Nanoscale high-entropy alloy for electrocatalysis
High-entropy alloys (HEAs) are a new kind of alloy with five or more alloy elements at equal or near-equal ratios. The tunable multicomponent structure and potential novel properties of HEAs have attracted widespread attention. Benefiting from advances in synthesis technology, nanoscale HEAs were ac...
Saved in:
Published in | Matter Vol. 6; no. 6; pp. 1717 - 1751 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
07.06.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | High-entropy alloys (HEAs) are a new kind of alloy with five or more alloy elements at equal or near-equal ratios. The tunable multicomponent structure and potential novel properties of HEAs have attracted widespread attention. Benefiting from advances in synthesis technology, nanoscale HEAs were acquired successfully, the high specific surface area and quantum size effect of which further improved their capacity for catalysis. Nevertheless, the complex composition of elements makes it challenging to clarify the atomic structure of HEAs, and their catalytic studies are still in their infancy. A comprehensive review summarizing the current understanding of the structure of HEAs and their catalytic performance is urgently needed. This review first presents basic insights into HEAs, including concept definition, structural features, and progressive synthesis and characterization technologies. Then, the electrocatalytic performance of HEAs is discussed based on the structural diversity and synergistic role of each component element. Considering the limitation of trial-and-error methods in dealing with this complex system, high-throughput screening technologies are also introduced. This review aims to promote the understanding of HEAs and therefore achieve the design of high-efficiency catalysts relying on HEAs.
High-entropy alloys (HEAs) represent a new paradigm in alloy design, with at least five elements incorporated in near-equal proportions, deviating from traditional alloying strategies. The incorporation of multiple elements offers HEAs with diverse tunability and potential for novel properties, making them a subject of widespread attention. Advances in synthesis techniques have enabled the preparation of nanoscale HEAs, which possess a high specific surface area and quantum size effect, further enhancing their catalytic potential. However, the complexity of the elemental composition in HEAs has hindered the full understanding of their structure. Despite this challenge, recent research efforts have yielded inspiring results in recognizing the structure of HEAs. Additionally, advanced synthetic strategies for nanoscale HEAs have been explored, facilitating significant progress in high-throughput screening and electrochemical applications related to their constituent elements. This review provides a comprehensive summary of the current understanding of the structure of HEAs and corresponding characterization methods, as well as the recent advances in the preparation, high-throughput screening, and electrochemical applications of HEAs.
The advent of high-entropy alloys (HEAs) has introduced a new avenue for alloy design. Considerable headway is presently being achieved in the synthesis, characterization, and high-throughput screening of nanoscale HEAs. The highly tunable structure of nanoscale HEAs has made them a top contender for electrocatalytic applications, although further exploration of their structure-function relationship is necessary. This review provides an overview of the latest advancements in the understanding of nanoscale HEAs and their electrocatalytic efficacy. |
---|---|
AbstractList | High-entropy alloys (HEAs) are a new kind of alloy with five or more alloy elements at equal or near-equal ratios. The tunable multicomponent structure and potential novel properties of HEAs have attracted widespread attention. Benefiting from advances in synthesis technology, nanoscale HEAs were acquired successfully, the high specific surface area and quantum size effect of which further improved their capacity for catalysis. Nevertheless, the complex composition of elements makes it challenging to clarify the atomic structure of HEAs, and their catalytic studies are still in their infancy. A comprehensive review summarizing the current understanding of the structure of HEAs and their catalytic performance is urgently needed. This review first presents basic insights into HEAs, including concept definition, structural features, and progressive synthesis and characterization technologies. Then, the electrocatalytic performance of HEAs is discussed based on the structural diversity and synergistic role of each component element. Considering the limitation of trial-and-error methods in dealing with this complex system, high-throughput screening technologies are also introduced. This review aims to promote the understanding of HEAs and therefore achieve the design of high-efficiency catalysts relying on HEAs.
High-entropy alloys (HEAs) represent a new paradigm in alloy design, with at least five elements incorporated in near-equal proportions, deviating from traditional alloying strategies. The incorporation of multiple elements offers HEAs with diverse tunability and potential for novel properties, making them a subject of widespread attention. Advances in synthesis techniques have enabled the preparation of nanoscale HEAs, which possess a high specific surface area and quantum size effect, further enhancing their catalytic potential. However, the complexity of the elemental composition in HEAs has hindered the full understanding of their structure. Despite this challenge, recent research efforts have yielded inspiring results in recognizing the structure of HEAs. Additionally, advanced synthetic strategies for nanoscale HEAs have been explored, facilitating significant progress in high-throughput screening and electrochemical applications related to their constituent elements. This review provides a comprehensive summary of the current understanding of the structure of HEAs and corresponding characterization methods, as well as the recent advances in the preparation, high-throughput screening, and electrochemical applications of HEAs.
The advent of high-entropy alloys (HEAs) has introduced a new avenue for alloy design. Considerable headway is presently being achieved in the synthesis, characterization, and high-throughput screening of nanoscale HEAs. The highly tunable structure of nanoscale HEAs has made them a top contender for electrocatalytic applications, although further exploration of their structure-function relationship is necessary. This review provides an overview of the latest advancements in the understanding of nanoscale HEAs and their electrocatalytic efficacy. |
Author | Wu, Geng Guo, Jingjing Hong, Xun Han, Xiao Wang, Dingsheng Yan, Muyu Zhao, Shuyan |
Author_xml | – sequence: 1 givenname: Xiao surname: Han fullname: Han, Xiao organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China – sequence: 2 givenname: Geng surname: Wu fullname: Wu, Geng organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China – sequence: 3 givenname: Shuyan surname: Zhao fullname: Zhao, Shuyan organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China – sequence: 4 givenname: Jingjing surname: Guo fullname: Guo, Jingjing organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China – sequence: 5 givenname: Muyu surname: Yan fullname: Yan, Muyu organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China – sequence: 6 givenname: Xun surname: Hong fullname: Hong, Xun email: hongxun@ustc.edu.cn organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China – sequence: 7 givenname: Dingsheng orcidid: 0000-0003-0074-7633 surname: Wang fullname: Wang, Dingsheng email: wangdingsheng@mail.tsinghua.edu.cn organization: Department of Chemistry, Tsinghua University, Beijing 100084, China |
BookMark | eNp9kMtqwzAQRUVJoWmaH-jKP2BXT8uCbkroC0K7yV5MZLmRUawgiYL_vjbponQRuDDDDGfgzC1aDGGwCN0TXBFM6oe-OkLOFcWUVXgOv0JLKhQuKWvE4k9_g9Yp9RhjSgmTnC0R-YAhJAPeFgf3dSjtkGM4jQV4H8aiC7Gw3pppZiCDH5NLd-i6A5_s-reu0O7lebd5K7efr--bp21pGMa53BPBVctkh6VSZC8Fh6a2XFHSMFHDtCW8FYxQwQWR0Nq6IUwpJolsACu2QvR81sSQUrSdPkV3hDhqgvWsrXs9a-tZW-M5fIKaf5BxGbILkxU4fxl9PKN2cvp2NupknB2MbV2cHqDb4C7hPzPJc2I |
CitedBy_id | crossref_primary_10_1039_D4NJ01272K crossref_primary_10_1016_j_pnsc_2024_04_014 crossref_primary_10_1021_acs_nanolett_4c04758 crossref_primary_10_1021_acs_nanolett_4c03208 crossref_primary_10_1002_idm2_12171 crossref_primary_10_1002_smll_202404689 crossref_primary_10_1016_j_ensm_2025_104064 crossref_primary_10_1002_sus2_261 crossref_primary_10_1016_j_ijhydene_2024_12_430 crossref_primary_10_1016_j_mtcomm_2024_110969 crossref_primary_10_1021_jacs_3c14510 crossref_primary_10_1002_anie_202402678 crossref_primary_10_1002_smll_202311929 crossref_primary_10_3390_catal14010057 crossref_primary_10_1016_j_matt_2024_01_025 crossref_primary_10_1002_advs_202402497 crossref_primary_10_1039_D4TA02707H crossref_primary_10_1002_advs_202408614 crossref_primary_10_1002_ange_202402678 crossref_primary_10_1016_j_matt_2025_101986 crossref_primary_10_1016_j_nanoms_2024_09_002 crossref_primary_10_1016_j_ensm_2023_103127 crossref_primary_10_1016_j_mtcata_2023_100025 crossref_primary_10_1002_advs_202409404 crossref_primary_10_1007_s10008_025_06218_z crossref_primary_10_1016_j_enchem_2025_100155 crossref_primary_10_1016_j_partic_2024_06_014 crossref_primary_10_1007_s00604_025_07089_x crossref_primary_10_1016_j_jelechem_2025_119083 crossref_primary_10_1039_D3SC04962K crossref_primary_10_1002_adma_202400920 crossref_primary_10_1016_j_jallcom_2024_173951 crossref_primary_10_1016_j_renene_2025_122827 crossref_primary_10_1039_D3TA07230D crossref_primary_10_1021_acsmaterialslett_4c00248 crossref_primary_10_1021_acsmaterialslett_4c00587 crossref_primary_10_1016_j_cej_2024_156419 crossref_primary_10_1016_j_mcat_2024_114571 crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1021_acsami_4c21239 crossref_primary_10_1126_sciadv_adn2877 |
Cites_doi | 10.1016/j.pmatsci.2013.10.001 10.3390/v13091682 10.1002/anie.202207268 10.1038/s41467-021-26160-8 10.1016/j.matt.2020.07.027 10.1038/srep34213 10.1016/j.pmatsci.2009.05.002 10.1002/anie.202213318 10.1126/science.abj9980 10.1016/j.actamat.2016.08.081 10.1021/jacs.2c01200 10.1007/s12274-022-4429-9 10.1039/D1EE01543E 10.1016/j.jmst.2017.11.045 10.1002/anie.201914666 10.1002/admi.201900015 10.1039/D0TA02125C 10.1021/acscatal.9b04302 10.1039/C9TA00505F 10.1038/s41929-018-0054-0 10.1002/anie.202109538 10.1002/adma.202209242 10.1002/anie.202115219 10.1126/science.aan5412 10.1016/j.matlet.2015.10.035 10.1016/j.actamat.2019.12.015 10.1016/j.mattod.2021.03.018 10.1021/acsnano.1c05113 10.1016/j.matt.2022.09.023 10.1016/j.mtnano.2021.100139 10.1002/anie.202209749 10.1021/acs.chemmater.0c04695 10.1103/PhysRevLett.118.205501 10.3390/e16094749 10.1002/anie.202210789 10.1016/j.cossms.2018.05.003 10.1021/acscatal.1c03228 10.1021/acsmaterialslett.2c00371 10.1021/jacs.1c07643 10.1073/pnas.1615926113 10.1021/acsnano.0c05250 10.1016/j.intermet.2022.107724 10.1039/D2TA02597C 10.1038/s41467-021-26425-2 10.1038/s41467-020-15934-1 10.1002/anie.202003530 10.1038/ncomms6964 10.1021/acscatal.0c03617 10.1002/anie.202212335 10.1007/s11669-017-0570-7 10.1016/j.joule.2018.12.015 10.1007/s12274-021-3804-2 10.1016/j.msea.2018.09.028 10.1038/s41586-019-1617-1 10.1002/adma.202101845 10.1038/ncomms10602 10.1002/adfm.202101586 10.1016/j.pmatsci.2021.100854 10.1007/s12274-022-4179-8 10.1021/acs.nanolett.0c04572 10.1021/jacs.6b09246 10.1038/s41467-019-11848-9 10.1021/jacs.2c02755 10.1038/s41586-021-03354-0 10.1007/s11837-017-2452-1 10.1039/D0CS00844C 10.1038/s41467-020-17738-9 10.1002/adma.202000385 10.1038/s41467-022-32850-8 10.1002/aenm.201802269 10.1038/ncomms12315 10.1126/science.aam8256 10.1021/acscatal.9b04343 10.1002/anie.202209849 10.1007/s12274-022-4432-1 10.1038/s41467-019-10303-z 10.1126/science.abo4940 10.1002/anie.202205946 10.1038/s41467-021-24228-z 10.1002/sus2.47 10.1057/jors.1970.48 10.1038/s41586-020-2275-z 10.1038/s41467-022-30379-4 10.1002/anie.201704323 10.1016/j.matt.2019.10.017 10.1039/C2CP90132C 10.1039/D0NH00656D 10.1002/smll.201904180 10.1038/s41467-021-25264-5 10.1002/adma.202206276 10.1021/acsmaterialslett.9b00414 10.3390/technologies3040182 10.1007/s12274-020-3244-4 10.1016/j.msea.2003.10.257 10.1002/adfm.201905933 10.1093/nsr/nwac190 10.1016/j.jmmm.2019.165574 10.1016/j.cej.2022.134898 10.1016/j.mtla.2022.101326 10.1126/sciadv.aaz0510 10.1038/s41557-020-0418-3 10.1002/anie.201709803 10.1007/s12274-022-4265-y 10.1039/D1CC04141J 10.1007/s41918-022-00144-8 10.1016/j.actamat.2013.04.058 10.1021/acscatal.2c02604 10.1016/j.ultsonch.2004.01.037 10.1073/pnas.1808660115 10.1002/adfm.202106715 10.1038/s41586-022-05115-z 10.1021/acsmaterialslett.0c00434 10.1016/j.matt.2020.07.029 10.1038/s41467-022-31971-4 10.1002/sus2.56 10.1021/acs.langmuir.8b01585 10.1021/jacs.2c03544 10.1038/s41467-019-12859-2 10.1073/pnas.1903721117 10.1002/adem.200300567 10.1038/ncomms8748 10.1080/21663831.2014.912690 10.1021/acs.nanolett.0c04061 10.1002/adma.201906457 10.1016/j.matt.2021.05.005 10.1002/anie.202109212 10.1038/nature04421 10.1002/anie.202212653 10.1002/anie.202114450 10.1021/jacs.0c11384 10.1016/j.cej.2021.133251 10.1002/anie.202200366 10.1038/nature17981 10.1016/j.mattod.2015.11.026 10.1002/adma.202110128 10.1007/s12274-021-3802-4 10.1038/s41467-022-30912-5 10.1007/s12274-022-4371-x 10.1002/anie.202117347 10.1002/anie.202201655 10.1021/jacs.0c10739 10.1038/s41578-019-0121-4 10.1002/anie.202115735 10.1038/s41467-020-19277-9 10.1002/anie.202215136 10.1007/s12274-021-3760-x 10.1063/1.4932571 10.1038/s41467-019-10533-1 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. |
Copyright_xml | – notice: 2023 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matt.2023.03.034 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2590-2385 |
EndPage | 1751 |
ExternalDocumentID | 10_1016_j_matt_2023_03_034 S2590238523001650 |
GroupedDBID | AAEDW AAIAV AALRI AAXUO ADJPV AFTJW ALMA_UNASSIGNED_HOLDINGS EBS EJD FDB HX~ M3Z M41 OK1 0R~ AAMRU AAYWO AAYXX ABDGV ABJNI ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AITUG AKAPO AKBMS AKRWK AKYEP AMRAJ APXCP CITATION ROL |
ID | FETCH-LOGICAL-c300t-b1549d37f07991b754a86e49218356a15414d531254517ade68139937178a093 |
ISSN | 2590-2385 |
IngestDate | Thu Apr 24 23:07:30 EDT 2025 Tue Jul 01 03:52:39 EDT 2025 Thu Jul 20 20:06:57 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c300t-b1549d37f07991b754a86e49218356a15414d531254517ade68139937178a093 |
ORCID | 0000-0003-0074-7633 |
PageCount | 35 |
ParticipantIDs | crossref_primary_10_1016_j_matt_2023_03_034 crossref_citationtrail_10_1016_j_matt_2023_03_034 elsevier_sciencedirect_doi_10_1016_j_matt_2023_03_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-07 |
PublicationDateYYYYMMDD | 2023-06-07 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Matter |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhao, Bao, Yang, Niu, Xie, Zhang, Chen, Zhang, Dai (bib120) 2021; 11 Jiang, Bridges, Unocic, Pitike, Cooper, Zhang, Lin, Page (bib86) 2021; 143 Jin, Lyu, Zhao, Li, Lin, Xie, Liu, Kai, Qiu (bib130) 2020; 2 Perim, Lee, Liu, Toher, Gong, Li, Simmons, Levy, Vlassak, Schroers, Curtarolo (bib58) 2016; 7 Minamihara, Kusada, Wu, Yamamoto, Toriyama, Matsumura, Kumara, Ohara, Sakata, Kawaguchi (bib126) 2022; 144 Huang, He (bib45) 2018; 34 Nellaiappan, Katiyar, Kumar, Parui, Malviya, Pradeep, Singh, Sharma, Tiwary, Biswas (bib144) 2020; 10 Lv, Liu, Jia, Wang, Wu, Lu (bib117) 2016; 6 Dobbelstein, Gurevich, George, Ostendorf, Laplanche (bib98) 2019; 25 Liu, Wang, Fu, Liu, Wang, Gu, Wang, Li (bib72) 2021; 60 Mei, Feng, Zhang, Zhang, Qi, Hu (bib140) 2022; 12 Qiu, Fang, Gao, Wen, Lv, Li, Xie, Liu, Sun (bib141) 2019; 1 Xiong, Sun, Han, Xin, Zheng, Yan, Dong, Zhang, Wang, Li (bib65) 2021; 14 Hou, Ma, Shu, Bao, Zhang, Chen, Zhang, Dai (bib119) 2021; 12 Cui, Wang, Ye, Wu, Chen, Li, Lei, Wang, Li (bib70) 2022; 61 Lu, Chen, Singh (bib152) 2020; 3 Liu, Wang, Wang, Chen, Jiang, Yuan, Cheng, Ma, Wu (bib32) 2021; 16 Liu, Du, Yu, Zheng, Hu, Wu, Xia, Zhuang, Wang (bib69) 2023; 62 Bondesgaard, Broge, Mamakhel, Bremholm, Iversen (bib115) 2019; 29 Von Rohr, Winiarski, Tao, Klimczuk, Cava (bib7) 2016; 113 Yang, Li, Xu, Tan, Wang, Li (bib68) 2022; 61 Yao, Huang, Xie, Lacey, Jacob, Xie, Chen, Nie, Pu, Rehwoldt (bib100) 2018; 359 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib3) 2014; 61 Chen, Luo, Sun, Wu, Zhou, Liao, Tang, Fan, Huang, Quan (bib50) 2022; 34 Cantor, Kim, Warren (bib29) 2002 Mori, Hashimoto, Kamiuchi, Yoshida, Kobayashi, Yamashita (bib125) 2021; 12 Rao, Deng, Fan, Luo, Deng, Li, Shen, Tian (bib51) 2022; 13 Gludovatz, Hohenwarter, Thurston, Bei, Wu, George, Ritchie (bib12) 2016; 7 Zhao, Ren, Zhang, Liu, Cai, Zhang (bib41) 2019; 491 Tsai, Tsai, Yeh (bib34) 2013; 61 Song, Yang, Yang, He, Hu, Yuan, Dravid, Zachariah, Saidi, Liu, Shahbazian-Yassar (bib43) 2021; 21 Wang, Zheng, Li, Ye, Chen, Ye, Zhang, Li, Zhou, Fu (bib67) 2022; 61 Cantor, Chang, Knight, Vincent (bib5) 2004; 375-377 Wang, Cheng, Jin, He, Zhang, Ren, Li, Wang, Li (bib82) 2022; 61 Miracle, Senkov (bib25) 2017; 122 Letzel, Reich, dos Santos Rolo, Kanitz, Hoppius, Rack, Olbinado, Ostendorf, Gökce, Plech, Barcikowski (bib113) 2019; 35 Zuo, Yan, Zhao, Long, Shi, Cheng, Liu, Hu (bib142) 2022; 10 Chen, Li, Jiang, Yang, Zhu, Wang, Ou, Zhuang, Chen, Sun (bib81) 2022; 61 Rao, Springer, Ponge, Li (bib147) 2022; 21 Zheng, Li, Wang, Wang, Li (bib64) 2022; 15 Wang, Li, Li, Shao, Jia, Shen (bib132) 2022; 15 Han, Wu, Du, Pi, Yan, Hong (bib55) 2021; 58 Ge, He, Chen, Ju, Zhang, Chao, Wang, You, Lin, Wang (bib76) 2016; 138 Jin, Lyu, Zhao, Li, Chen, Lin, Xie, Liu, Kai, Qiu (bib129) 2021; 33 Sharma, Katiyar, Parui, Das, Kumar, Tiwary, Singh, Halder, Biswas (bib18) 2022; 15 Hummel (bib1) 2004 Zhang, Walsh, Yu, Zhang (bib74) 2021; 50 Wang, Jiang, Fan, Niu, Zhang, Huang, Gao, Li, Gao, Liu (bib61) 2021; 13 George, Curtin, Tasan (bib9) 2020; 188 Jia, Nomoto, Wang, Kong, Sun, Zhang, Liang, Lu, Kruzic (bib95) 2021; 31 Wu, Zheng, Cui, Jiang, Wang, Qu, Chen, Lin, Li, Han (bib57) 2019; 10 Li, Huang, Chen, Lai, Fu, Zhang, Zhang, Bai, Liu (bib143) 2023; 35 Jin, Lv, Jia, Liu, Li, Chen, Lin, Xie, Liu, Sun, Qiu (bib127) 2019; 15 Ye, Wang, Lu, Liu, Yang (bib4) 2016; 19 Wang, Chen, Wang, Wang, Mao (bib84) 2022; 61 Li, Han, Zhao, Qi, Zhang, Yu, Cai, Li, Lai, Huang, Wang (bib136) 2020; 11 Zhu, Zhang, Huang, Xiao, Zhao, Zhang, Song, Tang, Li, He (bib153) 2022; 9 Li, Pradeep, Deng, Raabe, Tasan (bib11) 2016; 534 Nakaya, Furukawa (bib39) 2022 Xin, Li, Qian, Zhu, Yuan, Jiang, Guo, Wang (bib114) 2020; 10 Jung, Han, Kim, Hidayati, Rhyee, Lee, Kang, Choi, Jeon, Suk, Park (bib8) 2022; 13 Xu, Zhang, Liu, Do-Thanh, Chen, Xu, Lin, Jiao, Wang, Wang (bib118) 2020; 11 Chen, Zhang, Gao, Huang, Qin, Wang, Zhao, Peng, Zhang, Liu (bib96) 2021; 33 Zhu, Zhu, Hao, Sun, Lu, Wang, Ma, Dong, Du (bib139) 2022; 431 Sheng, Luo, Alamgir, Bai, Ma (bib52) 2006; 439 Xie, Yao, Huang, Liu, Zhang, Li, Wang, Shahbazian-Yassar, Hu, Wang (bib19) 2019; 10 Sure, Sri Maha Vishnu, Kim, Schwandt (bib122) 2020; 59 Hu, Jin, Sha (bib94) 2022; 123 Hao, Zhuang, Cao, Gao, Wang, Lai, Lu, Ma, Dong, Liu (bib137) 2022; 13 Nakaya, Hayashida, Asakura, Takakusagi, Yasumura, Shimizu, Furukawa (bib53) 2022; 144 Song, Yang, Rabbani, Yang, He, Hu, Yuan, Ghildiyal, Dravid, Zachariah (bib42) 2020; 14 Cantor (bib30) 2014; 16 Yao, Huang, Li, Wang, Liu, Stein, Mao, Gao, Jiao, Dong (bib21) 2020; 117 Feng, Ning, Song, Shang, Zhang, Ding, Gao, Chu, Xia (bib60) 2021; 143 Feng, Chen, Pikhitsa, Jung, Yang, Choi (bib116) 2020; 3 Lin, Zhou, Tai, Li, Han, Yu (bib87) 2021; 4 Shi, Liu, Li, Li, Zhou, Yuan, Jiang, Fu, Yao (bib101) 2022; 2 Veronesi, Rosa, Colombini, Leonelli (bib106) 2015; 3 Chen, Zhan, Bueno, Shafei, Ashberry, Chatterjee, Xu, Tang, Skrabalak (bib123) 2021; 6 Marple, Badger, Hung, Gan, Kovnir, Sen (bib89) 2017; 56 Liu, Zhang, Okejiri, Yang, Zhou, Dai (bib108) 2019; 6 Li, Yang, Wang (bib66) 2022; 61 Li, Wang (bib63) 2022; 15 Barcikowski, Compagnini (bib112) 2013; 15 Körmann, Ma, Belyea, Lucas, Miller, Grabowski, Sluiter (bib146) 2015; 107 Wilson (bib27) 1970; 21 Cui, Zhang, Cao, Gu, Du, Li, Yang (bib40) 2022; 2 McCormick, Schaak (bib124) 2021; 143 Yu, Xia, Wang, Wu, Fu, Ma, Lin, Wang, Yue, Kang (bib17) 2022; 15 Zhang, Zhao, Jin, Xue, Velisa, Bei, Huang, Ko, Pagan, Neuefeind (bib48) 2017; 118 Sun, Wang, Chen, Fujisawa, Holder, Miller, Crespi, Terrones, Schaak (bib88) 2020; 12 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib6) 2004; 6 Zheng, Yang, Xu, Wang, Wu, Zhang, Dou, Sun, Wang, Li (bib78) 2022; 61 Löffler, Ludwig, Rossmeisl, Schuhmann (bib134) 2021; 60 Gao, Hao, Huang, Yuan, Han, Lei, Zhang, Shahbazian-Yassar, Lu (bib102) 2020; 11 Löffler, Savan, Meyer, Meischein, Strotkötter, Ludwig, Schuhmann (bib23) 2020; 59 George, Raabe, Ritchie (bib10) 2019; 4 Liu, Qin, Kang, Ma, Chen, Huang, Zhang, Liu, Lu, Li, Zhao (bib138) 2022; 435 Rickman, Chan, Harmer, Smeltzer, Marvel, Roy, Balasubramanian (bib150) 2019; 10 Zhang, Zhao, Ding, Chong, Jia, Ophus, Asta, Ritchie, Minor (bib49) 2020; 581 Jia, Yang, Sun, Zhao, Li, Luan, Lyu, Zhang, Kruzic, Kai (bib92) 2020; 32 Johny, Li, Kamp, Prymak, Liang, Krekeler, Ritter, Kienle, Rehbock, Barcikowski, Reichenberger (bib111) 2022; 15 Yang, Wang, Yin, Liu, Chen, Yan, Wang, Xu, Chu, Cui (bib54) 2021; 374 Zhang, Zhu, Chen, Sun, Wang (bib80) 2023; 62 Chao, Luo, Chen, Jiang, Ge, Lin, Wu, Wang, Hu, Zhuang (bib75) 2017; 56 Tao, Sun, Zhou, Luo, Lv, Li, Zhang, Gu, Huang, Guo (bib90) 2022; 144 Gedanken (bib109) 2004; 11 Wu, Han, Cai, Yin, Cui, Zheng, Li, Chen, Wang, Hong (bib56) 2022; 13 Zhu, Xiong, Wang (bib62) 2022; 15 Rao, Tung, Xie, Wei, Zhang, Ferrari, Klaver, Körmann, Sukumar, Kwiatkowski da Silva (bib149) 2022; 378 Wei, Liao, Wu, Yang, He, Biesold-McGee, Liang, Yen, Tang, Yeh (bib15) 2020; 32 Li, Ye, Yang, Wang, Yang, Pan, Tang, Wang, Li (bib73) 2022; 61 Yang, Zhou, Zhu, Yuan, Chang, Kim, Pham, Rana, Tian, Yao (bib93) 2021; 592 Xu, Zhang, Li, Mao, Wang, Song, He (bib99) 2019; 28 Marques, Balcerzak, Winkelmann, Zepon, Felderhoff (bib16) 2021; 14 Osetsky, Béland, Barashev, Zhang (bib35) 2018; 22 Ding, Zhang, Chen, Fu, Chen, Chen, Gu, Wei, Bei, Gao (bib33) 2019; 574 Rajeeva, Kunal, Kollipara, Acharya, Joe, Ide, Jarvis, Liu, Bahadur, Humphrey, Zheng (bib104) 2019; 1 Huang, Zhang, Wu, Zhang, Peng, Cao, Zhang, Li, Huang (bib37) 2020; 8 Mao, Chen, Chen (bib148) 2017; 38 Zhang, Tao, An, Zhang, Meng, Zheng, Wang, Li, Du, Zhang (bib71) 2022; 61 Hou, Dai, Deng, Zhao, Jing, Wang, Yu, Gao, Tian, Dai (bib83) 2022; 61 Ding, Yu, Asta, Ritchie (bib151) 2018; 115 Chen, Aitken, Pattamatta, Wu, Yu, Srolovitz, Liaw, Zhang (bib31) 2021; 12 Zhan, Xu, Bu, Zhu, Feng, Yang, Zhang, Yang, Huang, Shao, Huang (bib85) 2021; 12 Jia, Yang, Wang, Kong, Yao, Wang, Sun, Shen, Kruzic (bib131) 2022; 4 He, Ding, Ye, Yang (bib2) 2017; 69 Santodonato, Zhang, Feygenson, Parish, Gao, Weber, Neuefeind, Tang, Liaw (bib59) 2015; 6 Zhuang, Xia, Huang, Zhu, Li, Ye, Xia, Yu, Lang, Zhu (bib77) 2023; 62 Pei (bib47) 2018; 737 Qiu, Fang, Wen, Liu, Xie, Liu, Sun (bib128) 2019; 7 Nong, Gu, Liu, Wang, Zhu (bib44) 2022; 151 Batchelor, Pedersen, Winther, Castelli, Jacobsen, Rossmeisl (bib135) 2019; 3 Khorshidi, Violet, Hashemi, Peterson (bib38) 2018; 1 Tsai, Yeh (bib36) 2014; 2 Yu, Cantwell, Gao, Yin, Zhang, Zhou, Rohrer, Widom, Luo, Harmer (bib46) 2017; 358 Qiao, Saray, Wang, Xu, Chen, Huang, Chen, Zhong, Dong, Hong (bib103) 2021; 15 Glasscott, Pendergast, Goines, Bishop, Hoang, Renault, Dick (bib105) 2019; 10 Li, Lai, Li, Wang (bib28) 2021; 31 Okejiri, Yang, Chen, Do-Thanh, Wang, Yang, Dai (bib110) 2022; 15 Ji, Xu, Xu, Wang, Ge, Hu, Sun, Duan (bib79) 2022; 61 Fultz (bib26) 2010; 55 Yao, Liu, Xie, Huang, Li, Morris, Finfrock, Zhou, Jiao, Gao (bib20) 2020; 6 Zaid, Tanaka, Liao, Goorsky, Kodambaka, Kindlund (bib97) 2021; 21 Veronesi, Colombini, Rosa, Leonelli, Rosi (bib107) 2016; 162 Löffler, Meyer, Savan, Wilde, Garzón Manjón, Chen, Ventosa, Scheu, Ludwig, Schuhmann (bib22) 2018; 8 Zhang, Wang, Zou, Lin, Ma, Yin, Li, Xu, Jia, Li (bib24) 2022; 610 Chaudhary, Chaudhary, Banerjee, Ramanujan (bib14) 2021; 49 Wang, Huang, Chen, Wang, Yan, Yuan, Song, Zhang, Sun (bib133) 2022; 5 Zhu, Jiang, Yang, Wang, Fang, Wang, Xie, Qiu, Luo (bib91) 2022; 34 Sun, Zhang, Zhang, Li, Gu, Guo (bib121) 2023; 6 Zou, Ma, Spolenak (bib13) 2015; 6 Pedersen, Batchelor, Bagger, Rossmeisl (bib145) 2020; 10 Ye (10.1016/j.matt.2023.03.034_bib4) 2016; 19 Cui (10.1016/j.matt.2023.03.034_bib70) 2022; 61 Zhang (10.1016/j.matt.2023.03.034_bib3) 2014; 61 Zheng (10.1016/j.matt.2023.03.034_bib64) 2022; 15 Cantor (10.1016/j.matt.2023.03.034_bib5) 2004; 375-377 Zhu (10.1016/j.matt.2023.03.034_bib153) 2022; 9 Khorshidi (10.1016/j.matt.2023.03.034_bib38) 2018; 1 Barcikowski (10.1016/j.matt.2023.03.034_bib112) 2013; 15 Rajeeva (10.1016/j.matt.2023.03.034_bib104) 2019; 1 Jin (10.1016/j.matt.2023.03.034_bib129) 2021; 33 Zhuang (10.1016/j.matt.2023.03.034_bib77) 2023; 62 Veronesi (10.1016/j.matt.2023.03.034_bib107) 2016; 162 Huang (10.1016/j.matt.2023.03.034_bib45) 2018; 34 Wu (10.1016/j.matt.2023.03.034_bib56) 2022; 13 Shi (10.1016/j.matt.2023.03.034_bib101) 2022; 2 Minamihara (10.1016/j.matt.2023.03.034_bib126) 2022; 144 Löffler (10.1016/j.matt.2023.03.034_bib23) 2020; 59 Miracle (10.1016/j.matt.2023.03.034_bib25) 2017; 122 Santodonato (10.1016/j.matt.2023.03.034_bib59) 2015; 6 Ji (10.1016/j.matt.2023.03.034_bib79) 2022; 61 Feng (10.1016/j.matt.2023.03.034_bib116) 2020; 3 Marques (10.1016/j.matt.2023.03.034_bib16) 2021; 14 Zhang (10.1016/j.matt.2023.03.034_bib49) 2020; 581 Liu (10.1016/j.matt.2023.03.034_bib72) 2021; 60 Wei (10.1016/j.matt.2023.03.034_bib15) 2020; 32 Batchelor (10.1016/j.matt.2023.03.034_bib135) 2019; 3 Perim (10.1016/j.matt.2023.03.034_bib58) 2016; 7 Li (10.1016/j.matt.2023.03.034_bib66) 2022; 61 Zhan (10.1016/j.matt.2023.03.034_bib85) 2021; 12 Xu (10.1016/j.matt.2023.03.034_bib99) 2019; 28 Song (10.1016/j.matt.2023.03.034_bib42) 2020; 14 Mei (10.1016/j.matt.2023.03.034_bib140) 2022; 12 Qiu (10.1016/j.matt.2023.03.034_bib128) 2019; 7 Jia (10.1016/j.matt.2023.03.034_bib131) 2022; 4 Okejiri (10.1016/j.matt.2023.03.034_bib110) 2022; 15 Li (10.1016/j.matt.2023.03.034_bib136) 2020; 11 Wang (10.1016/j.matt.2023.03.034_bib132) 2022; 15 Li (10.1016/j.matt.2023.03.034_bib63) 2022; 15 Glasscott (10.1016/j.matt.2023.03.034_bib105) 2019; 10 Lu (10.1016/j.matt.2023.03.034_bib152) 2020; 3 Wilson (10.1016/j.matt.2023.03.034_bib27) 1970; 21 Yeh (10.1016/j.matt.2023.03.034_bib6) 2004; 6 Pedersen (10.1016/j.matt.2023.03.034_bib145) 2020; 10 Cantor (10.1016/j.matt.2023.03.034_bib29) 2002 Li (10.1016/j.matt.2023.03.034_bib143) 2023; 35 Nakaya (10.1016/j.matt.2023.03.034_bib53) 2022; 144 Lin (10.1016/j.matt.2023.03.034_bib87) 2021; 4 Zuo (10.1016/j.matt.2023.03.034_bib142) 2022; 10 Nakaya (10.1016/j.matt.2023.03.034_bib39) 2022 Zhu (10.1016/j.matt.2023.03.034_bib91) 2022; 34 Hu (10.1016/j.matt.2023.03.034_bib94) 2022; 123 Sharma (10.1016/j.matt.2023.03.034_bib18) 2022; 15 Sheng (10.1016/j.matt.2023.03.034_bib52) 2006; 439 Wang (10.1016/j.matt.2023.03.034_bib133) 2022; 5 Nellaiappan (10.1016/j.matt.2023.03.034_bib144) 2020; 10 Xu (10.1016/j.matt.2023.03.034_bib118) 2020; 11 McCormick (10.1016/j.matt.2023.03.034_bib124) 2021; 143 Dobbelstein (10.1016/j.matt.2023.03.034_bib98) 2019; 25 Jin (10.1016/j.matt.2023.03.034_bib127) 2019; 15 George (10.1016/j.matt.2023.03.034_bib10) 2019; 4 Li (10.1016/j.matt.2023.03.034_bib73) 2022; 61 Zhang (10.1016/j.matt.2023.03.034_bib80) 2023; 62 Pei (10.1016/j.matt.2023.03.034_bib47) 2018; 737 Wu (10.1016/j.matt.2023.03.034_bib57) 2019; 10 Li (10.1016/j.matt.2023.03.034_bib28) 2021; 31 Hou (10.1016/j.matt.2023.03.034_bib119) 2021; 12 Fultz (10.1016/j.matt.2023.03.034_bib26) 2010; 55 Letzel (10.1016/j.matt.2023.03.034_bib113) 2019; 35 Qiao (10.1016/j.matt.2023.03.034_bib103) 2021; 15 Tsai (10.1016/j.matt.2023.03.034_bib34) 2013; 61 Xiong (10.1016/j.matt.2023.03.034_bib65) 2021; 14 Mori (10.1016/j.matt.2023.03.034_bib125) 2021; 12 Jia (10.1016/j.matt.2023.03.034_bib95) 2021; 31 Liu (10.1016/j.matt.2023.03.034_bib69) 2023; 62 George (10.1016/j.matt.2023.03.034_bib9) 2020; 188 Zou (10.1016/j.matt.2023.03.034_bib13) 2015; 6 Li (10.1016/j.matt.2023.03.034_bib11) 2016; 534 Rao (10.1016/j.matt.2023.03.034_bib149) 2022; 378 Zaid (10.1016/j.matt.2023.03.034_bib97) 2021; 21 Yu (10.1016/j.matt.2023.03.034_bib46) 2017; 358 Sure (10.1016/j.matt.2023.03.034_bib122) 2020; 59 Rao (10.1016/j.matt.2023.03.034_bib147) 2022; 21 Wang (10.1016/j.matt.2023.03.034_bib84) 2022; 61 Körmann (10.1016/j.matt.2023.03.034_bib146) 2015; 107 Yu (10.1016/j.matt.2023.03.034_bib17) 2022; 15 Wang (10.1016/j.matt.2023.03.034_bib61) 2021; 13 Bondesgaard (10.1016/j.matt.2023.03.034_bib115) 2019; 29 Chaudhary (10.1016/j.matt.2023.03.034_bib14) 2021; 49 Chen (10.1016/j.matt.2023.03.034_bib81) 2022; 61 Mao (10.1016/j.matt.2023.03.034_bib148) 2017; 38 Yang (10.1016/j.matt.2023.03.034_bib54) 2021; 374 Yang (10.1016/j.matt.2023.03.034_bib93) 2021; 592 Gludovatz (10.1016/j.matt.2023.03.034_bib12) 2016; 7 Zhang (10.1016/j.matt.2023.03.034_bib74) 2021; 50 Von Rohr (10.1016/j.matt.2023.03.034_bib7) 2016; 113 Cantor (10.1016/j.matt.2023.03.034_bib30) 2014; 16 Zhang (10.1016/j.matt.2023.03.034_bib48) 2017; 118 Sun (10.1016/j.matt.2023.03.034_bib121) 2023; 6 Feng (10.1016/j.matt.2023.03.034_bib60) 2021; 143 Zhang (10.1016/j.matt.2023.03.034_bib71) 2022; 61 Jin (10.1016/j.matt.2023.03.034_bib130) 2020; 2 Yao (10.1016/j.matt.2023.03.034_bib100) 2018; 359 Jiang (10.1016/j.matt.2023.03.034_bib86) 2021; 143 Xin (10.1016/j.matt.2023.03.034_bib114) 2020; 10 Hummel (10.1016/j.matt.2023.03.034_bib1) 2004 Yao (10.1016/j.matt.2023.03.034_bib21) 2020; 117 Gao (10.1016/j.matt.2023.03.034_bib102) 2020; 11 Rickman (10.1016/j.matt.2023.03.034_bib150) 2019; 10 He (10.1016/j.matt.2023.03.034_bib2) 2017; 69 Huang (10.1016/j.matt.2023.03.034_bib37) 2020; 8 Marple (10.1016/j.matt.2023.03.034_bib89) 2017; 56 Chen (10.1016/j.matt.2023.03.034_bib123) 2021; 6 Johny (10.1016/j.matt.2023.03.034_bib111) 2022; 15 Nong (10.1016/j.matt.2023.03.034_bib44) 2022; 151 Chen (10.1016/j.matt.2023.03.034_bib50) 2022; 34 Hou (10.1016/j.matt.2023.03.034_bib83) 2022; 61 Qiu (10.1016/j.matt.2023.03.034_bib141) 2019; 1 Wang (10.1016/j.matt.2023.03.034_bib67) 2022; 61 Gedanken (10.1016/j.matt.2023.03.034_bib109) 2004; 11 Yang (10.1016/j.matt.2023.03.034_bib68) 2022; 61 Tsai (10.1016/j.matt.2023.03.034_bib36) 2014; 2 Veronesi (10.1016/j.matt.2023.03.034_bib106) 2015; 3 Xie (10.1016/j.matt.2023.03.034_bib19) 2019; 10 Zhang (10.1016/j.matt.2023.03.034_bib24) 2022; 610 Zhao (10.1016/j.matt.2023.03.034_bib120) 2021; 11 Ding (10.1016/j.matt.2023.03.034_bib151) 2018; 115 Zheng (10.1016/j.matt.2023.03.034_bib78) 2022; 61 Rao (10.1016/j.matt.2023.03.034_bib51) 2022; 13 Zhu (10.1016/j.matt.2023.03.034_bib139) 2022; 431 Ding (10.1016/j.matt.2023.03.034_bib33) 2019; 574 Ge (10.1016/j.matt.2023.03.034_bib76) 2016; 138 Löffler (10.1016/j.matt.2023.03.034_bib22) 2018; 8 Yao (10.1016/j.matt.2023.03.034_bib20) 2020; 6 Chen (10.1016/j.matt.2023.03.034_bib96) 2021; 33 Cui (10.1016/j.matt.2023.03.034_bib40) 2022; 2 Wang (10.1016/j.matt.2023.03.034_bib82) 2022; 61 Chao (10.1016/j.matt.2023.03.034_bib75) 2017; 56 Liu (10.1016/j.matt.2023.03.034_bib108) 2019; 6 Liu (10.1016/j.matt.2023.03.034_bib138) 2022; 435 Sun (10.1016/j.matt.2023.03.034_bib88) 2020; 12 Liu (10.1016/j.matt.2023.03.034_bib32) 2021; 16 Jung (10.1016/j.matt.2023.03.034_bib8) 2022; 13 Chen (10.1016/j.matt.2023.03.034_bib31) 2021; 12 Han (10.1016/j.matt.2023.03.034_bib55) 2021; 58 Osetsky (10.1016/j.matt.2023.03.034_bib35) 2018; 22 Zhu (10.1016/j.matt.2023.03.034_bib62) 2022; 15 Hao (10.1016/j.matt.2023.03.034_bib137) 2022; 13 Song (10.1016/j.matt.2023.03.034_bib43) 2021; 21 Tao (10.1016/j.matt.2023.03.034_bib90) 2022; 144 Jia (10.1016/j.matt.2023.03.034_bib92) 2020; 32 Zhao (10.1016/j.matt.2023.03.034_bib41) 2019; 491 Lv (10.1016/j.matt.2023.03.034_bib117) 2016; 6 Löffler (10.1016/j.matt.2023.03.034_bib134) 2021; 60 |
References_xml | – volume: 61 start-page: e202209849 year: 2022 ident: bib79 article-title: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst publication-title: Angew. Chem. Int. Ed. – volume: 62 start-page: e202215136 year: 2023 ident: bib80 article-title: Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction publication-title: Angew. Chem. Int. Ed. – volume: 107 start-page: 142404 year: 2015 ident: bib146 article-title: Treasure maps” for magnetic high-entropy-alloys from theory and experiment publication-title: Appl. Phys. Lett. – volume: 378 start-page: 78 year: 2022 end-page: 85 ident: bib149 article-title: Machine learning-enabled high-entropy alloy discovery publication-title: Science – volume: 61 start-page: e202114450 year: 2022 ident: bib81 article-title: MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 2169 year: 2020 end-page: 2176 ident: bib145 article-title: High-entropy alloys as catalysts for the CO2 and CO reduction reactions publication-title: ACS Catal. – volume: 21 start-page: 247 year: 1970 end-page: 265 ident: bib27 article-title: The use of the concept of entropy in system modelling publication-title: Oper. Res. Q. – volume: 123 start-page: 100854 year: 2022 ident: bib94 article-title: Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis publication-title: Prog. Mater. Sci. – volume: 1 start-page: 526 year: 2019 end-page: 533 ident: bib141 article-title: Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction publication-title: ACS Mater. Lett. – start-page: 74 year: 2004 end-page: 101 ident: bib1 article-title: Alloys and compounds publication-title: Understanding Materials Science – volume: 113 start-page: E7144 year: 2016 end-page: E7150 ident: bib7 article-title: Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 4953 year: 2021 ident: bib31 article-title: Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering publication-title: Nat. Commun. – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: bib3 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 61 start-page: 4887 year: 2013 end-page: 4897 ident: bib34 article-title: Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys publication-title: Acta Mater. – volume: 32 start-page: 2000385 year: 2020 ident: bib92 article-title: A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution publication-title: Adv. Mater. – volume: 50 start-page: 569 year: 2021 end-page: 588 ident: bib74 article-title: Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities publication-title: Chem. Soc. Rev. – volume: 8 start-page: 11938 year: 2020 end-page: 11947 ident: bib37 article-title: Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst publication-title: J. Mater. Chem. – volume: 61 start-page: e202209749 year: 2022 ident: bib73 article-title: A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 231 year: 2021 end-page: 252 ident: bib14 article-title: Accelerated and conventional development of magnetic high entropy alloys publication-title: Mater. Today – volume: 21 start-page: 1742 year: 2021 end-page: 1748 ident: bib43 article-title: Revealing high-temperature reduction dynamics of high-entropy alloy nanoparticles via in situ transmission electron microscopy publication-title: Nano Lett. – volume: 38 start-page: 353 year: 2017 end-page: 368 ident: bib148 article-title: TCHEA1: a thermodynamic database not limited for “high entropy” alloys publication-title: J. Phase Equilibria Diffus. – volume: 61 start-page: e202210789 year: 2022 ident: bib84 article-title: P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 101326 year: 2022 ident: bib147 article-title: Combinatorial development of multicomponent Invar alloys via rapid alloy prototyping publication-title: Materialia – volume: 10 start-page: 4011 year: 2019 ident: bib19 article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts publication-title: Nat. Commun. – volume: 15 start-page: 1904180 year: 2019 ident: bib127 article-title: Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments publication-title: Small – volume: 61 start-page: e202200366 year: 2022 ident: bib68 article-title: Regulating the tip effect on single-atom and cluster catalysts: forming reversible oxygen species with high efficiency in chlorine evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 359 start-page: 1489 year: 2018 end-page: 1494 ident: bib100 article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles publication-title: Science – volume: 1 start-page: 263 year: 2018 end-page: 268 ident: bib38 article-title: How strain can break the scaling relations of catalysis publication-title: Nat. Catal. – volume: 15 start-page: 4799 year: 2022 end-page: 4806 ident: bib18 article-title: Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER) publication-title: Nano Res. – volume: 61 start-page: e202115219 year: 2022 ident: bib70 article-title: Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 14928 year: 2021 end-page: 14937 ident: bib103 article-title: Scalable synthesis of high entropy alloy nanoparticles by microwave heating publication-title: ACS Nano – start-page: 27 year: 2002 end-page: 32 ident: bib29 article-title: Novel Multicomponent Amorphous Alloys – volume: 5 start-page: 17 year: 2022 ident: bib133 article-title: Recent progress in high entropy alloys for electrocatalysts publication-title: Electrochem. Energy Rev. – volume: 9 start-page: nwac190 year: 2022 ident: bib153 article-title: An all-round AI-Chemist with a scientific mind publication-title: Natl. Sci. Rev. – volume: 15 start-page: 4807 year: 2022 end-page: 4819 ident: bib111 article-title: Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts publication-title: Nano Res. – volume: 60 start-page: 22522 year: 2021 end-page: 22528 ident: bib72 article-title: Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 1682 year: 2021 end-page: 1697 ident: bib61 article-title: Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices publication-title: Viruses – volume: 7 start-page: 6499 year: 2019 end-page: 6506 ident: bib128 article-title: Nanoporous high-entropy alloys for highly stable and efficient catalysts publication-title: J. Mater. Chem. – volume: 13 start-page: 2662 year: 2022 ident: bib137 article-title: Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts publication-title: Nat. Commun. – volume: 2 start-page: 107 year: 2014 end-page: 123 ident: bib36 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. – volume: 11 start-page: 2016 year: 2020 ident: bib102 article-title: Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis publication-title: Nat. Commun. – volume: 431 start-page: 133251 year: 2022 ident: bib139 article-title: High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution publication-title: Chem. Eng. J. – volume: 62 start-page: e202212653 year: 2023 ident: bib69 article-title: Tuning mass transport in electrocatalysis down to sub-5nm through nanoscale grade separation publication-title: Angew. Chem. Int. Ed. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib25 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 35 start-page: 2209242 year: 2023 ident: bib143 article-title: High-entropy alloy aerogels: a new platform for carbon dioxide reduction publication-title: Adv. Mater. – volume: 439 start-page: 419 year: 2006 end-page: 425 ident: bib52 article-title: Atomic packing and short-to-medium-range order in metallic glasses publication-title: Nature – year: 2022 ident: bib39 article-title: Catalysis of alloys: classification, principles, and design for a variety of materials and reactions publication-title: Chem. Rev. – volume: 737 start-page: 132 year: 2018 end-page: 150 ident: bib47 article-title: An overview of modeling the stacking faults in lightweight and high-entropy alloys: theory and application publication-title: Mater. Sci. Eng. – volume: 8 start-page: 1802269 year: 2018 ident: bib22 article-title: Discovery of a multinary noble metal–free oxygen reduction catalyst publication-title: Adv. Energy Mater. – volume: 2 start-page: 1698 year: 2020 end-page: 1706 ident: bib130 article-title: Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn–air batteries publication-title: ACS Mater. Lett. – volume: 19 start-page: 349 year: 2016 end-page: 362 ident: bib4 article-title: High-entropy alloy: challenges and prospects publication-title: Mater. Today – volume: 15 start-page: 3022 year: 2013 end-page: 3026 ident: bib112 article-title: Advanced nanoparticle generation and excitation by lasers in liquids publication-title: Phys. Chem. Chem. Phys. – volume: 61 start-page: e202205946 year: 2022 ident: bib78 article-title: Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 491 start-page: 165574 year: 2019 ident: bib41 article-title: CoCrxCuFeMnNi high-entropy alloy powders with superior soft magnetic properties publication-title: J. Magn. Magn Mater. – volume: 6 start-page: 5964 year: 2015 ident: bib59 article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy publication-title: Nat. Commun. – volume: 34 start-page: 417 year: 2018 end-page: 420 ident: bib45 article-title: Alloy design by dislocation engineering publication-title: J. Mater. Sci. Technol. – volume: 7 start-page: 12315 year: 2016 ident: bib58 article-title: Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases publication-title: Nat. Commun. – volume: 15 start-page: 8751 year: 2022 end-page: 8759 ident: bib132 article-title: Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction publication-title: Nano Res. – volume: 16 start-page: 100139 year: 2021 ident: bib32 article-title: Chemical short-range order in Fe50Mn30Co10Cr10 high-entropy alloy publication-title: Mater. Today Nano – volume: 59 start-page: 11830 year: 2020 end-page: 11835 ident: bib122 article-title: Facile electrochemical synthesis of nanoscale (TiNbTaZrHf) C high-entropy carbide powder publication-title: Angew. Chem. Int. Ed. – volume: 118 start-page: 205501 year: 2017 ident: bib48 article-title: Local structure and short-range order in a NiCoCr solid solution alloy publication-title: Phys. Rev. Lett. – volume: 6 start-page: 34213 year: 2016 ident: bib117 article-title: Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions publication-title: Sci. Rep. – volume: 31 start-page: 2101586 year: 2021 ident: bib95 article-title: A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions publication-title: Adv. Funct. Mater. – volume: 117 start-page: 6316 year: 2020 end-page: 6322 ident: bib21 article-title: High-throughput, combinatorial synthesis of multimetallic nanoclusters publication-title: Proc. Natl. Acad. Sci. USA – volume: 151 start-page: 107724 year: 2022 ident: bib44 article-title: Formation and migration behavior of vacancy in multi-component alloys publication-title: Intermetallics – volume: 62 start-page: e202212335 year: 2023 ident: bib77 article-title: Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification publication-title: Angew. Chem. Int. Ed. – volume: 375-377 start-page: 213 year: 2004 end-page: 218 ident: bib5 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng., A – volume: 1 start-page: 1606 year: 2019 end-page: 1617 ident: bib104 article-title: Accumulation-driven unified spatiotemporal synthesis and structuring of immiscible metallic nanoalloys publication-title: Matter – volume: 534 start-page: 227 year: 2016 end-page: 230 ident: bib11 article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off publication-title: Nature – volume: 115 start-page: 8919 year: 2018 end-page: 8924 ident: bib151 article-title: Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 15131 year: 2020 end-page: 15143 ident: bib42 article-title: In situ oxidation studies of high-entropy alloy nanoparticles publication-title: ACS Nano – volume: 61 start-page: e202201655 year: 2022 ident: bib83 article-title: Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst publication-title: Angew. Chem. Int. Ed. – volume: 574 start-page: 223 year: 2019 end-page: 227 ident: bib33 article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys publication-title: Nature – volume: 15 start-page: 6888 year: 2022 end-page: 6923 ident: bib63 article-title: Understanding the structure-performance relationship of active sites at atomic scale publication-title: Nano Res. – volume: 12 start-page: 3884 year: 2021 ident: bib125 article-title: Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation publication-title: Nat. Commun. – volume: 55 start-page: 247 year: 2010 end-page: 352 ident: bib26 article-title: Vibrational thermodynamics of materials publication-title: Prog. Mater. Sci. – volume: 15 start-page: 5792 year: 2022 end-page: 5815 ident: bib62 article-title: Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction publication-title: Nano Res. – volume: 10 start-page: 2650 year: 2019 ident: bib105 article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis publication-title: Nat. Commun. – volume: 14 start-page: 5191 year: 2021 end-page: 5227 ident: bib16 article-title: Review and outlook on high-entropy alloys for hydrogen storage publication-title: Energy Environ. Sci. – volume: 4 start-page: 1389 year: 2022 end-page: 1396 ident: bib131 article-title: An ultrafast and stable high-entropy metallic glass electrode for alkaline hydrogen evolution reaction publication-title: ACS Mater. Lett. – volume: 374 start-page: 459 year: 2021 end-page: 464 ident: bib54 article-title: Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells publication-title: Science – volume: 15 start-page: 7806 year: 2022 end-page: 7839 ident: bib64 article-title: Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis publication-title: Nano Res. – volume: 16 start-page: 4749 year: 2014 end-page: 4768 ident: bib30 article-title: Multicomponent and high entropy alloys publication-title: Entropy – volume: 22 start-page: 65 year: 2018 end-page: 74 ident: bib35 article-title: On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 6 start-page: 1900015 year: 2019 ident: bib108 article-title: Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions publication-title: Adv. Mater. Interfaces – volume: 10 start-page: 14857 year: 2022 end-page: 14865 ident: bib142 article-title: A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation publication-title: J. Mater. Chem. – volume: 6 year: 2020 ident: bib20 article-title: Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts publication-title: Sci. Adv. – volume: 59 start-page: 5844 year: 2020 end-page: 5850 ident: bib23 article-title: Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves publication-title: Angew. Chem. Int. Ed. – volume: 35 start-page: 3038 year: 2019 end-page: 3047 ident: bib113 article-title: Time and mechanism of nanoparticle functionalization by macromolecular ligands during pulsed laser ablation in liquids publication-title: Langmuir – volume: 6 start-page: 193 year: 2023 end-page: 205 ident: bib121 article-title: A general approach to high-entropy metallic nanowire electrocatalysts publication-title: Matter – volume: 3 start-page: 182 year: 2015 end-page: 197 ident: bib106 article-title: Microwave-assisted preparation of high entropy alloys publication-title: Technologies – volume: 144 start-page: 11525 year: 2022 end-page: 11529 ident: bib126 article-title: Continuous-flow reactor synthesis for homogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 4792 year: 2022 end-page: 4798 ident: bib110 article-title: Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids publication-title: Nano Res. – volume: 11 start-page: 5437 year: 2020 ident: bib136 article-title: Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis publication-title: Nat. Commun. – volume: 11 start-page: 3908 year: 2020 ident: bib118 article-title: Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports publication-title: Nat. Commun. – volume: 143 start-page: 17117 year: 2021 end-page: 17127 ident: bib60 article-title: Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 577 year: 2021 end-page: 582 ident: bib97 article-title: Self-organized growth of 111-oriented (VNbTaMoW) N nanorods on MgO (001) publication-title: Nano Lett. – volume: 61 start-page: e202213318 year: 2022 ident: bib66 article-title: Long-range interactions in diatomic catalysts boosting electrocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 33 start-page: 2101845 year: 2021 ident: bib96 article-title: Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution publication-title: Adv. Mater. – volume: 34 start-page: 2206276 year: 2022 ident: bib50 article-title: High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis publication-title: Adv. Mater. – volume: 69 start-page: 2092 year: 2017 end-page: 2098 ident: bib2 article-title: Design of high-entropy alloy: a perspective from nonideal mixing publication-title: JOM – volume: 33 start-page: 1771 year: 2021 end-page: 1780 ident: bib129 article-title: Top–down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis publication-title: Chem. Mater. – volume: 13 start-page: 4200 year: 2022 ident: bib56 article-title: In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity publication-title: Nat. Commun. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib6 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 13 start-page: 3373 year: 2022 ident: bib8 article-title: High critical current density and high-tolerance superconductivity in high-entropy alloy thin films publication-title: Nat. Commun. – volume: 29 start-page: 1905933 year: 2019 ident: bib115 article-title: General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts publication-title: Adv. Funct. Mater. – volume: 3 start-page: 834 year: 2019 end-page: 845 ident: bib135 article-title: High-entropy alloys as a discovery platform for electrocatalysis publication-title: Joule – volume: 25 start-page: 252 year: 2019 end-page: 262 ident: bib98 article-title: Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends publication-title: Addit. Manuf. – volume: 143 start-page: 4193 year: 2021 end-page: 4204 ident: bib86 article-title: Probing the local site disorder and distortion in pyrochlore high-entropy oxides publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 47 year: 2004 end-page: 55 ident: bib109 article-title: Using sonochemistry for the fabrication of nanomaterials publication-title: Ultrason. Sonochem. – volume: 12 start-page: 5917 year: 2021 ident: bib119 article-title: Self-regeneration of supported transition metals by a high entropy-driven principle publication-title: Nat. Commun. – volume: 10 start-page: 4855 year: 2019 ident: bib57 article-title: A general synthesis approach for amorphous noble metal nanosheets publication-title: Nat. Commun. – volume: 31 start-page: 2106715 year: 2021 ident: bib28 article-title: Multi-sites electrocatalysis in high-entropy alloys publication-title: Adv. Funct. Mater. – volume: 12 start-page: 284 year: 2020 end-page: 293 ident: bib88 article-title: Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures publication-title: Nat. Chem. – volume: 61 start-page: e202117347 year: 2022 ident: bib71 article-title: Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 7868 year: 2022 end-page: 7876 ident: bib17 article-title: High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction publication-title: Nano Res. – volume: 56 start-page: 9777 year: 2017 end-page: 9781 ident: bib89 article-title: Structure of amorphous selenium by 2D 77Se NMR spectroscopy: an end to the dilemma of chain versus ring publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 10808 year: 2022 end-page: 10817 ident: bib140 article-title: High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction publication-title: ACS Catal. – volume: 435 start-page: 134898 year: 2022 ident: bib138 article-title: A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting publication-title: Chem. Eng. J. – volume: 58 start-page: 223 year: 2021 end-page: 237 ident: bib55 article-title: Metal and metal oxide amorphous nanomaterials towards electrochemical applications publication-title: Chem. Commun. – volume: 10 start-page: 11280 year: 2020 end-page: 11306 ident: bib114 article-title: High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities publication-title: ACS Catal. – volume: 60 start-page: 26894 year: 2021 end-page: 26903 ident: bib134 article-title: What makes high-entropy alloys exceptional electrocatalysts? publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 231 year: 2021 end-page: 237 ident: bib123 article-title: Synthesis of monodisperse high entropy alloy nanocatalysts from core@ shell nanoparticles publication-title: Nanoscale Horiz. – volume: 581 start-page: 283 year: 2020 end-page: 287 ident: bib49 article-title: Short-range order and its impact on the CrCoNi medium-entropy alloy publication-title: Nature – volume: 56 start-page: 16047 year: 2017 end-page: 16051 ident: bib75 article-title: Atomically dispersed copper–platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 592 start-page: 60 year: 2021 end-page: 64 ident: bib93 article-title: Determining the three-dimensional atomic structure of an amorphous solid publication-title: Nature – volume: 3 start-page: 1318 year: 2020 end-page: 1333 ident: bib152 article-title: Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects publication-title: Matter – volume: 2 start-page: 186 year: 2022 end-page: 196 ident: bib101 article-title: High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis publication-title: SusMat – volume: 28 start-page: 766 year: 2019 end-page: 771 ident: bib99 article-title: Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting publication-title: Addit. Manuf. – volume: 2 start-page: 65 year: 2022 end-page: 75 ident: bib40 article-title: A perspective on high-entropy two-dimensional materials publication-title: SusMat – volume: 10 start-page: 2618 year: 2019 ident: bib150 article-title: Materials informatics for the screening of multi-principal elements and high-entropy alloys publication-title: Nat. Commun. – volume: 6 start-page: 7748 year: 2015 ident: bib13 article-title: Ultrastrong ductile and stable high-entropy alloys at small scales publication-title: Nat. Commun. – volume: 143 start-page: 1017 year: 2021 end-page: 1023 ident: bib124 article-title: Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles publication-title: J. Am. Chem. Soc. – volume: 358 start-page: 97 year: 2017 end-page: 101 ident: bib46 article-title: Segregation-induced ordered superstructures at general grain boundaries in a nickel-bismuth alloy publication-title: Science – volume: 32 start-page: 1906457 year: 2020 ident: bib15 article-title: Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance publication-title: Adv. Mater. – volume: 138 start-page: 13850 year: 2016 end-page: 13853 ident: bib76 article-title: Atomically dispersed Ru on ultrathin Pd nanoribbons publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 515 year: 2019 end-page: 534 ident: bib10 article-title: High-entropy alloys publication-title: Nat. Rev. Mater. – volume: 61 start-page: e202115735 year: 2022 ident: bib67 article-title: p–d orbital hybridization induced by a monodispersed ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 3658 year: 2020 end-page: 3663 ident: bib144 article-title: High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization publication-title: ACS Catal. – volume: 144 start-page: 15944 year: 2022 end-page: 15953 ident: bib53 article-title: High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 5071 year: 2022 ident: bib51 article-title: Movable type printing method to synthesize high-entropy single-atom catalysts publication-title: Nat. Commun. – volume: 3 start-page: 1646 year: 2020 end-page: 1663 ident: bib116 article-title: Unconventional alloys confined in nanoparticles: building blocks for new matter publication-title: Matter – volume: 188 start-page: 435 year: 2020 end-page: 474 ident: bib9 article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms publication-title: Acta Mater. – volume: 4 start-page: 2309 year: 2021 end-page: 2339 ident: bib87 article-title: Analytical transmission electron microscopy for emerging advanced materials publication-title: Matter – volume: 7 start-page: 10602 year: 2016 ident: bib12 article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures publication-title: Nat. Commun. – volume: 162 start-page: 277 year: 2016 end-page: 280 ident: bib107 article-title: Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys publication-title: Mater. Lett. – volume: 144 start-page: 10582 year: 2022 end-page: 10590 ident: bib90 article-title: A general synthetic method for high-entropy alloy subnanometer ribbons publication-title: J. Am. Chem. Soc. – volume: 610 start-page: 67 year: 2022 end-page: 73 ident: bib24 article-title: Compositionally complex doping for zero-strain zero-cobalt layered cathodes publication-title: Nature – volume: 12 start-page: 6261 year: 2021 ident: bib85 article-title: Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis publication-title: Nat. Commun. – volume: 34 start-page: 2110128 year: 2022 ident: bib91 article-title: Constructing structurally ordered high-entropy alloy nanoparticles on nitrogen-rich mesoporous carbon nanosheets for high-performance oxygen reduction publication-title: Adv. Mater. – volume: 11 start-page: 12247 year: 2021 end-page: 12257 ident: bib120 article-title: Exsolution–dissolution of supported metals on high-entropy Co3MnNiCuZnO x: toward sintering-resistant catalysis publication-title: ACS Catal. – volume: 14 start-page: 2418 year: 2021 end-page: 2423 ident: bib65 article-title: Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene publication-title: Nano Res. – volume: 61 start-page: e202207268 year: 2022 ident: bib82 article-title: A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions publication-title: Angew. Chem. Int. Ed. – volume: 61 start-page: 1 year: 2014 ident: 10.1016/j.matt.2023.03.034_bib3 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 13 start-page: 1682 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib61 article-title: Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices publication-title: Viruses doi: 10.3390/v13091682 – volume: 61 start-page: e202207268 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib82 article-title: A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202207268 – volume: 12 start-page: 5917 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib119 article-title: Self-regeneration of supported transition metals by a high entropy-driven principle publication-title: Nat. Commun. doi: 10.1038/s41467-021-26160-8 – volume: 3 start-page: 1646 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib116 article-title: Unconventional alloys confined in nanoparticles: building blocks for new matter publication-title: Matter doi: 10.1016/j.matt.2020.07.027 – volume: 6 start-page: 34213 year: 2016 ident: 10.1016/j.matt.2023.03.034_bib117 article-title: Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions publication-title: Sci. Rep. doi: 10.1038/srep34213 – volume: 55 start-page: 247 year: 2010 ident: 10.1016/j.matt.2023.03.034_bib26 article-title: Vibrational thermodynamics of materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2009.05.002 – year: 2022 ident: 10.1016/j.matt.2023.03.034_bib39 article-title: Catalysis of alloys: classification, principles, and design for a variety of materials and reactions publication-title: Chem. Rev. – volume: 61 start-page: e202213318 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib66 article-title: Long-range interactions in diatomic catalysts boosting electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202213318 – volume: 374 start-page: 459 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib54 article-title: Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells publication-title: Science doi: 10.1126/science.abj9980 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.matt.2023.03.034_bib25 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 144 start-page: 15944 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib53 article-title: High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01200 – volume: 15 start-page: 7806 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib64 article-title: Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis publication-title: Nano Res. doi: 10.1007/s12274-022-4429-9 – volume: 14 start-page: 5191 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib16 article-title: Review and outlook on high-entropy alloys for hydrogen storage publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01543E – start-page: 27 year: 2002 ident: 10.1016/j.matt.2023.03.034_bib29 – volume: 34 start-page: 417 year: 2018 ident: 10.1016/j.matt.2023.03.034_bib45 article-title: Alloy design by dislocation engineering publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2017.11.045 – volume: 59 start-page: 5844 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib23 article-title: Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914666 – volume: 6 start-page: 1900015 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib108 article-title: Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900015 – volume: 8 start-page: 11938 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib37 article-title: Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst publication-title: J. Mater. Chem. doi: 10.1039/D0TA02125C – volume: 10 start-page: 3658 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib144 article-title: High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization publication-title: ACS Catal. doi: 10.1021/acscatal.9b04302 – volume: 7 start-page: 6499 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib128 article-title: Nanoporous high-entropy alloys for highly stable and efficient catalysts publication-title: J. Mater. Chem. doi: 10.1039/C9TA00505F – volume: 1 start-page: 263 year: 2018 ident: 10.1016/j.matt.2023.03.034_bib38 article-title: How strain can break the scaling relations of catalysis publication-title: Nat. Catal. doi: 10.1038/s41929-018-0054-0 – volume: 60 start-page: 22522 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib72 article-title: Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109538 – volume: 35 start-page: 2209242 year: 2023 ident: 10.1016/j.matt.2023.03.034_bib143 article-title: High-entropy alloy aerogels: a new platform for carbon dioxide reduction publication-title: Adv. Mater. doi: 10.1002/adma.202209242 – volume: 61 start-page: e202115219 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib70 article-title: Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202115219 – volume: 359 start-page: 1489 year: 2018 ident: 10.1016/j.matt.2023.03.034_bib100 article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles publication-title: Science doi: 10.1126/science.aan5412 – volume: 162 start-page: 277 year: 2016 ident: 10.1016/j.matt.2023.03.034_bib107 article-title: Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.10.035 – volume: 188 start-page: 435 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib9 article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.12.015 – volume: 49 start-page: 231 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib14 article-title: Accelerated and conventional development of magnetic high entropy alloys publication-title: Mater. Today doi: 10.1016/j.mattod.2021.03.018 – volume: 15 start-page: 14928 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib103 article-title: Scalable synthesis of high entropy alloy nanoparticles by microwave heating publication-title: ACS Nano doi: 10.1021/acsnano.1c05113 – volume: 6 start-page: 193 year: 2023 ident: 10.1016/j.matt.2023.03.034_bib121 article-title: A general approach to high-entropy metallic nanowire electrocatalysts publication-title: Matter doi: 10.1016/j.matt.2022.09.023 – volume: 16 start-page: 100139 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib32 article-title: Chemical short-range order in Fe50Mn30Co10Cr10 high-entropy alloy publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2021.100139 – volume: 61 start-page: e202209749 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib73 article-title: A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202209749 – volume: 33 start-page: 1771 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib129 article-title: Top–down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c04695 – volume: 118 start-page: 205501 year: 2017 ident: 10.1016/j.matt.2023.03.034_bib48 article-title: Local structure and short-range order in a NiCoCr solid solution alloy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.205501 – volume: 16 start-page: 4749 year: 2014 ident: 10.1016/j.matt.2023.03.034_bib30 article-title: Multicomponent and high entropy alloys publication-title: Entropy doi: 10.3390/e16094749 – volume: 61 start-page: e202210789 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib84 article-title: P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202210789 – volume: 22 start-page: 65 year: 2018 ident: 10.1016/j.matt.2023.03.034_bib35 article-title: On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2018.05.003 – volume: 11 start-page: 12247 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib120 article-title: Exsolution–dissolution of supported metals on high-entropy Co3MnNiCuZnO x: toward sintering-resistant catalysis publication-title: ACS Catal. doi: 10.1021/acscatal.1c03228 – volume: 4 start-page: 1389 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib131 article-title: An ultrafast and stable high-entropy metallic glass electrode for alkaline hydrogen evolution reaction publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.2c00371 – volume: 143 start-page: 17117 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib60 article-title: Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07643 – volume: 113 start-page: E7144 year: 2016 ident: 10.1016/j.matt.2023.03.034_bib7 article-title: Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1615926113 – volume: 14 start-page: 15131 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib42 article-title: In situ oxidation studies of high-entropy alloy nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.0c05250 – volume: 151 start-page: 107724 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib44 article-title: Formation and migration behavior of vacancy in multi-component alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2022.107724 – volume: 10 start-page: 14857 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib142 article-title: A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation publication-title: J. Mater. Chem. doi: 10.1039/D2TA02597C – volume: 12 start-page: 6261 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib85 article-title: Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-021-26425-2 – volume: 11 start-page: 2016 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib102 article-title: Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-020-15934-1 – volume: 59 start-page: 11830 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib122 article-title: Facile electrochemical synthesis of nanoscale (TiNbTaZrHf) C high-entropy carbide powder publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003530 – volume: 6 start-page: 5964 year: 2015 ident: 10.1016/j.matt.2023.03.034_bib59 article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy publication-title: Nat. Commun. doi: 10.1038/ncomms6964 – volume: 10 start-page: 11280 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib114 article-title: High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities publication-title: ACS Catal. doi: 10.1021/acscatal.0c03617 – volume: 62 start-page: e202212335 year: 2023 ident: 10.1016/j.matt.2023.03.034_bib77 article-title: Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202212335 – volume: 38 start-page: 353 year: 2017 ident: 10.1016/j.matt.2023.03.034_bib148 article-title: TCHEA1: a thermodynamic database not limited for “high entropy” alloys publication-title: J. Phase Equilibria Diffus. doi: 10.1007/s11669-017-0570-7 – volume: 3 start-page: 834 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib135 article-title: High-entropy alloys as a discovery platform for electrocatalysis publication-title: Joule doi: 10.1016/j.joule.2018.12.015 – volume: 15 start-page: 4807 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib111 article-title: Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts publication-title: Nano Res. doi: 10.1007/s12274-021-3804-2 – volume: 737 start-page: 132 year: 2018 ident: 10.1016/j.matt.2023.03.034_bib47 article-title: An overview of modeling the stacking faults in lightweight and high-entropy alloys: theory and application publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2018.09.028 – volume: 574 start-page: 223 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib33 article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys publication-title: Nature doi: 10.1038/s41586-019-1617-1 – volume: 33 start-page: 2101845 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib96 article-title: Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution publication-title: Adv. Mater. doi: 10.1002/adma.202101845 – volume: 7 start-page: 10602 year: 2016 ident: 10.1016/j.matt.2023.03.034_bib12 article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures publication-title: Nat. Commun. doi: 10.1038/ncomms10602 – volume: 31 start-page: 2101586 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib95 article-title: A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101586 – volume: 123 start-page: 100854 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib94 article-title: Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2021.100854 – volume: 15 start-page: 8751 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib132 article-title: Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-022-4179-8 – volume: 21 start-page: 1742 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib43 article-title: Revealing high-temperature reduction dynamics of high-entropy alloy nanoparticles via in situ transmission electron microscopy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04572 – volume: 138 start-page: 13850 year: 2016 ident: 10.1016/j.matt.2023.03.034_bib76 article-title: Atomically dispersed Ru on ultrathin Pd nanoribbons publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09246 – volume: 10 start-page: 4011 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib19 article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-11848-9 – volume: 144 start-page: 11525 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib126 article-title: Continuous-flow reactor synthesis for homogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c02755 – volume: 592 start-page: 60 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib93 article-title: Determining the three-dimensional atomic structure of an amorphous solid publication-title: Nature doi: 10.1038/s41586-021-03354-0 – volume: 69 start-page: 2092 year: 2017 ident: 10.1016/j.matt.2023.03.034_bib2 article-title: Design of high-entropy alloy: a perspective from nonideal mixing publication-title: JOM doi: 10.1007/s11837-017-2452-1 – volume: 50 start-page: 569 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib74 article-title: Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00844C – volume: 11 start-page: 3908 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib118 article-title: Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports publication-title: Nat. Commun. doi: 10.1038/s41467-020-17738-9 – volume: 32 start-page: 2000385 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib92 article-title: A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.202000385 – volume: 25 start-page: 252 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib98 article-title: Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends publication-title: Addit. Manuf. – volume: 13 start-page: 5071 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib51 article-title: Movable type printing method to synthesize high-entropy single-atom catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-022-32850-8 – volume: 8 start-page: 1802269 year: 2018 ident: 10.1016/j.matt.2023.03.034_bib22 article-title: Discovery of a multinary noble metal–free oxygen reduction catalyst publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802269 – volume: 7 start-page: 12315 year: 2016 ident: 10.1016/j.matt.2023.03.034_bib58 article-title: Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases publication-title: Nat. Commun. doi: 10.1038/ncomms12315 – volume: 358 start-page: 97 year: 2017 ident: 10.1016/j.matt.2023.03.034_bib46 article-title: Segregation-induced ordered superstructures at general grain boundaries in a nickel-bismuth alloy publication-title: Science doi: 10.1126/science.aam8256 – volume: 10 start-page: 2169 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib145 article-title: High-entropy alloys as catalysts for the CO2 and CO reduction reactions publication-title: ACS Catal. doi: 10.1021/acscatal.9b04343 – volume: 61 start-page: e202209849 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib79 article-title: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202209849 – volume: 15 start-page: 7868 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib17 article-title: High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction publication-title: Nano Res. doi: 10.1007/s12274-022-4432-1 – volume: 10 start-page: 2650 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib105 article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-10303-z – volume: 378 start-page: 78 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib149 article-title: Machine learning-enabled high-entropy alloy discovery publication-title: Science doi: 10.1126/science.abo4940 – volume: 61 start-page: e202205946 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib78 article-title: Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202205946 – volume: 12 start-page: 3884 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib125 article-title: Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation publication-title: Nat. Commun. doi: 10.1038/s41467-021-24228-z – volume: 2 start-page: 65 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib40 article-title: A perspective on high-entropy two-dimensional materials publication-title: SusMat doi: 10.1002/sus2.47 – volume: 21 start-page: 247 year: 1970 ident: 10.1016/j.matt.2023.03.034_bib27 article-title: The use of the concept of entropy in system modelling publication-title: Oper. Res. Q. doi: 10.1057/jors.1970.48 – volume: 581 start-page: 283 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib49 article-title: Short-range order and its impact on the CrCoNi medium-entropy alloy publication-title: Nature doi: 10.1038/s41586-020-2275-z – volume: 13 start-page: 2662 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib137 article-title: Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts publication-title: Nat. Commun. doi: 10.1038/s41467-022-30379-4 – start-page: 74 year: 2004 ident: 10.1016/j.matt.2023.03.034_bib1 article-title: Alloys and compounds – volume: 56 start-page: 9777 year: 2017 ident: 10.1016/j.matt.2023.03.034_bib89 article-title: Structure of amorphous selenium by 2D 77Se NMR spectroscopy: an end to the dilemma of chain versus ring publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201704323 – volume: 1 start-page: 1606 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib104 article-title: Accumulation-driven unified spatiotemporal synthesis and structuring of immiscible metallic nanoalloys publication-title: Matter doi: 10.1016/j.matt.2019.10.017 – volume: 15 start-page: 3022 year: 2013 ident: 10.1016/j.matt.2023.03.034_bib112 article-title: Advanced nanoparticle generation and excitation by lasers in liquids publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C2CP90132C – volume: 6 start-page: 231 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib123 article-title: Synthesis of monodisperse high entropy alloy nanocatalysts from core@ shell nanoparticles publication-title: Nanoscale Horiz. doi: 10.1039/D0NH00656D – volume: 15 start-page: 1904180 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib127 article-title: Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments publication-title: Small doi: 10.1002/smll.201904180 – volume: 12 start-page: 4953 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib31 article-title: Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering publication-title: Nat. Commun. doi: 10.1038/s41467-021-25264-5 – volume: 34 start-page: 2206276 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib50 article-title: High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.202206276 – volume: 1 start-page: 526 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib141 article-title: Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00414 – volume: 3 start-page: 182 year: 2015 ident: 10.1016/j.matt.2023.03.034_bib106 article-title: Microwave-assisted preparation of high entropy alloys publication-title: Technologies doi: 10.3390/technologies3040182 – volume: 14 start-page: 2418 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib65 article-title: Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene publication-title: Nano Res. doi: 10.1007/s12274-020-3244-4 – volume: 375-377 start-page: 213 year: 2004 ident: 10.1016/j.matt.2023.03.034_bib5 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2003.10.257 – volume: 29 start-page: 1905933 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib115 article-title: General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905933 – volume: 9 start-page: nwac190 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib153 article-title: An all-round AI-Chemist with a scientific mind publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwac190 – volume: 491 start-page: 165574 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib41 article-title: CoCrxCuFeMnNi high-entropy alloy powders with superior soft magnetic properties publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2019.165574 – volume: 435 start-page: 134898 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib138 article-title: A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134898 – volume: 21 start-page: 101326 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib147 article-title: Combinatorial development of multicomponent Invar alloys via rapid alloy prototyping publication-title: Materialia doi: 10.1016/j.mtla.2022.101326 – volume: 6 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib20 article-title: Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz0510 – volume: 12 start-page: 284 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib88 article-title: Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures publication-title: Nat. Chem. doi: 10.1038/s41557-020-0418-3 – volume: 56 start-page: 16047 year: 2017 ident: 10.1016/j.matt.2023.03.034_bib75 article-title: Atomically dispersed copper–platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709803 – volume: 15 start-page: 5792 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib62 article-title: Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-022-4265-y – volume: 58 start-page: 223 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib55 article-title: Metal and metal oxide amorphous nanomaterials towards electrochemical applications publication-title: Chem. Commun. doi: 10.1039/D1CC04141J – volume: 5 start-page: 17 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib133 article-title: Recent progress in high entropy alloys for electrocatalysts publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-022-00144-8 – volume: 61 start-page: 4887 year: 2013 ident: 10.1016/j.matt.2023.03.034_bib34 article-title: Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.04.058 – volume: 12 start-page: 10808 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib140 article-title: High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.2c02604 – volume: 11 start-page: 47 year: 2004 ident: 10.1016/j.matt.2023.03.034_bib109 article-title: Using sonochemistry for the fabrication of nanomaterials publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2004.01.037 – volume: 115 start-page: 8919 year: 2018 ident: 10.1016/j.matt.2023.03.034_bib151 article-title: Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1808660115 – volume: 31 start-page: 2106715 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib28 article-title: Multi-sites electrocatalysis in high-entropy alloys publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106715 – volume: 610 start-page: 67 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib24 article-title: Compositionally complex doping for zero-strain zero-cobalt layered cathodes publication-title: Nature doi: 10.1038/s41586-022-05115-z – volume: 2 start-page: 1698 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib130 article-title: Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn–air batteries publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.0c00434 – volume: 3 start-page: 1318 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib152 article-title: Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects publication-title: Matter doi: 10.1016/j.matt.2020.07.029 – volume: 13 start-page: 4200 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib56 article-title: In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity publication-title: Nat. Commun. doi: 10.1038/s41467-022-31971-4 – volume: 2 start-page: 186 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib101 article-title: High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis publication-title: SusMat doi: 10.1002/sus2.56 – volume: 35 start-page: 3038 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib113 article-title: Time and mechanism of nanoparticle functionalization by macromolecular ligands during pulsed laser ablation in liquids publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01585 – volume: 144 start-page: 10582 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib90 article-title: A general synthetic method for high-entropy alloy subnanometer ribbons publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03544 – volume: 10 start-page: 4855 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib57 article-title: A general synthesis approach for amorphous noble metal nanosheets publication-title: Nat. Commun. doi: 10.1038/s41467-019-12859-2 – volume: 117 start-page: 6316 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib21 article-title: High-throughput, combinatorial synthesis of multimetallic nanoclusters publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1903721117 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.matt.2023.03.034_bib6 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 6 start-page: 7748 year: 2015 ident: 10.1016/j.matt.2023.03.034_bib13 article-title: Ultrastrong ductile and stable high-entropy alloys at small scales publication-title: Nat. Commun. doi: 10.1038/ncomms8748 – volume: 2 start-page: 107 year: 2014 ident: 10.1016/j.matt.2023.03.034_bib36 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.912690 – volume: 21 start-page: 577 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib97 article-title: Self-organized growth of 111-oriented (VNbTaMoW) N nanorods on MgO (001) publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04061 – volume: 32 start-page: 1906457 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib15 article-title: Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance publication-title: Adv. Mater. doi: 10.1002/adma.201906457 – volume: 4 start-page: 2309 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib87 article-title: Analytical transmission electron microscopy for emerging advanced materials publication-title: Matter doi: 10.1016/j.matt.2021.05.005 – volume: 60 start-page: 26894 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib134 article-title: What makes high-entropy alloys exceptional electrocatalysts? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109212 – volume: 439 start-page: 419 year: 2006 ident: 10.1016/j.matt.2023.03.034_bib52 article-title: Atomic packing and short-to-medium-range order in metallic glasses publication-title: Nature doi: 10.1038/nature04421 – volume: 62 start-page: e202212653 year: 2023 ident: 10.1016/j.matt.2023.03.034_bib69 article-title: Tuning mass transport in electrocatalysis down to sub-5nm through nanoscale grade separation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202212653 – volume: 61 start-page: e202114450 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib81 article-title: MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202114450 – volume: 143 start-page: 1017 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib124 article-title: Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c11384 – volume: 431 start-page: 133251 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib139 article-title: High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133251 – volume: 61 start-page: e202200366 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib68 article-title: Regulating the tip effect on single-atom and cluster catalysts: forming reversible oxygen species with high efficiency in chlorine evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200366 – volume: 534 start-page: 227 year: 2016 ident: 10.1016/j.matt.2023.03.034_bib11 article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off publication-title: Nature doi: 10.1038/nature17981 – volume: 28 start-page: 766 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib99 article-title: Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting publication-title: Addit. Manuf. – volume: 19 start-page: 349 year: 2016 ident: 10.1016/j.matt.2023.03.034_bib4 article-title: High-entropy alloy: challenges and prospects publication-title: Mater. Today doi: 10.1016/j.mattod.2015.11.026 – volume: 34 start-page: 2110128 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib91 article-title: Constructing structurally ordered high-entropy alloy nanoparticles on nitrogen-rich mesoporous carbon nanosheets for high-performance oxygen reduction publication-title: Adv. Mater. doi: 10.1002/adma.202110128 – volume: 15 start-page: 4799 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib18 article-title: Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER) publication-title: Nano Res. doi: 10.1007/s12274-021-3802-4 – volume: 13 start-page: 3373 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib8 article-title: High critical current density and high-tolerance superconductivity in high-entropy alloy thin films publication-title: Nat. Commun. doi: 10.1038/s41467-022-30912-5 – volume: 15 start-page: 6888 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib63 article-title: Understanding the structure-performance relationship of active sites at atomic scale publication-title: Nano Res. doi: 10.1007/s12274-022-4371-x – volume: 61 start-page: e202117347 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib71 article-title: Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202117347 – volume: 61 start-page: e202201655 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib83 article-title: Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202201655 – volume: 143 start-page: 4193 year: 2021 ident: 10.1016/j.matt.2023.03.034_bib86 article-title: Probing the local site disorder and distortion in pyrochlore high-entropy oxides publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10739 – volume: 4 start-page: 515 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib10 article-title: High-entropy alloys publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0121-4 – volume: 61 start-page: e202115735 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib67 article-title: p–d orbital hybridization induced by a monodispersed ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202115735 – volume: 11 start-page: 5437 year: 2020 ident: 10.1016/j.matt.2023.03.034_bib136 article-title: Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-020-19277-9 – volume: 62 start-page: e202215136 year: 2023 ident: 10.1016/j.matt.2023.03.034_bib80 article-title: Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202215136 – volume: 15 start-page: 4792 year: 2022 ident: 10.1016/j.matt.2023.03.034_bib110 article-title: Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids publication-title: Nano Res. doi: 10.1007/s12274-021-3760-x – volume: 107 start-page: 142404 year: 2015 ident: 10.1016/j.matt.2023.03.034_bib146 article-title: Treasure maps” for magnetic high-entropy-alloys from theory and experiment publication-title: Appl. Phys. Lett. doi: 10.1063/1.4932571 – volume: 10 start-page: 2618 year: 2019 ident: 10.1016/j.matt.2023.03.034_bib150 article-title: Materials informatics for the screening of multi-principal elements and high-entropy alloys publication-title: Nat. Commun. doi: 10.1038/s41467-019-10533-1 |
SSID | ssj0002213743 |
Score | 2.452725 |
SecondaryResourceType | review_article |
Snippet | High-entropy alloys (HEAs) are a new kind of alloy with five or more alloy elements at equal or near-equal ratios. The tunable multicomponent structure and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1717 |
Title | Nanoscale high-entropy alloy for electrocatalysis |
URI | https://dx.doi.org/10.1016/j.matt.2023.03.034 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46L15EUfE3PXiTSPOr7Y5D1OGYB524W2nTTB2yDe0O86_3vSbt6hiig1FGWJc2X3jvy5f3Xgg5F0wMhPYjmmipqTShT5sBH1DwzVo300xFGrORu_dB-0ne9VV_fqxikV2Sp5f6a2leySqoQhvgilmy_0C2-lNogO-AL1wBYbj-CWMwjeNPGGQsG_zySlGoHU9mF7iXbuMw3SE3hUaDpUfqVLSb5LXQ3LYVQvtvybiy01MrmjvfZtXlQll9fJ3O5rPqdmp3b8AJDktH6HQELop4p3AubpUJLj_iL2Fx5FPw6nbj2Sxpc0Y0qM2VukFkoU3NdM4VyApbarithjC8BJqOEa5cFKVnnc75syD2Iz4A9g-rJ0zG8tfJBodFAli5jVbn4blTaWycM2FzLKpndnlTNsRvsbPl3KTGN3rbZMstFLyWRX2HrJnRLmEV4l4dca9A3APEvUXE90jv5rp31abu0Auq4XVymmLNvEyEAz8E6p6GSiZRYGQTqawKEobHtmdgOGFhr1iYZCaIWEEyWRglflPsk8ZoPDIHxPOlFFkkjeCDQCqVpoJHxgRa8gy60uqQsPJtY-0KwuO5JO9xGfk3jHGEYhyh2MePPCQX1T0TWw7l11-rchBjR-gsUYsB9l_uO1rxvmOyOZ_ZJ6SRf0zNKXDGPD1zU-MbVB9oOA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+high-entropy+alloy+for+electrocatalysis&rft.jtitle=Matter&rft.au=Han%2C+Xiao&rft.au=Wu%2C+Geng&rft.au=Zhao%2C+Shuyan&rft.au=Guo%2C+Jingjing&rft.date=2023-06-07&rft.pub=Elsevier+Inc&rft.issn=2590-2385&rft.eissn=2590-2385&rft.volume=6&rft.issue=6&rft.spage=1717&rft.epage=1751&rft_id=info:doi/10.1016%2Fj.matt.2023.03.034&rft.externalDocID=S2590238523001650 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-2385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-2385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-2385&client=summon |