Novel optimization approach for stock price forecasting using multi-layered sequential LSTM

Stock markets can often be one of the most volatile places to invest. Statistical analysis of past stock performance and external factors play a major role in the decision to buy or sell stocks. These factors are all used to maximize profits. Stock price index forecasting has been a subject of great...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 134; p. 109830
Main Authors Md, Abdul Quadir, Kapoor, Sanjit, A.V., Chris Junni, Sivaraman, Arun Kumar, Tee, Kong Fah, H., Sabireen, N., Janakiraman
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stock markets can often be one of the most volatile places to invest. Statistical analysis of past stock performance and external factors play a major role in the decision to buy or sell stocks. These factors are all used to maximize profits. Stock price index forecasting has been a subject of great research for many years, and several machine learning and deep learning algorithms have been proposed to simplify this complex task, but little success has been found so far. In order to forecast stocks accurately, it is crucial to understand the context-specific dependence of stock prices on their past values. The use of Long Short Term Memory (LSTM), which is capable of understanding long-term data dependencies, can help overcome this obstacle. In this context, this paper proposes a novel optimization approach for stock price prediction that is based on a Multi-Layer Sequential Long Short Term Memory (MLS LSTM) model which makes use of the adam optimizer. Additionally, the MLS LSTM algorithm uses normalized time series data divided into time steps to determine the relationship between past values and future values in order to make accurate predictions. Furthermore, it eliminates the vanishing gradient problem associated with simple recurrent neural networks. The stock price index is forecasted by taking into account past performance information along with past trends and patterns. The results illustrate that a 95.9% prediction accuracy is achieved on the training data set and a 98.1% accuracy on the testing data set with the MLS LSTM algorithm, which dramatically exceeds the performance of other machine learning and deep learning algorithms. The mean absolute percentage error was observed to be 1.79% on the training set and 2.18% on the testing set, respectively. Moreover, the proposed model is able to estimate the stock price with a normalized root mean squared error of 0.019, thus giving an accurate forecast and making it a feasible real-world solution. •Stock price forecasting is performed.•The long short term memory is used for the prediction.•Adam is used as the optimizer.•Better predictive performance compared to conventional machine learning algorithms.
AbstractList Stock markets can often be one of the most volatile places to invest. Statistical analysis of past stock performance and external factors play a major role in the decision to buy or sell stocks. These factors are all used to maximize profits. Stock price index forecasting has been a subject of great research for many years, and several machine learning and deep learning algorithms have been proposed to simplify this complex task, but little success has been found so far. In order to forecast stocks accurately, it is crucial to understand the context-specific dependence of stock prices on their past values. The use of Long Short Term Memory (LSTM), which is capable of understanding long-term data dependencies, can help overcome this obstacle. In this context, this paper proposes a novel optimization approach for stock price prediction that is based on a Multi-Layer Sequential Long Short Term Memory (MLS LSTM) model which makes use of the adam optimizer. Additionally, the MLS LSTM algorithm uses normalized time series data divided into time steps to determine the relationship between past values and future values in order to make accurate predictions. Furthermore, it eliminates the vanishing gradient problem associated with simple recurrent neural networks. The stock price index is forecasted by taking into account past performance information along with past trends and patterns. The results illustrate that a 95.9% prediction accuracy is achieved on the training data set and a 98.1% accuracy on the testing data set with the MLS LSTM algorithm, which dramatically exceeds the performance of other machine learning and deep learning algorithms. The mean absolute percentage error was observed to be 1.79% on the training set and 2.18% on the testing set, respectively. Moreover, the proposed model is able to estimate the stock price with a normalized root mean squared error of 0.019, thus giving an accurate forecast and making it a feasible real-world solution. •Stock price forecasting is performed.•The long short term memory is used for the prediction.•Adam is used as the optimizer.•Better predictive performance compared to conventional machine learning algorithms.
ArticleNumber 109830
Author Sivaraman, Arun Kumar
Md, Abdul Quadir
Tee, Kong Fah
H., Sabireen
Kapoor, Sanjit
A.V., Chris Junni
N., Janakiraman
Author_xml – sequence: 1
  givenname: Abdul Quadir
  surname: Md
  fullname: Md, Abdul Quadir
  organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India
– sequence: 2
  givenname: Sanjit
  surname: Kapoor
  fullname: Kapoor, Sanjit
  organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India
– sequence: 3
  givenname: Chris Junni
  surname: A.V.
  fullname: A.V., Chris Junni
  organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India
– sequence: 4
  givenname: Arun Kumar
  surname: Sivaraman
  fullname: Sivaraman, Arun Kumar
  organization: Digital Engineering, Solution Center-H, Photo Inc. DLF Cyber City, Chennai, 600089, India
– sequence: 5
  givenname: Kong Fah
  orcidid: 0000-0003-3202-873X
  surname: Tee
  fullname: Tee, Kong Fah
  email: kongfah.tee@newinti.edu.my
  organization: Faculty of Engineering and Quantity Surveying, INTI International University, 71800 Nilai, Malaysia
– sequence: 6
  givenname: Sabireen
  surname: H.
  fullname: H., Sabireen
  organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India
– sequence: 7
  givenname: Janakiraman
  surname: N.
  fullname: N., Janakiraman
  organization: Department of Electronics and Communication Engineering, K.L.N. College of Engineering, Madurai, Tamil Nadu, India
BookMark eNp9kL1OAzEMgDMUibbwAkx5gStO7i-RWFDFn1RgoEwMUS7nQsr1ciRppfL03FEmhi62bPmz7G9CRq1rkZALBjMGrLhcz3RwZsaB874hRQojMmZ5IZJMZsUpmYSwhn5QcjEmb09uhw11XbQb-62jdS3VXeedNh905TwN0ZlP2nlrcKjR6BBt-063YYibbRNt0ug9eqxpwK8tttHqhi5elo9n5GSlm4Dnf3lKXm9vlvP7ZPF89zC_XiQmBYiJritT5BlPZS5QVBolq0tRlsAz4ACyZGC0ZiZjQogaqhpAy36Qp1VecYnplPDDXuNdCB5Xqj93o_1eMVCDErVWgxI1KFEHJT0k_kHGxt__o9e2OY5eHVDsn9pZ9CoYi63B2vZ-oqqdPYb_ALySgg4
CitedBy_id crossref_primary_10_1007_s10614_024_10639_9
crossref_primary_10_3390_math11051130
crossref_primary_10_3390_s24206556
crossref_primary_10_1016_j_heliyon_2024_e27747
crossref_primary_10_1142_S0219477524400182
crossref_primary_10_3390_electronics13224408
crossref_primary_10_1007_s10489_024_05271_x
crossref_primary_10_1007_s42979_023_02507_4
crossref_primary_10_3390_math13010009
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_1016_j_ins_2024_121651
crossref_primary_10_1016_j_eij_2025_100610
crossref_primary_10_14780_muiibd_1481251
crossref_primary_10_1007_s10489_023_05085_3
crossref_primary_10_1007_s10489_024_05468_0
crossref_primary_10_1109_ACCESS_2024_3466829
crossref_primary_10_3390_risks12030046
crossref_primary_10_2478_picbe_2023_0154
crossref_primary_10_1016_j_simpa_2024_100681
crossref_primary_10_48084_etasr_9850
crossref_primary_10_1016_j_engappai_2025_110353
crossref_primary_10_1016_j_aej_2024_03_030
crossref_primary_10_1016_j_neucom_2024_127343
crossref_primary_10_1016_j_asoc_2024_112524
crossref_primary_10_7717_peerj_cs_2312
crossref_primary_10_3390_systems12050171
crossref_primary_10_1016_j_jhydrol_2023_130076
crossref_primary_10_1007_s11042_023_17620_y
crossref_primary_10_1016_j_eswa_2024_123482
crossref_primary_10_1016_j_eswa_2023_122891
crossref_primary_10_1016_j_ijar_2024_109217
crossref_primary_10_1038_s41598_024_71873_7
crossref_primary_10_3233_JIFS_223101
crossref_primary_10_1007_s12559_023_10240_6
crossref_primary_10_52396_JUSTC_2023_0066
crossref_primary_10_3934_math_2025114
crossref_primary_10_1016_j_eswa_2023_121899
crossref_primary_10_3390_info15120743
crossref_primary_10_3390_electronics13173396
crossref_primary_10_4018_IJSWIS_367280
crossref_primary_10_21015_vtse_v11i2_1571
crossref_primary_10_1016_j_eswa_2024_123146
crossref_primary_10_3390_app13053186
crossref_primary_10_3390_biomedicines11041167
crossref_primary_10_1007_s10614_024_10567_8
crossref_primary_10_1007_s10614_024_10689_z
crossref_primary_10_1016_j_asoc_2024_112393
crossref_primary_10_1016_j_asoc_2024_112388
crossref_primary_10_1016_j_ceja_2024_100669
crossref_primary_10_1016_j_eswa_2025_127166
crossref_primary_10_1016_j_asoc_2023_110867
crossref_primary_10_1109_ACCESS_2024_3435683
crossref_primary_10_1016_j_eswa_2025_127240
crossref_primary_10_1109_ACCESS_2024_3476159
crossref_primary_10_1007_s42979_024_03355_6
crossref_primary_10_1016_j_inffus_2024_102616
crossref_primary_10_3390_s24113661
Cites_doi 10.5121/ijmvsc.2013.4303
10.1016/j.eswa.2019.03.029
10.1016/j.procs.2020.03.049
10.1109/MCI.2009.932254
10.1016/j.procs.2020.03.419
10.1016/j.procs.2020.03.257
10.1016/j.procs.2018.05.050
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.109830
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2022_109830
S1568494622008791
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c300t-adbc65423958e8bae91d787702402009710caa1c41888d0bd00a9e8b23b5b29e3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:58:46 EDT 2025
Tue Jul 01 01:50:17 EDT 2025
Sun Apr 06 06:53:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Long short-term memory
Adam optimizer
Recurrent neural network
Stock market
Forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-adbc65423958e8bae91d787702402009710caa1c41888d0bd00a9e8b23b5b29e3
ORCID 0000-0003-3202-873X
ParticipantIDs crossref_primary_10_1016_j_asoc_2022_109830
crossref_citationtrail_10_1016_j_asoc_2022_109830
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109830
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sapankevych, Sankar (b4) 2009; 4
Chen, Zhou, Dai (b17) 2015
Mondal, Shit, Goswami (b5) 2014; 4
Gharehchopogh, Bonab, Khaze (b2) 2013; 4
Saud, Shakya (b6) 2020; 167
Bergstra, Bengio (b19) 2012; 13
Devadoss, Ligori (b14) 2013; 2
Roondiwala, Patel, Varma (b8) 2017; 6
Yadav, Jha, Sharan (b20) 2020; 167
Jiang, Tang, Zhou (b18) 2018; 3
Hiransha, Gopalakrishnan, Menon, Soman (b13) 2018; 132
Khare, Darekar, Gupta, Attar (b15) 2017
Seethalakshmi (b1) 2018; 119
Jia (b16) 2016
Pawar, Jalem, Tiwari (b9) 2019
Pothuganti (b11) 2021; 2
Moghar, Hamiche (b12) 2020; 170
Gururaj, Shriya, Ashwini (b3) 2019; 14
Rahman, Hossain, Junaid, Forhad, Hossen (b7) 2019; 19
Hoseinzade, Haratizadeh (b10) 2019; 129
Saud (10.1016/j.asoc.2022.109830_b6) 2020; 167
Gharehchopogh (10.1016/j.asoc.2022.109830_b2) 2013; 4
Jiang (10.1016/j.asoc.2022.109830_b18) 2018; 3
Jia (10.1016/j.asoc.2022.109830_b16) 2016
Hiransha (10.1016/j.asoc.2022.109830_b13) 2018; 132
Bergstra (10.1016/j.asoc.2022.109830_b19) 2012; 13
Yadav (10.1016/j.asoc.2022.109830_b20) 2020; 167
Khare (10.1016/j.asoc.2022.109830_b15) 2017
Rahman (10.1016/j.asoc.2022.109830_b7) 2019; 19
Hoseinzade (10.1016/j.asoc.2022.109830_b10) 2019; 129
Pothuganti (10.1016/j.asoc.2022.109830_b11) 2021; 2
Pawar (10.1016/j.asoc.2022.109830_b9) 2019
Sapankevych (10.1016/j.asoc.2022.109830_b4) 2009; 4
Gururaj (10.1016/j.asoc.2022.109830_b3) 2019; 14
Mondal (10.1016/j.asoc.2022.109830_b5) 2014; 4
Chen (10.1016/j.asoc.2022.109830_b17) 2015
Roondiwala (10.1016/j.asoc.2022.109830_b8) 2017; 6
Devadoss (10.1016/j.asoc.2022.109830_b14) 2013; 2
Seethalakshmi (10.1016/j.asoc.2022.109830_b1) 2018; 119
Moghar (10.1016/j.asoc.2022.109830_b12) 2020; 170
References_xml – volume: 167
  start-page: 788
  year: 2020
  end-page: 798
  ident: b6
  article-title: Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE
  publication-title: Procedia Comput. Sci.
– volume: 13
  year: 2012
  ident: b19
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 493
  year: 2019
  end-page: 503
  ident: b9
  article-title: Stock market price prediction using LSTM RNN
  publication-title: Emerging Trends in Expert Applications and Security
– volume: 19
  start-page: 213
  year: 2019
  end-page: 222
  ident: b7
  article-title: Predicting prices of stock market using gated recurrent units (GRUs) neural networks
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 14
  start-page: 1931
  year: 2019
  end-page: 1934
  ident: b3
  article-title: Stock market prediction using linear regression and support vector machines
  publication-title: Int. J. Appl. Eng. Res.
– year: 2016
  ident: b16
  article-title: Investigation into the effectiveness of long short term memory networks for stock price prediction
– volume: 6
  start-page: 1754
  year: 2017
  end-page: 1756
  ident: b8
  article-title: Predicting stock prices using LSTM
  publication-title: Int. J. Sci. Res. (IJSR)
– start-page: 2823
  year: 2015
  end-page: 2824
  ident: b17
  article-title: A LSTM-based method for stock returns prediction: A case study of China stock market
  publication-title: 2015 IEEE International Conference on Big Data
– volume: 119
  start-page: 369
  year: 2018
  end-page: 378
  ident: b1
  article-title: Analysis of stock market predictor variables using linear regression
  publication-title: Int. J. Pure Appl. Math.
– volume: 4
  start-page: 24
  year: 2009
  end-page: 38
  ident: b4
  article-title: Time series prediction using support vector machines: a survey
  publication-title: IEEE Comput. Intell. Mag.
– volume: 3
  start-page: 259
  year: 2018
  end-page: 283
  ident: b18
  article-title: Firm characteristics and Chinese stocks
  publication-title: J. Manage. Sci. Eng.
– volume: 2
  start-page: 90
  year: 2021
  end-page: 93
  ident: b11
  article-title: Long short-term memory (LSTM) algorithm based prediction of stock market exchange
  publication-title: Int. J. Res. Publ. Rev.
– volume: 167
  start-page: 2091
  year: 2020
  end-page: 2100
  ident: b20
  article-title: Optimizing LSTM for time series prediction in Indian stock market
  publication-title: Procedia Comput. Sci.
– volume: 4
  start-page: 25
  year: 2013
  ident: b2
  article-title: A linear regression approach to prediction of stock market trading volume: a case study
  publication-title: Int. J. Manag. Value Supply Chains
– volume: 2
  start-page: 440
  year: 2013
  end-page: 449
  ident: b14
  article-title: Forecasting of stock prices using multi layer perceptron
  publication-title: Int. J. Comput. Algorithm
– start-page: 482
  year: 2017
  end-page: 486
  ident: b15
  article-title: Short term stock price prediction using deep learning
  publication-title: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology
– volume: 170
  start-page: 1168
  year: 2020
  end-page: 1173
  ident: b12
  article-title: Stock market prediction using LSTM recurrent neural network
  publication-title: Procedia Comput. Sci.
– volume: 129
  start-page: 273
  year: 2019
  end-page: 285
  ident: b10
  article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables
  publication-title: Expert Syst. Appl.
– volume: 4
  start-page: 13
  year: 2014
  ident: b5
  article-title: Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices
  publication-title: Int. J. Comput. Sci. Eng. Appl.
– volume: 132
  start-page: 1351
  year: 2018
  end-page: 1362
  ident: b13
  article-title: NSE stock market prediction using deep-learning models
  publication-title: Procedia Comput. Sci.
– start-page: 482
  year: 2017
  ident: 10.1016/j.asoc.2022.109830_b15
  article-title: Short term stock price prediction using deep learning
– volume: 119
  start-page: 369
  issue: 15
  year: 2018
  ident: 10.1016/j.asoc.2022.109830_b1
  article-title: Analysis of stock market predictor variables using linear regression
  publication-title: Int. J. Pure Appl. Math.
– volume: 19
  start-page: 213
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.109830_b7
  article-title: Predicting prices of stock market using gated recurrent units (GRUs) neural networks
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 2
  start-page: 90
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2022.109830_b11
  article-title: Long short-term memory (LSTM) algorithm based prediction of stock market exchange
  publication-title: Int. J. Res. Publ. Rev.
– start-page: 2823
  year: 2015
  ident: 10.1016/j.asoc.2022.109830_b17
  article-title: A LSTM-based method for stock returns prediction: A case study of China stock market
– volume: 4
  start-page: 25
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2022.109830_b2
  article-title: A linear regression approach to prediction of stock market trading volume: a case study
  publication-title: Int. J. Manag. Value Supply Chains
  doi: 10.5121/ijmvsc.2013.4303
– volume: 6
  start-page: 1754
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2022.109830_b8
  article-title: Predicting stock prices using LSTM
  publication-title: Int. J. Sci. Res. (IJSR)
– volume: 13
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2022.109830_b19
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 129
  start-page: 273
  year: 2019
  ident: 10.1016/j.asoc.2022.109830_b10
  article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.029
– volume: 170
  start-page: 1168
  year: 2020
  ident: 10.1016/j.asoc.2022.109830_b12
  article-title: Stock market prediction using LSTM recurrent neural network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.049
– volume: 4
  start-page: 24
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2022.109830_b4
  article-title: Time series prediction using support vector machines: a survey
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2009.932254
– volume: 4
  start-page: 13
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2022.109830_b5
  article-title: Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices
  publication-title: Int. J. Comput. Sci. Eng. Appl.
– year: 2016
  ident: 10.1016/j.asoc.2022.109830_b16
– volume: 3
  start-page: 259
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2022.109830_b18
  article-title: Firm characteristics and Chinese stocks
  publication-title: J. Manage. Sci. Eng.
– volume: 167
  start-page: 788
  year: 2020
  ident: 10.1016/j.asoc.2022.109830_b6
  article-title: Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.419
– volume: 167
  start-page: 2091
  year: 2020
  ident: 10.1016/j.asoc.2022.109830_b20
  article-title: Optimizing LSTM for time series prediction in Indian stock market
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.257
– start-page: 493
  year: 2019
  ident: 10.1016/j.asoc.2022.109830_b9
  article-title: Stock market price prediction using LSTM RNN
– volume: 2
  start-page: 440
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2022.109830_b14
  article-title: Forecasting of stock prices using multi layer perceptron
  publication-title: Int. J. Comput. Algorithm
– volume: 14
  start-page: 1931
  issue: 8
  year: 2019
  ident: 10.1016/j.asoc.2022.109830_b3
  article-title: Stock market prediction using linear regression and support vector machines
  publication-title: Int. J. Appl. Eng. Res.
– volume: 132
  start-page: 1351
  year: 2018
  ident: 10.1016/j.asoc.2022.109830_b13
  article-title: NSE stock market prediction using deep-learning models
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.05.050
SSID ssj0016928
Score 2.60398
Snippet Stock markets can often be one of the most volatile places to invest. Statistical analysis of past stock performance and external factors play a major role in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109830
SubjectTerms Adam optimizer
Forecasting
Long short-term memory
Recurrent neural network
Stock market
Title Novel optimization approach for stock price forecasting using multi-layered sequential LSTM
URI https://dx.doi.org/10.1016/j.asoc.2022.109830
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3WbtJNpvkWIqlalvEtlDwEHY3W6nGtmgVvPjb3cluioL04CkkzECYzMzOkG_mQ-jcz4DQwRckmESKMBlzIpRkBFoJ4z5cKwrTyL0-74zYzTgcV1CrnIUBWKXL_TanF9naPWk4azYW02ljYDqPmCWM-_ALP7IT7CwCL7_8WsE8PJ4U_KogTEDaDc5YjJcwFjA9ou_DVqUYkNB_HU4_Dpz2DtpylSJu2pfZRRU920PbJQsDdkG5jx768w-d47mJ_Rc3VInLTeHYlKTYlHfqGS9gexDcayXeAOuMAfL-iAtEIcnFJ5B2YousNlGf4-5g2DtAo_bVsNUhjjKBqIDSJRGZVEBBFSRhrGMpdOJlJiQj2GTmF_uiqBLCU8wznW9GZUapSIygH8hQ-okODlF1Np_pI4TjJI4yPTENLBdMqkBST064UeWa0onQNeSVtkqV2ycOtBZ5WgLHnlKwbwr2Ta19a-hipbOw2zTWSoflJ0h_-URq0v0aveN_6p2gTSCTt5jsU1Rdvr7rM1NyLGW98Kk62mi27rt3cL2-7fS_AV8613M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWDhjXjjASZk6jhpmgwMiIcKtF0oEhJDsB0XFUpbQQF14U_xB7lLHAQSYkBiTJSLnPPp853y3X0A2zIlQQepuN-uGh7oKOTK6IBTKYHhE1ojqBu50Qxrl8HZVeVqDN6LXhiiVTrszzE9Q2t3p-y8WR50OuULrDyiIA5CSb_wq7HnmJXndvSKddvT_ukRbvKOlCfHrcMad9IC3PhCDLlKtSGpJj-uRDbSysZeiqFbpYlfMpurJIxSngk8rBBToVMhVIwPSl9XtIytj-8dh4kA4YJkE_bePnklXhhngq60Ok7Lc506OalMocuxKJWSxjhFRL3-6TT8csKdzMK0S03ZQf71czBme_MwU8g-MIcCC3Dd7L_YLusj2Dy4Lk5WjCZnmAMzzCfNPRvQuCK6tkY9EbmaEcf-lmUURt5VI1IJZTmVG2Gmy-oXrcYiXP6LI5eg1Ov37DKwKI6qqW1jxRyqQBtfC0-3QzQNrRBtZVfAK3yVGDfAnHQ0uknBVLtLyL8J-TfJ_bsCu582g3x8x69PV4otSL4FYYLnyy92q3-024LJWqtRT-qnzfM1mCIl-5wQvg6l4eOz3cB8Z6g3s_hicPPfAf0BqMsQXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+optimization+approach+for+stock+price+forecasting+using+multi-layered+sequential+LSTM&rft.jtitle=Applied+soft+computing&rft.au=Md%2C+Abdul+Quadir&rft.au=Kapoor%2C+Sanjit&rft.au=A.V.%2C+Chris+Junni&rft.au=Sivaraman%2C+Arun+Kumar&rft.date=2023-02-01&rft.issn=1568-4946&rft.volume=134&rft.spage=109830&rft_id=info:doi/10.1016%2Fj.asoc.2022.109830&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_109830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon