 Zhang, Hughes, Britten, Dube, Preston, Botton, Niewczas (bib34) 2011; 110 Wang, Chang, Li, Xue, Sun, Huang (bib61) 2019; 136 Azhari, Benayad, Mouhib (bib68) 2015; 79 Tadyszak, Chybczyńska, Ławniczak, Zalewska, Cieniek, Gonet, Murias (bib81) 2019; 492 Charkaoui, Moubah, Bouhbou, Lassri, Elouafi, Jonsson (bib36) 2020; 316 Bafekry, Stampfl, Ghergherehchi, Shayesteh (bib76) 2020; 157 Modak, RaJA, Srinivasan (bib37) 2018; 448 Wang, Hu, Peng, Gao, Shen, Chen, Nan (bib23) 2015; 5 Obeid, Shukur, Edrees, Khenata, Ghebouli, Khandy, Bouhemadou, Jappor, Wang (bib7) 2019; 526 Erchidi Elyacoubi, Masrour, Jabar (bib56) 2018; 271 Htoutou, Ainane, Saber (bib71) 2004; 269 Wang, Sun, Routh, Kim, Huang, Chen (bib11) 2014; 43 Szałowski, Balcerzak (bib49) 2013; 534 Mello, Anselmo, Vasconcelos, Almeida (bib50) 2017; 268 Bafekry (bib80) 2020; 118 Albayrak, Yiğit (bib28) 2006; 353 Kumar, Hussain, Khan, Koo (bib38) 2020; 845 Han, Zhang, Zhang, Zhu, Liu, Yang (bib42) 2017; 43 El rhazouani, Slassi (bib54) 2017; 11 Al-Abbas, Muhsin, Jappor (bib6) 2019; 135 Warburg (bib32) 1881; 249 Yüksel, Akıncı, Vatansever (bib47) 2018; 646 Qiao, Li, Liu, Kuang, Wang, Hu, Sun, Shen (bib82) 2018; 456 Lv, Wang, Liu, Guo, Li (bib21) 2018; 465 Fadil, Maaouni, Qajjour, Mhirech, Kabouchi, Bahmad, Ousi Benomar (bib20) 2020; 578 Obeid, Stampfl, Bafekry, Guan, Jappor, Nguyen, Naseri, Hoat, Hieu, Krauklis, Vu, Gogova (bib4) 2020; 22 Bafekry, Farjami Shayesteh, Ghergherehchi, Peeters (bib13) 2019; 126 Song, Liu, Zhang (bib16) 2019; 383 Masrour, Jabar, Benyoussef, Hamedoun, Hlil (bib58) 2016; 401 Rakow, Suslick (bib26) 2000; 406 El rhazouani (10.1016/j.spmi.2020.106775_bib54) 2017; 11 El Rhazouani (10.1016/j.spmi.2020.106775_bib74) 2017; 104 Debye (10.1016/j.spmi.2020.106775_bib72) 1912; 39 Barman (10.1016/j.spmi.2020.106775_bib40) 2015; 120 Mello (10.1016/j.spmi.2020.106775_bib41) 2006; 140 Azhari (10.1016/j.spmi.2020.106775_bib68) 2015; 79 Metropolis (10.1016/j.spmi.2020.106775_bib67) 1953; 21 Masrour (10.1016/j.spmi.2020.106775_bib73) 2016; 401 Xu (10.1016/j.spmi.2020.106775_bib1) 2015; 435 Pakornchote (10.1016/j.spmi.2020.106775_bib17) 2019; 146 Deviren (10.1016/j.spmi.2020.106775_bib27) 2010; 140 Yüksel (10.1016/j.spmi.2020.106775_bib47) 2018; 646 Lv (10.1016/j.spmi.2020.106775_bib21) 2018; 465 Obeid (10.1016/j.spmi.2020.106775_bib4) 2020; 22 Masrour (10.1016/j.spmi.2020.106775_bib58) 2016; 401 Rakow (10.1016/j.spmi.2020.106775_bib26) 2000; 406 Evans (10.1016/j.spmi.2020.106775_bib24) 2000; 122 Wang (10.1016/j.spmi.2020.106775_bib23) 2015; 5 Wang (10.1016/j.spmi.2020.106775_bib66) 2020; 135 Song (10.1016/j.spmi.2020.106775_bib16) 2019; 383 Han (10.1016/j.spmi.2020.106775_bib42) 2017; 43 Wang (10.1016/j.spmi.2020.106775_bib61) 2019; 136 Weiss (10.1016/j.spmi.2020.106775_bib25) 2006; 106 Obeid (10.1016/j.spmi.2020.106775_bib7) 2019; 526 Dung (10.1016/j.spmi.2020.106775_bib39) 2012; 111 Mello (10.1016/j.spmi.2020.106775_bib50) 2017; 268 Szałowski (10.1016/j.spmi.2020.106775_bib49) 2013; 534 Restrepo-Parra (10.1016/j.spmi.2020.106775_bib51) 2014; 351 Kumar (10.1016/j.spmi.2020.106775_bib38) 2020; 845 Bafekry (10.1016/j.spmi.2020.106775_bib14) 2020; 53 Yang (10.1016/j.spmi.2020.106775_bib63) 2020; 539 Roy (10.1016/j.spmi.2020.106775_bib2) 2015; 726 Al-Abbas (10.1016/j.spmi.2020.106775_bib6) 2019; 135 Zhou (10.1016/j.spmi.2020.106775_bib48) 2013; 377 Hadimani (10.1016/j.spmi.2020.106775_bib35) 2015; 106 Vo (10.1016/j.spmi.2020.106775_bib5) 2020; 147 Zhang (10.1016/j.spmi.2020.106775_bib34) 2011; 110 Wu (10.1016/j.spmi.2020.106775_bib64) 2020; 136 Bafekry (10.1016/j.spmi.2020.106775_bib12) 2019; 526 Morelli (10.1016/j.spmi.2020.106775_bib22) 2013; 113 Thauer (10.1016/j.spmi.2020.106775_bib75) 2020 Oubla (10.1016/j.spmi.2020.106775_bib45) 2016; 403 Masrour (10.1016/j.spmi.2020.106775_bib18) 2012; 324 Jiang (10.1016/j.spmi.2020.106775_bib15) 2015; 95 Erchidi Elyacoubi (10.1016/j.spmi.2020.106775_bib52) 2018; 459 Alzate-Cardona (10.1016/j.spmi.2020.106775_bib29) 2017; 429 Ennassiri (10.1016/j.spmi.2020.106775_bib53) 2018; 741 Wang (10.1016/j.spmi.2020.106775_bib11) 2014; 43 Bafekry (10.1016/j.spmi.2020.106775_bib77) 2020; 168 Htoutou (10.1016/j.spmi.2020.106775_bib71) 2004; 269 Wu (10.1016/j.spmi.2020.106775_bib65) 2020; 515 Bafekry (10.1016/j.spmi.2020.106775_bib80) 2020; 118 Qiao (10.1016/j.spmi.2020.106775_bib82) 2018; 456 Erchidi Elyacoubi (10.1016/j.spmi.2020.106775_bib56) 2018; 271 Warburg (10.1016/j.spmi.2020.106775_bib32) 1881; 249 Lin (10.1016/j.spmi.2020.106775_bib8) 2015; 115 Cherif (10.1016/j.spmi.2020.106775_bib43) 2007; 432 Lv (10.1016/j.spmi.2020.106775_bib60) 2019; 514 Song (10.1016/j.spmi.2020.106775_bib3) 2015; 2104 Okada (10.1016/j.spmi.2020.106775_bib10) 2001; 87 El Rhazouani (10.1016/j.spmi.2020.106775_bib55) 2017; 104 Tadyszak (10.1016/j.spmi.2020.106775_bib81) 2019; 492 Kumar (10.1016/j.spmi.2020.106775_bib83) 2020; 845 Albayrak (10.1016/j.spmi.2020.106775_bib28) 2006; 353 Franco (10.1016/j.spmi.2020.106775_bib30) 2012; 42 Bafekry (10.1016/j.spmi.2020.106775_bib76) 2020; 157 Kadim (10.1016/j.spmi.2020.106775_bib57) 2020; 499 Bafekry (10.1016/j.spmi.2020.106775_bib13) 2019; 126 Modak (10.1016/j.spmi.2020.106775_bib37) 2018; 448 Teichert (10.1016/j.spmi.2020.106775_bib46) 2015; 91 Boukhvalov (10.1016/j.spmi.2020.106775_bib9) 2008; 77 Lambert (10.1016/j.spmi.2020.106775_bib33) 2017; 443 Charkaoui (10.1016/j.spmi.2020.106775_bib36) 2020; 316 Yükse (10.1016/j.spmi.2020.106775_bib70) 2020; 513 Bafekry (10.1016/j.spmi.2020.106775_bib79) 2020; 8 Mañosa (10.1016/j.spmi.2020.106775_bib31) 2013; 1 Chang (10.1016/j.spmi.2020.106775_bib62) 2020; 46 Fadil (10.1016/j.spmi.2020.106775_bib20) 2020; 578 Jabar (10.1016/j.spmi.2020.106775_bib69) 2017; 670 Sun (10.1016/j.spmi.2020.106775_bib59) 2020; 147 Bafekry (10.1016/j.spmi.2020.106775_bib78) 2020; 32 Jabar (10.1016/j.spmi.2020.106775_bib19) 2018; 539 Thanh (10.1016/j.spmi.2020.106775_bib44) 2016; 486 |
References_xml | – volume: 115 start-page: 206803 year: 2015 ident: bib8 publication-title: Phys. Rev. Lett. – volume: 1 start-page: 4925 year: 2013 ident: bib31 publication-title: J. Mater. Chem. – volume: 168 start-page: 220 year: 2020 ident: bib77 publication-title: Carbon – volume: 136 start-page: 109174 year: 2020 ident: bib64 publication-title: J. Phys. Chem. Solid. – volume: 77 year: 2008 ident: bib9 publication-title: Phys. Rev. B – volume: 377 start-page: 3052 year: 2013 ident: bib48 publication-title: Phys. Lett. – volume: 578 start-page: 411852 year: 2020 ident: bib20 publication-title: Phys. B – volume: 111 year: 2012 ident: bib39 publication-title: J. Appl. Phys. – volume: 435 start-page: 263 year: 2015 ident: bib1 publication-title: Chem. Eng. J. – volume: 42 start-page: 305 year: 2012 ident: bib30 publication-title: Annu. Rev. Mater. Res. – volume: 271 start-page: 39 year: 2018 ident: bib56 publication-title: Solid State Commun. – volume: 429 start-page: 34 year: 2017 ident: bib29 publication-title: J. Magn. Magn Mater. – volume: 53 start-page: 355106 year: 2020 ident: bib14 publication-title: J. Phys. D Appl. Phys. – volume: 492 start-page: 165656 year: 2019 ident: bib81 publication-title: J. Magn. Magn Mater. – volume: 459 start-page: 537 year: 2018 ident: bib52 publication-title: Appl. Surf. Sci. – volume: 486 start-page: 7 year: 2016 ident: bib44 publication-title: Phys. B – volume: 104 start-page: 32 year: 2017 ident: bib74 publication-title: J. Phys. Chem. Solid. – year: 2020 ident: bib75 publication-title: Energy – volume: 157 start-page: 371 year: 2020 ident: bib76 publication-title: Carbon – volume: 87 start-page: 146803 year: 2001 ident: bib10 publication-title: Phys. Rev. Lett. – volume: 249 start-page: 141 year: 1881 ident: bib32 publication-title: Ann. Phys. – volume: 269 start-page: 245 year: 2004 ident: bib71 publication-title: J. Magn. Magn Mater. – volume: 268 start-page: 56 year: 2017 ident: bib50 publication-title: Solid State Commun. – volume: 140 start-page: 934 year: 2010 ident: bib27 publication-title: J. Stat. Phys. – volume: 316 start-page: 113962 year: 2020 ident: bib36 publication-title: Solid State Commun. – volume: 845 start-page: 156218 year: 2020 ident: bib38 publication-title: J. Alloys Compd. – volume: 534 start-page: 546 year: 2013 ident: bib49 publication-title: Thin Solid Films – volume: 539 start-page: 21 year: 2018 ident: bib19 publication-title: Phys. B – volume: 136 start-page: 106325 year: 2019 ident: bib61 publication-title: Superlattice. Microst. – volume: 140 start-page: 447 year: 2006 ident: bib41 publication-title: Solid State Commun. – volume: 401 start-page: 91 year: 2016 ident: bib58 publication-title: J. Magn. Magn Mater. – volume: 147 start-page: 106683 year: 2020 ident: bib5 publication-title: Superlattice. Microst. – volume: 2104 start-page: 15 year: 2015 ident: bib3 publication-title: Nano Lett. – volume: 526 start-page: 110442 year: 2019 ident: bib12 publication-title: Chem. Phys. – volume: 432 start-page: 30 year: 2007 ident: bib43 publication-title: J. Alloys Compd. – volume: 39 start-page: 789 year: 1912 ident: bib72 publication-title: Ann. Phys. – volume: 21 start-page: 1087 year: 1953 ident: bib67 publication-title: J. Chem. Phys. – volume: 726 start-page: 68 year: 2015 ident: bib2 publication-title: Biosens. Bioelectron. – volume: 106 start-page: 2550 year: 2006 ident: bib25 publication-title: Chem. Rev. – volume: 135 start-page: 106245 year: 2019 ident: bib6 publication-title: Superlattice. Microst. – volume: 46 start-page: 22907 year: 2020 ident: bib62 publication-title: Ceram. Int. – volume: 741 start-page: 1196 year: 2018 ident: bib53 publication-title: J. Alloys Compd. – volume: 5 start-page: 10459 year: 2015 ident: bib23 publication-title: Sci. Rep. – volume: 499 start-page: 166263 year: 2020 ident: bib57 publication-title: J. Magn. Magn Mater. – volume: 670 start-page: 16 year: 2017 ident: bib69 publication-title: Chem. Phys. Lett. – volume: 401 start-page: 91 year: 2016 ident: bib73 publication-title: J. Magn. Magn Mater. – volume: 126 start-page: 144304 year: 2019 ident: bib13 publication-title: J. Appl. Phys. – volume: 43 start-page: 8709 year: 2017 ident: bib42 publication-title: Ceram. Int. – volume: 406 start-page: 710 year: 2000 ident: bib26 publication-title: Nature – volume: 465 start-page: 348 year: 2018 ident: bib21 publication-title: J. Magn. Magn Mater. – volume: 845 start-page: 156218 year: 2020 ident: bib83 publication-title: J. Alloys Compd. – volume: 122 start-page: 4660 year: 2000 ident: bib24 publication-title: J. Am. Chem. Soc. – volume: 646 start-page: 67 year: 2018 ident: bib47 publication-title: Thin Solid Films – volume: 448 start-page: 146 year: 2018 ident: bib37 publication-title: J. Magn. Magn Mater. – volume: 539 start-page: 122932 year: 2020 ident: bib63 publication-title: Phys. A – volume: 106 year: 2015 ident: bib35 publication-title: Appl. Phys. Lett. – volume: 443 start-page: 1 year: 2017 ident: bib33 publication-title: J. Magn. Magn Mater. – volume: 79 start-page: 96 year: 2015 ident: bib68 publication-title: Superlattice. Microst. – volume: 32 start-page: 355504 year: 2020 ident: bib78 publication-title: J. Phys. Condens. Matter – volume: 8 start-page: 13248 year: 2020 ident: bib79 publication-title: J. Mater. Chem. – volume: 513 start-page: 167249 year: 2020 ident: bib70 publication-title: J. Magn. Magn Mater. – volume: 91 start-page: 184405 year: 2015 ident: bib46 publication-title: Phys. Rev. B – volume: 11 start-page: 55 year: 2017 ident: bib54 publication-title: Comput. Condens. Matter – volume: 147 start-page: 106701 year: 2020 ident: bib59 publication-title: Superlattice. Microst. – volume: 120 start-page: 22 year: 2015 ident: bib40 publication-title: Vacuum – volume: 515 start-page: 167306 year: 2020 ident: bib65 publication-title: J. Magn. Magn Mater. – volume: 324 start-page: 3991 year: 2012 ident: bib18 publication-title: J. Magn. Magn Mater. – volume: 514 start-page: 319 year: 2019 ident: bib60 publication-title: Phys. A – volume: 135 start-page: 605 year: 2020 ident: bib66 publication-title: Eur. Phys. J. Plus – volume: 351 start-page: 65 year: 2014 ident: bib51 publication-title: J. Magn. Magn Mater. – volume: 110 year: 2011 ident: bib34 publication-title: J. Appl. Phys. – volume: 43 start-page: 7067 year: 2014 ident: bib11 publication-title: Chem. Soc. Rev. – volume: 383 start-page: 2628 year: 2019 ident: bib16 publication-title: Phys. Lett. – volume: 104 start-page: 32 year: 2017 ident: bib55 publication-title: J. Phys. Chem. Solid. – volume: 113 start-page: 154101 year: 2013 ident: bib22 publication-title: J. Appl. Phys. – volume: 456 start-page: 439 year: 2018 ident: bib82 publication-title: J. Magn. Magn Mater. – volume: 526 start-page: 110414 year: 2019 ident: bib7 publication-title: Chem. Phys. – volume: 95 start-page: 190 year: 2015 ident: bib15 publication-title: Carbon – volume: 403 start-page: 114 year: 2016 ident: bib45 publication-title: J. Magn. Magn Mater. – volume: 146 start-page: 468 year: 2019 ident: bib17 publication-title: Carbon – volume: 118 start-page: 113850 year: 2020 ident: bib80 publication-title: Phys. E – volume: 353 start-page: 121 year: 2006 ident: bib28 publication-title: Phys. Lett. – volume: 22 start-page: 15354 year: 2020 ident: bib4 publication-title: Phys. Chem. Chem. Phys. – volume: 43 start-page: 8709 year: 2017 ident: 10.1016/j.spmi.2020.106775_bib42 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.03.206 – volume: 324 start-page: 3991 year: 2012 ident: 10.1016/j.spmi.2020.106775_bib18 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2012.06.048 – volume: 515 start-page: 167306 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib65 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2020.167306 – volume: 534 start-page: 546 year: 2013 ident: 10.1016/j.spmi.2020.106775_bib49 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.02.044 – volume: 539 start-page: 122932 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib63 publication-title: Phys. A doi: 10.1016/j.physa.2019.122932 – volume: 32 start-page: 355504 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib78 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab8e88 – volume: 578 start-page: 411852 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib20 publication-title: Phys. B doi: 10.1016/j.physb.2019.411852 – volume: 401 start-page: 91 year: 2016 ident: 10.1016/j.spmi.2020.106775_bib73 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2015.10.019 – volume: 140 start-page: 934 year: 2010 ident: 10.1016/j.spmi.2020.106775_bib27 publication-title: J. Stat. Phys. doi: 10.1007/s10955-010-0025-6 – volume: 670 start-page: 16 year: 2017 ident: 10.1016/j.spmi.2020.106775_bib69 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.12.070 – volume: 104 start-page: 32 year: 2017 ident: 10.1016/j.spmi.2020.106775_bib55 publication-title: J. Phys. Chem. Solid. doi: 10.1016/j.jpcs.2016.12.033 – volume: 845 start-page: 156218 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib38 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156218 – volume: 106 year: 2015 ident: 10.1016/j.spmi.2020.106775_bib35 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4906056 – volume: 514 start-page: 319 year: 2019 ident: 10.1016/j.spmi.2020.106775_bib60 publication-title: Phys. A doi: 10.1016/j.physa.2018.09.089 – volume: 87 start-page: 146803 year: 2001 ident: 10.1016/j.spmi.2020.106775_bib10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.146803 – volume: 111 year: 2012 ident: 10.1016/j.spmi.2020.106775_bib39 publication-title: J. Appl. Phys. – volume: 249 start-page: 141 year: 1881 ident: 10.1016/j.spmi.2020.106775_bib32 publication-title: Ann. Phys. doi: 10.1002/andp.18812490510 – volume: 526 start-page: 110442 year: 2019 ident: 10.1016/j.spmi.2020.106775_bib12 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2019.110442 – volume: 401 start-page: 91 year: 2016 ident: 10.1016/j.spmi.2020.106775_bib58 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2015.10.019 – volume: 316 start-page: 113962 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib36 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2020.113962 – volume: 104 start-page: 32 year: 2017 ident: 10.1016/j.spmi.2020.106775_bib74 publication-title: J. Phys. Chem. Solid. doi: 10.1016/j.jpcs.2016.12.033 – volume: 147 start-page: 106701 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib59 publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2020.106701 – volume: 39 start-page: 789 year: 1912 ident: 10.1016/j.spmi.2020.106775_bib72 publication-title: Ann. Phys. doi: 10.1002/andp.19123441404 – volume: 435 start-page: 263 year: 2015 ident: 10.1016/j.spmi.2020.106775_bib1 publication-title: Chem. Eng. J. – volume: 486 start-page: 7 year: 2016 ident: 10.1016/j.spmi.2020.106775_bib44 publication-title: Phys. B doi: 10.1016/j.physb.2015.09.015 – volume: 403 start-page: 114 year: 2016 ident: 10.1016/j.spmi.2020.106775_bib45 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2015.11.076 – volume: 456 start-page: 439 year: 2018 ident: 10.1016/j.spmi.2020.106775_bib82 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2018.01.067 – volume: 383 start-page: 2628 year: 2019 ident: 10.1016/j.spmi.2020.106775_bib16 publication-title: Phys. Lett. doi: 10.1016/j.physleta.2019.05.025 – volume: 77 year: 2008 ident: 10.1016/j.spmi.2020.106775_bib9 publication-title: Phys. Rev. B – volume: 140 start-page: 447 year: 2006 ident: 10.1016/j.spmi.2020.106775_bib41 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2006.09.013 – volume: 118 start-page: 113850 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib80 publication-title: Phys. E doi: 10.1016/j.physe.2019.113850 – volume: 459 start-page: 537 year: 2018 ident: 10.1016/j.spmi.2020.106775_bib52 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.020 – volume: 126 start-page: 144304 year: 2019 ident: 10.1016/j.spmi.2020.106775_bib13 publication-title: J. Appl. Phys. doi: 10.1063/1.5097264 – volume: 53 start-page: 355106 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib14 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ab876c – volume: 42 start-page: 305 year: 2012 ident: 10.1016/j.spmi.2020.106775_bib30 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-062910-100356 – volume: 465 start-page: 348 year: 2018 ident: 10.1016/j.spmi.2020.106775_bib21 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2018.06.011 – volume: 269 start-page: 245 year: 2004 ident: 10.1016/j.spmi.2020.106775_bib71 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2003.07.002 – volume: 95 start-page: 190 year: 2015 ident: 10.1016/j.spmi.2020.106775_bib15 publication-title: Carbon doi: 10.1016/j.carbon.2015.07.097 – volume: 91 start-page: 184405 year: 2015 ident: 10.1016/j.spmi.2020.106775_bib46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.184405 – volume: 115 start-page: 206803 year: 2015 ident: 10.1016/j.spmi.2020.106775_bib8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.206803 – volume: 499 start-page: 166263 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib57 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2019.166263 – volume: 79 start-page: 96 year: 2015 ident: 10.1016/j.spmi.2020.106775_bib68 publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2014.12.015 – volume: 845 start-page: 156218 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib83 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156218 – volume: 113 start-page: 154101 year: 2013 ident: 10.1016/j.spmi.2020.106775_bib22 publication-title: J. Appl. Phys. doi: 10.1063/1.4801904 – volume: 513 start-page: 167249 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib70 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2020.167249 – volume: 726 start-page: 68 year: 2015 ident: 10.1016/j.spmi.2020.106775_bib2 publication-title: Biosens. Bioelectron. – volume: 120 start-page: 22 year: 2015 ident: 10.1016/j.spmi.2020.106775_bib40 publication-title: Vacuum doi: 10.1016/j.vacuum.2015.06.013 – year: 2020 ident: 10.1016/j.spmi.2020.106775_bib75 publication-title: Energy – volume: 443 start-page: 1 year: 2017 ident: 10.1016/j.spmi.2020.106775_bib33 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2017.06.115 – volume: 22 start-page: 15354 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib4 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP02007A – volume: 268 start-page: 56 year: 2017 ident: 10.1016/j.spmi.2020.106775_bib50 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2017.09.004 – volume: 271 start-page: 39 year: 2018 ident: 10.1016/j.spmi.2020.106775_bib56 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2017.12.015 – volume: 146 start-page: 468 year: 2019 ident: 10.1016/j.spmi.2020.106775_bib17 publication-title: Carbon doi: 10.1016/j.carbon.2019.01.088 – volume: 43 start-page: 7067 issue: 20 year: 2014 ident: 10.1016/j.spmi.2020.106775_bib11 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00141A – volume: 646 start-page: 67 year: 2018 ident: 10.1016/j.spmi.2020.106775_bib47 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2017.11.031 – volume: 429 start-page: 34 year: 2017 ident: 10.1016/j.spmi.2020.106775_bib29 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2017.01.004 – volume: 351 start-page: 65 year: 2014 ident: 10.1016/j.spmi.2020.106775_bib51 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2013.09.011 – volume: 353 start-page: 121 year: 2006 ident: 10.1016/j.spmi.2020.106775_bib28 publication-title: Phys. Lett. doi: 10.1016/j.physleta.2005.12.077 – volume: 539 start-page: 21 year: 2018 ident: 10.1016/j.spmi.2020.106775_bib19 publication-title: Phys. B doi: 10.1016/j.physb.2018.03.052 – volume: 135 start-page: 106245 year: 2019 ident: 10.1016/j.spmi.2020.106775_bib6 publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2019.106245 – volume: 526 start-page: 110414 year: 2019 ident: 10.1016/j.spmi.2020.106775_bib7 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2019.110414 – volume: 448 start-page: 146 year: 2018 ident: 10.1016/j.spmi.2020.106775_bib37 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2017.06.063 – volume: 106 start-page: 2550 year: 2006 ident: 10.1016/j.spmi.2020.106775_bib25 publication-title: Chem. Rev. doi: 10.1021/cr040416l – volume: 157 start-page: 371 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib76 publication-title: Carbon doi: 10.1016/j.carbon.2019.10.038 – volume: 21 start-page: 1087 year: 1953 ident: 10.1016/j.spmi.2020.106775_bib67 publication-title: J. Chem. Phys. doi: 10.1063/1.1699114 – volume: 136 start-page: 106325 year: 2019 ident: 10.1016/j.spmi.2020.106775_bib61 publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2019.106325 – volume: 5 start-page: 10459 year: 2015 ident: 10.1016/j.spmi.2020.106775_bib23 publication-title: Sci. Rep. doi: 10.1038/srep10459 – volume: 11 start-page: 55 year: 2017 ident: 10.1016/j.spmi.2020.106775_bib54 publication-title: Comput. Condens. Matter doi: 10.1016/j.cocom.2017.05.002 – volume: 492 start-page: 165656 year: 2019 ident: 10.1016/j.spmi.2020.106775_bib81 publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2019.165656 – volume: 741 start-page: 1196 year: 2018 ident: 10.1016/j.spmi.2020.106775_bib53 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.01.223 – volume: 136 start-page: 109174 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib64 publication-title: J. Phys. Chem. Solid. doi: 10.1016/j.jpcs.2019.109174 – volume: 377 start-page: 3052 year: 2013 ident: 10.1016/j.spmi.2020.106775_bib48 publication-title: Phys. Lett. doi: 10.1016/j.physleta.2013.09.027 – volume: 168 start-page: 220 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib77 publication-title: Carbon doi: 10.1016/j.carbon.2020.06.082 – volume: 122 start-page: 4660 year: 2000 ident: 10.1016/j.spmi.2020.106775_bib24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja994478i – volume: 46 start-page: 22907 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib62 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.06.064 – volume: 147 start-page: 106683 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib5 publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2020.106683 – volume: 406 start-page: 710 year: 2000 ident: 10.1016/j.spmi.2020.106775_bib26 publication-title: Nature doi: 10.1038/35021028 – volume: 432 start-page: 30 year: 2007 ident: 10.1016/j.spmi.2020.106775_bib43 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.06.007 – volume: 2104 start-page: 15 year: 2015 ident: 10.1016/j.spmi.2020.106775_bib3 publication-title: Nano Lett. – volume: 8 start-page: 13248 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib79 publication-title: J. Mater. Chem. doi: 10.1039/D0TA02847A – volume: 110 year: 2011 ident: 10.1016/j.spmi.2020.106775_bib34 publication-title: J. Appl. Phys. – volume: 1 start-page: 4925 year: 2013 ident: 10.1016/j.spmi.2020.106775_bib31 publication-title: J. Mater. Chem. doi: 10.1039/c3ta01289a – volume: 135 start-page: 605 year: 2020 ident: 10.1016/j.spmi.2020.106775_bib66 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00627-x |
SSID | ssj0009417 |
Score | 2.14452 |
Snippet | By means of the Monte Carlo simulation, the influence of exchange couplings and the applied magnetic field on the magnetic behaviors and magnetocaloric effect... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106775 |
SubjectTerms | Magnetic behaviors Magnetocaloric effect Monte Carlo simulation Nano-graphene bilayer |
Title | The magnetic behaviors and magnetocaloric effect of a nano-graphene bilayer: A Monte Carlo study |
URI | https://dx.doi.org/10.1016/j.spmi.2020.106775 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jInoRnYrzx8jBm8Q1bdqk3kZxTGW76GC3mmaJTLZ2bPPq3-5L2voDxIPX8B6Ul_C-98r3vofQpdI0NMKERPtUEhYbSgAUoEvRwgO40_7UsSqHo2gwZveTcNJAST0LY2mVVe4vc7rL1tVJt4pmdzmbdR8B_KD8hgTs5AeZ7dsZ4_aVX79_0Txi5rbuWmNiravBmZLjtV4uZtAj-vYg4pZr-Bs4fQOc_j7aqypF3Cs_5gA1dN5CO0m9oK2Fth17U60P0TNcNl7Il9xOJOJ68n6NZT6tji1iWTUQXPI3cGGwxLnMC-IUqyHh4Ww2l1B_3-AeHlrJKpzI1bzATn_2CI37t0_JgFSrE4gKPG9DMj_U1FNCQQWnpa-hbZGCcxkGxkhhFVlUHBgVmogKxbRm00gJL1CZpFwyXwfHqJkXuT5B2IsU9bSOObReTHKoLwDluRaKqygwnLcRrWOWqkpX3K63mKc1gew1tXFObZzTMs5tdPXpsyxVNf60DuurSH-8jRTS_h9-p__0O0O7vmWuuB8t56i5Wb3pCyg9NlnHva0O2urdPQxGH7CY1tE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB3RVBVcEKWtymf3ACfkxl6vvQ4SBxSIQklyASRuZrOZRamCEyVBiAt_ij_I7HrdglTlUInrymutZ0czb6w3bwD2NEaJyUwSII9UIBomCigpUJWCWUjpDvnAsSq7vbR9JX5dJ9dL8Fz1wlhapY_9ZUx30dqv1L0165PhsH5ByY_gNwVgJz8oQs-sPMfHB6rbZkdnJ3TJ-5y3Ti-b7cCPFgh0HIbzoM8TjEKdaUI4qDgSrFeZlCqJjVGZVSzRjdjoxKRRpgWiGKQ6C2PdV5FUgmNM7_0AHwWFCzs24efTX15JQ7gxv_Z0gT2e79QpSWWzyd2QilJuF1JpyY3_yoavMlxrDVY9NGXH5dd_hiUs1mG5WU2EW4dPji6qZ1_ghryL3anbwrZAsqrVf8ZUMfDLNkVa-RFWEkbY2DDFClWMAyeRTRGW9YcjRYD_kB2zrtXIYk01HY2ZE7z9ClfvYtBvUCvGBX4HFqY6ChEbkmo9oSQBGoIVEjMtdRobKTcgqmyWay9kbudpjPKKsfY7t3bOrZ3z0s4bcPBnz6SU8Vj4dFJdRf7GGXPKMwv2bf7nvh-w3L7sdvLOWe98C1a4pc24vzzbUJtP73GHcM-8v-v8jMHNezv2C4xrEvo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+magnetic+behaviors+and+magnetocaloric+effect+of+a+nano-graphene+bilayer%3A+A+Monte+Carlo+study&rft.jtitle=Superlattices+and+microstructures&rft.au=Sun%2C+Lei&rft.au=Wang%2C+Wei&rft.au=Liu%2C+Cong&rft.au=Xu%2C+Bing-hui&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=149&rft_id=info:doi/10.1016%2Fj.spmi.2020.106775&rft.externalDocID=S0749603620313240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |