MHD flow and heat transfer of nanotriple (Cu–Al2O3–Ag): Exact solutions

This work presents an in-depth analytical study of the flow and heat transfer characteristics of a nanotriple fluid system comprising copper, alumina, and silver nanoparticles, over a permeable, elastic, and deformable surface, subject to magnetohydrodynamics (MHD) and velocity slip conditions. Unli...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of physics (Taipei) Vol. 93; pp. 56 - 74
Main Authors Usafzai, Waqar Khan, Wahid, Nur Syahirah, Arifin, Norihan Md, Aly, Emad H.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2025
Subjects
Online AccessGet full text
ISSN0577-9073
DOI10.1016/j.cjph.2024.11.029

Cover

Loading…
Abstract This work presents an in-depth analytical study of the flow and heat transfer characteristics of a nanotriple fluid system comprising copper, alumina, and silver nanoparticles, over a permeable, elastic, and deformable surface, subject to magnetohydrodynamics (MHD) and velocity slip conditions. Unlike many emerging numerical treatments of water-based nanotriple fluids, the primary objective is to derive exact, closed-form solutions, providing a substantial contribution to the analytical understanding of such complex systems. A unique aspect of this investigation is the identification of multiple algebraic-type solutions for the stretching/shrinking sheet problem, yielding dual solutions under injection and a single solution under suction conditions. In addition, critical numbers are identified as thresholds delineating the boundaries for the existence or absence of solutions. It is found that the number of solutions increases as the magnetic force strength decreases. Dual solutions are observed for both skin friction and thermal gradient in the exponential and algebraic cases. These analytical findings are further reinforced by extensive numerical computations, which offer robust validation of the exact solutions derived. Additionally, stability analysis is carried out in order to determine the stability of solutions, where the first branch demonstrates stability, and the second branch is unstable, highlighting the distinct behaviors within the solution branches. [Display omitted] •Conducts an analysis of nanotriple fluids under uniform magnetic and thermal conditions.•Introduces novel closed-form algebraic solutions for fluid flows.•Establishes the existence of multiple exact solutions in multi-fluid systems.•Validates the accuracy of derived solutions through numerical computations.•Identifies stable and unstable solution branches via stability analysis.
AbstractList This work presents an in-depth analytical study of the flow and heat transfer characteristics of a nanotriple fluid system comprising copper, alumina, and silver nanoparticles, over a permeable, elastic, and deformable surface, subject to magnetohydrodynamics (MHD) and velocity slip conditions. Unlike many emerging numerical treatments of water-based nanotriple fluids, the primary objective is to derive exact, closed-form solutions, providing a substantial contribution to the analytical understanding of such complex systems. A unique aspect of this investigation is the identification of multiple algebraic-type solutions for the stretching/shrinking sheet problem, yielding dual solutions under injection and a single solution under suction conditions. In addition, critical numbers are identified as thresholds delineating the boundaries for the existence or absence of solutions. It is found that the number of solutions increases as the magnetic force strength decreases. Dual solutions are observed for both skin friction and thermal gradient in the exponential and algebraic cases. These analytical findings are further reinforced by extensive numerical computations, which offer robust validation of the exact solutions derived. Additionally, stability analysis is carried out in order to determine the stability of solutions, where the first branch demonstrates stability, and the second branch is unstable, highlighting the distinct behaviors within the solution branches. [Display omitted] •Conducts an analysis of nanotriple fluids under uniform magnetic and thermal conditions.•Introduces novel closed-form algebraic solutions for fluid flows.•Establishes the existence of multiple exact solutions in multi-fluid systems.•Validates the accuracy of derived solutions through numerical computations.•Identifies stable and unstable solution branches via stability analysis.
Author Aly, Emad H.
Wahid, Nur Syahirah
Arifin, Norihan Md
Usafzai, Waqar Khan
Author_xml – sequence: 1
  givenname: Waqar Khan
  orcidid: 0000-0002-5932-2608
  surname: Usafzai
  fullname: Usafzai, Waqar Khan
  email: wkyousafzai@icloud.com
  organization: School of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, China
– sequence: 2
  givenname: Nur Syahirah
  surname: Wahid
  fullname: Wahid, Nur Syahirah
  organization: Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
– sequence: 3
  givenname: Norihan Md
  surname: Arifin
  fullname: Arifin, Norihan Md
  organization: Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
– sequence: 4
  givenname: Emad H.
  orcidid: 0000-0001-7432-193X
  surname: Aly
  fullname: Aly, Emad H.
  organization: Department of Mathematics, Faculty of Education, Ain Sham University, Roxy, Cairo, Egypt
BookMark eNp9kDtOAzEYhF0EiSRwASqXUOzy294noolCIIigNOktx_YSR4sd2Q6PjjtwQ07CrkJFkWqqbzTzjdDAOqsRuiCQEiDF9TaV290mpUCzlJAUaD1AQ8jLMqmhZKdoFMIWgOZZzobo6Xl-h5vWvWNhFd5oEXH0woZGe-wabIV10Ztdq_HldP_z9T1p6ZL1-XJ1g2cfQkYcXLuPxtlwhk4a0QZ9_pdjtLqfrabzZLF8eJxOFolkADERSuZQyIwQgLqWRFUlkLqAotK6kAVhinU7K7WGdbnOKUjZZIxSBrVWNWvYGNFDrfQuBK8bvvPmVfhPToD3BviW9wZ4b4ATwjsDHVT9g6SJop_d3TXtcfT2gOru05vRngdptJVaGa9l5MqZY_gvrih7Nw
CitedBy_id crossref_primary_10_32604_cmes_2025_061296
Cites_doi 10.1016/j.ijengsci.2006.04.005
10.1108/HFF-02-2020-0083
10.1016/j.ijthermalsci.2011.05.014
10.3390/math8071175
10.1140/epjp/i2014-14092-4
10.1016/j.chaos.2007.06.019
10.1016/j.cnsns.2009.07.017
10.1016/j.ijnonlinmec.2007.12.021
10.1007/BF01463174
10.1016/j.ijmecsci.2011.07.012
10.1016/j.ces.2012.08.029
10.1115/1.3247387
10.1016/0020-7462(92)90085-L
10.1016/j.compfluid.2012.11.011
10.1016/j.ijnonlinmec.2007.06.003
10.1088/0256-307X/27/12/124702
10.1016/j.cjph.2021.12.014
10.1016/j.ijheatmasstransfer.2008.04.067
10.1615/HeatTransRes.2018020420
10.1002/aic.690070108
10.30970/jps.27.2402
10.1002/cjce.5450550619
10.1007/s10483-008-1006-z
10.1016/j.jmmm.2023.170538
10.1021/i160017a004
10.1108/HFF-04-2024-0254
10.1016/j.icheatmasstransfer.2020.104583
10.1016/j.aej.2024.03.079
10.1090/qam/99636
10.1016/S0009-2509(02)00267-1
10.1007/s11242-008-9309-6
10.1016/j.cjph.2022.10.009
10.1007/BF01212646
10.1016/j.icheatmasstransfer.2010.12.042
10.1016/j.cnsns.2010.01.034
10.1063/5.0196574
10.1108/HFF-09-2016-0358
10.1016/0020-7462(92)90045-9
10.1007/s12046-021-01643-y
10.1002/aic.690070211
10.1108/HFF-12-2018-0794
10.1016/j.icheatmasstransfer.2021.105831
10.1007/BF01587695
10.1016/j.rineng.2021.100229
10.1016/S0093-6413(98)00037-8
10.1007/BF00042775
10.1090/S0033-569X-06-01002-5
ContentType Journal Article
Copyright 2024 The Physical Society of the Republic of China (Taiwan)
Copyright_xml – notice: 2024 The Physical Society of the Republic of China (Taiwan)
DBID AAYXX
CITATION
DOI 10.1016/j.cjph.2024.11.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 74
ExternalDocumentID 10_1016_j_cjph_2024_11_029
S057790732400457X
GroupedDBID --M
0R~
188
29B
2UF
2WC
5GY
8RM
AACTN
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ABNEU
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEIPS
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGUBO
AIEXJ
AIKHN
AINHJ
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ATFKH
AXJTR
BKOJK
CNMHZ
CVCKV
DU5
E3Z
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
M41
M~E
O9-
OK1
P2P
RIG
RNS
ROL
SPC
SPCBC
SSQ
SSZ
T5K
TR2
TUXDW
UZ4
XSB
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
OVT
SSH
ID FETCH-LOGICAL-c300t-adc506c4110099c1d870196068ee6c613d30738db0b7b520ccf4322309ed93f3
IEDL.DBID AIKHN
ISSN 0577-9073
IngestDate Tue Jul 01 04:00:33 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Sat Feb 08 15:52:47 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Magnetohydrodynamic
Velocity slip
Heat transfer
Algebraic solutions
Nanotriple
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-adc506c4110099c1d870196068ee6c613d30738db0b7b520ccf4322309ed93f3
ORCID 0000-0002-5932-2608
0000-0001-7432-193X
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_cjph_2024_11_029
crossref_citationtrail_10_1016_j_cjph_2024_11_029
elsevier_sciencedirect_doi_10_1016_j_cjph_2024_11_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Chinese journal of physics (Taipei)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Turkyilmazoglu (b30) 2011; 50
Turkyilmazoglu (b45) 2011; 53
Turkyilmazoglu (b31) 2013; 71
Crane (b14) 1970; 21
Miklavčič, Wang (b19) 2006; 64
Wahid, Arifin, Yahaya, Khashi’ie, Pop (b8) 2024; 96
Usafzai, Aly, Pop (b9) 2024
Fang, Zhang, Yao (b32) 2010; 27
Turkyilmazoglu (b2) 2012; 84
Paullet, Weidman (b18) 2007; 42
Tadesse, Makinde, Enyadene (b36) 2021; 1
Andersson (b44) 1995; 113
Turkyilmazoglu (b50) 2024; 34
Fang (b48) 2014; 129
Haq, Raza, Algehyne, Tlili (b46) 2020; 114
Muhaimin, Kandasamy, Khamis (b24) 2008; 29
Duguma, Makinde, Enyadene (b40) 2023; 1
Cortell (b26) 2010; 217
Duguma, Makinde, Enyadene (b39) 2023; 1
Mishra, Pandey, Kumar (b52) 2019; 50
Sajid, Hayat (b25) 2009; 39
Andersson (b28) 2002; 158
Usafzai (b47) 2023; 40
Usafzai, Aly, Kim (b35) 2024; 36
Usafzai, Aly, Alshomrani, Ullah (b3) 2022; 131
Usafzai, Aly (b6) 2022; 80
Pavlov (b15) 1974; 4
Wang (b20) 2008; 43
Turkyilmazoglu (b49) 2017; 27
Andersson, Bech, Dandapat (b53) 1992; 27
Mahabaleshwar, Maranna, Perez, Nayakar (b34) 2023; 571
Hamad (b1) 2011; 38
Sakiadis (b11) 1961; 7
Fang (b21) 2008; 51
Gupta, Gupta (b16) 1977; 55
Manjunatha, Puneeth, Gireesha, Chamkha (b7) 2022; 8
Harris, Ingham, Pop (b56) 2009; 77
Aly, Pop (b4) 2019; 29
Grubka, Bobba (b42) 1985; 107
Weidman, Kubitschek, Davis (b55) 2006; 44
Drazin, Riley (b41) 2006
Mahabaleshwara, Vishalakshi, Andersson (b51) 2022; 75
Erickson, Fan, Fox (b13) 1966; 5
Sakiadis (b12) 1961; 7
Charkrabarti, Gupta (b17) 1979; 37
Kopp, Mahabaleshwar, Perez (b10) 2023; 27
Wang (b27) 2002; 57
Vajravelu, Rollins (b43) 1992; 27
Fang, Yao, Zhang, Aziz (b22) 2010; 15
Fang, Zhong (b23) 2010; 15
Mohd Nasir, Ishak, Pop (b33) 2020; 8
Tadesse, Makinde, Enyadene (b38) 2021; 46
Yashkun, Zaimi, Abu Bakar, Ishak, Pop (b5) 2021; 31
Pop, Na (b29) 1998; 25
Merkin (b54) 1986; 20
Tshivhi, Makinde (b37) 2021; 10
Wang (b57) 1989; 69
Sakiadis (10.1016/j.cjph.2024.11.029_b11) 1961; 7
Weidman (10.1016/j.cjph.2024.11.029_b55) 2006; 44
Drazin (10.1016/j.cjph.2024.11.029_b41) 2006
Wang (10.1016/j.cjph.2024.11.029_b57) 1989; 69
Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b49) 2017; 27
Sajid (10.1016/j.cjph.2024.11.029_b25) 2009; 39
Harris (10.1016/j.cjph.2024.11.029_b56) 2009; 77
Muhaimin (10.1016/j.cjph.2024.11.029_b24) 2008; 29
Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b2) 2012; 84
Usafzai (10.1016/j.cjph.2024.11.029_b9) 2024
Cortell (10.1016/j.cjph.2024.11.029_b26) 2010; 217
Tadesse (10.1016/j.cjph.2024.11.029_b36) 2021; 1
Fang (10.1016/j.cjph.2024.11.029_b48) 2014; 129
Wahid (10.1016/j.cjph.2024.11.029_b8) 2024; 96
Duguma (10.1016/j.cjph.2024.11.029_b39) 2023; 1
Andersson (10.1016/j.cjph.2024.11.029_b44) 1995; 113
Andersson (10.1016/j.cjph.2024.11.029_b53) 1992; 27
Vajravelu (10.1016/j.cjph.2024.11.029_b43) 1992; 27
Wang (10.1016/j.cjph.2024.11.029_b27) 2002; 57
Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b50) 2024; 34
Mohd Nasir (10.1016/j.cjph.2024.11.029_b33) 2020; 8
Mishra (10.1016/j.cjph.2024.11.029_b52) 2019; 50
Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b45) 2011; 53
Yashkun (10.1016/j.cjph.2024.11.029_b5) 2021; 31
Charkrabarti (10.1016/j.cjph.2024.11.029_b17) 1979; 37
Fang (10.1016/j.cjph.2024.11.029_b21) 2008; 51
Manjunatha (10.1016/j.cjph.2024.11.029_b7) 2022; 8
Andersson (10.1016/j.cjph.2024.11.029_b28) 2002; 158
Pop (10.1016/j.cjph.2024.11.029_b29) 1998; 25
Fang (10.1016/j.cjph.2024.11.029_b22) 2010; 15
Tshivhi (10.1016/j.cjph.2024.11.029_b37) 2021; 10
Usafzai (10.1016/j.cjph.2024.11.029_b3) 2022; 131
Merkin (10.1016/j.cjph.2024.11.029_b54) 1986; 20
Duguma (10.1016/j.cjph.2024.11.029_b40) 2023; 1
Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b31) 2013; 71
Grubka (10.1016/j.cjph.2024.11.029_b42) 1985; 107
Usafzai (10.1016/j.cjph.2024.11.029_b6) 2022; 80
Erickson (10.1016/j.cjph.2024.11.029_b13) 1966; 5
Tadesse (10.1016/j.cjph.2024.11.029_b38) 2021; 46
Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b30) 2011; 50
Aly (10.1016/j.cjph.2024.11.029_b4) 2019; 29
Mahabaleshwar (10.1016/j.cjph.2024.11.029_b34) 2023; 571
Kopp (10.1016/j.cjph.2024.11.029_b10) 2023; 27
Crane (10.1016/j.cjph.2024.11.029_b14) 1970; 21
Paullet (10.1016/j.cjph.2024.11.029_b18) 2007; 42
Pavlov (10.1016/j.cjph.2024.11.029_b15) 1974; 4
Usafzai (10.1016/j.cjph.2024.11.029_b35) 2024; 36
Usafzai (10.1016/j.cjph.2024.11.029_b47) 2023; 40
Fang (10.1016/j.cjph.2024.11.029_b23) 2010; 15
Hamad (10.1016/j.cjph.2024.11.029_b1) 2011; 38
Mahabaleshwara (10.1016/j.cjph.2024.11.029_b51) 2022; 75
Haq (10.1016/j.cjph.2024.11.029_b46) 2020; 114
Gupta (10.1016/j.cjph.2024.11.029_b16) 1977; 55
Sakiadis (10.1016/j.cjph.2024.11.029_b12) 1961; 7
Wang (10.1016/j.cjph.2024.11.029_b20) 2008; 43
Fang (10.1016/j.cjph.2024.11.029_b32) 2010; 27
Miklavčič (10.1016/j.cjph.2024.11.029_b19) 2006; 64
References_xml – volume: 69
  start-page: 418
  year: 1989
  end-page: 420
  ident: b57
  article-title: Free convection on a vertical stretching surface
  publication-title: J. Appl. Math. Mech.
– volume: 42
  start-page: 1084
  year: 2007
  end-page: 1091
  ident: b18
  article-title: Analysis of stagnation point flow towards a stretching
  publication-title: Int. J. Non-Linear Mech.
– volume: 7
  start-page: 26
  year: 1961
  end-page: 28
  ident: b11
  article-title: Boundary layer behavior on continuous solid surfaces
  publication-title: AICHE J.
– volume: 1
  year: 2023
  ident: b40
  article-title: Stability analysis of dual solutions of convective flow of casson nanofluid past a shrinking/stretching slippery sheet with thermophoresis and brownian motion in porous media
  publication-title: J. Math. Univ. Tokushima
– volume: 55
  start-page: 744
  year: 1977
  end-page: 746
  ident: b16
  article-title: Heat and mass transfer on a stretching sheet with suction or blowing
  publication-title: Can. J. Chem. Eng.
– volume: 7
  start-page: 221
  year: 1961
  end-page: 225
  ident: b12
  article-title: Boundary layer behaviour on continuous solid surfaces I boundary layer on a continuous flat surface
  publication-title: AICHE J.
– volume: 44
  start-page: 730
  year: 2006
  end-page: 737
  ident: b55
  article-title: The effect of transpiration on self-similar boundary layer flow over moving surfaces
  publication-title: Int. J. Eng. Sci.
– volume: 80
  start-page: 414
  year: 2022
  end-page: 426
  ident: b6
  article-title: Exact multiple solutions of 2-D bidirectional moving plate micropolar hybrid nanofluid flow with heat transfer
  publication-title: Chinese J. Phys.
– volume: 15
  start-page: 1831
  year: 2010
  end-page: 1842
  ident: b22
  article-title: Viscous flow over a shrinking sheet with a second order slip flow model
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 4
  start-page: 146
  year: 1974
  end-page: 147
  ident: b15
  article-title: Magnaetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface
  publication-title: Magnitnaya Gidrodinamika (USSR)
– volume: 71
  start-page: 426
  year: 2013
  end-page: 434
  ident: b31
  article-title: Heat and mass transfer of MHD second order slip flow
  publication-title: Comput. & Fluids
– volume: 51
  start-page: 5838
  year: 2008
  end-page: 5843
  ident: b21
  article-title: Boundary layer flow over a shrinking sheet with power-law velocity
  publication-title: Int. J. Heat Mass Transfer
– volume: 15
  start-page: 3768
  year: 2010
  end-page: 3776
  ident: b23
  article-title: Viscous flow over a shrinking sheet with an arbitrary surface velocity
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 27
  start-page: 2259
  year: 2017
  end-page: 2267
  ident: b49
  article-title: Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 158
  start-page: 121
  year: 2002
  end-page: 125
  ident: b28
  article-title: Slip flow past a stretching surface
  publication-title: Acta Mech.
– volume: 113
  start-page: 241
  year: 1995
  end-page: 244
  ident: b44
  article-title: An exact solution of the Navier–Stokes equations for magnetohydrodynamic flow
  publication-title: Acta Mech.
– volume: 8
  start-page: 1175
  year: 2020
  ident: b33
  article-title: Magnetohydrodynamic flow and heat transfer induced by a shrinking sheet
  publication-title: Mathematics
– volume: 53
  start-page: 886
  year: 2011
  end-page: 896
  ident: b45
  article-title: Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet
  publication-title: Int. J. Mech. Sci.
– volume: 114
  year: 2020
  ident: b46
  article-title: Dual nature study of convective heat transfer of nanofluid flow over a shrinking surface in a porous medium
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 77
  start-page: 267
  year: 2009
  end-page: 285
  ident: b56
  article-title: Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip
  publication-title: Transp. Porous Media
– volume: 38
  start-page: 487
  year: 2011
  end-page: 492
  ident: b1
  article-title: Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 46
  start-page: 115
  year: 2021
  ident: b38
  article-title: Hydromagnetic stagnation point flow of a magnetite ferrofluid past a convectively heated permeable stretching/shrinking sheet in a Darcy–Forchheimer porous medium
  publication-title: Sādhanā
– volume: 1
  year: 2023
  ident: b39
  article-title: Dual solutions and stability analysis of Cu-H
  publication-title: Comput. Math. Methods
– volume: 27
  start-page: 929
  year: 1992
  end-page: 936
  ident: b53
  article-title: Magnetohydrodynamic flow of a power-law fluid over a stretching sheet
  publication-title: Int. J. Non-Linear Mech.
– volume: 84
  start-page: 182
  year: 2012
  end-page: 187
  ident: b2
  article-title: Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids
  publication-title: Chem. Eng. Sci.
– volume: 25
  start-page: 263
  year: 1998
  end-page: 269
  ident: b29
  article-title: A note on MHD flow over a stretching permeable surface
  publication-title: Mech. Res. Commun.
– volume: 64
  start-page: 283
  year: 2006
  end-page: 290
  ident: b19
  article-title: Viscous flow due to a shrinking sheet
  publication-title: Quart. Appl. Math.
– volume: 217
  start-page: 4086
  year: 2010
  end-page: 4093
  ident: b26
  article-title: On a certain boundary value problem arising in shrinking sheet flows
  publication-title: Appl. Math. Comput.
– year: 2006
  ident: b41
  article-title: The Navier–Stokes Equations: A Classification of Flows and Exact Solutions
– volume: 50
  start-page: 2264
  year: 2011
  end-page: 2276
  ident: b30
  article-title: Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet
  publication-title: Int. J. Therm. Sci.
– volume: 129
  start-page: 1
  year: 2014
  end-page: 8
  ident: b48
  article-title: Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions
  publication-title: Eur. Phys. J. Plus
– volume: 36
  year: 2024
  ident: b35
  article-title: Exact analytical solutions for micropolar magnetohydrodynamic flow: Insights into velocity slip and heat transfer characteristics
  publication-title: Phys. Fluids
– volume: 5
  start-page: 19
  year: 1966
  end-page: 25
  ident: b13
  article-title: Heat and mass transfer on a moving continuous flat plate with suction or injection
  publication-title: Ind. Eng. Chem. Fundam.
– volume: 131
  year: 2022
  ident: b3
  article-title: Multiple solutions for nanofluids flow and heat transfer in porous medium with velocity slip and temperature jump
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 27
  year: 2010
  ident: b32
  article-title: Slip magnetohydrodynamic viscous flow over a permeable shrinking sheet
  publication-title: Chin. Phys. Lett.
– volume: 27
  start-page: 2402
  year: 2023
  ident: b10
  article-title: Exact solutions of the MHD three-dimensional casson flow of a ternary hybrid nanofluid over a porous stretching/shrinking surface with mass transpiration
  publication-title: J. Phys. Stud.
– volume: 571
  year: 2023
  ident: b34
  article-title: An effect of magnetohydrodynamic and radiation on axisymmetric flow of non-Newtonian fluid past a porous shrinking/stretching surface
  publication-title: J. Magn. Magn. Mater.
– volume: 20
  start-page: 171
  year: 1986
  end-page: 179
  ident: b54
  article-title: On dual solutions occurring in mixed convection in a porous medium
  publication-title: J. Engrg. Math.
– year: 2024
  ident: b9
  article-title: Multiple exact solutions in tri-hybrid nanofluids flow: a study of elastic surface effects
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 29
  start-page: 1309
  year: 2008
  end-page: 1317
  ident: b24
  article-title: Effects of heat and mass transfer on nonlinear MHD boundary layer flow over a shrinking sheet in the presence of suction
  publication-title: Appl. Math. Mech.
– volume: 10
  year: 2021
  ident: b37
  article-title: Magneto-nanofluid coolants past heated shrinking/stretching surfaces: Dual solutions and stability analysis
  publication-title: Results Eng.
– volume: 27
  start-page: 265
  year: 1992
  end-page: 277
  ident: b43
  article-title: Heat transfer in an electrically conducting fluid over a stretching surface
  publication-title: Int. J. Non-Linear Mech.
– volume: 43
  start-page: 377
  year: 2008
  end-page: 382
  ident: b20
  article-title: Stagnation flow towards a shrinking sheet
  publication-title: Int. J. Non-Linear Mech.
– volume: 40
  year: 2023
  ident: b47
  article-title: Multiple exact solutions of second degree nanofluid slip flow and heat transport in porous medium
  publication-title: Therm. Sci. Eng. Prog.
– volume: 29
  start-page: 3012
  year: 2019
  end-page: 3038
  ident: b4
  article-title: MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 39
  start-page: 1317
  year: 2009
  end-page: 1323
  ident: b25
  article-title: The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet
  publication-title: Chaos Solitons Fractals
– volume: 107
  start-page: 248
  year: 1985
  end-page: 250
  ident: b42
  article-title: Heat transfer characteristics of a continuous stretching surface with variable temperature
  publication-title: J. Heat Transfer
– volume: 75
  start-page: 152
  year: 2022
  end-page: 168
  ident: b51
  article-title: Hybrid nanofluid flow past a stretching/shrinking sheet with thermal radiation and mass transpiration
  publication-title: Chin. J. Phys.
– volume: 1
  year: 2021
  ident: b36
  article-title: Mixed convection of a radiating magnetic nanofluid past a heated permeable stretching/shrinking sheet in a porous medium
  publication-title: Math. Probl. Eng.
– volume: 21
  start-page: 645
  year: 1970
  end-page: 647
  ident: b14
  article-title: Flow past a stretching plate
  publication-title: Z. Angew. Math. Phys.
– volume: 96
  start-page: 132
  year: 2024
  end-page: 141
  ident: b8
  article-title: Impact of suction and thermal radiation on unsteady ternary hybrid nanofluid flow over a biaxial shrinking sheet
  publication-title: Alex. Eng. J.
– volume: 37
  start-page: 73
  year: 1979
  end-page: 78
  ident: b17
  article-title: Hydro magnetic flow and heat transfer over a stretching sheet
  publication-title: Quart. Appl. Math.
– volume: 57
  start-page: 3745
  year: 2002
  end-page: 3747
  ident: b27
  article-title: Flow due to a stretching boundary with partial slip—an exact solution of the Navier–Stokes equations
  publication-title: Chem. Eng. Sci.
– volume: 34
  start-page: 3598
  year: 2024
  end-page: 3614
  ident: b50
  article-title: Evidence of stretching/moving sheet-triggered nonlinear similarity flows: atomization and electrospinning with/without air resistance
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 31
  start-page: 1014
  year: 2021
  end-page: 1031
  ident: b5
  article-title: MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 8
  start-page: 1279
  year: 2022
  end-page: 1286
  ident: b7
  article-title: Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet
  publication-title: J. Appl. Comput. Mech.
– volume: 50
  start-page: 1351
  year: 2019
  end-page: 1367
  ident: b52
  article-title: Velocity, thermal and concentration slip effects on MHD silver–water nanofluid flow past a permeable cone with suction/injection and viscous-Ohmic dissipation
  publication-title: Heat Transfer Res.
– volume: 44
  start-page: 730
  year: 2006
  ident: 10.1016/j.cjph.2024.11.029_b55
  article-title: The effect of transpiration on self-similar boundary layer flow over moving surfaces
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2006.04.005
– volume: 31
  start-page: 1014
  year: 2021
  ident: 10.1016/j.cjph.2024.11.029_b5
  article-title: MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-02-2020-0083
– volume: 50
  start-page: 2264
  year: 2011
  ident: 10.1016/j.cjph.2024.11.029_b30
  article-title: Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.05.014
– volume: 4
  start-page: 146
  year: 1974
  ident: 10.1016/j.cjph.2024.11.029_b15
  article-title: Magnaetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface
  publication-title: Magnitnaya Gidrodinamika (USSR)
– volume: 8
  start-page: 1175
  year: 2020
  ident: 10.1016/j.cjph.2024.11.029_b33
  article-title: Magnetohydrodynamic flow and heat transfer induced by a shrinking sheet
  publication-title: Mathematics
  doi: 10.3390/math8071175
– volume: 129
  start-page: 1
  year: 2014
  ident: 10.1016/j.cjph.2024.11.029_b48
  article-title: Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2014-14092-4
– volume: 39
  start-page: 1317
  year: 2009
  ident: 10.1016/j.cjph.2024.11.029_b25
  article-title: The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2007.06.019
– volume: 69
  start-page: 418
  year: 1989
  ident: 10.1016/j.cjph.2024.11.029_b57
  article-title: Free convection on a vertical stretching surface
  publication-title: J. Appl. Math. Mech.
– volume: 15
  start-page: 1831
  year: 2010
  ident: 10.1016/j.cjph.2024.11.029_b22
  article-title: Viscous flow over a shrinking sheet with a second order slip flow model
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.07.017
– volume: 43
  start-page: 377
  year: 2008
  ident: 10.1016/j.cjph.2024.11.029_b20
  article-title: Stagnation flow towards a shrinking sheet
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2007.12.021
– volume: 158
  start-page: 121
  year: 2002
  ident: 10.1016/j.cjph.2024.11.029_b28
  article-title: Slip flow past a stretching surface
  publication-title: Acta Mech.
  doi: 10.1007/BF01463174
– volume: 53
  start-page: 886
  year: 2011
  ident: 10.1016/j.cjph.2024.11.029_b45
  article-title: Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2011.07.012
– volume: 84
  start-page: 182
  year: 2012
  ident: 10.1016/j.cjph.2024.11.029_b2
  article-title: Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.08.029
– volume: 107
  start-page: 248
  year: 1985
  ident: 10.1016/j.cjph.2024.11.029_b42
  article-title: Heat transfer characteristics of a continuous stretching surface with variable temperature
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3247387
– volume: 27
  start-page: 265
  year: 1992
  ident: 10.1016/j.cjph.2024.11.029_b43
  article-title: Heat transfer in an electrically conducting fluid over a stretching surface
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/0020-7462(92)90085-L
– volume: 71
  start-page: 426
  year: 2013
  ident: 10.1016/j.cjph.2024.11.029_b31
  article-title: Heat and mass transfer of MHD second order slip flow
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2012.11.011
– volume: 42
  start-page: 1084
  year: 2007
  ident: 10.1016/j.cjph.2024.11.029_b18
  article-title: Analysis of stagnation point flow towards a stretching
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2007.06.003
– volume: 27
  year: 2010
  ident: 10.1016/j.cjph.2024.11.029_b32
  article-title: Slip magnetohydrodynamic viscous flow over a permeable shrinking sheet
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/27/12/124702
– volume: 75
  start-page: 152
  year: 2022
  ident: 10.1016/j.cjph.2024.11.029_b51
  article-title: Hybrid nanofluid flow past a stretching/shrinking sheet with thermal radiation and mass transpiration
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.12.014
– volume: 217
  start-page: 4086
  year: 2010
  ident: 10.1016/j.cjph.2024.11.029_b26
  article-title: On a certain boundary value problem arising in shrinking sheet flows
  publication-title: Appl. Math. Comput.
– volume: 51
  start-page: 5838
  year: 2008
  ident: 10.1016/j.cjph.2024.11.029_b21
  article-title: Boundary layer flow over a shrinking sheet with power-law velocity
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.04.067
– volume: 8
  start-page: 1279
  year: 2022
  ident: 10.1016/j.cjph.2024.11.029_b7
  article-title: Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet
  publication-title: J. Appl. Comput. Mech.
– volume: 50
  start-page: 1351
  year: 2019
  ident: 10.1016/j.cjph.2024.11.029_b52
  article-title: Velocity, thermal and concentration slip effects on MHD silver–water nanofluid flow past a permeable cone with suction/injection and viscous-Ohmic dissipation
  publication-title: Heat Transfer Res.
  doi: 10.1615/HeatTransRes.2018020420
– volume: 7
  start-page: 26
  year: 1961
  ident: 10.1016/j.cjph.2024.11.029_b11
  article-title: Boundary layer behavior on continuous solid surfaces
  publication-title: AICHE J.
  doi: 10.1002/aic.690070108
– volume: 27
  start-page: 2402
  year: 2023
  ident: 10.1016/j.cjph.2024.11.029_b10
  article-title: Exact solutions of the MHD three-dimensional casson flow of a ternary hybrid nanofluid over a porous stretching/shrinking surface with mass transpiration
  publication-title: J. Phys. Stud.
  doi: 10.30970/jps.27.2402
– volume: 1
  year: 2021
  ident: 10.1016/j.cjph.2024.11.029_b36
  article-title: Mixed convection of a radiating magnetic nanofluid past a heated permeable stretching/shrinking sheet in a porous medium
  publication-title: Math. Probl. Eng.
– volume: 55
  start-page: 744
  year: 1977
  ident: 10.1016/j.cjph.2024.11.029_b16
  article-title: Heat and mass transfer on a stretching sheet with suction or blowing
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450550619
– volume: 29
  start-page: 1309
  year: 2008
  ident: 10.1016/j.cjph.2024.11.029_b24
  article-title: Effects of heat and mass transfer on nonlinear MHD boundary layer flow over a shrinking sheet in the presence of suction
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-008-1006-z
– volume: 571
  year: 2023
  ident: 10.1016/j.cjph.2024.11.029_b34
  article-title: An effect of magnetohydrodynamic and radiation on axisymmetric flow of non-Newtonian fluid past a porous shrinking/stretching surface
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2023.170538
– volume: 5
  start-page: 19
  year: 1966
  ident: 10.1016/j.cjph.2024.11.029_b13
  article-title: Heat and mass transfer on a moving continuous flat plate with suction or injection
  publication-title: Ind. Eng. Chem. Fundam.
  doi: 10.1021/i160017a004
– volume: 34
  start-page: 3598
  year: 2024
  ident: 10.1016/j.cjph.2024.11.029_b50
  article-title: Evidence of stretching/moving sheet-triggered nonlinear similarity flows: atomization and electrospinning with/without air resistance
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-04-2024-0254
– volume: 114
  year: 2020
  ident: 10.1016/j.cjph.2024.11.029_b46
  article-title: Dual nature study of convective heat transfer of nanofluid flow over a shrinking surface in a porous medium
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104583
– volume: 1
  year: 2023
  ident: 10.1016/j.cjph.2024.11.029_b40
  article-title: Stability analysis of dual solutions of convective flow of casson nanofluid past a shrinking/stretching slippery sheet with thermophoresis and brownian motion in porous media
  publication-title: J. Math. Univ. Tokushima
– volume: 96
  start-page: 132
  year: 2024
  ident: 10.1016/j.cjph.2024.11.029_b8
  article-title: Impact of suction and thermal radiation on unsteady ternary hybrid nanofluid flow over a biaxial shrinking sheet
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.03.079
– volume: 37
  start-page: 73
  year: 1979
  ident: 10.1016/j.cjph.2024.11.029_b17
  article-title: Hydro magnetic flow and heat transfer over a stretching sheet
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/99636
– volume: 57
  start-page: 3745
  year: 2002
  ident: 10.1016/j.cjph.2024.11.029_b27
  article-title: Flow due to a stretching boundary with partial slip—an exact solution of the Navier–Stokes equations
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(02)00267-1
– volume: 1
  year: 2023
  ident: 10.1016/j.cjph.2024.11.029_b39
  article-title: Dual solutions and stability analysis of Cu-H2O-Casson nanofluid convection past a heated stretching/shrinking slippery sheet in a porous medium
  publication-title: Comput. Math. Methods
– volume: 77
  start-page: 267
  year: 2009
  ident: 10.1016/j.cjph.2024.11.029_b56
  article-title: Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-008-9309-6
– volume: 80
  start-page: 414
  year: 2022
  ident: 10.1016/j.cjph.2024.11.029_b6
  article-title: Exact multiple solutions of 2-D bidirectional moving plate micropolar hybrid nanofluid flow with heat transfer
  publication-title: Chinese J. Phys.
  doi: 10.1016/j.cjph.2022.10.009
– volume: 113
  start-page: 241
  year: 1995
  ident: 10.1016/j.cjph.2024.11.029_b44
  article-title: An exact solution of the Navier–Stokes equations for magnetohydrodynamic flow
  publication-title: Acta Mech.
  doi: 10.1007/BF01212646
– volume: 38
  start-page: 487
  year: 2011
  ident: 10.1016/j.cjph.2024.11.029_b1
  article-title: Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2010.12.042
– volume: 15
  start-page: 3768
  year: 2010
  ident: 10.1016/j.cjph.2024.11.029_b23
  article-title: Viscous flow over a shrinking sheet with an arbitrary surface velocity
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.01.034
– year: 2006
  ident: 10.1016/j.cjph.2024.11.029_b41
– volume: 36
  year: 2024
  ident: 10.1016/j.cjph.2024.11.029_b35
  article-title: Exact analytical solutions for micropolar magnetohydrodynamic flow: Insights into velocity slip and heat transfer characteristics
  publication-title: Phys. Fluids
  doi: 10.1063/5.0196574
– volume: 27
  start-page: 2259
  year: 2017
  ident: 10.1016/j.cjph.2024.11.029_b49
  article-title: Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-09-2016-0358
– volume: 27
  start-page: 929
  year: 1992
  ident: 10.1016/j.cjph.2024.11.029_b53
  article-title: Magnetohydrodynamic flow of a power-law fluid over a stretching sheet
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/0020-7462(92)90045-9
– volume: 46
  start-page: 115
  year: 2021
  ident: 10.1016/j.cjph.2024.11.029_b38
  article-title: Hydromagnetic stagnation point flow of a magnetite ferrofluid past a convectively heated permeable stretching/shrinking sheet in a Darcy–Forchheimer porous medium
  publication-title: Sādhanā
  doi: 10.1007/s12046-021-01643-y
– volume: 7
  start-page: 221
  year: 1961
  ident: 10.1016/j.cjph.2024.11.029_b12
  article-title: Boundary layer behaviour on continuous solid surfaces I boundary layer on a continuous flat surface
  publication-title: AICHE J.
  doi: 10.1002/aic.690070211
– volume: 40
  year: 2023
  ident: 10.1016/j.cjph.2024.11.029_b47
  article-title: Multiple exact solutions of second degree nanofluid slip flow and heat transport in porous medium
  publication-title: Therm. Sci. Eng. Prog.
– volume: 29
  start-page: 3012
  year: 2019
  ident: 10.1016/j.cjph.2024.11.029_b4
  article-title: MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-12-2018-0794
– volume: 131
  year: 2022
  ident: 10.1016/j.cjph.2024.11.029_b3
  article-title: Multiple solutions for nanofluids flow and heat transfer in porous medium with velocity slip and temperature jump
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105831
– volume: 21
  start-page: 645
  year: 1970
  ident: 10.1016/j.cjph.2024.11.029_b14
  article-title: Flow past a stretching plate
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF01587695
– volume: 10
  year: 2021
  ident: 10.1016/j.cjph.2024.11.029_b37
  article-title: Magneto-nanofluid coolants past heated shrinking/stretching surfaces: Dual solutions and stability analysis
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2021.100229
– volume: 25
  start-page: 263
  year: 1998
  ident: 10.1016/j.cjph.2024.11.029_b29
  article-title: A note on MHD flow over a stretching permeable surface
  publication-title: Mech. Res. Commun.
  doi: 10.1016/S0093-6413(98)00037-8
– volume: 20
  start-page: 171
  year: 1986
  ident: 10.1016/j.cjph.2024.11.029_b54
  article-title: On dual solutions occurring in mixed convection in a porous medium
  publication-title: J. Engrg. Math.
  doi: 10.1007/BF00042775
– volume: 64
  start-page: 283
  year: 2006
  ident: 10.1016/j.cjph.2024.11.029_b19
  article-title: Viscous flow due to a shrinking sheet
  publication-title: Quart. Appl. Math.
  doi: 10.1090/S0033-569X-06-01002-5
– year: 2024
  ident: 10.1016/j.cjph.2024.11.029_b9
  article-title: Multiple exact solutions in tri-hybrid nanofluids flow: a study of elastic surface effects
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
SSID ssj0025453
Score 2.3370032
Snippet This work presents an in-depth analytical study of the flow and heat transfer characteristics of a nanotriple fluid system comprising copper, alumina, and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 56
SubjectTerms Algebraic solutions
Heat transfer
Magnetohydrodynamic
Nanotriple
Velocity slip
Title MHD flow and heat transfer of nanotriple (Cu–Al2O3–Ag): Exact solutions
URI https://dx.doi.org/10.1016/j.cjph.2024.11.029
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qi-BFfGJ9sQcPisTm_fBWaku0tB6s0FvYbHalpSSlpujR_-A_9Jc4k2yKgvTgKRAyEL7szHyTeRFyAZyYm0yAfntM12zDiLWAMakJz3ZdH_yNWzTSDoZu-Gw_jJ1xjXSqXhgsq1S2v7TphbVWd1oKzdZ8Mmk9AdPwILTDiXLAS7zxBmmYVuBCBNZo3_fD4SruApJQJJodzFaCgOqdKcu8-HSOOQnTvsFhngXT_MM__fA5vR2yrcgibZfvs0tqIt0jm0XRJn_dJ_1BeEflLHujLE0oWlWaFzxULGgmacrSLF_gj3R62Vl-fXy2Z-ajhdeXq1vafWc8p6uTd0BGve6oE2pqOYLGLV3PNZZwB3C2ceRbEHAj8XGwOkDvC-FycNIJaq-fxHrsxY6pcy5tUF5LD0QSWNI6JPU0S8URocwx4kAKQ4LyQzQp_ZjjvnQbLB8ER77RJEaFSMTV4HDcXzGLqgqxaYQoRogiRBQRoNgk1yuZeTk2Y-3TTgV09OvjR2DX18gd_1PuhGyZuMa3KL4-JfV8sRRnwC3y-FydnW_yAsrJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qi-hFfGJ97sGDIrF5P7yVWkntw4MVegubzUZaSlJqih79D_5Df4kzyaYoSA-eAiED4cvOzDfZ2W8IuQBOzHUmwL8dpiqmpoWKx1isCMe0bRfyjZ0fpO0PbP_ZfBhZowpplWdhsK1Sxv4ipufRWt5pSDQbs_G48QRMw4HSDhXlgJc4ozVSQ3UqWOy1ZqfrD5Z1F5CEfKPZwt1KMJBnZ4o2Lz6Z4Z6Ebt6gmGfONP_ITz9yzv022ZJkkTaL99khFZHskvW8aZO_7pFu37-j8TR9oyyJKEZVmuU8VMxpGtOEJWk2xx_p9LK1-Pr4bE71RwOvL1e3tP3OeEaXK2-fDO_bw5avyOEICjdUNVNYxC3A2UTJN8_jWuSisDpA7wphc0jSEXqvG4Vq6ISWrnIem-C8huqJyDNi44BUkzQRh4QySwu9WGgxOD9Uk7EbcpyXbkLkg-LI1epEKxEJuBQOx_kV06DsEJsEiGKAKEJFEQCKdXK9tJkVshkrn7ZKoINfHz-AuL7C7uifdudkwx_2e0GvM-gek00dR_rmjdgnpJrNF-IUeEYWnsl19A2Kz82v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MHD+flow+and+heat+transfer+of+nanotriple+%28Cu%E2%80%93Al2O3%E2%80%93Ag%29%3A+Exact+solutions&rft.jtitle=Chinese+journal+of+physics+%28Taipei%29&rft.au=Usafzai%2C+Waqar+Khan&rft.au=Wahid%2C+Nur+Syahirah&rft.au=Arifin%2C+Norihan+Md&rft.au=Aly%2C+Emad+H.&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=0577-9073&rft.volume=93&rft.spage=56&rft.epage=74&rft_id=info:doi/10.1016%2Fj.cjph.2024.11.029&rft.externalDocID=S057790732400457X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0577-9073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0577-9073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0577-9073&client=summon