Nanoscale high-entropy alloy for electrocatalysis

High-entropy alloys (HEAs) are a new kind of alloy with five or more alloy elements at equal or near-equal ratios. The tunable multicomponent structure and potential novel properties of HEAs have attracted widespread attention. Benefiting from advances in synthesis technology, nanoscale HEAs were ac...

Full description

Saved in:
Bibliographic Details
Published inMatter Vol. 6; no. 6; pp. 1717 - 1751
Main Authors Han, Xiao, Wu, Geng, Zhao, Shuyan, Guo, Jingjing, Yan, Muyu, Hong, Xun, Wang, Dingsheng
Format Journal Article
LanguageEnglish
Published Elsevier Inc 07.06.2023
Online AccessGet full text

Cover

Loading…
Abstract High-entropy alloys (HEAs) are a new kind of alloy with five or more alloy elements at equal or near-equal ratios. The tunable multicomponent structure and potential novel properties of HEAs have attracted widespread attention. Benefiting from advances in synthesis technology, nanoscale HEAs were acquired successfully, the high specific surface area and quantum size effect of which further improved their capacity for catalysis. Nevertheless, the complex composition of elements makes it challenging to clarify the atomic structure of HEAs, and their catalytic studies are still in their infancy. A comprehensive review summarizing the current understanding of the structure of HEAs and their catalytic performance is urgently needed. This review first presents basic insights into HEAs, including concept definition, structural features, and progressive synthesis and characterization technologies. Then, the electrocatalytic performance of HEAs is discussed based on the structural diversity and synergistic role of each component element. Considering the limitation of trial-and-error methods in dealing with this complex system, high-throughput screening technologies are also introduced. This review aims to promote the understanding of HEAs and therefore achieve the design of high-efficiency catalysts relying on HEAs. High-entropy alloys (HEAs) represent a new paradigm in alloy design, with at least five elements incorporated in near-equal proportions, deviating from traditional alloying strategies. The incorporation of multiple elements offers HEAs with diverse tunability and potential for novel properties, making them a subject of widespread attention. Advances in synthesis techniques have enabled the preparation of nanoscale HEAs, which possess a high specific surface area and quantum size effect, further enhancing their catalytic potential. However, the complexity of the elemental composition in HEAs has hindered the full understanding of their structure. Despite this challenge, recent research efforts have yielded inspiring results in recognizing the structure of HEAs. Additionally, advanced synthetic strategies for nanoscale HEAs have been explored, facilitating significant progress in high-throughput screening and electrochemical applications related to their constituent elements. This review provides a comprehensive summary of the current understanding of the structure of HEAs and corresponding characterization methods, as well as the recent advances in the preparation, high-throughput screening, and electrochemical applications of HEAs. The advent of high-entropy alloys (HEAs) has introduced a new avenue for alloy design. Considerable headway is presently being achieved in the synthesis, characterization, and high-throughput screening of nanoscale HEAs. The highly tunable structure of nanoscale HEAs has made them a top contender for electrocatalytic applications, although further exploration of their structure-function relationship is necessary. This review provides an overview of the latest advancements in the understanding of nanoscale HEAs and their electrocatalytic efficacy.
AbstractList High-entropy alloys (HEAs) are a new kind of alloy with five or more alloy elements at equal or near-equal ratios. The tunable multicomponent structure and potential novel properties of HEAs have attracted widespread attention. Benefiting from advances in synthesis technology, nanoscale HEAs were acquired successfully, the high specific surface area and quantum size effect of which further improved their capacity for catalysis. Nevertheless, the complex composition of elements makes it challenging to clarify the atomic structure of HEAs, and their catalytic studies are still in their infancy. A comprehensive review summarizing the current understanding of the structure of HEAs and their catalytic performance is urgently needed. This review first presents basic insights into HEAs, including concept definition, structural features, and progressive synthesis and characterization technologies. Then, the electrocatalytic performance of HEAs is discussed based on the structural diversity and synergistic role of each component element. Considering the limitation of trial-and-error methods in dealing with this complex system, high-throughput screening technologies are also introduced. This review aims to promote the understanding of HEAs and therefore achieve the design of high-efficiency catalysts relying on HEAs. High-entropy alloys (HEAs) represent a new paradigm in alloy design, with at least five elements incorporated in near-equal proportions, deviating from traditional alloying strategies. The incorporation of multiple elements offers HEAs with diverse tunability and potential for novel properties, making them a subject of widespread attention. Advances in synthesis techniques have enabled the preparation of nanoscale HEAs, which possess a high specific surface area and quantum size effect, further enhancing their catalytic potential. However, the complexity of the elemental composition in HEAs has hindered the full understanding of their structure. Despite this challenge, recent research efforts have yielded inspiring results in recognizing the structure of HEAs. Additionally, advanced synthetic strategies for nanoscale HEAs have been explored, facilitating significant progress in high-throughput screening and electrochemical applications related to their constituent elements. This review provides a comprehensive summary of the current understanding of the structure of HEAs and corresponding characterization methods, as well as the recent advances in the preparation, high-throughput screening, and electrochemical applications of HEAs. The advent of high-entropy alloys (HEAs) has introduced a new avenue for alloy design. Considerable headway is presently being achieved in the synthesis, characterization, and high-throughput screening of nanoscale HEAs. The highly tunable structure of nanoscale HEAs has made them a top contender for electrocatalytic applications, although further exploration of their structure-function relationship is necessary. This review provides an overview of the latest advancements in the understanding of nanoscale HEAs and their electrocatalytic efficacy.
Author Wu, Geng
Guo, Jingjing
Hong, Xun
Han, Xiao
Wang, Dingsheng
Yan, Muyu
Zhao, Shuyan
Author_xml – sequence: 1
  givenname: Xiao
  surname: Han
  fullname: Han, Xiao
  organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
– sequence: 2
  givenname: Geng
  surname: Wu
  fullname: Wu, Geng
  organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
– sequence: 3
  givenname: Shuyan
  surname: Zhao
  fullname: Zhao, Shuyan
  organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
– sequence: 4
  givenname: Jingjing
  surname: Guo
  fullname: Guo, Jingjing
  organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
– sequence: 5
  givenname: Muyu
  surname: Yan
  fullname: Yan, Muyu
  organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
– sequence: 6
  givenname: Xun
  surname: Hong
  fullname: Hong, Xun
  email: hongxun@ustc.edu.cn
  organization: Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
– sequence: 7
  givenname: Dingsheng
  orcidid: 0000-0003-0074-7633
  surname: Wang
  fullname: Wang, Dingsheng
  email: wangdingsheng@mail.tsinghua.edu.cn
  organization: Department of Chemistry, Tsinghua University, Beijing 100084, China
BookMark eNp9kMtqwzAQRUVJoWmaH-jKP2BXT8uCbkroC0K7yV5MZLmRUawgiYL_vjbponQRuDDDDGfgzC1aDGGwCN0TXBFM6oe-OkLOFcWUVXgOv0JLKhQuKWvE4k9_g9Yp9RhjSgmTnC0R-YAhJAPeFgf3dSjtkGM4jQV4H8aiC7Gw3pppZiCDH5NLd-i6A5_s-reu0O7lebd5K7efr--bp21pGMa53BPBVctkh6VSZC8Fh6a2XFHSMFHDtCW8FYxQwQWR0Nq6IUwpJolsACu2QvR81sSQUrSdPkV3hDhqgvWsrXs9a-tZW-M5fIKaf5BxGbILkxU4fxl9PKN2cvp2NupknB2MbV2cHqDb4C7hPzPJc2I
CitedBy_id crossref_primary_10_1039_D4NJ01272K
crossref_primary_10_1016_j_pnsc_2024_04_014
crossref_primary_10_1021_acs_nanolett_4c04758
crossref_primary_10_1021_acs_nanolett_4c03208
crossref_primary_10_1002_idm2_12171
crossref_primary_10_1002_smll_202404689
crossref_primary_10_1016_j_ensm_2025_104064
crossref_primary_10_1002_sus2_261
crossref_primary_10_1016_j_ijhydene_2024_12_430
crossref_primary_10_1016_j_mtcomm_2024_110969
crossref_primary_10_1021_jacs_3c14510
crossref_primary_10_1002_anie_202402678
crossref_primary_10_1002_smll_202311929
crossref_primary_10_3390_catal14010057
crossref_primary_10_1016_j_matt_2024_01_025
crossref_primary_10_1002_advs_202402497
crossref_primary_10_1039_D4TA02707H
crossref_primary_10_1002_advs_202408614
crossref_primary_10_1002_ange_202402678
crossref_primary_10_1016_j_matt_2025_101986
crossref_primary_10_1016_j_nanoms_2024_09_002
crossref_primary_10_1016_j_ensm_2023_103127
crossref_primary_10_1016_j_mtcata_2023_100025
crossref_primary_10_1002_advs_202409404
crossref_primary_10_1007_s10008_025_06218_z
crossref_primary_10_1016_j_enchem_2025_100155
crossref_primary_10_1016_j_partic_2024_06_014
crossref_primary_10_1007_s00604_025_07089_x
crossref_primary_10_1016_j_jelechem_2025_119083
crossref_primary_10_1039_D3SC04962K
crossref_primary_10_1002_adma_202400920
crossref_primary_10_1016_j_jallcom_2024_173951
crossref_primary_10_1016_j_renene_2025_122827
crossref_primary_10_1039_D3TA07230D
crossref_primary_10_1021_acsmaterialslett_4c00248
crossref_primary_10_1021_acsmaterialslett_4c00587
crossref_primary_10_1016_j_cej_2024_156419
crossref_primary_10_1016_j_mcat_2024_114571
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1021_acsami_4c21239
crossref_primary_10_1126_sciadv_adn2877
Cites_doi 10.1016/j.pmatsci.2013.10.001
10.3390/v13091682
10.1002/anie.202207268
10.1038/s41467-021-26160-8
10.1016/j.matt.2020.07.027
10.1038/srep34213
10.1016/j.pmatsci.2009.05.002
10.1002/anie.202213318
10.1126/science.abj9980
10.1016/j.actamat.2016.08.081
10.1021/jacs.2c01200
10.1007/s12274-022-4429-9
10.1039/D1EE01543E
10.1016/j.jmst.2017.11.045
10.1002/anie.201914666
10.1002/admi.201900015
10.1039/D0TA02125C
10.1021/acscatal.9b04302
10.1039/C9TA00505F
10.1038/s41929-018-0054-0
10.1002/anie.202109538
10.1002/adma.202209242
10.1002/anie.202115219
10.1126/science.aan5412
10.1016/j.matlet.2015.10.035
10.1016/j.actamat.2019.12.015
10.1016/j.mattod.2021.03.018
10.1021/acsnano.1c05113
10.1016/j.matt.2022.09.023
10.1016/j.mtnano.2021.100139
10.1002/anie.202209749
10.1021/acs.chemmater.0c04695
10.1103/PhysRevLett.118.205501
10.3390/e16094749
10.1002/anie.202210789
10.1016/j.cossms.2018.05.003
10.1021/acscatal.1c03228
10.1021/acsmaterialslett.2c00371
10.1021/jacs.1c07643
10.1073/pnas.1615926113
10.1021/acsnano.0c05250
10.1016/j.intermet.2022.107724
10.1039/D2TA02597C
10.1038/s41467-021-26425-2
10.1038/s41467-020-15934-1
10.1002/anie.202003530
10.1038/ncomms6964
10.1021/acscatal.0c03617
10.1002/anie.202212335
10.1007/s11669-017-0570-7
10.1016/j.joule.2018.12.015
10.1007/s12274-021-3804-2
10.1016/j.msea.2018.09.028
10.1038/s41586-019-1617-1
10.1002/adma.202101845
10.1038/ncomms10602
10.1002/adfm.202101586
10.1016/j.pmatsci.2021.100854
10.1007/s12274-022-4179-8
10.1021/acs.nanolett.0c04572
10.1021/jacs.6b09246
10.1038/s41467-019-11848-9
10.1021/jacs.2c02755
10.1038/s41586-021-03354-0
10.1007/s11837-017-2452-1
10.1039/D0CS00844C
10.1038/s41467-020-17738-9
10.1002/adma.202000385
10.1038/s41467-022-32850-8
10.1002/aenm.201802269
10.1038/ncomms12315
10.1126/science.aam8256
10.1021/acscatal.9b04343
10.1002/anie.202209849
10.1007/s12274-022-4432-1
10.1038/s41467-019-10303-z
10.1126/science.abo4940
10.1002/anie.202205946
10.1038/s41467-021-24228-z
10.1002/sus2.47
10.1057/jors.1970.48
10.1038/s41586-020-2275-z
10.1038/s41467-022-30379-4
10.1002/anie.201704323
10.1016/j.matt.2019.10.017
10.1039/C2CP90132C
10.1039/D0NH00656D
10.1002/smll.201904180
10.1038/s41467-021-25264-5
10.1002/adma.202206276
10.1021/acsmaterialslett.9b00414
10.3390/technologies3040182
10.1007/s12274-020-3244-4
10.1016/j.msea.2003.10.257
10.1002/adfm.201905933
10.1093/nsr/nwac190
10.1016/j.jmmm.2019.165574
10.1016/j.cej.2022.134898
10.1016/j.mtla.2022.101326
10.1126/sciadv.aaz0510
10.1038/s41557-020-0418-3
10.1002/anie.201709803
10.1007/s12274-022-4265-y
10.1039/D1CC04141J
10.1007/s41918-022-00144-8
10.1016/j.actamat.2013.04.058
10.1021/acscatal.2c02604
10.1016/j.ultsonch.2004.01.037
10.1073/pnas.1808660115
10.1002/adfm.202106715
10.1038/s41586-022-05115-z
10.1021/acsmaterialslett.0c00434
10.1016/j.matt.2020.07.029
10.1038/s41467-022-31971-4
10.1002/sus2.56
10.1021/acs.langmuir.8b01585
10.1021/jacs.2c03544
10.1038/s41467-019-12859-2
10.1073/pnas.1903721117
10.1002/adem.200300567
10.1038/ncomms8748
10.1080/21663831.2014.912690
10.1021/acs.nanolett.0c04061
10.1002/adma.201906457
10.1016/j.matt.2021.05.005
10.1002/anie.202109212
10.1038/nature04421
10.1002/anie.202212653
10.1002/anie.202114450
10.1021/jacs.0c11384
10.1016/j.cej.2021.133251
10.1002/anie.202200366
10.1038/nature17981
10.1016/j.mattod.2015.11.026
10.1002/adma.202110128
10.1007/s12274-021-3802-4
10.1038/s41467-022-30912-5
10.1007/s12274-022-4371-x
10.1002/anie.202117347
10.1002/anie.202201655
10.1021/jacs.0c10739
10.1038/s41578-019-0121-4
10.1002/anie.202115735
10.1038/s41467-020-19277-9
10.1002/anie.202215136
10.1007/s12274-021-3760-x
10.1063/1.4932571
10.1038/s41467-019-10533-1
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.matt.2023.03.034
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2590-2385
EndPage 1751
ExternalDocumentID 10_1016_j_matt_2023_03_034
S2590238523001650
GroupedDBID AAEDW
AAIAV
AALRI
AAXUO
ADJPV
AFTJW
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
FDB
HX~
M3Z
M41
OK1
0R~
AAMRU
AAYWO
AAYXX
ABDGV
ABJNI
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
AMRAJ
APXCP
CITATION
ROL
ID FETCH-LOGICAL-c300t-b1549d37f07991b754a86e49218356a15414d531254517ade68139937178a093
ISSN 2590-2385
IngestDate Thu Apr 24 23:07:30 EDT 2025
Tue Jul 01 03:52:39 EDT 2025
Thu Jul 20 20:06:57 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-b1549d37f07991b754a86e49218356a15414d531254517ade68139937178a093
ORCID 0000-0003-0074-7633
PageCount 35
ParticipantIDs crossref_primary_10_1016_j_matt_2023_03_034
crossref_citationtrail_10_1016_j_matt_2023_03_034
elsevier_sciencedirect_doi_10_1016_j_matt_2023_03_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-07
PublicationDateYYYYMMDD 2023-06-07
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-07
  day: 07
PublicationDecade 2020
PublicationTitle Matter
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhao, Bao, Yang, Niu, Xie, Zhang, Chen, Zhang, Dai (bib120) 2021; 11
Jiang, Bridges, Unocic, Pitike, Cooper, Zhang, Lin, Page (bib86) 2021; 143
Jin, Lyu, Zhao, Li, Lin, Xie, Liu, Kai, Qiu (bib130) 2020; 2
Perim, Lee, Liu, Toher, Gong, Li, Simmons, Levy, Vlassak, Schroers, Curtarolo (bib58) 2016; 7
Minamihara, Kusada, Wu, Yamamoto, Toriyama, Matsumura, Kumara, Ohara, Sakata, Kawaguchi (bib126) 2022; 144
Huang, He (bib45) 2018; 34
Nellaiappan, Katiyar, Kumar, Parui, Malviya, Pradeep, Singh, Sharma, Tiwary, Biswas (bib144) 2020; 10
Lv, Liu, Jia, Wang, Wu, Lu (bib117) 2016; 6
Dobbelstein, Gurevich, George, Ostendorf, Laplanche (bib98) 2019; 25
Liu, Wang, Fu, Liu, Wang, Gu, Wang, Li (bib72) 2021; 60
Mei, Feng, Zhang, Zhang, Qi, Hu (bib140) 2022; 12
Qiu, Fang, Gao, Wen, Lv, Li, Xie, Liu, Sun (bib141) 2019; 1
Xiong, Sun, Han, Xin, Zheng, Yan, Dong, Zhang, Wang, Li (bib65) 2021; 14
Hou, Ma, Shu, Bao, Zhang, Chen, Zhang, Dai (bib119) 2021; 12
Cui, Wang, Ye, Wu, Chen, Li, Lei, Wang, Li (bib70) 2022; 61
Lu, Chen, Singh (bib152) 2020; 3
Liu, Wang, Wang, Chen, Jiang, Yuan, Cheng, Ma, Wu (bib32) 2021; 16
Liu, Du, Yu, Zheng, Hu, Wu, Xia, Zhuang, Wang (bib69) 2023; 62
Bondesgaard, Broge, Mamakhel, Bremholm, Iversen (bib115) 2019; 29
Von Rohr, Winiarski, Tao, Klimczuk, Cava (bib7) 2016; 113
Yang, Li, Xu, Tan, Wang, Li (bib68) 2022; 61
Yao, Huang, Xie, Lacey, Jacob, Xie, Chen, Nie, Pu, Rehwoldt (bib100) 2018; 359
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib3) 2014; 61
Chen, Luo, Sun, Wu, Zhou, Liao, Tang, Fan, Huang, Quan (bib50) 2022; 34
Cantor, Kim, Warren (bib29) 2002
Mori, Hashimoto, Kamiuchi, Yoshida, Kobayashi, Yamashita (bib125) 2021; 12
Rao, Deng, Fan, Luo, Deng, Li, Shen, Tian (bib51) 2022; 13
Gludovatz, Hohenwarter, Thurston, Bei, Wu, George, Ritchie (bib12) 2016; 7
Zhao, Ren, Zhang, Liu, Cai, Zhang (bib41) 2019; 491
Tsai, Tsai, Yeh (bib34) 2013; 61
Song, Yang, Yang, He, Hu, Yuan, Dravid, Zachariah, Saidi, Liu, Shahbazian-Yassar (bib43) 2021; 21
Wang, Zheng, Li, Ye, Chen, Ye, Zhang, Li, Zhou, Fu (bib67) 2022; 61
Cantor, Chang, Knight, Vincent (bib5) 2004; 375-377
Wang, Cheng, Jin, He, Zhang, Ren, Li, Wang, Li (bib82) 2022; 61
Miracle, Senkov (bib25) 2017; 122
Letzel, Reich, dos Santos Rolo, Kanitz, Hoppius, Rack, Olbinado, Ostendorf, Gökce, Plech, Barcikowski (bib113) 2019; 35
Zuo, Yan, Zhao, Long, Shi, Cheng, Liu, Hu (bib142) 2022; 10
Chen, Li, Jiang, Yang, Zhu, Wang, Ou, Zhuang, Chen, Sun (bib81) 2022; 61
Rao, Springer, Ponge, Li (bib147) 2022; 21
Zheng, Li, Wang, Wang, Li (bib64) 2022; 15
Wang, Li, Li, Shao, Jia, Shen (bib132) 2022; 15
Han, Wu, Du, Pi, Yan, Hong (bib55) 2021; 58
Ge, He, Chen, Ju, Zhang, Chao, Wang, You, Lin, Wang (bib76) 2016; 138
Jin, Lyu, Zhao, Li, Chen, Lin, Xie, Liu, Kai, Qiu (bib129) 2021; 33
Sharma, Katiyar, Parui, Das, Kumar, Tiwary, Singh, Halder, Biswas (bib18) 2022; 15
Hummel (bib1) 2004
Zhang, Walsh, Yu, Zhang (bib74) 2021; 50
Wang, Jiang, Fan, Niu, Zhang, Huang, Gao, Li, Gao, Liu (bib61) 2021; 13
George, Curtin, Tasan (bib9) 2020; 188
Jia, Nomoto, Wang, Kong, Sun, Zhang, Liang, Lu, Kruzic (bib95) 2021; 31
Wu, Zheng, Cui, Jiang, Wang, Qu, Chen, Lin, Li, Han (bib57) 2019; 10
Li, Huang, Chen, Lai, Fu, Zhang, Zhang, Bai, Liu (bib143) 2023; 35
Jin, Lv, Jia, Liu, Li, Chen, Lin, Xie, Liu, Sun, Qiu (bib127) 2019; 15
Ye, Wang, Lu, Liu, Yang (bib4) 2016; 19
Wang, Chen, Wang, Wang, Mao (bib84) 2022; 61
Li, Han, Zhao, Qi, Zhang, Yu, Cai, Li, Lai, Huang, Wang (bib136) 2020; 11
Zhu, Zhang, Huang, Xiao, Zhao, Zhang, Song, Tang, Li, He (bib153) 2022; 9
Li, Pradeep, Deng, Raabe, Tasan (bib11) 2016; 534
Nakaya, Furukawa (bib39) 2022
Xin, Li, Qian, Zhu, Yuan, Jiang, Guo, Wang (bib114) 2020; 10
Jung, Han, Kim, Hidayati, Rhyee, Lee, Kang, Choi, Jeon, Suk, Park (bib8) 2022; 13
Xu, Zhang, Liu, Do-Thanh, Chen, Xu, Lin, Jiao, Wang, Wang (bib118) 2020; 11
Chen, Zhang, Gao, Huang, Qin, Wang, Zhao, Peng, Zhang, Liu (bib96) 2021; 33
Zhu, Zhu, Hao, Sun, Lu, Wang, Ma, Dong, Du (bib139) 2022; 431
Sheng, Luo, Alamgir, Bai, Ma (bib52) 2006; 439
Xie, Yao, Huang, Liu, Zhang, Li, Wang, Shahbazian-Yassar, Hu, Wang (bib19) 2019; 10
Sure, Sri Maha Vishnu, Kim, Schwandt (bib122) 2020; 59
Hu, Jin, Sha (bib94) 2022; 123
Hao, Zhuang, Cao, Gao, Wang, Lai, Lu, Ma, Dong, Liu (bib137) 2022; 13
Nakaya, Hayashida, Asakura, Takakusagi, Yasumura, Shimizu, Furukawa (bib53) 2022; 144
Song, Yang, Rabbani, Yang, He, Hu, Yuan, Ghildiyal, Dravid, Zachariah (bib42) 2020; 14
Cantor (bib30) 2014; 16
Yao, Huang, Li, Wang, Liu, Stein, Mao, Gao, Jiao, Dong (bib21) 2020; 117
Feng, Ning, Song, Shang, Zhang, Ding, Gao, Chu, Xia (bib60) 2021; 143
Feng, Chen, Pikhitsa, Jung, Yang, Choi (bib116) 2020; 3
Lin, Zhou, Tai, Li, Han, Yu (bib87) 2021; 4
Shi, Liu, Li, Li, Zhou, Yuan, Jiang, Fu, Yao (bib101) 2022; 2
Veronesi, Rosa, Colombini, Leonelli (bib106) 2015; 3
Chen, Zhan, Bueno, Shafei, Ashberry, Chatterjee, Xu, Tang, Skrabalak (bib123) 2021; 6
Marple, Badger, Hung, Gan, Kovnir, Sen (bib89) 2017; 56
Liu, Zhang, Okejiri, Yang, Zhou, Dai (bib108) 2019; 6
Li, Yang, Wang (bib66) 2022; 61
Li, Wang (bib63) 2022; 15
Barcikowski, Compagnini (bib112) 2013; 15
Körmann, Ma, Belyea, Lucas, Miller, Grabowski, Sluiter (bib146) 2015; 107
Wilson (bib27) 1970; 21
Cui, Zhang, Cao, Gu, Du, Li, Yang (bib40) 2022; 2
McCormick, Schaak (bib124) 2021; 143
Yu, Xia, Wang, Wu, Fu, Ma, Lin, Wang, Yue, Kang (bib17) 2022; 15
Zhang, Zhao, Jin, Xue, Velisa, Bei, Huang, Ko, Pagan, Neuefeind (bib48) 2017; 118
Sun, Wang, Chen, Fujisawa, Holder, Miller, Crespi, Terrones, Schaak (bib88) 2020; 12
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib6) 2004; 6
Zheng, Yang, Xu, Wang, Wu, Zhang, Dou, Sun, Wang, Li (bib78) 2022; 61
Löffler, Ludwig, Rossmeisl, Schuhmann (bib134) 2021; 60
Gao, Hao, Huang, Yuan, Han, Lei, Zhang, Shahbazian-Yassar, Lu (bib102) 2020; 11
Löffler, Savan, Meyer, Meischein, Strotkötter, Ludwig, Schuhmann (bib23) 2020; 59
George, Raabe, Ritchie (bib10) 2019; 4
Liu, Qin, Kang, Ma, Chen, Huang, Zhang, Liu, Lu, Li, Zhao (bib138) 2022; 435
Rickman, Chan, Harmer, Smeltzer, Marvel, Roy, Balasubramanian (bib150) 2019; 10
Zhang, Zhao, Ding, Chong, Jia, Ophus, Asta, Ritchie, Minor (bib49) 2020; 581
Jia, Yang, Sun, Zhao, Li, Luan, Lyu, Zhang, Kruzic, Kai (bib92) 2020; 32
Johny, Li, Kamp, Prymak, Liang, Krekeler, Ritter, Kienle, Rehbock, Barcikowski, Reichenberger (bib111) 2022; 15
Yang, Wang, Yin, Liu, Chen, Yan, Wang, Xu, Chu, Cui (bib54) 2021; 374
Zhang, Zhu, Chen, Sun, Wang (bib80) 2023; 62
Chao, Luo, Chen, Jiang, Ge, Lin, Wu, Wang, Hu, Zhuang (bib75) 2017; 56
Tao, Sun, Zhou, Luo, Lv, Li, Zhang, Gu, Huang, Guo (bib90) 2022; 144
Gedanken (bib109) 2004; 11
Wu, Han, Cai, Yin, Cui, Zheng, Li, Chen, Wang, Hong (bib56) 2022; 13
Zhu, Xiong, Wang (bib62) 2022; 15
Rao, Tung, Xie, Wei, Zhang, Ferrari, Klaver, Körmann, Sukumar, Kwiatkowski da Silva (bib149) 2022; 378
Wei, Liao, Wu, Yang, He, Biesold-McGee, Liang, Yen, Tang, Yeh (bib15) 2020; 32
Li, Ye, Yang, Wang, Yang, Pan, Tang, Wang, Li (bib73) 2022; 61
Yang, Zhou, Zhu, Yuan, Chang, Kim, Pham, Rana, Tian, Yao (bib93) 2021; 592
Xu, Zhang, Li, Mao, Wang, Song, He (bib99) 2019; 28
Marques, Balcerzak, Winkelmann, Zepon, Felderhoff (bib16) 2021; 14
Osetsky, Béland, Barashev, Zhang (bib35) 2018; 22
Ding, Zhang, Chen, Fu, Chen, Chen, Gu, Wei, Bei, Gao (bib33) 2019; 574
Rajeeva, Kunal, Kollipara, Acharya, Joe, Ide, Jarvis, Liu, Bahadur, Humphrey, Zheng (bib104) 2019; 1
Huang, Zhang, Wu, Zhang, Peng, Cao, Zhang, Li, Huang (bib37) 2020; 8
Mao, Chen, Chen (bib148) 2017; 38
Zhang, Tao, An, Zhang, Meng, Zheng, Wang, Li, Du, Zhang (bib71) 2022; 61
Hou, Dai, Deng, Zhao, Jing, Wang, Yu, Gao, Tian, Dai (bib83) 2022; 61
Ding, Yu, Asta, Ritchie (bib151) 2018; 115
Chen, Aitken, Pattamatta, Wu, Yu, Srolovitz, Liaw, Zhang (bib31) 2021; 12
Zhan, Xu, Bu, Zhu, Feng, Yang, Zhang, Yang, Huang, Shao, Huang (bib85) 2021; 12
Jia, Yang, Wang, Kong, Yao, Wang, Sun, Shen, Kruzic (bib131) 2022; 4
He, Ding, Ye, Yang (bib2) 2017; 69
Santodonato, Zhang, Feygenson, Parish, Gao, Weber, Neuefeind, Tang, Liaw (bib59) 2015; 6
Zhuang, Xia, Huang, Zhu, Li, Ye, Xia, Yu, Lang, Zhu (bib77) 2023; 62
Pei (bib47) 2018; 737
Qiu, Fang, Wen, Liu, Xie, Liu, Sun (bib128) 2019; 7
Nong, Gu, Liu, Wang, Zhu (bib44) 2022; 151
Batchelor, Pedersen, Winther, Castelli, Jacobsen, Rossmeisl (bib135) 2019; 3
Khorshidi, Violet, Hashemi, Peterson (bib38) 2018; 1
Tsai, Yeh (bib36) 2014; 2
Yu, Cantwell, Gao, Yin, Zhang, Zhou, Rohrer, Widom, Luo, Harmer (bib46) 2017; 358
Qiao, Saray, Wang, Xu, Chen, Huang, Chen, Zhong, Dong, Hong (bib103) 2021; 15
Glasscott, Pendergast, Goines, Bishop, Hoang, Renault, Dick (bib105) 2019; 10
Li, Lai, Li, Wang (bib28) 2021; 31
Okejiri, Yang, Chen, Do-Thanh, Wang, Yang, Dai (bib110) 2022; 15
Ji, Xu, Xu, Wang, Ge, Hu, Sun, Duan (bib79) 2022; 61
Fultz (bib26) 2010; 55
Yao, Liu, Xie, Huang, Li, Morris, Finfrock, Zhou, Jiao, Gao (bib20) 2020; 6
Zaid, Tanaka, Liao, Goorsky, Kodambaka, Kindlund (bib97) 2021; 21
Veronesi, Colombini, Rosa, Leonelli, Rosi (bib107) 2016; 162
Löffler, Meyer, Savan, Wilde, Garzón Manjón, Chen, Ventosa, Scheu, Ludwig, Schuhmann (bib22) 2018; 8
Zhang, Wang, Zou, Lin, Ma, Yin, Li, Xu, Jia, Li (bib24) 2022; 610
Chaudhary, Chaudhary, Banerjee, Ramanujan (bib14) 2021; 49
Wang, Huang, Chen, Wang, Yan, Yuan, Song, Zhang, Sun (bib133) 2022; 5
Zhu, Jiang, Yang, Wang, Fang, Wang, Xie, Qiu, Luo (bib91) 2022; 34
Sun, Zhang, Zhang, Li, Gu, Guo (bib121) 2023; 6
Zou, Ma, Spolenak (bib13) 2015; 6
Pedersen, Batchelor, Bagger, Rossmeisl (bib145) 2020; 10
Ye (10.1016/j.matt.2023.03.034_bib4) 2016; 19
Cui (10.1016/j.matt.2023.03.034_bib70) 2022; 61
Zhang (10.1016/j.matt.2023.03.034_bib3) 2014; 61
Zheng (10.1016/j.matt.2023.03.034_bib64) 2022; 15
Cantor (10.1016/j.matt.2023.03.034_bib5) 2004; 375-377
Zhu (10.1016/j.matt.2023.03.034_bib153) 2022; 9
Khorshidi (10.1016/j.matt.2023.03.034_bib38) 2018; 1
Barcikowski (10.1016/j.matt.2023.03.034_bib112) 2013; 15
Rajeeva (10.1016/j.matt.2023.03.034_bib104) 2019; 1
Jin (10.1016/j.matt.2023.03.034_bib129) 2021; 33
Zhuang (10.1016/j.matt.2023.03.034_bib77) 2023; 62
Veronesi (10.1016/j.matt.2023.03.034_bib107) 2016; 162
Huang (10.1016/j.matt.2023.03.034_bib45) 2018; 34
Wu (10.1016/j.matt.2023.03.034_bib56) 2022; 13
Shi (10.1016/j.matt.2023.03.034_bib101) 2022; 2
Minamihara (10.1016/j.matt.2023.03.034_bib126) 2022; 144
Löffler (10.1016/j.matt.2023.03.034_bib23) 2020; 59
Miracle (10.1016/j.matt.2023.03.034_bib25) 2017; 122
Santodonato (10.1016/j.matt.2023.03.034_bib59) 2015; 6
Ji (10.1016/j.matt.2023.03.034_bib79) 2022; 61
Feng (10.1016/j.matt.2023.03.034_bib116) 2020; 3
Marques (10.1016/j.matt.2023.03.034_bib16) 2021; 14
Zhang (10.1016/j.matt.2023.03.034_bib49) 2020; 581
Liu (10.1016/j.matt.2023.03.034_bib72) 2021; 60
Wei (10.1016/j.matt.2023.03.034_bib15) 2020; 32
Batchelor (10.1016/j.matt.2023.03.034_bib135) 2019; 3
Perim (10.1016/j.matt.2023.03.034_bib58) 2016; 7
Li (10.1016/j.matt.2023.03.034_bib66) 2022; 61
Zhan (10.1016/j.matt.2023.03.034_bib85) 2021; 12
Xu (10.1016/j.matt.2023.03.034_bib99) 2019; 28
Song (10.1016/j.matt.2023.03.034_bib42) 2020; 14
Mei (10.1016/j.matt.2023.03.034_bib140) 2022; 12
Qiu (10.1016/j.matt.2023.03.034_bib128) 2019; 7
Jia (10.1016/j.matt.2023.03.034_bib131) 2022; 4
Okejiri (10.1016/j.matt.2023.03.034_bib110) 2022; 15
Li (10.1016/j.matt.2023.03.034_bib136) 2020; 11
Wang (10.1016/j.matt.2023.03.034_bib132) 2022; 15
Li (10.1016/j.matt.2023.03.034_bib63) 2022; 15
Glasscott (10.1016/j.matt.2023.03.034_bib105) 2019; 10
Lu (10.1016/j.matt.2023.03.034_bib152) 2020; 3
Wilson (10.1016/j.matt.2023.03.034_bib27) 1970; 21
Yeh (10.1016/j.matt.2023.03.034_bib6) 2004; 6
Pedersen (10.1016/j.matt.2023.03.034_bib145) 2020; 10
Cantor (10.1016/j.matt.2023.03.034_bib29) 2002
Li (10.1016/j.matt.2023.03.034_bib143) 2023; 35
Nakaya (10.1016/j.matt.2023.03.034_bib53) 2022; 144
Lin (10.1016/j.matt.2023.03.034_bib87) 2021; 4
Zuo (10.1016/j.matt.2023.03.034_bib142) 2022; 10
Nakaya (10.1016/j.matt.2023.03.034_bib39) 2022
Zhu (10.1016/j.matt.2023.03.034_bib91) 2022; 34
Hu (10.1016/j.matt.2023.03.034_bib94) 2022; 123
Sharma (10.1016/j.matt.2023.03.034_bib18) 2022; 15
Sheng (10.1016/j.matt.2023.03.034_bib52) 2006; 439
Wang (10.1016/j.matt.2023.03.034_bib133) 2022; 5
Nellaiappan (10.1016/j.matt.2023.03.034_bib144) 2020; 10
Xu (10.1016/j.matt.2023.03.034_bib118) 2020; 11
McCormick (10.1016/j.matt.2023.03.034_bib124) 2021; 143
Dobbelstein (10.1016/j.matt.2023.03.034_bib98) 2019; 25
Jin (10.1016/j.matt.2023.03.034_bib127) 2019; 15
George (10.1016/j.matt.2023.03.034_bib10) 2019; 4
Li (10.1016/j.matt.2023.03.034_bib73) 2022; 61
Zhang (10.1016/j.matt.2023.03.034_bib80) 2023; 62
Pei (10.1016/j.matt.2023.03.034_bib47) 2018; 737
Wu (10.1016/j.matt.2023.03.034_bib57) 2019; 10
Li (10.1016/j.matt.2023.03.034_bib28) 2021; 31
Hou (10.1016/j.matt.2023.03.034_bib119) 2021; 12
Fultz (10.1016/j.matt.2023.03.034_bib26) 2010; 55
Letzel (10.1016/j.matt.2023.03.034_bib113) 2019; 35
Qiao (10.1016/j.matt.2023.03.034_bib103) 2021; 15
Tsai (10.1016/j.matt.2023.03.034_bib34) 2013; 61
Xiong (10.1016/j.matt.2023.03.034_bib65) 2021; 14
Mori (10.1016/j.matt.2023.03.034_bib125) 2021; 12
Jia (10.1016/j.matt.2023.03.034_bib95) 2021; 31
Liu (10.1016/j.matt.2023.03.034_bib69) 2023; 62
George (10.1016/j.matt.2023.03.034_bib9) 2020; 188
Zou (10.1016/j.matt.2023.03.034_bib13) 2015; 6
Li (10.1016/j.matt.2023.03.034_bib11) 2016; 534
Rao (10.1016/j.matt.2023.03.034_bib149) 2022; 378
Zaid (10.1016/j.matt.2023.03.034_bib97) 2021; 21
Yu (10.1016/j.matt.2023.03.034_bib46) 2017; 358
Sure (10.1016/j.matt.2023.03.034_bib122) 2020; 59
Rao (10.1016/j.matt.2023.03.034_bib147) 2022; 21
Wang (10.1016/j.matt.2023.03.034_bib84) 2022; 61
Körmann (10.1016/j.matt.2023.03.034_bib146) 2015; 107
Yu (10.1016/j.matt.2023.03.034_bib17) 2022; 15
Wang (10.1016/j.matt.2023.03.034_bib61) 2021; 13
Bondesgaard (10.1016/j.matt.2023.03.034_bib115) 2019; 29
Chaudhary (10.1016/j.matt.2023.03.034_bib14) 2021; 49
Chen (10.1016/j.matt.2023.03.034_bib81) 2022; 61
Mao (10.1016/j.matt.2023.03.034_bib148) 2017; 38
Yang (10.1016/j.matt.2023.03.034_bib54) 2021; 374
Yang (10.1016/j.matt.2023.03.034_bib93) 2021; 592
Gludovatz (10.1016/j.matt.2023.03.034_bib12) 2016; 7
Zhang (10.1016/j.matt.2023.03.034_bib74) 2021; 50
Von Rohr (10.1016/j.matt.2023.03.034_bib7) 2016; 113
Cantor (10.1016/j.matt.2023.03.034_bib30) 2014; 16
Zhang (10.1016/j.matt.2023.03.034_bib48) 2017; 118
Sun (10.1016/j.matt.2023.03.034_bib121) 2023; 6
Feng (10.1016/j.matt.2023.03.034_bib60) 2021; 143
Zhang (10.1016/j.matt.2023.03.034_bib71) 2022; 61
Jin (10.1016/j.matt.2023.03.034_bib130) 2020; 2
Yao (10.1016/j.matt.2023.03.034_bib100) 2018; 359
Jiang (10.1016/j.matt.2023.03.034_bib86) 2021; 143
Xin (10.1016/j.matt.2023.03.034_bib114) 2020; 10
Hummel (10.1016/j.matt.2023.03.034_bib1) 2004
Yao (10.1016/j.matt.2023.03.034_bib21) 2020; 117
Gao (10.1016/j.matt.2023.03.034_bib102) 2020; 11
Rickman (10.1016/j.matt.2023.03.034_bib150) 2019; 10
He (10.1016/j.matt.2023.03.034_bib2) 2017; 69
Huang (10.1016/j.matt.2023.03.034_bib37) 2020; 8
Marple (10.1016/j.matt.2023.03.034_bib89) 2017; 56
Chen (10.1016/j.matt.2023.03.034_bib123) 2021; 6
Johny (10.1016/j.matt.2023.03.034_bib111) 2022; 15
Nong (10.1016/j.matt.2023.03.034_bib44) 2022; 151
Chen (10.1016/j.matt.2023.03.034_bib50) 2022; 34
Hou (10.1016/j.matt.2023.03.034_bib83) 2022; 61
Qiu (10.1016/j.matt.2023.03.034_bib141) 2019; 1
Wang (10.1016/j.matt.2023.03.034_bib67) 2022; 61
Gedanken (10.1016/j.matt.2023.03.034_bib109) 2004; 11
Yang (10.1016/j.matt.2023.03.034_bib68) 2022; 61
Tsai (10.1016/j.matt.2023.03.034_bib36) 2014; 2
Veronesi (10.1016/j.matt.2023.03.034_bib106) 2015; 3
Xie (10.1016/j.matt.2023.03.034_bib19) 2019; 10
Zhang (10.1016/j.matt.2023.03.034_bib24) 2022; 610
Zhao (10.1016/j.matt.2023.03.034_bib120) 2021; 11
Ding (10.1016/j.matt.2023.03.034_bib151) 2018; 115
Zheng (10.1016/j.matt.2023.03.034_bib78) 2022; 61
Rao (10.1016/j.matt.2023.03.034_bib51) 2022; 13
Zhu (10.1016/j.matt.2023.03.034_bib139) 2022; 431
Ding (10.1016/j.matt.2023.03.034_bib33) 2019; 574
Ge (10.1016/j.matt.2023.03.034_bib76) 2016; 138
Löffler (10.1016/j.matt.2023.03.034_bib22) 2018; 8
Yao (10.1016/j.matt.2023.03.034_bib20) 2020; 6
Chen (10.1016/j.matt.2023.03.034_bib96) 2021; 33
Cui (10.1016/j.matt.2023.03.034_bib40) 2022; 2
Wang (10.1016/j.matt.2023.03.034_bib82) 2022; 61
Chao (10.1016/j.matt.2023.03.034_bib75) 2017; 56
Liu (10.1016/j.matt.2023.03.034_bib108) 2019; 6
Liu (10.1016/j.matt.2023.03.034_bib138) 2022; 435
Sun (10.1016/j.matt.2023.03.034_bib88) 2020; 12
Liu (10.1016/j.matt.2023.03.034_bib32) 2021; 16
Jung (10.1016/j.matt.2023.03.034_bib8) 2022; 13
Chen (10.1016/j.matt.2023.03.034_bib31) 2021; 12
Han (10.1016/j.matt.2023.03.034_bib55) 2021; 58
Osetsky (10.1016/j.matt.2023.03.034_bib35) 2018; 22
Zhu (10.1016/j.matt.2023.03.034_bib62) 2022; 15
Hao (10.1016/j.matt.2023.03.034_bib137) 2022; 13
Song (10.1016/j.matt.2023.03.034_bib43) 2021; 21
Tao (10.1016/j.matt.2023.03.034_bib90) 2022; 144
Jia (10.1016/j.matt.2023.03.034_bib92) 2020; 32
Zhao (10.1016/j.matt.2023.03.034_bib41) 2019; 491
Lv (10.1016/j.matt.2023.03.034_bib117) 2016; 6
Löffler (10.1016/j.matt.2023.03.034_bib134) 2021; 60
References_xml – volume: 61
  start-page: e202209849
  year: 2022
  ident: bib79
  article-title: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  start-page: e202215136
  year: 2023
  ident: bib80
  article-title: Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 107
  start-page: 142404
  year: 2015
  ident: bib146
  article-title: Treasure maps” for magnetic high-entropy-alloys from theory and experiment
  publication-title: Appl. Phys. Lett.
– volume: 378
  start-page: 78
  year: 2022
  end-page: 85
  ident: bib149
  article-title: Machine learning-enabled high-entropy alloy discovery
  publication-title: Science
– volume: 61
  start-page: e202114450
  year: 2022
  ident: bib81
  article-title: MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 2169
  year: 2020
  end-page: 2176
  ident: bib145
  article-title: High-entropy alloys as catalysts for the CO2 and CO reduction reactions
  publication-title: ACS Catal.
– volume: 21
  start-page: 247
  year: 1970
  end-page: 265
  ident: bib27
  article-title: The use of the concept of entropy in system modelling
  publication-title: Oper. Res. Q.
– volume: 123
  start-page: 100854
  year: 2022
  ident: bib94
  article-title: Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis
  publication-title: Prog. Mater. Sci.
– volume: 1
  start-page: 526
  year: 2019
  end-page: 533
  ident: bib141
  article-title: Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: ACS Mater. Lett.
– start-page: 74
  year: 2004
  end-page: 101
  ident: bib1
  article-title: Alloys and compounds
  publication-title: Understanding Materials Science
– volume: 113
  start-page: E7144
  year: 2016
  end-page: E7150
  ident: bib7
  article-title: Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 4953
  year: 2021
  ident: bib31
  article-title: Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering
  publication-title: Nat. Commun.
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  ident: bib3
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
– volume: 61
  start-page: 4887
  year: 2013
  end-page: 4897
  ident: bib34
  article-title: Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys
  publication-title: Acta Mater.
– volume: 32
  start-page: 2000385
  year: 2020
  ident: bib92
  article-title: A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution
  publication-title: Adv. Mater.
– volume: 50
  start-page: 569
  year: 2021
  end-page: 588
  ident: bib74
  article-title: Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 11938
  year: 2020
  end-page: 11947
  ident: bib37
  article-title: Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst
  publication-title: J. Mater. Chem.
– volume: 61
  start-page: e202209749
  year: 2022
  ident: bib73
  article-title: A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 231
  year: 2021
  end-page: 252
  ident: bib14
  article-title: Accelerated and conventional development of magnetic high entropy alloys
  publication-title: Mater. Today
– volume: 21
  start-page: 1742
  year: 2021
  end-page: 1748
  ident: bib43
  article-title: Revealing high-temperature reduction dynamics of high-entropy alloy nanoparticles via in situ transmission electron microscopy
  publication-title: Nano Lett.
– volume: 38
  start-page: 353
  year: 2017
  end-page: 368
  ident: bib148
  article-title: TCHEA1: a thermodynamic database not limited for “high entropy” alloys
  publication-title: J. Phase Equilibria Diffus.
– volume: 61
  start-page: e202210789
  year: 2022
  ident: bib84
  article-title: P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 21
  start-page: 101326
  year: 2022
  ident: bib147
  article-title: Combinatorial development of multicomponent Invar alloys via rapid alloy prototyping
  publication-title: Materialia
– volume: 10
  start-page: 4011
  year: 2019
  ident: bib19
  article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts
  publication-title: Nat. Commun.
– volume: 15
  start-page: 1904180
  year: 2019
  ident: bib127
  article-title: Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments
  publication-title: Small
– volume: 61
  start-page: e202200366
  year: 2022
  ident: bib68
  article-title: Regulating the tip effect on single-atom and cluster catalysts: forming reversible oxygen species with high efficiency in chlorine evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 359
  start-page: 1489
  year: 2018
  end-page: 1494
  ident: bib100
  article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles
  publication-title: Science
– volume: 1
  start-page: 263
  year: 2018
  end-page: 268
  ident: bib38
  article-title: How strain can break the scaling relations of catalysis
  publication-title: Nat. Catal.
– volume: 15
  start-page: 4799
  year: 2022
  end-page: 4806
  ident: bib18
  article-title: Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER)
  publication-title: Nano Res.
– volume: 61
  start-page: e202115219
  year: 2022
  ident: bib70
  article-title: Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 14928
  year: 2021
  end-page: 14937
  ident: bib103
  article-title: Scalable synthesis of high entropy alloy nanoparticles by microwave heating
  publication-title: ACS Nano
– start-page: 27
  year: 2002
  end-page: 32
  ident: bib29
  article-title: Novel Multicomponent Amorphous Alloys
– volume: 5
  start-page: 17
  year: 2022
  ident: bib133
  article-title: Recent progress in high entropy alloys for electrocatalysts
  publication-title: Electrochem. Energy Rev.
– volume: 9
  start-page: nwac190
  year: 2022
  ident: bib153
  article-title: An all-round AI-Chemist with a scientific mind
  publication-title: Natl. Sci. Rev.
– volume: 15
  start-page: 4807
  year: 2022
  end-page: 4819
  ident: bib111
  article-title: Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts
  publication-title: Nano Res.
– volume: 60
  start-page: 22522
  year: 2021
  end-page: 22528
  ident: bib72
  article-title: Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 1682
  year: 2021
  end-page: 1697
  ident: bib61
  article-title: Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices
  publication-title: Viruses
– volume: 7
  start-page: 6499
  year: 2019
  end-page: 6506
  ident: bib128
  article-title: Nanoporous high-entropy alloys for highly stable and efficient catalysts
  publication-title: J. Mater. Chem.
– volume: 13
  start-page: 2662
  year: 2022
  ident: bib137
  article-title: Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts
  publication-title: Nat. Commun.
– volume: 2
  start-page: 107
  year: 2014
  end-page: 123
  ident: bib36
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
– volume: 11
  start-page: 2016
  year: 2020
  ident: bib102
  article-title: Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis
  publication-title: Nat. Commun.
– volume: 431
  start-page: 133251
  year: 2022
  ident: bib139
  article-title: High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution
  publication-title: Chem. Eng. J.
– volume: 62
  start-page: e202212653
  year: 2023
  ident: bib69
  article-title: Tuning mass transport in electrocatalysis down to sub-5nm through nanoscale grade separation
  publication-title: Angew. Chem. Int. Ed.
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib25
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– volume: 35
  start-page: 2209242
  year: 2023
  ident: bib143
  article-title: High-entropy alloy aerogels: a new platform for carbon dioxide reduction
  publication-title: Adv. Mater.
– volume: 439
  start-page: 419
  year: 2006
  end-page: 425
  ident: bib52
  article-title: Atomic packing and short-to-medium-range order in metallic glasses
  publication-title: Nature
– year: 2022
  ident: bib39
  article-title: Catalysis of alloys: classification, principles, and design for a variety of materials and reactions
  publication-title: Chem. Rev.
– volume: 737
  start-page: 132
  year: 2018
  end-page: 150
  ident: bib47
  article-title: An overview of modeling the stacking faults in lightweight and high-entropy alloys: theory and application
  publication-title: Mater. Sci. Eng.
– volume: 8
  start-page: 1802269
  year: 2018
  ident: bib22
  article-title: Discovery of a multinary noble metal–free oxygen reduction catalyst
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1698
  year: 2020
  end-page: 1706
  ident: bib130
  article-title: Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn–air batteries
  publication-title: ACS Mater. Lett.
– volume: 19
  start-page: 349
  year: 2016
  end-page: 362
  ident: bib4
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
– volume: 15
  start-page: 3022
  year: 2013
  end-page: 3026
  ident: bib112
  article-title: Advanced nanoparticle generation and excitation by lasers in liquids
  publication-title: Phys. Chem. Chem. Phys.
– volume: 61
  start-page: e202205946
  year: 2022
  ident: bib78
  article-title: Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 491
  start-page: 165574
  year: 2019
  ident: bib41
  article-title: CoCrxCuFeMnNi high-entropy alloy powders with superior soft magnetic properties
  publication-title: J. Magn. Magn Mater.
– volume: 6
  start-page: 5964
  year: 2015
  ident: bib59
  article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy
  publication-title: Nat. Commun.
– volume: 34
  start-page: 417
  year: 2018
  end-page: 420
  ident: bib45
  article-title: Alloy design by dislocation engineering
  publication-title: J. Mater. Sci. Technol.
– volume: 7
  start-page: 12315
  year: 2016
  ident: bib58
  article-title: Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases
  publication-title: Nat. Commun.
– volume: 15
  start-page: 8751
  year: 2022
  end-page: 8759
  ident: bib132
  article-title: Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction
  publication-title: Nano Res.
– volume: 16
  start-page: 100139
  year: 2021
  ident: bib32
  article-title: Chemical short-range order in Fe50Mn30Co10Cr10 high-entropy alloy
  publication-title: Mater. Today Nano
– volume: 59
  start-page: 11830
  year: 2020
  end-page: 11835
  ident: bib122
  article-title: Facile electrochemical synthesis of nanoscale (TiNbTaZrHf) C high-entropy carbide powder
  publication-title: Angew. Chem. Int. Ed.
– volume: 118
  start-page: 205501
  year: 2017
  ident: bib48
  article-title: Local structure and short-range order in a NiCoCr solid solution alloy
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 34213
  year: 2016
  ident: bib117
  article-title: Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions
  publication-title: Sci. Rep.
– volume: 31
  start-page: 2101586
  year: 2021
  ident: bib95
  article-title: A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions
  publication-title: Adv. Funct. Mater.
– volume: 117
  start-page: 6316
  year: 2020
  end-page: 6322
  ident: bib21
  article-title: High-throughput, combinatorial synthesis of multimetallic nanoclusters
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 151
  start-page: 107724
  year: 2022
  ident: bib44
  article-title: Formation and migration behavior of vacancy in multi-component alloys
  publication-title: Intermetallics
– volume: 62
  start-page: e202212335
  year: 2023
  ident: bib77
  article-title: Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification
  publication-title: Angew. Chem. Int. Ed.
– volume: 375-377
  start-page: 213
  year: 2004
  end-page: 218
  ident: bib5
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng., A
– volume: 1
  start-page: 1606
  year: 2019
  end-page: 1617
  ident: bib104
  article-title: Accumulation-driven unified spatiotemporal synthesis and structuring of immiscible metallic nanoalloys
  publication-title: Matter
– volume: 534
  start-page: 227
  year: 2016
  end-page: 230
  ident: bib11
  article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off
  publication-title: Nature
– volume: 115
  start-page: 8919
  year: 2018
  end-page: 8924
  ident: bib151
  article-title: Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 15131
  year: 2020
  end-page: 15143
  ident: bib42
  article-title: In situ oxidation studies of high-entropy alloy nanoparticles
  publication-title: ACS Nano
– volume: 61
  start-page: e202201655
  year: 2022
  ident: bib83
  article-title: Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst
  publication-title: Angew. Chem. Int. Ed.
– volume: 574
  start-page: 223
  year: 2019
  end-page: 227
  ident: bib33
  article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys
  publication-title: Nature
– volume: 15
  start-page: 6888
  year: 2022
  end-page: 6923
  ident: bib63
  article-title: Understanding the structure-performance relationship of active sites at atomic scale
  publication-title: Nano Res.
– volume: 12
  start-page: 3884
  year: 2021
  ident: bib125
  article-title: Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation
  publication-title: Nat. Commun.
– volume: 55
  start-page: 247
  year: 2010
  end-page: 352
  ident: bib26
  article-title: Vibrational thermodynamics of materials
  publication-title: Prog. Mater. Sci.
– volume: 15
  start-page: 5792
  year: 2022
  end-page: 5815
  ident: bib62
  article-title: Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction
  publication-title: Nano Res.
– volume: 10
  start-page: 2650
  year: 2019
  ident: bib105
  article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis
  publication-title: Nat. Commun.
– volume: 14
  start-page: 5191
  year: 2021
  end-page: 5227
  ident: bib16
  article-title: Review and outlook on high-entropy alloys for hydrogen storage
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1389
  year: 2022
  end-page: 1396
  ident: bib131
  article-title: An ultrafast and stable high-entropy metallic glass electrode for alkaline hydrogen evolution reaction
  publication-title: ACS Mater. Lett.
– volume: 374
  start-page: 459
  year: 2021
  end-page: 464
  ident: bib54
  article-title: Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells
  publication-title: Science
– volume: 15
  start-page: 7806
  year: 2022
  end-page: 7839
  ident: bib64
  article-title: Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis
  publication-title: Nano Res.
– volume: 16
  start-page: 4749
  year: 2014
  end-page: 4768
  ident: bib30
  article-title: Multicomponent and high entropy alloys
  publication-title: Entropy
– volume: 22
  start-page: 65
  year: 2018
  end-page: 74
  ident: bib35
  article-title: On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 6
  start-page: 1900015
  year: 2019
  ident: bib108
  article-title: Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions
  publication-title: Adv. Mater. Interfaces
– volume: 10
  start-page: 14857
  year: 2022
  end-page: 14865
  ident: bib142
  article-title: A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation
  publication-title: J. Mater. Chem.
– volume: 6
  year: 2020
  ident: bib20
  article-title: Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts
  publication-title: Sci. Adv.
– volume: 59
  start-page: 5844
  year: 2020
  end-page: 5850
  ident: bib23
  article-title: Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves
  publication-title: Angew. Chem. Int. Ed.
– volume: 35
  start-page: 3038
  year: 2019
  end-page: 3047
  ident: bib113
  article-title: Time and mechanism of nanoparticle functionalization by macromolecular ligands during pulsed laser ablation in liquids
  publication-title: Langmuir
– volume: 6
  start-page: 193
  year: 2023
  end-page: 205
  ident: bib121
  article-title: A general approach to high-entropy metallic nanowire electrocatalysts
  publication-title: Matter
– volume: 3
  start-page: 182
  year: 2015
  end-page: 197
  ident: bib106
  article-title: Microwave-assisted preparation of high entropy alloys
  publication-title: Technologies
– volume: 144
  start-page: 11525
  year: 2022
  end-page: 11529
  ident: bib126
  article-title: Continuous-flow reactor synthesis for homogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 4792
  year: 2022
  end-page: 4798
  ident: bib110
  article-title: Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids
  publication-title: Nano Res.
– volume: 11
  start-page: 5437
  year: 2020
  ident: bib136
  article-title: Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3908
  year: 2020
  ident: bib118
  article-title: Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports
  publication-title: Nat. Commun.
– volume: 143
  start-page: 17117
  year: 2021
  end-page: 17127
  ident: bib60
  article-title: Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 577
  year: 2021
  end-page: 582
  ident: bib97
  article-title: Self-organized growth of 111-oriented (VNbTaMoW) N nanorods on MgO (001)
  publication-title: Nano Lett.
– volume: 61
  start-page: e202213318
  year: 2022
  ident: bib66
  article-title: Long-range interactions in diatomic catalysts boosting electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 33
  start-page: 2101845
  year: 2021
  ident: bib96
  article-title: Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution
  publication-title: Adv. Mater.
– volume: 34
  start-page: 2206276
  year: 2022
  ident: bib50
  article-title: High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis
  publication-title: Adv. Mater.
– volume: 69
  start-page: 2092
  year: 2017
  end-page: 2098
  ident: bib2
  article-title: Design of high-entropy alloy: a perspective from nonideal mixing
  publication-title: JOM
– volume: 33
  start-page: 1771
  year: 2021
  end-page: 1780
  ident: bib129
  article-title: Top–down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis
  publication-title: Chem. Mater.
– volume: 13
  start-page: 4200
  year: 2022
  ident: bib56
  article-title: In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity
  publication-title: Nat. Commun.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib6
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 13
  start-page: 3373
  year: 2022
  ident: bib8
  article-title: High critical current density and high-tolerance superconductivity in high-entropy alloy thin films
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1905933
  year: 2019
  ident: bib115
  article-title: General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 834
  year: 2019
  end-page: 845
  ident: bib135
  article-title: High-entropy alloys as a discovery platform for electrocatalysis
  publication-title: Joule
– volume: 25
  start-page: 252
  year: 2019
  end-page: 262
  ident: bib98
  article-title: Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends
  publication-title: Addit. Manuf.
– volume: 143
  start-page: 4193
  year: 2021
  end-page: 4204
  ident: bib86
  article-title: Probing the local site disorder and distortion in pyrochlore high-entropy oxides
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 47
  year: 2004
  end-page: 55
  ident: bib109
  article-title: Using sonochemistry for the fabrication of nanomaterials
  publication-title: Ultrason. Sonochem.
– volume: 12
  start-page: 5917
  year: 2021
  ident: bib119
  article-title: Self-regeneration of supported transition metals by a high entropy-driven principle
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4855
  year: 2019
  ident: bib57
  article-title: A general synthesis approach for amorphous noble metal nanosheets
  publication-title: Nat. Commun.
– volume: 31
  start-page: 2106715
  year: 2021
  ident: bib28
  article-title: Multi-sites electrocatalysis in high-entropy alloys
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 284
  year: 2020
  end-page: 293
  ident: bib88
  article-title: Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures
  publication-title: Nat. Chem.
– volume: 61
  start-page: e202117347
  year: 2022
  ident: bib71
  article-title: Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 7868
  year: 2022
  end-page: 7876
  ident: bib17
  article-title: High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction
  publication-title: Nano Res.
– volume: 56
  start-page: 9777
  year: 2017
  end-page: 9781
  ident: bib89
  article-title: Structure of amorphous selenium by 2D 77Se NMR spectroscopy: an end to the dilemma of chain versus ring
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 10808
  year: 2022
  end-page: 10817
  ident: bib140
  article-title: High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction
  publication-title: ACS Catal.
– volume: 435
  start-page: 134898
  year: 2022
  ident: bib138
  article-title: A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting
  publication-title: Chem. Eng. J.
– volume: 58
  start-page: 223
  year: 2021
  end-page: 237
  ident: bib55
  article-title: Metal and metal oxide amorphous nanomaterials towards electrochemical applications
  publication-title: Chem. Commun.
– volume: 10
  start-page: 11280
  year: 2020
  end-page: 11306
  ident: bib114
  article-title: High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities
  publication-title: ACS Catal.
– volume: 60
  start-page: 26894
  year: 2021
  end-page: 26903
  ident: bib134
  article-title: What makes high-entropy alloys exceptional electrocatalysts?
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 231
  year: 2021
  end-page: 237
  ident: bib123
  article-title: Synthesis of monodisperse high entropy alloy nanocatalysts from core@ shell nanoparticles
  publication-title: Nanoscale Horiz.
– volume: 581
  start-page: 283
  year: 2020
  end-page: 287
  ident: bib49
  article-title: Short-range order and its impact on the CrCoNi medium-entropy alloy
  publication-title: Nature
– volume: 56
  start-page: 16047
  year: 2017
  end-page: 16051
  ident: bib75
  article-title: Atomically dispersed copper–platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 592
  start-page: 60
  year: 2021
  end-page: 64
  ident: bib93
  article-title: Determining the three-dimensional atomic structure of an amorphous solid
  publication-title: Nature
– volume: 3
  start-page: 1318
  year: 2020
  end-page: 1333
  ident: bib152
  article-title: Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects
  publication-title: Matter
– volume: 2
  start-page: 186
  year: 2022
  end-page: 196
  ident: bib101
  article-title: High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis
  publication-title: SusMat
– volume: 28
  start-page: 766
  year: 2019
  end-page: 771
  ident: bib99
  article-title: Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting
  publication-title: Addit. Manuf.
– volume: 2
  start-page: 65
  year: 2022
  end-page: 75
  ident: bib40
  article-title: A perspective on high-entropy two-dimensional materials
  publication-title: SusMat
– volume: 10
  start-page: 2618
  year: 2019
  ident: bib150
  article-title: Materials informatics for the screening of multi-principal elements and high-entropy alloys
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7748
  year: 2015
  ident: bib13
  article-title: Ultrastrong ductile and stable high-entropy alloys at small scales
  publication-title: Nat. Commun.
– volume: 143
  start-page: 1017
  year: 2021
  end-page: 1023
  ident: bib124
  article-title: Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 358
  start-page: 97
  year: 2017
  end-page: 101
  ident: bib46
  article-title: Segregation-induced ordered superstructures at general grain boundaries in a nickel-bismuth alloy
  publication-title: Science
– volume: 32
  start-page: 1906457
  year: 2020
  ident: bib15
  article-title: Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance
  publication-title: Adv. Mater.
– volume: 138
  start-page: 13850
  year: 2016
  end-page: 13853
  ident: bib76
  article-title: Atomically dispersed Ru on ultrathin Pd nanoribbons
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 515
  year: 2019
  end-page: 534
  ident: bib10
  article-title: High-entropy alloys
  publication-title: Nat. Rev. Mater.
– volume: 61
  start-page: e202115735
  year: 2022
  ident: bib67
  article-title: p–d orbital hybridization induced by a monodispersed ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 3658
  year: 2020
  end-page: 3663
  ident: bib144
  article-title: High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization
  publication-title: ACS Catal.
– volume: 144
  start-page: 15944
  year: 2022
  end-page: 15953
  ident: bib53
  article-title: High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 5071
  year: 2022
  ident: bib51
  article-title: Movable type printing method to synthesize high-entropy single-atom catalysts
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1646
  year: 2020
  end-page: 1663
  ident: bib116
  article-title: Unconventional alloys confined in nanoparticles: building blocks for new matter
  publication-title: Matter
– volume: 188
  start-page: 435
  year: 2020
  end-page: 474
  ident: bib9
  article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms
  publication-title: Acta Mater.
– volume: 4
  start-page: 2309
  year: 2021
  end-page: 2339
  ident: bib87
  article-title: Analytical transmission electron microscopy for emerging advanced materials
  publication-title: Matter
– volume: 7
  start-page: 10602
  year: 2016
  ident: bib12
  article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
  publication-title: Nat. Commun.
– volume: 162
  start-page: 277
  year: 2016
  end-page: 280
  ident: bib107
  article-title: Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys
  publication-title: Mater. Lett.
– volume: 144
  start-page: 10582
  year: 2022
  end-page: 10590
  ident: bib90
  article-title: A general synthetic method for high-entropy alloy subnanometer ribbons
  publication-title: J. Am. Chem. Soc.
– volume: 610
  start-page: 67
  year: 2022
  end-page: 73
  ident: bib24
  article-title: Compositionally complex doping for zero-strain zero-cobalt layered cathodes
  publication-title: Nature
– volume: 12
  start-page: 6261
  year: 2021
  ident: bib85
  article-title: Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis
  publication-title: Nat. Commun.
– volume: 34
  start-page: 2110128
  year: 2022
  ident: bib91
  article-title: Constructing structurally ordered high-entropy alloy nanoparticles on nitrogen-rich mesoporous carbon nanosheets for high-performance oxygen reduction
  publication-title: Adv. Mater.
– volume: 11
  start-page: 12247
  year: 2021
  end-page: 12257
  ident: bib120
  article-title: Exsolution–dissolution of supported metals on high-entropy Co3MnNiCuZnO x: toward sintering-resistant catalysis
  publication-title: ACS Catal.
– volume: 14
  start-page: 2418
  year: 2021
  end-page: 2423
  ident: bib65
  article-title: Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene
  publication-title: Nano Res.
– volume: 61
  start-page: e202207268
  year: 2022
  ident: bib82
  article-title: A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  start-page: 1
  year: 2014
  ident: 10.1016/j.matt.2023.03.034_bib3
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 13
  start-page: 1682
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib61
  article-title: Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices
  publication-title: Viruses
  doi: 10.3390/v13091682
– volume: 61
  start-page: e202207268
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib82
  article-title: A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202207268
– volume: 12
  start-page: 5917
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib119
  article-title: Self-regeneration of supported transition metals by a high entropy-driven principle
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26160-8
– volume: 3
  start-page: 1646
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib116
  article-title: Unconventional alloys confined in nanoparticles: building blocks for new matter
  publication-title: Matter
  doi: 10.1016/j.matt.2020.07.027
– volume: 6
  start-page: 34213
  year: 2016
  ident: 10.1016/j.matt.2023.03.034_bib117
  article-title: Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions
  publication-title: Sci. Rep.
  doi: 10.1038/srep34213
– volume: 55
  start-page: 247
  year: 2010
  ident: 10.1016/j.matt.2023.03.034_bib26
  article-title: Vibrational thermodynamics of materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2009.05.002
– year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib39
  article-title: Catalysis of alloys: classification, principles, and design for a variety of materials and reactions
  publication-title: Chem. Rev.
– volume: 61
  start-page: e202213318
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib66
  article-title: Long-range interactions in diatomic catalysts boosting electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202213318
– volume: 374
  start-page: 459
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib54
  article-title: Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells
  publication-title: Science
  doi: 10.1126/science.abj9980
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.matt.2023.03.034_bib25
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 144
  start-page: 15944
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib53
  article-title: High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01200
– volume: 15
  start-page: 7806
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib64
  article-title: Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4429-9
– volume: 14
  start-page: 5191
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib16
  article-title: Review and outlook on high-entropy alloys for hydrogen storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01543E
– start-page: 27
  year: 2002
  ident: 10.1016/j.matt.2023.03.034_bib29
– volume: 34
  start-page: 417
  year: 2018
  ident: 10.1016/j.matt.2023.03.034_bib45
  article-title: Alloy design by dislocation engineering
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2017.11.045
– volume: 59
  start-page: 5844
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib23
  article-title: Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914666
– volume: 6
  start-page: 1900015
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib108
  article-title: Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900015
– volume: 8
  start-page: 11938
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib37
  article-title: Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst
  publication-title: J. Mater. Chem.
  doi: 10.1039/D0TA02125C
– volume: 10
  start-page: 3658
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib144
  article-title: High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04302
– volume: 7
  start-page: 6499
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib128
  article-title: Nanoporous high-entropy alloys for highly stable and efficient catalysts
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA00505F
– volume: 1
  start-page: 263
  year: 2018
  ident: 10.1016/j.matt.2023.03.034_bib38
  article-title: How strain can break the scaling relations of catalysis
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0054-0
– volume: 60
  start-page: 22522
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib72
  article-title: Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109538
– volume: 35
  start-page: 2209242
  year: 2023
  ident: 10.1016/j.matt.2023.03.034_bib143
  article-title: High-entropy alloy aerogels: a new platform for carbon dioxide reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209242
– volume: 61
  start-page: e202115219
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib70
  article-title: Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202115219
– volume: 359
  start-page: 1489
  year: 2018
  ident: 10.1016/j.matt.2023.03.034_bib100
  article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles
  publication-title: Science
  doi: 10.1126/science.aan5412
– volume: 162
  start-page: 277
  year: 2016
  ident: 10.1016/j.matt.2023.03.034_bib107
  article-title: Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.10.035
– volume: 188
  start-page: 435
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib9
  article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.12.015
– volume: 49
  start-page: 231
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib14
  article-title: Accelerated and conventional development of magnetic high entropy alloys
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2021.03.018
– volume: 15
  start-page: 14928
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib103
  article-title: Scalable synthesis of high entropy alloy nanoparticles by microwave heating
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05113
– volume: 6
  start-page: 193
  year: 2023
  ident: 10.1016/j.matt.2023.03.034_bib121
  article-title: A general approach to high-entropy metallic nanowire electrocatalysts
  publication-title: Matter
  doi: 10.1016/j.matt.2022.09.023
– volume: 16
  start-page: 100139
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib32
  article-title: Chemical short-range order in Fe50Mn30Co10Cr10 high-entropy alloy
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2021.100139
– volume: 61
  start-page: e202209749
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib73
  article-title: A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202209749
– volume: 33
  start-page: 1771
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib129
  article-title: Top–down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c04695
– volume: 118
  start-page: 205501
  year: 2017
  ident: 10.1016/j.matt.2023.03.034_bib48
  article-title: Local structure and short-range order in a NiCoCr solid solution alloy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.205501
– volume: 16
  start-page: 4749
  year: 2014
  ident: 10.1016/j.matt.2023.03.034_bib30
  article-title: Multicomponent and high entropy alloys
  publication-title: Entropy
  doi: 10.3390/e16094749
– volume: 61
  start-page: e202210789
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib84
  article-title: P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202210789
– volume: 22
  start-page: 65
  year: 2018
  ident: 10.1016/j.matt.2023.03.034_bib35
  article-title: On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2018.05.003
– volume: 11
  start-page: 12247
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib120
  article-title: Exsolution–dissolution of supported metals on high-entropy Co3MnNiCuZnO x: toward sintering-resistant catalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03228
– volume: 4
  start-page: 1389
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib131
  article-title: An ultrafast and stable high-entropy metallic glass electrode for alkaline hydrogen evolution reaction
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.2c00371
– volume: 143
  start-page: 17117
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib60
  article-title: Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07643
– volume: 113
  start-page: E7144
  year: 2016
  ident: 10.1016/j.matt.2023.03.034_bib7
  article-title: Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1615926113
– volume: 14
  start-page: 15131
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib42
  article-title: In situ oxidation studies of high-entropy alloy nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05250
– volume: 151
  start-page: 107724
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib44
  article-title: Formation and migration behavior of vacancy in multi-component alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2022.107724
– volume: 10
  start-page: 14857
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib142
  article-title: A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation
  publication-title: J. Mater. Chem.
  doi: 10.1039/D2TA02597C
– volume: 12
  start-page: 6261
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib85
  article-title: Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26425-2
– volume: 11
  start-page: 2016
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib102
  article-title: Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15934-1
– volume: 59
  start-page: 11830
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib122
  article-title: Facile electrochemical synthesis of nanoscale (TiNbTaZrHf) C high-entropy carbide powder
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003530
– volume: 6
  start-page: 5964
  year: 2015
  ident: 10.1016/j.matt.2023.03.034_bib59
  article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6964
– volume: 10
  start-page: 11280
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib114
  article-title: High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03617
– volume: 62
  start-page: e202212335
  year: 2023
  ident: 10.1016/j.matt.2023.03.034_bib77
  article-title: Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202212335
– volume: 38
  start-page: 353
  year: 2017
  ident: 10.1016/j.matt.2023.03.034_bib148
  article-title: TCHEA1: a thermodynamic database not limited for “high entropy” alloys
  publication-title: J. Phase Equilibria Diffus.
  doi: 10.1007/s11669-017-0570-7
– volume: 3
  start-page: 834
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib135
  article-title: High-entropy alloys as a discovery platform for electrocatalysis
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.015
– volume: 15
  start-page: 4807
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib111
  article-title: Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3804-2
– volume: 737
  start-page: 132
  year: 2018
  ident: 10.1016/j.matt.2023.03.034_bib47
  article-title: An overview of modeling the stacking faults in lightweight and high-entropy alloys: theory and application
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2018.09.028
– volume: 574
  start-page: 223
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib33
  article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys
  publication-title: Nature
  doi: 10.1038/s41586-019-1617-1
– volume: 33
  start-page: 2101845
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib96
  article-title: Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101845
– volume: 7
  start-page: 10602
  year: 2016
  ident: 10.1016/j.matt.2023.03.034_bib12
  article-title: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10602
– volume: 31
  start-page: 2101586
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib95
  article-title: A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101586
– volume: 123
  start-page: 100854
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib94
  article-title: Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2021.100854
– volume: 15
  start-page: 8751
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib132
  article-title: Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4179-8
– volume: 21
  start-page: 1742
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib43
  article-title: Revealing high-temperature reduction dynamics of high-entropy alloy nanoparticles via in situ transmission electron microscopy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04572
– volume: 138
  start-page: 13850
  year: 2016
  ident: 10.1016/j.matt.2023.03.034_bib76
  article-title: Atomically dispersed Ru on ultrathin Pd nanoribbons
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09246
– volume: 10
  start-page: 4011
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib19
  article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11848-9
– volume: 144
  start-page: 11525
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib126
  article-title: Continuous-flow reactor synthesis for homogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c02755
– volume: 592
  start-page: 60
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib93
  article-title: Determining the three-dimensional atomic structure of an amorphous solid
  publication-title: Nature
  doi: 10.1038/s41586-021-03354-0
– volume: 69
  start-page: 2092
  year: 2017
  ident: 10.1016/j.matt.2023.03.034_bib2
  article-title: Design of high-entropy alloy: a perspective from nonideal mixing
  publication-title: JOM
  doi: 10.1007/s11837-017-2452-1
– volume: 50
  start-page: 569
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib74
  article-title: Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00844C
– volume: 11
  start-page: 3908
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib118
  article-title: Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17738-9
– volume: 32
  start-page: 2000385
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib92
  article-title: A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000385
– volume: 25
  start-page: 252
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib98
  article-title: Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends
  publication-title: Addit. Manuf.
– volume: 13
  start-page: 5071
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib51
  article-title: Movable type printing method to synthesize high-entropy single-atom catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32850-8
– volume: 8
  start-page: 1802269
  year: 2018
  ident: 10.1016/j.matt.2023.03.034_bib22
  article-title: Discovery of a multinary noble metal–free oxygen reduction catalyst
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802269
– volume: 7
  start-page: 12315
  year: 2016
  ident: 10.1016/j.matt.2023.03.034_bib58
  article-title: Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12315
– volume: 358
  start-page: 97
  year: 2017
  ident: 10.1016/j.matt.2023.03.034_bib46
  article-title: Segregation-induced ordered superstructures at general grain boundaries in a nickel-bismuth alloy
  publication-title: Science
  doi: 10.1126/science.aam8256
– volume: 10
  start-page: 2169
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib145
  article-title: High-entropy alloys as catalysts for the CO2 and CO reduction reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04343
– volume: 61
  start-page: e202209849
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib79
  article-title: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202209849
– volume: 15
  start-page: 7868
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib17
  article-title: High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4432-1
– volume: 10
  start-page: 2650
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib105
  article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10303-z
– volume: 378
  start-page: 78
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib149
  article-title: Machine learning-enabled high-entropy alloy discovery
  publication-title: Science
  doi: 10.1126/science.abo4940
– volume: 61
  start-page: e202205946
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib78
  article-title: Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202205946
– volume: 12
  start-page: 3884
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib125
  article-title: Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24228-z
– volume: 2
  start-page: 65
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib40
  article-title: A perspective on high-entropy two-dimensional materials
  publication-title: SusMat
  doi: 10.1002/sus2.47
– volume: 21
  start-page: 247
  year: 1970
  ident: 10.1016/j.matt.2023.03.034_bib27
  article-title: The use of the concept of entropy in system modelling
  publication-title: Oper. Res. Q.
  doi: 10.1057/jors.1970.48
– volume: 581
  start-page: 283
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib49
  article-title: Short-range order and its impact on the CrCoNi medium-entropy alloy
  publication-title: Nature
  doi: 10.1038/s41586-020-2275-z
– volume: 13
  start-page: 2662
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib137
  article-title: Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30379-4
– start-page: 74
  year: 2004
  ident: 10.1016/j.matt.2023.03.034_bib1
  article-title: Alloys and compounds
– volume: 56
  start-page: 9777
  year: 2017
  ident: 10.1016/j.matt.2023.03.034_bib89
  article-title: Structure of amorphous selenium by 2D 77Se NMR spectroscopy: an end to the dilemma of chain versus ring
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201704323
– volume: 1
  start-page: 1606
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib104
  article-title: Accumulation-driven unified spatiotemporal synthesis and structuring of immiscible metallic nanoalloys
  publication-title: Matter
  doi: 10.1016/j.matt.2019.10.017
– volume: 15
  start-page: 3022
  year: 2013
  ident: 10.1016/j.matt.2023.03.034_bib112
  article-title: Advanced nanoparticle generation and excitation by lasers in liquids
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C2CP90132C
– volume: 6
  start-page: 231
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib123
  article-title: Synthesis of monodisperse high entropy alloy nanocatalysts from core@ shell nanoparticles
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D0NH00656D
– volume: 15
  start-page: 1904180
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib127
  article-title: Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments
  publication-title: Small
  doi: 10.1002/smll.201904180
– volume: 12
  start-page: 4953
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib31
  article-title: Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25264-5
– volume: 34
  start-page: 2206276
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib50
  article-title: High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206276
– volume: 1
  start-page: 526
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib141
  article-title: Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00414
– volume: 3
  start-page: 182
  year: 2015
  ident: 10.1016/j.matt.2023.03.034_bib106
  article-title: Microwave-assisted preparation of high entropy alloys
  publication-title: Technologies
  doi: 10.3390/technologies3040182
– volume: 14
  start-page: 2418
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib65
  article-title: Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3244-4
– volume: 375-377
  start-page: 213
  year: 2004
  ident: 10.1016/j.matt.2023.03.034_bib5
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2003.10.257
– volume: 29
  start-page: 1905933
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib115
  article-title: General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905933
– volume: 9
  start-page: nwac190
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib153
  article-title: An all-round AI-Chemist with a scientific mind
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwac190
– volume: 491
  start-page: 165574
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib41
  article-title: CoCrxCuFeMnNi high-entropy alloy powders with superior soft magnetic properties
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2019.165574
– volume: 435
  start-page: 134898
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib138
  article-title: A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134898
– volume: 21
  start-page: 101326
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib147
  article-title: Combinatorial development of multicomponent Invar alloys via rapid alloy prototyping
  publication-title: Materialia
  doi: 10.1016/j.mtla.2022.101326
– volume: 6
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib20
  article-title: Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz0510
– volume: 12
  start-page: 284
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib88
  article-title: Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0418-3
– volume: 56
  start-page: 16047
  year: 2017
  ident: 10.1016/j.matt.2023.03.034_bib75
  article-title: Atomically dispersed copper–platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709803
– volume: 15
  start-page: 5792
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib62
  article-title: Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4265-y
– volume: 58
  start-page: 223
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib55
  article-title: Metal and metal oxide amorphous nanomaterials towards electrochemical applications
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC04141J
– volume: 5
  start-page: 17
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib133
  article-title: Recent progress in high entropy alloys for electrocatalysts
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-022-00144-8
– volume: 61
  start-page: 4887
  year: 2013
  ident: 10.1016/j.matt.2023.03.034_bib34
  article-title: Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.04.058
– volume: 12
  start-page: 10808
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib140
  article-title: High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02604
– volume: 11
  start-page: 47
  year: 2004
  ident: 10.1016/j.matt.2023.03.034_bib109
  article-title: Using sonochemistry for the fabrication of nanomaterials
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2004.01.037
– volume: 115
  start-page: 8919
  year: 2018
  ident: 10.1016/j.matt.2023.03.034_bib151
  article-title: Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1808660115
– volume: 31
  start-page: 2106715
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib28
  article-title: Multi-sites electrocatalysis in high-entropy alloys
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106715
– volume: 610
  start-page: 67
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib24
  article-title: Compositionally complex doping for zero-strain zero-cobalt layered cathodes
  publication-title: Nature
  doi: 10.1038/s41586-022-05115-z
– volume: 2
  start-page: 1698
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib130
  article-title: Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn–air batteries
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.0c00434
– volume: 3
  start-page: 1318
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib152
  article-title: Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects
  publication-title: Matter
  doi: 10.1016/j.matt.2020.07.029
– volume: 13
  start-page: 4200
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib56
  article-title: In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31971-4
– volume: 2
  start-page: 186
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib101
  article-title: High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis
  publication-title: SusMat
  doi: 10.1002/sus2.56
– volume: 35
  start-page: 3038
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib113
  article-title: Time and mechanism of nanoparticle functionalization by macromolecular ligands during pulsed laser ablation in liquids
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01585
– volume: 144
  start-page: 10582
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib90
  article-title: A general synthetic method for high-entropy alloy subnanometer ribbons
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03544
– volume: 10
  start-page: 4855
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib57
  article-title: A general synthesis approach for amorphous noble metal nanosheets
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12859-2
– volume: 117
  start-page: 6316
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib21
  article-title: High-throughput, combinatorial synthesis of multimetallic nanoclusters
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1903721117
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.matt.2023.03.034_bib6
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 6
  start-page: 7748
  year: 2015
  ident: 10.1016/j.matt.2023.03.034_bib13
  article-title: Ultrastrong ductile and stable high-entropy alloys at small scales
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8748
– volume: 2
  start-page: 107
  year: 2014
  ident: 10.1016/j.matt.2023.03.034_bib36
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.912690
– volume: 21
  start-page: 577
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib97
  article-title: Self-organized growth of 111-oriented (VNbTaMoW) N nanorods on MgO (001)
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04061
– volume: 32
  start-page: 1906457
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib15
  article-title: Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906457
– volume: 4
  start-page: 2309
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib87
  article-title: Analytical transmission electron microscopy for emerging advanced materials
  publication-title: Matter
  doi: 10.1016/j.matt.2021.05.005
– volume: 60
  start-page: 26894
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib134
  article-title: What makes high-entropy alloys exceptional electrocatalysts?
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109212
– volume: 439
  start-page: 419
  year: 2006
  ident: 10.1016/j.matt.2023.03.034_bib52
  article-title: Atomic packing and short-to-medium-range order in metallic glasses
  publication-title: Nature
  doi: 10.1038/nature04421
– volume: 62
  start-page: e202212653
  year: 2023
  ident: 10.1016/j.matt.2023.03.034_bib69
  article-title: Tuning mass transport in electrocatalysis down to sub-5nm through nanoscale grade separation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202212653
– volume: 61
  start-page: e202114450
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib81
  article-title: MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202114450
– volume: 143
  start-page: 1017
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib124
  article-title: Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11384
– volume: 431
  start-page: 133251
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib139
  article-title: High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133251
– volume: 61
  start-page: e202200366
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib68
  article-title: Regulating the tip effect on single-atom and cluster catalysts: forming reversible oxygen species with high efficiency in chlorine evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200366
– volume: 534
  start-page: 227
  year: 2016
  ident: 10.1016/j.matt.2023.03.034_bib11
  article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 28
  start-page: 766
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib99
  article-title: Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting
  publication-title: Addit. Manuf.
– volume: 19
  start-page: 349
  year: 2016
  ident: 10.1016/j.matt.2023.03.034_bib4
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.11.026
– volume: 34
  start-page: 2110128
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib91
  article-title: Constructing structurally ordered high-entropy alloy nanoparticles on nitrogen-rich mesoporous carbon nanosheets for high-performance oxygen reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110128
– volume: 15
  start-page: 4799
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib18
  article-title: Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER)
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3802-4
– volume: 13
  start-page: 3373
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib8
  article-title: High critical current density and high-tolerance superconductivity in high-entropy alloy thin films
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30912-5
– volume: 15
  start-page: 6888
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib63
  article-title: Understanding the structure-performance relationship of active sites at atomic scale
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4371-x
– volume: 61
  start-page: e202117347
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib71
  article-title: Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202117347
– volume: 61
  start-page: e202201655
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib83
  article-title: Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202201655
– volume: 143
  start-page: 4193
  year: 2021
  ident: 10.1016/j.matt.2023.03.034_bib86
  article-title: Probing the local site disorder and distortion in pyrochlore high-entropy oxides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10739
– volume: 4
  start-page: 515
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib10
  article-title: High-entropy alloys
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0121-4
– volume: 61
  start-page: e202115735
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib67
  article-title: p–d orbital hybridization induced by a monodispersed ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202115735
– volume: 11
  start-page: 5437
  year: 2020
  ident: 10.1016/j.matt.2023.03.034_bib136
  article-title: Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19277-9
– volume: 62
  start-page: e202215136
  year: 2023
  ident: 10.1016/j.matt.2023.03.034_bib80
  article-title: Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202215136
– volume: 15
  start-page: 4792
  year: 2022
  ident: 10.1016/j.matt.2023.03.034_bib110
  article-title: Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3760-x
– volume: 107
  start-page: 142404
  year: 2015
  ident: 10.1016/j.matt.2023.03.034_bib146
  article-title: Treasure maps” for magnetic high-entropy-alloys from theory and experiment
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932571
– volume: 10
  start-page: 2618
  year: 2019
  ident: 10.1016/j.matt.2023.03.034_bib150
  article-title: Materials informatics for the screening of multi-principal elements and high-entropy alloys
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10533-1
SSID ssj0002213743
Score 2.452725
SecondaryResourceType review_article
Snippet High-entropy alloys (HEAs) are a new kind of alloy with five or more alloy elements at equal or near-equal ratios. The tunable multicomponent structure and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1717
Title Nanoscale high-entropy alloy for electrocatalysis
URI https://dx.doi.org/10.1016/j.matt.2023.03.034
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46L15EUfE3PXiTSPOr7Y5D1OGYB524W2nTTB2yDe0O86_3vSbt6hiig1FGWJc2X3jvy5f3Xgg5F0wMhPYjmmipqTShT5sBH1DwzVo300xFGrORu_dB-0ne9VV_fqxikV2Sp5f6a2leySqoQhvgilmy_0C2-lNogO-AL1wBYbj-CWMwjeNPGGQsG_zySlGoHU9mF7iXbuMw3SE3hUaDpUfqVLSb5LXQ3LYVQvtvybiy01MrmjvfZtXlQll9fJ3O5rPqdmp3b8AJDktH6HQELop4p3AubpUJLj_iL2Fx5FPw6nbj2Sxpc0Y0qM2VukFkoU3NdM4VyApbarithjC8BJqOEa5cFKVnnc75syD2Iz4A9g-rJ0zG8tfJBodFAli5jVbn4blTaWycM2FzLKpndnlTNsRvsbPl3KTGN3rbZMstFLyWRX2HrJnRLmEV4l4dca9A3APEvUXE90jv5rp31abu0Auq4XVymmLNvEyEAz8E6p6GSiZRYGQTqawKEobHtmdgOGFhr1iYZCaIWEEyWRglflPsk8ZoPDIHxPOlFFkkjeCDQCqVpoJHxgRa8gy60uqQsPJtY-0KwuO5JO9xGfk3jHGEYhyh2MePPCQX1T0TWw7l11-rchBjR-gsUYsB9l_uO1rxvmOyOZ_ZJ6SRf0zNKXDGPD1zU-MbVB9oOA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+high-entropy+alloy+for+electrocatalysis&rft.jtitle=Matter&rft.au=Han%2C+Xiao&rft.au=Wu%2C+Geng&rft.au=Zhao%2C+Shuyan&rft.au=Guo%2C+Jingjing&rft.date=2023-06-07&rft.pub=Elsevier+Inc&rft.issn=2590-2385&rft.eissn=2590-2385&rft.volume=6&rft.issue=6&rft.spage=1717&rft.epage=1751&rft_id=info:doi/10.1016%2Fj.matt.2023.03.034&rft.externalDocID=S2590238523001650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-2385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-2385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-2385&client=summon