Three-teaching: A three-way decision framework to handle noisy labels
Learning with noisy labels represents a prevalent weakly supervised learning paradigm. Uncertain knowledge resulting from noisy labels poses significant challenges for knowledge analysis. Given the memorization effect observed in deep neural networks, training on instances with minimal loss holds pr...
Saved in:
Published in | Applied soft computing Vol. 154; p. 111400 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2024.111400 |
Cover
Abstract | Learning with noisy labels represents a prevalent weakly supervised learning paradigm. Uncertain knowledge resulting from noisy labels poses significant challenges for knowledge analysis. Given the memorization effect observed in deep neural networks, training on instances with minimal loss holds promise for effectively handling noisy labels. “Co-teaching”, which is the state-of-the-art training method in this field, is characterized by the simultaneous training of two deep neural networks using instances with low loss. While this approach has demonstrated promising performance, its effectiveness heavily relies on the predictive capabilities of two neural networks. If these networks fail to provide reliable predictions, the overall learning performance may be unsatisfactory. In order to solve this problem and inspired by three-way decision, we propose a powerful learning paradigm named “Three-teaching”, which employs the “voting mechanism” to guarantee the prediction quality incrementally. In this approach, both neural networks make predictions for all the data. However, only the data that exhibits consistent prediction results and has a low loss is retained to feed into the third neural network for updating its parameters. The learning process will proceed by alternating these three neural networks’ roles. The experimental results obtained from benchmark datasets illustrate that “Three-teaching” surpasses numerous state-of-the-art methods.
•We proposed a three-teaching model which introduces another neural network and “voting mechanism” to guarantee the prediction quality while facing noisy labels.•Three-teaching performs better than co-teaching and other compared methods on several real-world datasets.•Three-teaching provides a new way to implement three-way decision. |
---|---|
AbstractList | Learning with noisy labels represents a prevalent weakly supervised learning paradigm. Uncertain knowledge resulting from noisy labels poses significant challenges for knowledge analysis. Given the memorization effect observed in deep neural networks, training on instances with minimal loss holds promise for effectively handling noisy labels. “Co-teaching”, which is the state-of-the-art training method in this field, is characterized by the simultaneous training of two deep neural networks using instances with low loss. While this approach has demonstrated promising performance, its effectiveness heavily relies on the predictive capabilities of two neural networks. If these networks fail to provide reliable predictions, the overall learning performance may be unsatisfactory. In order to solve this problem and inspired by three-way decision, we propose a powerful learning paradigm named “Three-teaching”, which employs the “voting mechanism” to guarantee the prediction quality incrementally. In this approach, both neural networks make predictions for all the data. However, only the data that exhibits consistent prediction results and has a low loss is retained to feed into the third neural network for updating its parameters. The learning process will proceed by alternating these three neural networks’ roles. The experimental results obtained from benchmark datasets illustrate that “Three-teaching” surpasses numerous state-of-the-art methods.
•We proposed a three-teaching model which introduces another neural network and “voting mechanism” to guarantee the prediction quality while facing noisy labels.•Three-teaching performs better than co-teaching and other compared methods on several real-world datasets.•Three-teaching provides a new way to implement three-way decision. |
ArticleNumber | 111400 |
Author | Chu, Dianhui Wang, Xiru Chao, Guoqing Zhang, Kaiwen |
Author_xml | – sequence: 1 givenname: Guoqing orcidid: 0000-0002-2410-650X surname: Chao fullname: Chao, Guoqing email: guoqingchao@hit.edu.cn – sequence: 2 givenname: Kaiwen surname: Zhang fullname: Zhang, Kaiwen – sequence: 3 givenname: Xiru orcidid: 0009-0005-7521-3419 surname: Wang fullname: Wang, Xiru – sequence: 4 givenname: Dianhui surname: Chu fullname: Chu, Dianhui email: chudh@hit.edu.cn |
BookMark | eNp9kE1LAzEQhoMo2Fb_gKf8gV2TTZpuxEsp9QMKXuo5zCazNnW7kSRY-u_dWk8eeprhhedl5hmTyz70SMgdZyVnXN1vS0jBlhWrZMk5l4xdkBGvZ1WhVc0vh32q6kJqqa7JOKUtGyBd1SOyXG8iYpER7Mb3Hw90TvNvsocDdWh98qGnbYQd7kP8pDnQDfSuQ9oHnw60gwa7dEOuWugS3v7NCXl_Wq4XL8Xq7fl1MV8VVjCWC2gVqziIpuU4s0xJoR3nWiAwp1XbSA2NPoYwVaKx1jFhpXDAZTtF7ioxIfWp18aQUsTWWJ8hDyfmCL4znJmjDrM1Rx3mqMOcdAxo9Q_9in4H8XAeejxBw4_47TGaZD32Fp2PaLNxwZ_DfwCa63tv |
CitedBy_id | crossref_primary_10_1007_s10489_024_05798_z crossref_primary_10_1007_s10489_024_05738_x crossref_primary_10_1016_j_asoc_2025_112712 crossref_primary_10_1016_j_ijar_2024_109268 |
Cites_doi | 10.1609/aaai.v30i1.10191 10.1080/0952813X.2020.1806519 10.1145/1390156.1390278 10.1145/3446776 10.1609/aaai.v31i1.10894 10.3390/make1010020 10.1007/s10489-022-04242-4 10.1109/TPAMI.2015.2456899 10.24963/ijcai.2019/595 10.1145/279943.279962 10.1007/s10994-013-5412-1 10.1109/ICCV.2019.00041 10.1109/MSP.2012.2211477 10.1109/ICIP.2015.7351698 10.1109/CVPR.2018.00582 10.1109/TKDE.2005.186 10.1109/CVPR.2017.240 10.3233/IDA-2001-5605 10.1109/CVPR52729.2023.02305 10.1109/CVPR.2019.00718 10.1016/j.eswa.2016.09.003 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2024.111400 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2024_111400 S1568494624001741 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABMYL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-af6021a3bf1e7c06439d1193ea0d96fb49ab9439da563bccd03c43da14f5e1d23 |
IEDL.DBID | AIKHN |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:24 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Sat Mar 23 16:41:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Noisy labels Deep neural network Three-teaching |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-af6021a3bf1e7c06439d1193ea0d96fb49ab9439da563bccd03c43da14f5e1d23 |
ORCID | 0009-0005-7521-3419 0000-0002-2410-650X |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2024_111400 crossref_primary_10_1016_j_asoc_2024_111400 elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111400 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hinton, Vinyals, Dean (b38) 2015 Yin, Zhang (b41) 2023; 53 K. Yi, J. Wu, Probabilistic end-to-end noise correction for learning with noisy labels, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 7017–7025. H. Song, M. Kim, J.-G. Lee, Selfie: Refurbishing unclean samples for robust deep learning, in: International Conference on Machine Learning, 2019, pp. 5907–5915. Y. Li, H. Han, S. Shan, X. Chen, DISC: Learning from noisy labels via dynamic instance-specific selection and correction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 24070–24079. H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, Mixup: Beyond empirical risk minimization, in: International Conference on Learning Representations, 2018. C. Gongt, D. Tao, J. Yang, W. Liu, Teaching-to-Learn and learning-to-Teach for multi-Label propagation, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1610–1616. D. Silver, R.S. Sutton, M. Müller, Sample-based learning and search with permanent and transient memories, in: International Conference on Machine Learning, 2008, pp. 968–975. Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, J. Bailey, Symmetric cross entropy for robust learning with noisy labels, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 322–330. T. Miayto, A.M. Dai, I. Goodfellow, Virtual adversarial training for semi-supervised text classification, in: International Conference on Learning Representations, 2016. Han, Yao, Liu, Niu, Tsang, Kwok, Sugiyama (b1) 2020 Freund, Schapire, Abe (b14) 1999; 14 W. Feng, S. Boukir, Class noise removal and correction for image classification using ensemble margin, in: 2015 IEEE International Conference on Image Processing, ICIP, 2015, pp. 4698–4702. Xu, Jiang, Li (b36) 2021; 33 B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, M. Sugiyama, Co-teaching: Robust training of deep neural networks with extremely noisy labels, in: Advances in Neural Information Processing Systems, 2018, pp. 8535–8545. A. Fawzi, S.-M. Moosavi-Dezfooli, P. Frossard, Robustness of classifiers: from adversarial to random noise, in: Advances in Neural Information Processing Systems, 2016, pp. 1632–1640. D. Tanaka, D. Ikami, T. Yamasaki, K. Aizawa, Joint optimization framework for learning with noisy labels, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5552–5560. Zeng, Martinez (b35) 2001; 5 Goodfellow, Shlens, Szegedy (b15) 2014 S. Laine, T. Aila, Temporal ensembling for semi-Supervised learning, in: International Conference on Learning Representations, 2016. X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, M. Sugiyama, How does disagreement help generalization against label corruption?, in: International Conference on Machine Learning, 2019, pp. 7164–7173. Liu, Tao (b27) 2014; 38 Deng (b45) 2012; 29 Y. Liu, H. Cheng, K. Zhang, Identifiability of label noise transition matrix, in: International Conference on Machine Learning, 2023, pp. 21475–21496. D. Arpit, N. Ballas, D. Krueger, E. Bengio, M.S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio, et al., A closer look at memorization in deep networks, in: International Conference on Machine Learning, 2017, pp. 233–242. L. Jiang, Z. Zhou, T. Leung, L.-J. Li, L. Fei-Fei, Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels, in: International Conference on Machine Learning, 2018, pp. 2304–2313. A. Ghosh, H. Kumar, P.S. Sastry, Robust loss functions under label noise for deep neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017, pp. 1919–1925. Y. Fan, F. Tian, T. Qin, X.-Y. Li, T.-Y. Liu, Learning to teach, in: International Conference on Learning Representations, 2018. E. Malach, S. Shalev-Shwartz, Decoupling “when to update” from “how to update”, in: Advances in Neural Information Processing Systems, 2017, pp. 960–970. Zhou, Li (b43) 2005; 17 T. Sanderson, C. Scott, Class proportion estimation with application to multiclass anomaly rejection, in: Artificial Intelligence and Statistics, 2014, pp. 850–858. N. Natarajan, I.S. Dhillon, P.K. Ravikumar, A. Tewari, Learning with noisy labels, in: Advances in Neural Information Processing Systems, 2013, pp. 1196–1204. Raykar, Yu, Zhao, Valadez, Florin, Bogoni, Moy (b29) 2010; 11 Yan, Rosales, Fung, Ramanathan, Dy (b30) 2014; 95 Y. Yao, T. Liu, B. Han, M. Gong, J. Deng, G. Niu, M. Sugiyama, Dual t: Reducing estimation error for transition matrix in label-noise learning, in: Advances in Neural Information Processing Systems, 2020, pp. 7260–7271. Zhang, Bengio, Hardt, Recht, Vinyals (b42) 2021; 64 Z. Zhang, M. Sabuncu, Generalized cross entropy loss for training deep neural networks with noisy labels, in: Advances in Neural Information Processing Systems, 2018, pp. 8778–8788. Wang, Kodirov, Hua, Robertson (b20) 2019 A. Menon, B. Van Rooyen, C.S. Ong, B. Williamson, Learning from corrupted binary labels via class-probability estimation, in: International Conference on Machine Learning, 2015, pp. 125–134. G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, L. Qu, Making deep neural networks robust to label noise: A loss correction approach, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1944–1952. B. Han, J. Yao, G. Niu, M. Zhou, I. Tsang, Y. Zhang, M. Sugiyama, Masking: A new perspective of noisy supervision, in: Advances in Neural Information Processing Systems, 2018, pp. 5836–5846. H. Wei, H. Zhuang, R. Xie, L. Feng, G. Niu, B. An, Y. Li, Mitigating memorization of noisy labels by clipping the model prediction, in: International Conference on Machine Learning, 2023. J. Zhang, B. Han, L. Wynter, B.K.H. Low, M. Kankanhalli, Towards robust resNet: A small step but a giant leap, in: International Joint Conference on Artificial Intelligence, 2019, pp. 4285–4291. Nicholson, Sheng, Zhang (b33) 2016; 66 A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998, pp. 92–100. Chao, Luo, Ding (b18) 2019; 1 D. Hendrycks, M. Mazeika, D. Wilson, K. Gimpel, Using trusted data to train deep networks on labels corrupted by severe noise, in: Advances in Neural Information Processing Systems, 2018, pp. 10456–10465. H. Masnadi-Shirazi, N. Vasconcelos, On the design of loss functions for classification: theory, robustness to outliers, and savageboost, in: Advances in Neural Information Processing Systems, 2008, pp. 1049–1056. Xu (10.1016/j.asoc.2024.111400_b36) 2021; 33 10.1016/j.asoc.2024.111400_b26 10.1016/j.asoc.2024.111400_b48 Han (10.1016/j.asoc.2024.111400_b1) 2020 10.1016/j.asoc.2024.111400_b28 Freund (10.1016/j.asoc.2024.111400_b14) 1999; 14 10.1016/j.asoc.2024.111400_b6 10.1016/j.asoc.2024.111400_b22 10.1016/j.asoc.2024.111400_b44 10.1016/j.asoc.2024.111400_b7 Goodfellow (10.1016/j.asoc.2024.111400_b15) 2014 10.1016/j.asoc.2024.111400_b23 10.1016/j.asoc.2024.111400_b4 10.1016/j.asoc.2024.111400_b24 10.1016/j.asoc.2024.111400_b46 10.1016/j.asoc.2024.111400_b5 10.1016/j.asoc.2024.111400_b25 10.1016/j.asoc.2024.111400_b47 10.1016/j.asoc.2024.111400_b40 10.1016/j.asoc.2024.111400_b8 10.1016/j.asoc.2024.111400_b9 10.1016/j.asoc.2024.111400_b21 Hinton (10.1016/j.asoc.2024.111400_b38) 2015 Yan (10.1016/j.asoc.2024.111400_b30) 2014; 95 10.1016/j.asoc.2024.111400_b2 10.1016/j.asoc.2024.111400_b3 Yin (10.1016/j.asoc.2024.111400_b41) 2023; 53 Zhou (10.1016/j.asoc.2024.111400_b43) 2005; 17 Zhang (10.1016/j.asoc.2024.111400_b42) 2021; 64 10.1016/j.asoc.2024.111400_b19 Deng (10.1016/j.asoc.2024.111400_b45) 2012; 29 10.1016/j.asoc.2024.111400_b37 10.1016/j.asoc.2024.111400_b16 10.1016/j.asoc.2024.111400_b17 Wang (10.1016/j.asoc.2024.111400_b20) 2019 Liu (10.1016/j.asoc.2024.111400_b27) 2014; 38 Zeng (10.1016/j.asoc.2024.111400_b35) 2001; 5 10.1016/j.asoc.2024.111400_b39 10.1016/j.asoc.2024.111400_b11 10.1016/j.asoc.2024.111400_b12 10.1016/j.asoc.2024.111400_b34 10.1016/j.asoc.2024.111400_b13 Nicholson (10.1016/j.asoc.2024.111400_b33) 2016; 66 10.1016/j.asoc.2024.111400_b31 10.1016/j.asoc.2024.111400_b10 Raykar (10.1016/j.asoc.2024.111400_b29) 2010; 11 10.1016/j.asoc.2024.111400_b32 Chao (10.1016/j.asoc.2024.111400_b18) 2019; 1 |
References_xml | – year: 2019 ident: b20 article-title: Improving mae against cce under label noise – volume: 29 start-page: 141 year: 2012 end-page: 142 ident: b45 article-title: The mnist database of handwritten digit images for machine learning research publication-title: IEEE Signal Process. Mag. – reference: E. Malach, S. Shalev-Shwartz, Decoupling “when to update” from “how to update”, in: Advances in Neural Information Processing Systems, 2017, pp. 960–970. – volume: 95 start-page: 291 year: 2014 end-page: 327 ident: b30 article-title: Learning from multiple annotators with varying expertise publication-title: Mach. Learn. – reference: D. Arpit, N. Ballas, D. Krueger, E. Bengio, M.S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio, et al., A closer look at memorization in deep networks, in: International Conference on Machine Learning, 2017, pp. 233–242. – reference: A. Fawzi, S.-M. Moosavi-Dezfooli, P. Frossard, Robustness of classifiers: from adversarial to random noise, in: Advances in Neural Information Processing Systems, 2016, pp. 1632–1640. – reference: J. Zhang, B. Han, L. Wynter, B.K.H. Low, M. Kankanhalli, Towards robust resNet: A small step but a giant leap, in: International Joint Conference on Artificial Intelligence, 2019, pp. 4285–4291. – reference: H. Song, M. Kim, J.-G. Lee, Selfie: Refurbishing unclean samples for robust deep learning, in: International Conference on Machine Learning, 2019, pp. 5907–5915. – year: 2020 ident: b1 article-title: A survey of label-noise representation learning: Past, present and future – reference: Y. Li, H. Han, S. Shan, X. Chen, DISC: Learning from noisy labels via dynamic instance-specific selection and correction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 24070–24079. – volume: 14 start-page: 1612 year: 1999 ident: b14 article-title: A short introduction to boosting publication-title: J.-Japan. Soc. Artif. Intell. – reference: B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, M. Sugiyama, Co-teaching: Robust training of deep neural networks with extremely noisy labels, in: Advances in Neural Information Processing Systems, 2018, pp. 8535–8545. – reference: Y. Liu, H. Cheng, K. Zhang, Identifiability of label noise transition matrix, in: International Conference on Machine Learning, 2023, pp. 21475–21496. – reference: C. Gongt, D. Tao, J. Yang, W. Liu, Teaching-to-Learn and learning-to-Teach for multi-Label propagation, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1610–1616. – reference: Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, J. Bailey, Symmetric cross entropy for robust learning with noisy labels, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 322–330. – reference: T. Sanderson, C. Scott, Class proportion estimation with application to multiclass anomaly rejection, in: Artificial Intelligence and Statistics, 2014, pp. 850–858. – volume: 11 start-page: 1297 year: 2010 end-page: 1322 ident: b29 article-title: Learning from crowds publication-title: J. Mach. Learn. Res. – reference: H. Masnadi-Shirazi, N. Vasconcelos, On the design of loss functions for classification: theory, robustness to outliers, and savageboost, in: Advances in Neural Information Processing Systems, 2008, pp. 1049–1056. – year: 2015 ident: b38 article-title: Distilling the knowledge in a neural network – reference: Z. Zhang, M. Sabuncu, Generalized cross entropy loss for training deep neural networks with noisy labels, in: Advances in Neural Information Processing Systems, 2018, pp. 8778–8788. – reference: T. Miayto, A.M. Dai, I. Goodfellow, Virtual adversarial training for semi-supervised text classification, in: International Conference on Learning Representations, 2016. – reference: D. Silver, R.S. Sutton, M. Müller, Sample-based learning and search with permanent and transient memories, in: International Conference on Machine Learning, 2008, pp. 968–975. – volume: 53 start-page: 14703 year: 2023 end-page: 14716 ident: b41 article-title: Multi-view multi-label learning with double orders manifold preserving publication-title: Appl. Intell. – reference: D. Tanaka, D. Ikami, T. Yamasaki, K. Aizawa, Joint optimization framework for learning with noisy labels, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5552–5560. – volume: 17 start-page: 1529 year: 2005 end-page: 1541 ident: b43 article-title: Tri-training: exploiting unlabeled data using three classifiers publication-title: IEEE Trans. Knowl. Data Eng. – volume: 64 start-page: 107 year: 2021 end-page: 115 ident: b42 article-title: Understanding deep learning (still) requires rethinking generalization publication-title: Commun. ACM – reference: X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, M. Sugiyama, How does disagreement help generalization against label corruption?, in: International Conference on Machine Learning, 2019, pp. 7164–7173. – volume: 66 start-page: 149 year: 2016 end-page: 162 ident: b33 article-title: Label noise correction and application in crowdsourcing publication-title: Expert Syst. Appl. – volume: 33 start-page: 985 year: 2021 end-page: 999 ident: b36 article-title: Resampling-based noise correction for crowdsourcing publication-title: J. Exp. Theor. Artif. Intell. – reference: D. Hendrycks, M. Mazeika, D. Wilson, K. Gimpel, Using trusted data to train deep networks on labels corrupted by severe noise, in: Advances in Neural Information Processing Systems, 2018, pp. 10456–10465. – reference: B. Han, J. Yao, G. Niu, M. Zhou, I. Tsang, Y. Zhang, M. Sugiyama, Masking: A new perspective of noisy supervision, in: Advances in Neural Information Processing Systems, 2018, pp. 5836–5846. – reference: A. Menon, B. Van Rooyen, C.S. Ong, B. Williamson, Learning from corrupted binary labels via class-probability estimation, in: International Conference on Machine Learning, 2015, pp. 125–134. – volume: 5 start-page: 491 year: 2001 end-page: 502 ident: b35 article-title: An algorithm for correcting mislabeled data publication-title: Intell. Data Anal. – reference: S. Laine, T. Aila, Temporal ensembling for semi-Supervised learning, in: International Conference on Learning Representations, 2016. – reference: Y. Yao, T. Liu, B. Han, M. Gong, J. Deng, G. Niu, M. Sugiyama, Dual t: Reducing estimation error for transition matrix in label-noise learning, in: Advances in Neural Information Processing Systems, 2020, pp. 7260–7271. – year: 2014 ident: b15 article-title: Explaining and harnessing adversarial examples – reference: W. Feng, S. Boukir, Class noise removal and correction for image classification using ensemble margin, in: 2015 IEEE International Conference on Image Processing, ICIP, 2015, pp. 4698–4702. – reference: A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, 1998, pp. 92–100. – reference: H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, Mixup: Beyond empirical risk minimization, in: International Conference on Learning Representations, 2018. – reference: K. Yi, J. Wu, Probabilistic end-to-end noise correction for learning with noisy labels, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 7017–7025. – reference: N. Natarajan, I.S. Dhillon, P.K. Ravikumar, A. Tewari, Learning with noisy labels, in: Advances in Neural Information Processing Systems, 2013, pp. 1196–1204. – reference: H. Wei, H. Zhuang, R. Xie, L. Feng, G. Niu, B. An, Y. Li, Mitigating memorization of noisy labels by clipping the model prediction, in: International Conference on Machine Learning, 2023. – reference: L. Jiang, Z. Zhou, T. Leung, L.-J. Li, L. Fei-Fei, Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels, in: International Conference on Machine Learning, 2018, pp. 2304–2313. – volume: 1 start-page: 341 year: 2019 end-page: 358 ident: b18 article-title: Recent advances in supervised dimension reduction: A survey publication-title: Mach. Learn. Knowl. Extr. – reference: A. Ghosh, H. Kumar, P.S. Sastry, Robust loss functions under label noise for deep neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017, pp. 1919–1925. – reference: Y. Fan, F. Tian, T. Qin, X.-Y. Li, T.-Y. Liu, Learning to teach, in: International Conference on Learning Representations, 2018. – reference: G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, L. Qu, Making deep neural networks robust to label noise: A loss correction approach, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1944–1952. – volume: 38 start-page: 447 year: 2014 end-page: 461 ident: b27 article-title: Classification with noisy labels by importance reweighting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 10.1016/j.asoc.2024.111400_b40 doi: 10.1609/aaai.v30i1.10191 – year: 2020 ident: 10.1016/j.asoc.2024.111400_b1 – volume: 33 start-page: 985 issue: 6 year: 2021 ident: 10.1016/j.asoc.2024.111400_b36 article-title: Resampling-based noise correction for crowdsourcing publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2020.1806519 – ident: 10.1016/j.asoc.2024.111400_b7 doi: 10.1145/1390156.1390278 – ident: 10.1016/j.asoc.2024.111400_b10 – ident: 10.1016/j.asoc.2024.111400_b12 – volume: 64 start-page: 107 issue: 3 year: 2021 ident: 10.1016/j.asoc.2024.111400_b42 article-title: Understanding deep learning (still) requires rethinking generalization publication-title: Commun. ACM doi: 10.1145/3446776 – ident: 10.1016/j.asoc.2024.111400_b48 – year: 2019 ident: 10.1016/j.asoc.2024.111400_b20 – ident: 10.1016/j.asoc.2024.111400_b25 – ident: 10.1016/j.asoc.2024.111400_b9 – ident: 10.1016/j.asoc.2024.111400_b19 doi: 10.1609/aaai.v31i1.10894 – ident: 10.1016/j.asoc.2024.111400_b5 – ident: 10.1016/j.asoc.2024.111400_b3 – volume: 1 start-page: 341 issue: 1 year: 2019 ident: 10.1016/j.asoc.2024.111400_b18 article-title: Recent advances in supervised dimension reduction: A survey publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make1010020 – volume: 53 start-page: 14703 issue: 12 year: 2023 ident: 10.1016/j.asoc.2024.111400_b41 article-title: Multi-view multi-label learning with double orders manifold preserving publication-title: Appl. Intell. doi: 10.1007/s10489-022-04242-4 – volume: 38 start-page: 447 issue: 3 year: 2014 ident: 10.1016/j.asoc.2024.111400_b27 article-title: Classification with noisy labels by importance reweighting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2456899 – ident: 10.1016/j.asoc.2024.111400_b17 doi: 10.24963/ijcai.2019/595 – ident: 10.1016/j.asoc.2024.111400_b13 – ident: 10.1016/j.asoc.2024.111400_b44 doi: 10.1145/279943.279962 – volume: 95 start-page: 291 issue: 3 year: 2014 ident: 10.1016/j.asoc.2024.111400_b30 article-title: Learning from multiple annotators with varying expertise publication-title: Mach. Learn. doi: 10.1007/s10994-013-5412-1 – ident: 10.1016/j.asoc.2024.111400_b22 doi: 10.1109/ICCV.2019.00041 – volume: 29 start-page: 141 issue: 6 year: 2012 ident: 10.1016/j.asoc.2024.111400_b45 article-title: The mnist database of handwritten digit images for machine learning research publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2211477 – ident: 10.1016/j.asoc.2024.111400_b34 doi: 10.1109/ICIP.2015.7351698 – ident: 10.1016/j.asoc.2024.111400_b28 – ident: 10.1016/j.asoc.2024.111400_b11 – ident: 10.1016/j.asoc.2024.111400_b31 doi: 10.1109/CVPR.2018.00582 – ident: 10.1016/j.asoc.2024.111400_b24 – ident: 10.1016/j.asoc.2024.111400_b6 – ident: 10.1016/j.asoc.2024.111400_b8 – ident: 10.1016/j.asoc.2024.111400_b26 – ident: 10.1016/j.asoc.2024.111400_b47 – volume: 17 start-page: 1529 issue: 11 year: 2005 ident: 10.1016/j.asoc.2024.111400_b43 article-title: Tri-training: exploiting unlabeled data using three classifiers publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.186 – ident: 10.1016/j.asoc.2024.111400_b4 – ident: 10.1016/j.asoc.2024.111400_b46 doi: 10.1109/CVPR.2017.240 – volume: 14 start-page: 1612 issue: 771–780 year: 1999 ident: 10.1016/j.asoc.2024.111400_b14 article-title: A short introduction to boosting publication-title: J.-Japan. Soc. Artif. Intell. – volume: 5 start-page: 491 issue: 6 year: 2001 ident: 10.1016/j.asoc.2024.111400_b35 article-title: An algorithm for correcting mislabeled data publication-title: Intell. Data Anal. doi: 10.3233/IDA-2001-5605 – ident: 10.1016/j.asoc.2024.111400_b2 – ident: 10.1016/j.asoc.2024.111400_b37 doi: 10.1109/CVPR52729.2023.02305 – volume: 11 start-page: 1297 issue: 43 year: 2010 ident: 10.1016/j.asoc.2024.111400_b29 article-title: Learning from crowds publication-title: J. Mach. Learn. Res. – year: 2014 ident: 10.1016/j.asoc.2024.111400_b15 – ident: 10.1016/j.asoc.2024.111400_b16 – ident: 10.1016/j.asoc.2024.111400_b23 – ident: 10.1016/j.asoc.2024.111400_b32 doi: 10.1109/CVPR.2019.00718 – ident: 10.1016/j.asoc.2024.111400_b21 – volume: 66 start-page: 149 year: 2016 ident: 10.1016/j.asoc.2024.111400_b33 article-title: Label noise correction and application in crowdsourcing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.003 – ident: 10.1016/j.asoc.2024.111400_b39 – year: 2015 ident: 10.1016/j.asoc.2024.111400_b38 |
SSID | ssj0016928 |
Score | 2.4285185 |
Snippet | Learning with noisy labels represents a prevalent weakly supervised learning paradigm. Uncertain knowledge resulting from noisy labels poses significant... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111400 |
SubjectTerms | Deep neural network Noisy labels Three-teaching |
Title | Three-teaching: A three-way decision framework to handle noisy labels |
URI | https://dx.doi.org/10.1016/j.asoc.2024.111400 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61vXjxLdZHycGbxG66yW7XWykt9UERbaG3JU-oyLboivTib3eymy0K0oPHDZkQvkzmwX6ZQeiSxuC3464lNLExYULDlYolJQaSnoRrV8KyYFuMo9GU3c34rIb61VsYR6v0tr-06YW19iNtj2Z7OZ-3nyHz6LKERY4FCXE1pEANWD_iddTo3d6PxuufCVFStFh184kT8G9nSpqXABAgTewwZzyYe-j2l3_64XOGe2jHB4u4V-5nH9VMdoB2q0YM2N_LQzSYwIkYkntm5A3u4bwY-RQrrH0XHWwrHhbOF7isroCzxfx9hUETYAtHaDocTPoj4vsjEBUGQU6EjcBDi1BaamJVxBaaQkBmRKCTyEqWCJm4QcGjUCqlg1CxUAvKLDdUd8JjVM8WmTlBmEoIA6hmzCrFrDDdWFDJYWlONQcz0ES0QiVVvni462HxmlYssZfUIZk6JNMSySa6Wsssy9IZG2fzCuz0lwKkYNs3yJ3-U-4Mbbuvkk52jur524e5gPgily20df1FW6BF_aeHx5bXpm-3as66 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FD3rxLdZnDt4ktukmu11vpbRUrb3YQm8hT6jItuiK9OJvd7KbLQrSg9fZzBK-JPOAb2YQuqYJ-O2k7QhNXUKYNPCkEkWJhaQn5ca3sCzYFqN4MGEPUz6toW5VC-NplcH2lza9sNZB0ghoNhazWeMZMo82S1nsWZAQV0MKtMl4lHhe3-3XiudB47QYsOpXE788VM6UJC8JEECS2GLedDBf5vaXd_rhcfp7aCeEirhT7mYf1Wx2gHarMQw4vMpD1BvDeViSB17kHe7gvJB8yiU2YYYOdhULC-dzXPZWwNl89r7EcA9gC0do0u-NuwMSpiMQHTWbOZEuBv8sI-WoTXQRWRgK4ZiVTZPGTrFUqtQLJY8jpbVpRppFRlLmuKWmFR2jjWye2ROEqYIggBrGnNbMSdtOJFUcfs2p4WAE6ohWqAgdWof7CRavouKIvQiPpPBIihLJOrpZ6SzKxhlrV_MKbPHr-AVY9jV6p__Uu0Jbg_HTUAzvR49naNt_KYll52gjf_uwFxBp5OqyuEnf_WXN8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-teaching%3A+A+three-way+decision+framework+to+handle+noisy+labels&rft.jtitle=Applied+soft+computing&rft.au=Chao%2C+Guoqing&rft.au=Zhang%2C+Kaiwen&rft.au=Wang%2C+Xiru&rft.au=Chu%2C+Dianhui&rft.date=2024-03-01&rft.issn=1568-4946&rft.volume=154&rft.spage=111400&rft_id=info:doi/10.1016%2Fj.asoc.2024.111400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_111400 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |