MHD flow and heat transfer of nanotriple (Cu–Al2O3–Ag): Exact solutions
This work presents an in-depth analytical study of the flow and heat transfer characteristics of a nanotriple fluid system comprising copper, alumina, and silver nanoparticles, over a permeable, elastic, and deformable surface, subject to magnetohydrodynamics (MHD) and velocity slip conditions. Unli...
Saved in:
Published in | Chinese journal of physics (Taipei) Vol. 93; pp. 56 - 74 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0577-9073 |
DOI | 10.1016/j.cjph.2024.11.029 |
Cover
Loading…
Abstract | This work presents an in-depth analytical study of the flow and heat transfer characteristics of a nanotriple fluid system comprising copper, alumina, and silver nanoparticles, over a permeable, elastic, and deformable surface, subject to magnetohydrodynamics (MHD) and velocity slip conditions. Unlike many emerging numerical treatments of water-based nanotriple fluids, the primary objective is to derive exact, closed-form solutions, providing a substantial contribution to the analytical understanding of such complex systems. A unique aspect of this investigation is the identification of multiple algebraic-type solutions for the stretching/shrinking sheet problem, yielding dual solutions under injection and a single solution under suction conditions. In addition, critical numbers are identified as thresholds delineating the boundaries for the existence or absence of solutions. It is found that the number of solutions increases as the magnetic force strength decreases. Dual solutions are observed for both skin friction and thermal gradient in the exponential and algebraic cases. These analytical findings are further reinforced by extensive numerical computations, which offer robust validation of the exact solutions derived. Additionally, stability analysis is carried out in order to determine the stability of solutions, where the first branch demonstrates stability, and the second branch is unstable, highlighting the distinct behaviors within the solution branches.
[Display omitted]
•Conducts an analysis of nanotriple fluids under uniform magnetic and thermal conditions.•Introduces novel closed-form algebraic solutions for fluid flows.•Establishes the existence of multiple exact solutions in multi-fluid systems.•Validates the accuracy of derived solutions through numerical computations.•Identifies stable and unstable solution branches via stability analysis. |
---|---|
AbstractList | This work presents an in-depth analytical study of the flow and heat transfer characteristics of a nanotriple fluid system comprising copper, alumina, and silver nanoparticles, over a permeable, elastic, and deformable surface, subject to magnetohydrodynamics (MHD) and velocity slip conditions. Unlike many emerging numerical treatments of water-based nanotriple fluids, the primary objective is to derive exact, closed-form solutions, providing a substantial contribution to the analytical understanding of such complex systems. A unique aspect of this investigation is the identification of multiple algebraic-type solutions for the stretching/shrinking sheet problem, yielding dual solutions under injection and a single solution under suction conditions. In addition, critical numbers are identified as thresholds delineating the boundaries for the existence or absence of solutions. It is found that the number of solutions increases as the magnetic force strength decreases. Dual solutions are observed for both skin friction and thermal gradient in the exponential and algebraic cases. These analytical findings are further reinforced by extensive numerical computations, which offer robust validation of the exact solutions derived. Additionally, stability analysis is carried out in order to determine the stability of solutions, where the first branch demonstrates stability, and the second branch is unstable, highlighting the distinct behaviors within the solution branches.
[Display omitted]
•Conducts an analysis of nanotriple fluids under uniform magnetic and thermal conditions.•Introduces novel closed-form algebraic solutions for fluid flows.•Establishes the existence of multiple exact solutions in multi-fluid systems.•Validates the accuracy of derived solutions through numerical computations.•Identifies stable and unstable solution branches via stability analysis. |
Author | Aly, Emad H. Wahid, Nur Syahirah Arifin, Norihan Md Usafzai, Waqar Khan |
Author_xml | – sequence: 1 givenname: Waqar Khan orcidid: 0000-0002-5932-2608 surname: Usafzai fullname: Usafzai, Waqar Khan email: wkyousafzai@icloud.com organization: School of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, China – sequence: 2 givenname: Nur Syahirah surname: Wahid fullname: Wahid, Nur Syahirah organization: Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia – sequence: 3 givenname: Norihan Md surname: Arifin fullname: Arifin, Norihan Md organization: Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia – sequence: 4 givenname: Emad H. orcidid: 0000-0001-7432-193X surname: Aly fullname: Aly, Emad H. organization: Department of Mathematics, Faculty of Education, Ain Sham University, Roxy, Cairo, Egypt |
BookMark | eNp9kDtOAzEYhF0EiSRwASqXUOzy294noolCIIigNOktx_YSR4sd2Q6PjjtwQ07CrkJFkWqqbzTzjdDAOqsRuiCQEiDF9TaV290mpUCzlJAUaD1AQ8jLMqmhZKdoFMIWgOZZzobo6Xl-h5vWvWNhFd5oEXH0woZGe-wabIV10Ztdq_HldP_z9T1p6ZL1-XJ1g2cfQkYcXLuPxtlwhk4a0QZ9_pdjtLqfrabzZLF8eJxOFolkADERSuZQyIwQgLqWRFUlkLqAotK6kAVhinU7K7WGdbnOKUjZZIxSBrVWNWvYGNFDrfQuBK8bvvPmVfhPToD3BviW9wZ4b4ATwjsDHVT9g6SJop_d3TXtcfT2gOru05vRngdptJVaGa9l5MqZY_gvrih7Nw |
CitedBy_id | crossref_primary_10_32604_cmes_2025_061296 |
Cites_doi | 10.1016/j.ijengsci.2006.04.005 10.1108/HFF-02-2020-0083 10.1016/j.ijthermalsci.2011.05.014 10.3390/math8071175 10.1140/epjp/i2014-14092-4 10.1016/j.chaos.2007.06.019 10.1016/j.cnsns.2009.07.017 10.1016/j.ijnonlinmec.2007.12.021 10.1007/BF01463174 10.1016/j.ijmecsci.2011.07.012 10.1016/j.ces.2012.08.029 10.1115/1.3247387 10.1016/0020-7462(92)90085-L 10.1016/j.compfluid.2012.11.011 10.1016/j.ijnonlinmec.2007.06.003 10.1088/0256-307X/27/12/124702 10.1016/j.cjph.2021.12.014 10.1016/j.ijheatmasstransfer.2008.04.067 10.1615/HeatTransRes.2018020420 10.1002/aic.690070108 10.30970/jps.27.2402 10.1002/cjce.5450550619 10.1007/s10483-008-1006-z 10.1016/j.jmmm.2023.170538 10.1021/i160017a004 10.1108/HFF-04-2024-0254 10.1016/j.icheatmasstransfer.2020.104583 10.1016/j.aej.2024.03.079 10.1090/qam/99636 10.1016/S0009-2509(02)00267-1 10.1007/s11242-008-9309-6 10.1016/j.cjph.2022.10.009 10.1007/BF01212646 10.1016/j.icheatmasstransfer.2010.12.042 10.1016/j.cnsns.2010.01.034 10.1063/5.0196574 10.1108/HFF-09-2016-0358 10.1016/0020-7462(92)90045-9 10.1007/s12046-021-01643-y 10.1002/aic.690070211 10.1108/HFF-12-2018-0794 10.1016/j.icheatmasstransfer.2021.105831 10.1007/BF01587695 10.1016/j.rineng.2021.100229 10.1016/S0093-6413(98)00037-8 10.1007/BF00042775 10.1090/S0033-569X-06-01002-5 |
ContentType | Journal Article |
Copyright | 2024 The Physical Society of the Republic of China (Taiwan) |
Copyright_xml | – notice: 2024 The Physical Society of the Republic of China (Taiwan) |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cjph.2024.11.029 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EndPage | 74 |
ExternalDocumentID | 10_1016_j_cjph_2024_11_029 S057790732400457X |
GroupedDBID | --M 0R~ 188 29B 2UF 2WC 5GY 8RM AACTN AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ABNEU ACDAQ ACGFS ACRLP ADBBV AEBSH AEIPS AENEX AFFNX AFJKZ AFKWA AFTJW AGUBO AIEXJ AIKHN AINHJ AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU ATFKH AXJTR BKOJK CNMHZ CVCKV DU5 E3Z EBS EFJIC EJD FDB FIRID FYGXN KOM M41 M~E O9- OK1 P2P RIG RNS ROL SPC SPCBC SSQ SSZ T5K TR2 TUXDW UZ4 XSB ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION OVT SSH |
ID | FETCH-LOGICAL-c300t-adc506c4110099c1d870196068ee6c613d30738db0b7b520ccf4322309ed93f3 |
IEDL.DBID | AIKHN |
ISSN | 0577-9073 |
IngestDate | Tue Jul 01 04:00:33 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Sat Feb 08 15:52:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnetohydrodynamic Velocity slip Heat transfer Algebraic solutions Nanotriple |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-adc506c4110099c1d870196068ee6c613d30738db0b7b520ccf4322309ed93f3 |
ORCID | 0000-0002-5932-2608 0000-0001-7432-193X |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1016_j_cjph_2024_11_029 crossref_citationtrail_10_1016_j_cjph_2024_11_029 elsevier_sciencedirect_doi_10_1016_j_cjph_2024_11_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationTitle | Chinese journal of physics (Taipei) |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Turkyilmazoglu (b30) 2011; 50 Turkyilmazoglu (b45) 2011; 53 Turkyilmazoglu (b31) 2013; 71 Crane (b14) 1970; 21 Miklavčič, Wang (b19) 2006; 64 Wahid, Arifin, Yahaya, Khashi’ie, Pop (b8) 2024; 96 Usafzai, Aly, Pop (b9) 2024 Fang, Zhang, Yao (b32) 2010; 27 Turkyilmazoglu (b2) 2012; 84 Paullet, Weidman (b18) 2007; 42 Tadesse, Makinde, Enyadene (b36) 2021; 1 Andersson (b44) 1995; 113 Turkyilmazoglu (b50) 2024; 34 Fang (b48) 2014; 129 Haq, Raza, Algehyne, Tlili (b46) 2020; 114 Muhaimin, Kandasamy, Khamis (b24) 2008; 29 Duguma, Makinde, Enyadene (b40) 2023; 1 Cortell (b26) 2010; 217 Duguma, Makinde, Enyadene (b39) 2023; 1 Mishra, Pandey, Kumar (b52) 2019; 50 Sajid, Hayat (b25) 2009; 39 Andersson (b28) 2002; 158 Usafzai (b47) 2023; 40 Usafzai, Aly, Kim (b35) 2024; 36 Usafzai, Aly, Alshomrani, Ullah (b3) 2022; 131 Usafzai, Aly (b6) 2022; 80 Pavlov (b15) 1974; 4 Wang (b20) 2008; 43 Turkyilmazoglu (b49) 2017; 27 Andersson, Bech, Dandapat (b53) 1992; 27 Mahabaleshwar, Maranna, Perez, Nayakar (b34) 2023; 571 Hamad (b1) 2011; 38 Sakiadis (b11) 1961; 7 Fang (b21) 2008; 51 Gupta, Gupta (b16) 1977; 55 Manjunatha, Puneeth, Gireesha, Chamkha (b7) 2022; 8 Harris, Ingham, Pop (b56) 2009; 77 Aly, Pop (b4) 2019; 29 Grubka, Bobba (b42) 1985; 107 Weidman, Kubitschek, Davis (b55) 2006; 44 Drazin, Riley (b41) 2006 Mahabaleshwara, Vishalakshi, Andersson (b51) 2022; 75 Erickson, Fan, Fox (b13) 1966; 5 Sakiadis (b12) 1961; 7 Charkrabarti, Gupta (b17) 1979; 37 Kopp, Mahabaleshwar, Perez (b10) 2023; 27 Wang (b27) 2002; 57 Vajravelu, Rollins (b43) 1992; 27 Fang, Yao, Zhang, Aziz (b22) 2010; 15 Fang, Zhong (b23) 2010; 15 Mohd Nasir, Ishak, Pop (b33) 2020; 8 Tadesse, Makinde, Enyadene (b38) 2021; 46 Yashkun, Zaimi, Abu Bakar, Ishak, Pop (b5) 2021; 31 Pop, Na (b29) 1998; 25 Merkin (b54) 1986; 20 Tshivhi, Makinde (b37) 2021; 10 Wang (b57) 1989; 69 Sakiadis (10.1016/j.cjph.2024.11.029_b11) 1961; 7 Weidman (10.1016/j.cjph.2024.11.029_b55) 2006; 44 Drazin (10.1016/j.cjph.2024.11.029_b41) 2006 Wang (10.1016/j.cjph.2024.11.029_b57) 1989; 69 Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b49) 2017; 27 Sajid (10.1016/j.cjph.2024.11.029_b25) 2009; 39 Harris (10.1016/j.cjph.2024.11.029_b56) 2009; 77 Muhaimin (10.1016/j.cjph.2024.11.029_b24) 2008; 29 Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b2) 2012; 84 Usafzai (10.1016/j.cjph.2024.11.029_b9) 2024 Cortell (10.1016/j.cjph.2024.11.029_b26) 2010; 217 Tadesse (10.1016/j.cjph.2024.11.029_b36) 2021; 1 Fang (10.1016/j.cjph.2024.11.029_b48) 2014; 129 Wahid (10.1016/j.cjph.2024.11.029_b8) 2024; 96 Duguma (10.1016/j.cjph.2024.11.029_b39) 2023; 1 Andersson (10.1016/j.cjph.2024.11.029_b44) 1995; 113 Andersson (10.1016/j.cjph.2024.11.029_b53) 1992; 27 Vajravelu (10.1016/j.cjph.2024.11.029_b43) 1992; 27 Wang (10.1016/j.cjph.2024.11.029_b27) 2002; 57 Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b50) 2024; 34 Mohd Nasir (10.1016/j.cjph.2024.11.029_b33) 2020; 8 Mishra (10.1016/j.cjph.2024.11.029_b52) 2019; 50 Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b45) 2011; 53 Yashkun (10.1016/j.cjph.2024.11.029_b5) 2021; 31 Charkrabarti (10.1016/j.cjph.2024.11.029_b17) 1979; 37 Fang (10.1016/j.cjph.2024.11.029_b21) 2008; 51 Manjunatha (10.1016/j.cjph.2024.11.029_b7) 2022; 8 Andersson (10.1016/j.cjph.2024.11.029_b28) 2002; 158 Pop (10.1016/j.cjph.2024.11.029_b29) 1998; 25 Fang (10.1016/j.cjph.2024.11.029_b22) 2010; 15 Tshivhi (10.1016/j.cjph.2024.11.029_b37) 2021; 10 Usafzai (10.1016/j.cjph.2024.11.029_b3) 2022; 131 Merkin (10.1016/j.cjph.2024.11.029_b54) 1986; 20 Duguma (10.1016/j.cjph.2024.11.029_b40) 2023; 1 Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b31) 2013; 71 Grubka (10.1016/j.cjph.2024.11.029_b42) 1985; 107 Usafzai (10.1016/j.cjph.2024.11.029_b6) 2022; 80 Erickson (10.1016/j.cjph.2024.11.029_b13) 1966; 5 Tadesse (10.1016/j.cjph.2024.11.029_b38) 2021; 46 Turkyilmazoglu (10.1016/j.cjph.2024.11.029_b30) 2011; 50 Aly (10.1016/j.cjph.2024.11.029_b4) 2019; 29 Mahabaleshwar (10.1016/j.cjph.2024.11.029_b34) 2023; 571 Kopp (10.1016/j.cjph.2024.11.029_b10) 2023; 27 Crane (10.1016/j.cjph.2024.11.029_b14) 1970; 21 Paullet (10.1016/j.cjph.2024.11.029_b18) 2007; 42 Pavlov (10.1016/j.cjph.2024.11.029_b15) 1974; 4 Usafzai (10.1016/j.cjph.2024.11.029_b35) 2024; 36 Usafzai (10.1016/j.cjph.2024.11.029_b47) 2023; 40 Fang (10.1016/j.cjph.2024.11.029_b23) 2010; 15 Hamad (10.1016/j.cjph.2024.11.029_b1) 2011; 38 Mahabaleshwara (10.1016/j.cjph.2024.11.029_b51) 2022; 75 Haq (10.1016/j.cjph.2024.11.029_b46) 2020; 114 Gupta (10.1016/j.cjph.2024.11.029_b16) 1977; 55 Sakiadis (10.1016/j.cjph.2024.11.029_b12) 1961; 7 Wang (10.1016/j.cjph.2024.11.029_b20) 2008; 43 Fang (10.1016/j.cjph.2024.11.029_b32) 2010; 27 Miklavčič (10.1016/j.cjph.2024.11.029_b19) 2006; 64 |
References_xml | – volume: 69 start-page: 418 year: 1989 end-page: 420 ident: b57 article-title: Free convection on a vertical stretching surface publication-title: J. Appl. Math. Mech. – volume: 42 start-page: 1084 year: 2007 end-page: 1091 ident: b18 article-title: Analysis of stagnation point flow towards a stretching publication-title: Int. J. Non-Linear Mech. – volume: 7 start-page: 26 year: 1961 end-page: 28 ident: b11 article-title: Boundary layer behavior on continuous solid surfaces publication-title: AICHE J. – volume: 1 year: 2023 ident: b40 article-title: Stability analysis of dual solutions of convective flow of casson nanofluid past a shrinking/stretching slippery sheet with thermophoresis and brownian motion in porous media publication-title: J. Math. Univ. Tokushima – volume: 55 start-page: 744 year: 1977 end-page: 746 ident: b16 article-title: Heat and mass transfer on a stretching sheet with suction or blowing publication-title: Can. J. Chem. Eng. – volume: 7 start-page: 221 year: 1961 end-page: 225 ident: b12 article-title: Boundary layer behaviour on continuous solid surfaces I boundary layer on a continuous flat surface publication-title: AICHE J. – volume: 44 start-page: 730 year: 2006 end-page: 737 ident: b55 article-title: The effect of transpiration on self-similar boundary layer flow over moving surfaces publication-title: Int. J. Eng. Sci. – volume: 80 start-page: 414 year: 2022 end-page: 426 ident: b6 article-title: Exact multiple solutions of 2-D bidirectional moving plate micropolar hybrid nanofluid flow with heat transfer publication-title: Chinese J. Phys. – volume: 15 start-page: 1831 year: 2010 end-page: 1842 ident: b22 article-title: Viscous flow over a shrinking sheet with a second order slip flow model publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 4 start-page: 146 year: 1974 end-page: 147 ident: b15 article-title: Magnaetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface publication-title: Magnitnaya Gidrodinamika (USSR) – volume: 71 start-page: 426 year: 2013 end-page: 434 ident: b31 article-title: Heat and mass transfer of MHD second order slip flow publication-title: Comput. & Fluids – volume: 51 start-page: 5838 year: 2008 end-page: 5843 ident: b21 article-title: Boundary layer flow over a shrinking sheet with power-law velocity publication-title: Int. J. Heat Mass Transfer – volume: 15 start-page: 3768 year: 2010 end-page: 3776 ident: b23 article-title: Viscous flow over a shrinking sheet with an arbitrary surface velocity publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 27 start-page: 2259 year: 2017 end-page: 2267 ident: b49 article-title: Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 158 start-page: 121 year: 2002 end-page: 125 ident: b28 article-title: Slip flow past a stretching surface publication-title: Acta Mech. – volume: 113 start-page: 241 year: 1995 end-page: 244 ident: b44 article-title: An exact solution of the Navier–Stokes equations for magnetohydrodynamic flow publication-title: Acta Mech. – volume: 8 start-page: 1175 year: 2020 ident: b33 article-title: Magnetohydrodynamic flow and heat transfer induced by a shrinking sheet publication-title: Mathematics – volume: 53 start-page: 886 year: 2011 end-page: 896 ident: b45 article-title: Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet publication-title: Int. J. Mech. Sci. – volume: 114 year: 2020 ident: b46 article-title: Dual nature study of convective heat transfer of nanofluid flow over a shrinking surface in a porous medium publication-title: Int. Commun. Heat Mass Transfer – volume: 77 start-page: 267 year: 2009 end-page: 285 ident: b56 article-title: Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip publication-title: Transp. Porous Media – volume: 38 start-page: 487 year: 2011 end-page: 492 ident: b1 article-title: Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field publication-title: Int. Commun. Heat Mass Transfer – volume: 46 start-page: 115 year: 2021 ident: b38 article-title: Hydromagnetic stagnation point flow of a magnetite ferrofluid past a convectively heated permeable stretching/shrinking sheet in a Darcy–Forchheimer porous medium publication-title: Sādhanā – volume: 1 year: 2023 ident: b39 article-title: Dual solutions and stability analysis of Cu-H publication-title: Comput. Math. Methods – volume: 27 start-page: 929 year: 1992 end-page: 936 ident: b53 article-title: Magnetohydrodynamic flow of a power-law fluid over a stretching sheet publication-title: Int. J. Non-Linear Mech. – volume: 84 start-page: 182 year: 2012 end-page: 187 ident: b2 article-title: Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids publication-title: Chem. Eng. Sci. – volume: 25 start-page: 263 year: 1998 end-page: 269 ident: b29 article-title: A note on MHD flow over a stretching permeable surface publication-title: Mech. Res. Commun. – volume: 64 start-page: 283 year: 2006 end-page: 290 ident: b19 article-title: Viscous flow due to a shrinking sheet publication-title: Quart. Appl. Math. – volume: 217 start-page: 4086 year: 2010 end-page: 4093 ident: b26 article-title: On a certain boundary value problem arising in shrinking sheet flows publication-title: Appl. Math. Comput. – year: 2006 ident: b41 article-title: The Navier–Stokes Equations: A Classification of Flows and Exact Solutions – volume: 50 start-page: 2264 year: 2011 end-page: 2276 ident: b30 article-title: Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet publication-title: Int. J. Therm. Sci. – volume: 129 start-page: 1 year: 2014 end-page: 8 ident: b48 article-title: Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions publication-title: Eur. Phys. J. Plus – volume: 36 year: 2024 ident: b35 article-title: Exact analytical solutions for micropolar magnetohydrodynamic flow: Insights into velocity slip and heat transfer characteristics publication-title: Phys. Fluids – volume: 5 start-page: 19 year: 1966 end-page: 25 ident: b13 article-title: Heat and mass transfer on a moving continuous flat plate with suction or injection publication-title: Ind. Eng. Chem. Fundam. – volume: 131 year: 2022 ident: b3 article-title: Multiple solutions for nanofluids flow and heat transfer in porous medium with velocity slip and temperature jump publication-title: Int. Commun. Heat Mass Transfer – volume: 27 year: 2010 ident: b32 article-title: Slip magnetohydrodynamic viscous flow over a permeable shrinking sheet publication-title: Chin. Phys. Lett. – volume: 27 start-page: 2402 year: 2023 ident: b10 article-title: Exact solutions of the MHD three-dimensional casson flow of a ternary hybrid nanofluid over a porous stretching/shrinking surface with mass transpiration publication-title: J. Phys. Stud. – volume: 571 year: 2023 ident: b34 article-title: An effect of magnetohydrodynamic and radiation on axisymmetric flow of non-Newtonian fluid past a porous shrinking/stretching surface publication-title: J. Magn. Magn. Mater. – volume: 20 start-page: 171 year: 1986 end-page: 179 ident: b54 article-title: On dual solutions occurring in mixed convection in a porous medium publication-title: J. Engrg. Math. – year: 2024 ident: b9 article-title: Multiple exact solutions in tri-hybrid nanofluids flow: a study of elastic surface effects publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 29 start-page: 1309 year: 2008 end-page: 1317 ident: b24 article-title: Effects of heat and mass transfer on nonlinear MHD boundary layer flow over a shrinking sheet in the presence of suction publication-title: Appl. Math. Mech. – volume: 10 year: 2021 ident: b37 article-title: Magneto-nanofluid coolants past heated shrinking/stretching surfaces: Dual solutions and stability analysis publication-title: Results Eng. – volume: 27 start-page: 265 year: 1992 end-page: 277 ident: b43 article-title: Heat transfer in an electrically conducting fluid over a stretching surface publication-title: Int. J. Non-Linear Mech. – volume: 43 start-page: 377 year: 2008 end-page: 382 ident: b20 article-title: Stagnation flow towards a shrinking sheet publication-title: Int. J. Non-Linear Mech. – volume: 40 year: 2023 ident: b47 article-title: Multiple exact solutions of second degree nanofluid slip flow and heat transport in porous medium publication-title: Therm. Sci. Eng. Prog. – volume: 29 start-page: 3012 year: 2019 end-page: 3038 ident: b4 article-title: MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 39 start-page: 1317 year: 2009 end-page: 1323 ident: b25 article-title: The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet publication-title: Chaos Solitons Fractals – volume: 107 start-page: 248 year: 1985 end-page: 250 ident: b42 article-title: Heat transfer characteristics of a continuous stretching surface with variable temperature publication-title: J. Heat Transfer – volume: 75 start-page: 152 year: 2022 end-page: 168 ident: b51 article-title: Hybrid nanofluid flow past a stretching/shrinking sheet with thermal radiation and mass transpiration publication-title: Chin. J. Phys. – volume: 1 year: 2021 ident: b36 article-title: Mixed convection of a radiating magnetic nanofluid past a heated permeable stretching/shrinking sheet in a porous medium publication-title: Math. Probl. Eng. – volume: 21 start-page: 645 year: 1970 end-page: 647 ident: b14 article-title: Flow past a stretching plate publication-title: Z. Angew. Math. Phys. – volume: 96 start-page: 132 year: 2024 end-page: 141 ident: b8 article-title: Impact of suction and thermal radiation on unsteady ternary hybrid nanofluid flow over a biaxial shrinking sheet publication-title: Alex. Eng. J. – volume: 37 start-page: 73 year: 1979 end-page: 78 ident: b17 article-title: Hydro magnetic flow and heat transfer over a stretching sheet publication-title: Quart. Appl. Math. – volume: 57 start-page: 3745 year: 2002 end-page: 3747 ident: b27 article-title: Flow due to a stretching boundary with partial slip—an exact solution of the Navier–Stokes equations publication-title: Chem. Eng. Sci. – volume: 34 start-page: 3598 year: 2024 end-page: 3614 ident: b50 article-title: Evidence of stretching/moving sheet-triggered nonlinear similarity flows: atomization and electrospinning with/without air resistance publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 31 start-page: 1014 year: 2021 end-page: 1031 ident: b5 article-title: MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 8 start-page: 1279 year: 2022 end-page: 1286 ident: b7 article-title: Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet publication-title: J. Appl. Comput. Mech. – volume: 50 start-page: 1351 year: 2019 end-page: 1367 ident: b52 article-title: Velocity, thermal and concentration slip effects on MHD silver–water nanofluid flow past a permeable cone with suction/injection and viscous-Ohmic dissipation publication-title: Heat Transfer Res. – volume: 44 start-page: 730 year: 2006 ident: 10.1016/j.cjph.2024.11.029_b55 article-title: The effect of transpiration on self-similar boundary layer flow over moving surfaces publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2006.04.005 – volume: 31 start-page: 1014 year: 2021 ident: 10.1016/j.cjph.2024.11.029_b5 article-title: MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-02-2020-0083 – volume: 50 start-page: 2264 year: 2011 ident: 10.1016/j.cjph.2024.11.029_b30 article-title: Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.05.014 – volume: 4 start-page: 146 year: 1974 ident: 10.1016/j.cjph.2024.11.029_b15 article-title: Magnaetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface publication-title: Magnitnaya Gidrodinamika (USSR) – volume: 8 start-page: 1175 year: 2020 ident: 10.1016/j.cjph.2024.11.029_b33 article-title: Magnetohydrodynamic flow and heat transfer induced by a shrinking sheet publication-title: Mathematics doi: 10.3390/math8071175 – volume: 129 start-page: 1 year: 2014 ident: 10.1016/j.cjph.2024.11.029_b48 article-title: Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2014-14092-4 – volume: 39 start-page: 1317 year: 2009 ident: 10.1016/j.cjph.2024.11.029_b25 article-title: The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2007.06.019 – volume: 69 start-page: 418 year: 1989 ident: 10.1016/j.cjph.2024.11.029_b57 article-title: Free convection on a vertical stretching surface publication-title: J. Appl. Math. Mech. – volume: 15 start-page: 1831 year: 2010 ident: 10.1016/j.cjph.2024.11.029_b22 article-title: Viscous flow over a shrinking sheet with a second order slip flow model publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.07.017 – volume: 43 start-page: 377 year: 2008 ident: 10.1016/j.cjph.2024.11.029_b20 article-title: Stagnation flow towards a shrinking sheet publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2007.12.021 – volume: 158 start-page: 121 year: 2002 ident: 10.1016/j.cjph.2024.11.029_b28 article-title: Slip flow past a stretching surface publication-title: Acta Mech. doi: 10.1007/BF01463174 – volume: 53 start-page: 886 year: 2011 ident: 10.1016/j.cjph.2024.11.029_b45 article-title: Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2011.07.012 – volume: 84 start-page: 182 year: 2012 ident: 10.1016/j.cjph.2024.11.029_b2 article-title: Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.08.029 – volume: 107 start-page: 248 year: 1985 ident: 10.1016/j.cjph.2024.11.029_b42 article-title: Heat transfer characteristics of a continuous stretching surface with variable temperature publication-title: J. Heat Transfer doi: 10.1115/1.3247387 – volume: 27 start-page: 265 year: 1992 ident: 10.1016/j.cjph.2024.11.029_b43 article-title: Heat transfer in an electrically conducting fluid over a stretching surface publication-title: Int. J. Non-Linear Mech. doi: 10.1016/0020-7462(92)90085-L – volume: 71 start-page: 426 year: 2013 ident: 10.1016/j.cjph.2024.11.029_b31 article-title: Heat and mass transfer of MHD second order slip flow publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2012.11.011 – volume: 42 start-page: 1084 year: 2007 ident: 10.1016/j.cjph.2024.11.029_b18 article-title: Analysis of stagnation point flow towards a stretching publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2007.06.003 – volume: 27 year: 2010 ident: 10.1016/j.cjph.2024.11.029_b32 article-title: Slip magnetohydrodynamic viscous flow over a permeable shrinking sheet publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/27/12/124702 – volume: 75 start-page: 152 year: 2022 ident: 10.1016/j.cjph.2024.11.029_b51 article-title: Hybrid nanofluid flow past a stretching/shrinking sheet with thermal radiation and mass transpiration publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.12.014 – volume: 217 start-page: 4086 year: 2010 ident: 10.1016/j.cjph.2024.11.029_b26 article-title: On a certain boundary value problem arising in shrinking sheet flows publication-title: Appl. Math. Comput. – volume: 51 start-page: 5838 year: 2008 ident: 10.1016/j.cjph.2024.11.029_b21 article-title: Boundary layer flow over a shrinking sheet with power-law velocity publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.04.067 – volume: 8 start-page: 1279 year: 2022 ident: 10.1016/j.cjph.2024.11.029_b7 article-title: Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet publication-title: J. Appl. Comput. Mech. – volume: 50 start-page: 1351 year: 2019 ident: 10.1016/j.cjph.2024.11.029_b52 article-title: Velocity, thermal and concentration slip effects on MHD silver–water nanofluid flow past a permeable cone with suction/injection and viscous-Ohmic dissipation publication-title: Heat Transfer Res. doi: 10.1615/HeatTransRes.2018020420 – volume: 7 start-page: 26 year: 1961 ident: 10.1016/j.cjph.2024.11.029_b11 article-title: Boundary layer behavior on continuous solid surfaces publication-title: AICHE J. doi: 10.1002/aic.690070108 – volume: 27 start-page: 2402 year: 2023 ident: 10.1016/j.cjph.2024.11.029_b10 article-title: Exact solutions of the MHD three-dimensional casson flow of a ternary hybrid nanofluid over a porous stretching/shrinking surface with mass transpiration publication-title: J. Phys. Stud. doi: 10.30970/jps.27.2402 – volume: 1 year: 2021 ident: 10.1016/j.cjph.2024.11.029_b36 article-title: Mixed convection of a radiating magnetic nanofluid past a heated permeable stretching/shrinking sheet in a porous medium publication-title: Math. Probl. Eng. – volume: 55 start-page: 744 year: 1977 ident: 10.1016/j.cjph.2024.11.029_b16 article-title: Heat and mass transfer on a stretching sheet with suction or blowing publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450550619 – volume: 29 start-page: 1309 year: 2008 ident: 10.1016/j.cjph.2024.11.029_b24 article-title: Effects of heat and mass transfer on nonlinear MHD boundary layer flow over a shrinking sheet in the presence of suction publication-title: Appl. Math. Mech. doi: 10.1007/s10483-008-1006-z – volume: 571 year: 2023 ident: 10.1016/j.cjph.2024.11.029_b34 article-title: An effect of magnetohydrodynamic and radiation on axisymmetric flow of non-Newtonian fluid past a porous shrinking/stretching surface publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2023.170538 – volume: 5 start-page: 19 year: 1966 ident: 10.1016/j.cjph.2024.11.029_b13 article-title: Heat and mass transfer on a moving continuous flat plate with suction or injection publication-title: Ind. Eng. Chem. Fundam. doi: 10.1021/i160017a004 – volume: 34 start-page: 3598 year: 2024 ident: 10.1016/j.cjph.2024.11.029_b50 article-title: Evidence of stretching/moving sheet-triggered nonlinear similarity flows: atomization and electrospinning with/without air resistance publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-04-2024-0254 – volume: 114 year: 2020 ident: 10.1016/j.cjph.2024.11.029_b46 article-title: Dual nature study of convective heat transfer of nanofluid flow over a shrinking surface in a porous medium publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104583 – volume: 1 year: 2023 ident: 10.1016/j.cjph.2024.11.029_b40 article-title: Stability analysis of dual solutions of convective flow of casson nanofluid past a shrinking/stretching slippery sheet with thermophoresis and brownian motion in porous media publication-title: J. Math. Univ. Tokushima – volume: 96 start-page: 132 year: 2024 ident: 10.1016/j.cjph.2024.11.029_b8 article-title: Impact of suction and thermal radiation on unsteady ternary hybrid nanofluid flow over a biaxial shrinking sheet publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2024.03.079 – volume: 37 start-page: 73 year: 1979 ident: 10.1016/j.cjph.2024.11.029_b17 article-title: Hydro magnetic flow and heat transfer over a stretching sheet publication-title: Quart. Appl. Math. doi: 10.1090/qam/99636 – volume: 57 start-page: 3745 year: 2002 ident: 10.1016/j.cjph.2024.11.029_b27 article-title: Flow due to a stretching boundary with partial slip—an exact solution of the Navier–Stokes equations publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(02)00267-1 – volume: 1 year: 2023 ident: 10.1016/j.cjph.2024.11.029_b39 article-title: Dual solutions and stability analysis of Cu-H2O-Casson nanofluid convection past a heated stretching/shrinking slippery sheet in a porous medium publication-title: Comput. Math. Methods – volume: 77 start-page: 267 year: 2009 ident: 10.1016/j.cjph.2024.11.029_b56 article-title: Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip publication-title: Transp. Porous Media doi: 10.1007/s11242-008-9309-6 – volume: 80 start-page: 414 year: 2022 ident: 10.1016/j.cjph.2024.11.029_b6 article-title: Exact multiple solutions of 2-D bidirectional moving plate micropolar hybrid nanofluid flow with heat transfer publication-title: Chinese J. Phys. doi: 10.1016/j.cjph.2022.10.009 – volume: 113 start-page: 241 year: 1995 ident: 10.1016/j.cjph.2024.11.029_b44 article-title: An exact solution of the Navier–Stokes equations for magnetohydrodynamic flow publication-title: Acta Mech. doi: 10.1007/BF01212646 – volume: 38 start-page: 487 year: 2011 ident: 10.1016/j.cjph.2024.11.029_b1 article-title: Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.12.042 – volume: 15 start-page: 3768 year: 2010 ident: 10.1016/j.cjph.2024.11.029_b23 article-title: Viscous flow over a shrinking sheet with an arbitrary surface velocity publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.01.034 – year: 2006 ident: 10.1016/j.cjph.2024.11.029_b41 – volume: 36 year: 2024 ident: 10.1016/j.cjph.2024.11.029_b35 article-title: Exact analytical solutions for micropolar magnetohydrodynamic flow: Insights into velocity slip and heat transfer characteristics publication-title: Phys. Fluids doi: 10.1063/5.0196574 – volume: 27 start-page: 2259 year: 2017 ident: 10.1016/j.cjph.2024.11.029_b49 article-title: Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-09-2016-0358 – volume: 27 start-page: 929 year: 1992 ident: 10.1016/j.cjph.2024.11.029_b53 article-title: Magnetohydrodynamic flow of a power-law fluid over a stretching sheet publication-title: Int. J. Non-Linear Mech. doi: 10.1016/0020-7462(92)90045-9 – volume: 46 start-page: 115 year: 2021 ident: 10.1016/j.cjph.2024.11.029_b38 article-title: Hydromagnetic stagnation point flow of a magnetite ferrofluid past a convectively heated permeable stretching/shrinking sheet in a Darcy–Forchheimer porous medium publication-title: Sādhanā doi: 10.1007/s12046-021-01643-y – volume: 7 start-page: 221 year: 1961 ident: 10.1016/j.cjph.2024.11.029_b12 article-title: Boundary layer behaviour on continuous solid surfaces I boundary layer on a continuous flat surface publication-title: AICHE J. doi: 10.1002/aic.690070211 – volume: 40 year: 2023 ident: 10.1016/j.cjph.2024.11.029_b47 article-title: Multiple exact solutions of second degree nanofluid slip flow and heat transport in porous medium publication-title: Therm. Sci. Eng. Prog. – volume: 29 start-page: 3012 year: 2019 ident: 10.1016/j.cjph.2024.11.029_b4 article-title: MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-12-2018-0794 – volume: 131 year: 2022 ident: 10.1016/j.cjph.2024.11.029_b3 article-title: Multiple solutions for nanofluids flow and heat transfer in porous medium with velocity slip and temperature jump publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105831 – volume: 21 start-page: 645 year: 1970 ident: 10.1016/j.cjph.2024.11.029_b14 article-title: Flow past a stretching plate publication-title: Z. Angew. Math. Phys. doi: 10.1007/BF01587695 – volume: 10 year: 2021 ident: 10.1016/j.cjph.2024.11.029_b37 article-title: Magneto-nanofluid coolants past heated shrinking/stretching surfaces: Dual solutions and stability analysis publication-title: Results Eng. doi: 10.1016/j.rineng.2021.100229 – volume: 25 start-page: 263 year: 1998 ident: 10.1016/j.cjph.2024.11.029_b29 article-title: A note on MHD flow over a stretching permeable surface publication-title: Mech. Res. Commun. doi: 10.1016/S0093-6413(98)00037-8 – volume: 20 start-page: 171 year: 1986 ident: 10.1016/j.cjph.2024.11.029_b54 article-title: On dual solutions occurring in mixed convection in a porous medium publication-title: J. Engrg. Math. doi: 10.1007/BF00042775 – volume: 64 start-page: 283 year: 2006 ident: 10.1016/j.cjph.2024.11.029_b19 article-title: Viscous flow due to a shrinking sheet publication-title: Quart. Appl. Math. doi: 10.1090/S0033-569X-06-01002-5 – year: 2024 ident: 10.1016/j.cjph.2024.11.029_b9 article-title: Multiple exact solutions in tri-hybrid nanofluids flow: a study of elastic surface effects publication-title: Int. J. Numer. Methods Heat Fluid Flow |
SSID | ssj0025453 |
Score | 2.3370032 |
Snippet | This work presents an in-depth analytical study of the flow and heat transfer characteristics of a nanotriple fluid system comprising copper, alumina, and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 56 |
SubjectTerms | Algebraic solutions Heat transfer Magnetohydrodynamic Nanotriple Velocity slip |
Title | MHD flow and heat transfer of nanotriple (Cu–Al2O3–Ag): Exact solutions |
URI | https://dx.doi.org/10.1016/j.cjph.2024.11.029 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qi-BFfGJ9sQcPisTm_fBWaku0tB6s0FvYbHalpSSlpujR_-A_9Jc4k2yKgvTgKRAyEL7szHyTeRFyAZyYm0yAfntM12zDiLWAMakJz3ZdH_yNWzTSDoZu-Gw_jJ1xjXSqXhgsq1S2v7TphbVWd1oKzdZ8Mmk9AdPwILTDiXLAS7zxBmmYVuBCBNZo3_fD4SruApJQJJodzFaCgOqdKcu8-HSOOQnTvsFhngXT_MM__fA5vR2yrcgibZfvs0tqIt0jm0XRJn_dJ_1BeEflLHujLE0oWlWaFzxULGgmacrSLF_gj3R62Vl-fXy2Z-ajhdeXq1vafWc8p6uTd0BGve6oE2pqOYLGLV3PNZZwB3C2ceRbEHAj8XGwOkDvC-FycNIJaq-fxHrsxY6pcy5tUF5LD0QSWNI6JPU0S8URocwx4kAKQ4LyQzQp_ZjjvnQbLB8ER77RJEaFSMTV4HDcXzGLqgqxaYQoRogiRBQRoNgk1yuZeTk2Y-3TTgV09OvjR2DX18gd_1PuhGyZuMa3KL4-JfV8sRRnwC3y-FydnW_yAsrJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qi-hFfGJ97sGDIrF5P7yVWkntw4MVegubzUZaSlJqih79D_5Df4kzyaYoSA-eAiED4cvOzDfZ2W8IuQBOzHUmwL8dpiqmpoWKx1isCMe0bRfyjZ0fpO0PbP_ZfBhZowpplWdhsK1Sxv4ipufRWt5pSDQbs_G48QRMw4HSDhXlgJc4ozVSQ3UqWOy1ZqfrD5Z1F5CEfKPZwt1KMJBnZ4o2Lz6Z4Z6Ebt6gmGfONP_ITz9yzv022ZJkkTaL99khFZHskvW8aZO_7pFu37-j8TR9oyyJKEZVmuU8VMxpGtOEJWk2xx_p9LK1-Pr4bE71RwOvL1e3tP3OeEaXK2-fDO_bw5avyOEICjdUNVNYxC3A2UTJN8_jWuSisDpA7wphc0jSEXqvG4Vq6ISWrnIem-C8huqJyDNi44BUkzQRh4QySwu9WGgxOD9Uk7EbcpyXbkLkg-LI1epEKxEJuBQOx_kV06DsEJsEiGKAKEJFEQCKdXK9tJkVshkrn7ZKoINfHz-AuL7C7uifdudkwx_2e0GvM-gek00dR_rmjdgnpJrNF-IUeEYWnsl19A2Kz82v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MHD+flow+and+heat+transfer+of+nanotriple+%28Cu%E2%80%93Al2O3%E2%80%93Ag%29%3A+Exact+solutions&rft.jtitle=Chinese+journal+of+physics+%28Taipei%29&rft.au=Usafzai%2C+Waqar+Khan&rft.au=Wahid%2C+Nur+Syahirah&rft.au=Arifin%2C+Norihan+Md&rft.au=Aly%2C+Emad+H.&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=0577-9073&rft.volume=93&rft.spage=56&rft.epage=74&rft_id=info:doi/10.1016%2Fj.cjph.2024.11.029&rft.externalDocID=S057790732400457X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0577-9073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0577-9073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0577-9073&client=summon |