Novel optimization approach for stock price forecasting using multi-layered sequential LSTM
Stock markets can often be one of the most volatile places to invest. Statistical analysis of past stock performance and external factors play a major role in the decision to buy or sell stocks. These factors are all used to maximize profits. Stock price index forecasting has been a subject of great...
Saved in:
Published in | Applied soft computing Vol. 134; p. 109830 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stock markets can often be one of the most volatile places to invest. Statistical analysis of past stock performance and external factors play a major role in the decision to buy or sell stocks. These factors are all used to maximize profits. Stock price index forecasting has been a subject of great research for many years, and several machine learning and deep learning algorithms have been proposed to simplify this complex task, but little success has been found so far. In order to forecast stocks accurately, it is crucial to understand the context-specific dependence of stock prices on their past values. The use of Long Short Term Memory (LSTM), which is capable of understanding long-term data dependencies, can help overcome this obstacle. In this context, this paper proposes a novel optimization approach for stock price prediction that is based on a Multi-Layer Sequential Long Short Term Memory (MLS LSTM) model which makes use of the adam optimizer. Additionally, the MLS LSTM algorithm uses normalized time series data divided into time steps to determine the relationship between past values and future values in order to make accurate predictions. Furthermore, it eliminates the vanishing gradient problem associated with simple recurrent neural networks. The stock price index is forecasted by taking into account past performance information along with past trends and patterns. The results illustrate that a 95.9% prediction accuracy is achieved on the training data set and a 98.1% accuracy on the testing data set with the MLS LSTM algorithm, which dramatically exceeds the performance of other machine learning and deep learning algorithms. The mean absolute percentage error was observed to be 1.79% on the training set and 2.18% on the testing set, respectively. Moreover, the proposed model is able to estimate the stock price with a normalized root mean squared error of 0.019, thus giving an accurate forecast and making it a feasible real-world solution.
•Stock price forecasting is performed.•The long short term memory is used for the prediction.•Adam is used as the optimizer.•Better predictive performance compared to conventional machine learning algorithms. |
---|---|
AbstractList | Stock markets can often be one of the most volatile places to invest. Statistical analysis of past stock performance and external factors play a major role in the decision to buy or sell stocks. These factors are all used to maximize profits. Stock price index forecasting has been a subject of great research for many years, and several machine learning and deep learning algorithms have been proposed to simplify this complex task, but little success has been found so far. In order to forecast stocks accurately, it is crucial to understand the context-specific dependence of stock prices on their past values. The use of Long Short Term Memory (LSTM), which is capable of understanding long-term data dependencies, can help overcome this obstacle. In this context, this paper proposes a novel optimization approach for stock price prediction that is based on a Multi-Layer Sequential Long Short Term Memory (MLS LSTM) model which makes use of the adam optimizer. Additionally, the MLS LSTM algorithm uses normalized time series data divided into time steps to determine the relationship between past values and future values in order to make accurate predictions. Furthermore, it eliminates the vanishing gradient problem associated with simple recurrent neural networks. The stock price index is forecasted by taking into account past performance information along with past trends and patterns. The results illustrate that a 95.9% prediction accuracy is achieved on the training data set and a 98.1% accuracy on the testing data set with the MLS LSTM algorithm, which dramatically exceeds the performance of other machine learning and deep learning algorithms. The mean absolute percentage error was observed to be 1.79% on the training set and 2.18% on the testing set, respectively. Moreover, the proposed model is able to estimate the stock price with a normalized root mean squared error of 0.019, thus giving an accurate forecast and making it a feasible real-world solution.
•Stock price forecasting is performed.•The long short term memory is used for the prediction.•Adam is used as the optimizer.•Better predictive performance compared to conventional machine learning algorithms. |
ArticleNumber | 109830 |
Author | Sivaraman, Arun Kumar Md, Abdul Quadir Tee, Kong Fah H., Sabireen Kapoor, Sanjit A.V., Chris Junni N., Janakiraman |
Author_xml | – sequence: 1 givenname: Abdul Quadir surname: Md fullname: Md, Abdul Quadir organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India – sequence: 2 givenname: Sanjit surname: Kapoor fullname: Kapoor, Sanjit organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India – sequence: 3 givenname: Chris Junni surname: A.V. fullname: A.V., Chris Junni organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India – sequence: 4 givenname: Arun Kumar surname: Sivaraman fullname: Sivaraman, Arun Kumar organization: Digital Engineering, Solution Center-H, Photo Inc. DLF Cyber City, Chennai, 600089, India – sequence: 5 givenname: Kong Fah orcidid: 0000-0003-3202-873X surname: Tee fullname: Tee, Kong Fah email: kongfah.tee@newinti.edu.my organization: Faculty of Engineering and Quantity Surveying, INTI International University, 71800 Nilai, Malaysia – sequence: 6 givenname: Sabireen surname: H. fullname: H., Sabireen organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India – sequence: 7 givenname: Janakiraman surname: N. fullname: N., Janakiraman organization: Department of Electronics and Communication Engineering, K.L.N. College of Engineering, Madurai, Tamil Nadu, India |
BookMark | eNp9kL1OAzEMgDMUibbwAkx5gStO7i-RWFDFn1RgoEwMUS7nQsr1ciRppfL03FEmhi62bPmz7G9CRq1rkZALBjMGrLhcz3RwZsaB874hRQojMmZ5IZJMZsUpmYSwhn5QcjEmb09uhw11XbQb-62jdS3VXeedNh905TwN0ZlP2nlrcKjR6BBt-063YYibbRNt0ug9eqxpwK8tttHqhi5elo9n5GSlm4Dnf3lKXm9vlvP7ZPF89zC_XiQmBYiJritT5BlPZS5QVBolq0tRlsAz4ACyZGC0ZiZjQogaqhpAy36Qp1VecYnplPDDXuNdCB5Xqj93o_1eMVCDErVWgxI1KFEHJT0k_kHGxt__o9e2OY5eHVDsn9pZ9CoYi63B2vZ-oqqdPYb_ALySgg4 |
CitedBy_id | crossref_primary_10_1007_s10614_024_10639_9 crossref_primary_10_3390_math11051130 crossref_primary_10_3390_s24206556 crossref_primary_10_1016_j_heliyon_2024_e27747 crossref_primary_10_1142_S0219477524400182 crossref_primary_10_3390_electronics13224408 crossref_primary_10_1007_s10489_024_05271_x crossref_primary_10_1007_s42979_023_02507_4 crossref_primary_10_3390_math13010009 crossref_primary_10_1016_j_asoc_2025_112978 crossref_primary_10_1016_j_ins_2024_121651 crossref_primary_10_1016_j_eij_2025_100610 crossref_primary_10_14780_muiibd_1481251 crossref_primary_10_1007_s10489_023_05085_3 crossref_primary_10_1007_s10489_024_05468_0 crossref_primary_10_1109_ACCESS_2024_3466829 crossref_primary_10_3390_risks12030046 crossref_primary_10_2478_picbe_2023_0154 crossref_primary_10_1016_j_simpa_2024_100681 crossref_primary_10_48084_etasr_9850 crossref_primary_10_1016_j_engappai_2025_110353 crossref_primary_10_1016_j_aej_2024_03_030 crossref_primary_10_1016_j_neucom_2024_127343 crossref_primary_10_1016_j_asoc_2024_112524 crossref_primary_10_7717_peerj_cs_2312 crossref_primary_10_3390_systems12050171 crossref_primary_10_1016_j_jhydrol_2023_130076 crossref_primary_10_1007_s11042_023_17620_y crossref_primary_10_1016_j_eswa_2024_123482 crossref_primary_10_1016_j_eswa_2023_122891 crossref_primary_10_1016_j_ijar_2024_109217 crossref_primary_10_1038_s41598_024_71873_7 crossref_primary_10_3233_JIFS_223101 crossref_primary_10_1007_s12559_023_10240_6 crossref_primary_10_52396_JUSTC_2023_0066 crossref_primary_10_3934_math_2025114 crossref_primary_10_1016_j_eswa_2023_121899 crossref_primary_10_3390_info15120743 crossref_primary_10_3390_electronics13173396 crossref_primary_10_4018_IJSWIS_367280 crossref_primary_10_21015_vtse_v11i2_1571 crossref_primary_10_1016_j_eswa_2024_123146 crossref_primary_10_3390_app13053186 crossref_primary_10_3390_biomedicines11041167 crossref_primary_10_1007_s10614_024_10567_8 crossref_primary_10_1007_s10614_024_10689_z crossref_primary_10_1016_j_asoc_2024_112393 crossref_primary_10_1016_j_asoc_2024_112388 crossref_primary_10_1016_j_ceja_2024_100669 crossref_primary_10_1016_j_eswa_2025_127166 crossref_primary_10_1016_j_asoc_2023_110867 crossref_primary_10_1109_ACCESS_2024_3435683 crossref_primary_10_1016_j_eswa_2025_127240 crossref_primary_10_1109_ACCESS_2024_3476159 crossref_primary_10_1007_s42979_024_03355_6 crossref_primary_10_1016_j_inffus_2024_102616 crossref_primary_10_3390_s24113661 |
Cites_doi | 10.5121/ijmvsc.2013.4303 10.1016/j.eswa.2019.03.029 10.1016/j.procs.2020.03.049 10.1109/MCI.2009.932254 10.1016/j.procs.2020.03.419 10.1016/j.procs.2020.03.257 10.1016/j.procs.2018.05.050 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2022.109830 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_asoc_2022_109830 S1568494622008791 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSV SSZ T5K UHS UNMZH ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c300t-adbc65423958e8bae91d787702402009710caa1c41888d0bd00a9e8b23b5b29e3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:58:46 EDT 2025 Tue Jul 01 01:50:17 EDT 2025 Sun Apr 06 06:53:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Long short-term memory Adam optimizer Recurrent neural network Stock market Forecasting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-adbc65423958e8bae91d787702402009710caa1c41888d0bd00a9e8b23b5b29e3 |
ORCID | 0000-0003-3202-873X |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2022_109830 crossref_citationtrail_10_1016_j_asoc_2022_109830 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109830 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sapankevych, Sankar (b4) 2009; 4 Chen, Zhou, Dai (b17) 2015 Mondal, Shit, Goswami (b5) 2014; 4 Gharehchopogh, Bonab, Khaze (b2) 2013; 4 Saud, Shakya (b6) 2020; 167 Bergstra, Bengio (b19) 2012; 13 Devadoss, Ligori (b14) 2013; 2 Roondiwala, Patel, Varma (b8) 2017; 6 Yadav, Jha, Sharan (b20) 2020; 167 Jiang, Tang, Zhou (b18) 2018; 3 Hiransha, Gopalakrishnan, Menon, Soman (b13) 2018; 132 Khare, Darekar, Gupta, Attar (b15) 2017 Seethalakshmi (b1) 2018; 119 Jia (b16) 2016 Pawar, Jalem, Tiwari (b9) 2019 Pothuganti (b11) 2021; 2 Moghar, Hamiche (b12) 2020; 170 Gururaj, Shriya, Ashwini (b3) 2019; 14 Rahman, Hossain, Junaid, Forhad, Hossen (b7) 2019; 19 Hoseinzade, Haratizadeh (b10) 2019; 129 Saud (10.1016/j.asoc.2022.109830_b6) 2020; 167 Gharehchopogh (10.1016/j.asoc.2022.109830_b2) 2013; 4 Jiang (10.1016/j.asoc.2022.109830_b18) 2018; 3 Jia (10.1016/j.asoc.2022.109830_b16) 2016 Hiransha (10.1016/j.asoc.2022.109830_b13) 2018; 132 Bergstra (10.1016/j.asoc.2022.109830_b19) 2012; 13 Yadav (10.1016/j.asoc.2022.109830_b20) 2020; 167 Khare (10.1016/j.asoc.2022.109830_b15) 2017 Rahman (10.1016/j.asoc.2022.109830_b7) 2019; 19 Hoseinzade (10.1016/j.asoc.2022.109830_b10) 2019; 129 Pothuganti (10.1016/j.asoc.2022.109830_b11) 2021; 2 Pawar (10.1016/j.asoc.2022.109830_b9) 2019 Sapankevych (10.1016/j.asoc.2022.109830_b4) 2009; 4 Gururaj (10.1016/j.asoc.2022.109830_b3) 2019; 14 Mondal (10.1016/j.asoc.2022.109830_b5) 2014; 4 Chen (10.1016/j.asoc.2022.109830_b17) 2015 Roondiwala (10.1016/j.asoc.2022.109830_b8) 2017; 6 Devadoss (10.1016/j.asoc.2022.109830_b14) 2013; 2 Seethalakshmi (10.1016/j.asoc.2022.109830_b1) 2018; 119 Moghar (10.1016/j.asoc.2022.109830_b12) 2020; 170 |
References_xml | – volume: 167 start-page: 788 year: 2020 end-page: 798 ident: b6 article-title: Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE publication-title: Procedia Comput. Sci. – volume: 13 year: 2012 ident: b19 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – start-page: 493 year: 2019 end-page: 503 ident: b9 article-title: Stock market price prediction using LSTM RNN publication-title: Emerging Trends in Expert Applications and Security – volume: 19 start-page: 213 year: 2019 end-page: 222 ident: b7 article-title: Predicting prices of stock market using gated recurrent units (GRUs) neural networks publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: 14 start-page: 1931 year: 2019 end-page: 1934 ident: b3 article-title: Stock market prediction using linear regression and support vector machines publication-title: Int. J. Appl. Eng. Res. – year: 2016 ident: b16 article-title: Investigation into the effectiveness of long short term memory networks for stock price prediction – volume: 6 start-page: 1754 year: 2017 end-page: 1756 ident: b8 article-title: Predicting stock prices using LSTM publication-title: Int. J. Sci. Res. (IJSR) – start-page: 2823 year: 2015 end-page: 2824 ident: b17 article-title: A LSTM-based method for stock returns prediction: A case study of China stock market publication-title: 2015 IEEE International Conference on Big Data – volume: 119 start-page: 369 year: 2018 end-page: 378 ident: b1 article-title: Analysis of stock market predictor variables using linear regression publication-title: Int. J. Pure Appl. Math. – volume: 4 start-page: 24 year: 2009 end-page: 38 ident: b4 article-title: Time series prediction using support vector machines: a survey publication-title: IEEE Comput. Intell. Mag. – volume: 3 start-page: 259 year: 2018 end-page: 283 ident: b18 article-title: Firm characteristics and Chinese stocks publication-title: J. Manage. Sci. Eng. – volume: 2 start-page: 90 year: 2021 end-page: 93 ident: b11 article-title: Long short-term memory (LSTM) algorithm based prediction of stock market exchange publication-title: Int. J. Res. Publ. Rev. – volume: 167 start-page: 2091 year: 2020 end-page: 2100 ident: b20 article-title: Optimizing LSTM for time series prediction in Indian stock market publication-title: Procedia Comput. Sci. – volume: 4 start-page: 25 year: 2013 ident: b2 article-title: A linear regression approach to prediction of stock market trading volume: a case study publication-title: Int. J. Manag. Value Supply Chains – volume: 2 start-page: 440 year: 2013 end-page: 449 ident: b14 article-title: Forecasting of stock prices using multi layer perceptron publication-title: Int. J. Comput. Algorithm – start-page: 482 year: 2017 end-page: 486 ident: b15 article-title: Short term stock price prediction using deep learning publication-title: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology – volume: 170 start-page: 1168 year: 2020 end-page: 1173 ident: b12 article-title: Stock market prediction using LSTM recurrent neural network publication-title: Procedia Comput. Sci. – volume: 129 start-page: 273 year: 2019 end-page: 285 ident: b10 article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables publication-title: Expert Syst. Appl. – volume: 4 start-page: 13 year: 2014 ident: b5 article-title: Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices publication-title: Int. J. Comput. Sci. Eng. Appl. – volume: 132 start-page: 1351 year: 2018 end-page: 1362 ident: b13 article-title: NSE stock market prediction using deep-learning models publication-title: Procedia Comput. Sci. – start-page: 482 year: 2017 ident: 10.1016/j.asoc.2022.109830_b15 article-title: Short term stock price prediction using deep learning – volume: 119 start-page: 369 issue: 15 year: 2018 ident: 10.1016/j.asoc.2022.109830_b1 article-title: Analysis of stock market predictor variables using linear regression publication-title: Int. J. Pure Appl. Math. – volume: 19 start-page: 213 issue: 1 year: 2019 ident: 10.1016/j.asoc.2022.109830_b7 article-title: Predicting prices of stock market using gated recurrent units (GRUs) neural networks publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: 2 start-page: 90 issue: 1 year: 2021 ident: 10.1016/j.asoc.2022.109830_b11 article-title: Long short-term memory (LSTM) algorithm based prediction of stock market exchange publication-title: Int. J. Res. Publ. Rev. – start-page: 2823 year: 2015 ident: 10.1016/j.asoc.2022.109830_b17 article-title: A LSTM-based method for stock returns prediction: A case study of China stock market – volume: 4 start-page: 25 issue: 3 year: 2013 ident: 10.1016/j.asoc.2022.109830_b2 article-title: A linear regression approach to prediction of stock market trading volume: a case study publication-title: Int. J. Manag. Value Supply Chains doi: 10.5121/ijmvsc.2013.4303 – volume: 6 start-page: 1754 issue: 4 year: 2017 ident: 10.1016/j.asoc.2022.109830_b8 article-title: Predicting stock prices using LSTM publication-title: Int. J. Sci. Res. (IJSR) – volume: 13 issue: 2 year: 2012 ident: 10.1016/j.asoc.2022.109830_b19 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 129 start-page: 273 year: 2019 ident: 10.1016/j.asoc.2022.109830_b10 article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.029 – volume: 170 start-page: 1168 year: 2020 ident: 10.1016/j.asoc.2022.109830_b12 article-title: Stock market prediction using LSTM recurrent neural network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.049 – volume: 4 start-page: 24 issue: 2 year: 2009 ident: 10.1016/j.asoc.2022.109830_b4 article-title: Time series prediction using support vector machines: a survey publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2009.932254 – volume: 4 start-page: 13 issue: 2 year: 2014 ident: 10.1016/j.asoc.2022.109830_b5 article-title: Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices publication-title: Int. J. Comput. Sci. Eng. Appl. – year: 2016 ident: 10.1016/j.asoc.2022.109830_b16 – volume: 3 start-page: 259 issue: 4 year: 2018 ident: 10.1016/j.asoc.2022.109830_b18 article-title: Firm characteristics and Chinese stocks publication-title: J. Manage. Sci. Eng. – volume: 167 start-page: 788 year: 2020 ident: 10.1016/j.asoc.2022.109830_b6 article-title: Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.419 – volume: 167 start-page: 2091 year: 2020 ident: 10.1016/j.asoc.2022.109830_b20 article-title: Optimizing LSTM for time series prediction in Indian stock market publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.257 – start-page: 493 year: 2019 ident: 10.1016/j.asoc.2022.109830_b9 article-title: Stock market price prediction using LSTM RNN – volume: 2 start-page: 440 issue: 1 year: 2013 ident: 10.1016/j.asoc.2022.109830_b14 article-title: Forecasting of stock prices using multi layer perceptron publication-title: Int. J. Comput. Algorithm – volume: 14 start-page: 1931 issue: 8 year: 2019 ident: 10.1016/j.asoc.2022.109830_b3 article-title: Stock market prediction using linear regression and support vector machines publication-title: Int. J. Appl. Eng. Res. – volume: 132 start-page: 1351 year: 2018 ident: 10.1016/j.asoc.2022.109830_b13 article-title: NSE stock market prediction using deep-learning models publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.050 |
SSID | ssj0016928 |
Score | 2.60398 |
Snippet | Stock markets can often be one of the most volatile places to invest. Statistical analysis of past stock performance and external factors play a major role in... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109830 |
SubjectTerms | Adam optimizer Forecasting Long short-term memory Recurrent neural network Stock market |
Title | Novel optimization approach for stock price forecasting using multi-layered sequential LSTM |
URI | https://dx.doi.org/10.1016/j.asoc.2022.109830 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3WbtJNpvkWIqlalvEtlDwEHY3W6nGtmgVvPjb3cluioL04CkkzECYzMzOkG_mQ-jcz4DQwRckmESKMBlzIpRkBFoJ4z5cKwrTyL0-74zYzTgcV1CrnIUBWKXL_TanF9naPWk4azYW02ljYDqPmCWM-_ALP7IT7CwCL7_8WsE8PJ4U_KogTEDaDc5YjJcwFjA9ou_DVqUYkNB_HU4_Dpz2DtpylSJu2pfZRRU920PbJQsDdkG5jx768w-d47mJ_Rc3VInLTeHYlKTYlHfqGS9gexDcayXeAOuMAfL-iAtEIcnFJ5B2YousNlGf4-5g2DtAo_bVsNUhjjKBqIDSJRGZVEBBFSRhrGMpdOJlJiQj2GTmF_uiqBLCU8wznW9GZUapSIygH8hQ-okODlF1Np_pI4TjJI4yPTENLBdMqkBST064UeWa0onQNeSVtkqV2ycOtBZ5WgLHnlKwbwr2Ta19a-hipbOw2zTWSoflJ0h_-URq0v0aveN_6p2gTSCTt5jsU1Rdvr7rM1NyLGW98Kk62mi27rt3cL2-7fS_AV8613M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWDhjXjjASZk6jhpmgwMiIcKtF0oEhJDsB0XFUpbQQF14U_xB7lLHAQSYkBiTJSLnPPp853y3X0A2zIlQQepuN-uGh7oKOTK6IBTKYHhE1ojqBu50Qxrl8HZVeVqDN6LXhiiVTrszzE9Q2t3p-y8WR50OuULrDyiIA5CSb_wq7HnmJXndvSKddvT_ukRbvKOlCfHrcMad9IC3PhCDLlKtSGpJj-uRDbSysZeiqFbpYlfMpurJIxSngk8rBBToVMhVIwPSl9XtIytj-8dh4kA4YJkE_bePnklXhhngq60Ok7Lc506OalMocuxKJWSxjhFRL3-6TT8csKdzMK0S03ZQf71czBme_MwU8g-MIcCC3Dd7L_YLusj2Dy4Lk5WjCZnmAMzzCfNPRvQuCK6tkY9EbmaEcf-lmUURt5VI1IJZTmVG2Gmy-oXrcYiXP6LI5eg1Ov37DKwKI6qqW1jxRyqQBtfC0-3QzQNrRBtZVfAK3yVGDfAnHQ0uknBVLtLyL8J-TfJ_bsCu582g3x8x69PV4otSL4FYYLnyy92q3-024LJWqtRT-qnzfM1mCIl-5wQvg6l4eOz3cB8Z6g3s_hicPPfAf0BqMsQXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+optimization+approach+for+stock+price+forecasting+using+multi-layered+sequential+LSTM&rft.jtitle=Applied+soft+computing&rft.au=Md%2C+Abdul+Quadir&rft.au=Kapoor%2C+Sanjit&rft.au=A.V.%2C+Chris+Junni&rft.au=Sivaraman%2C+Arun+Kumar&rft.date=2023-02-01&rft.issn=1568-4946&rft.volume=134&rft.spage=109830&rft_id=info:doi/10.1016%2Fj.asoc.2022.109830&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_109830 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |