Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series
The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the development of effective models is necessary. Regression ensembles can be used for this purpose. An ensemble is a set of combined models which act tog...
Saved in:
Published in | Applied soft computing Vol. 86; p. 105837 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the development of effective models is necessary. Regression ensembles can be used for this purpose. An ensemble is a set of combined models which act together to forecast a response variable with lower error. Faced with this, the general contribution of this work is to explore the predictive capability of regression ensembles by comparing ensembles among themselves, as well as with approaches that consider a single model (reference models) in the agribusiness area to forecast prices one month ahead. In this aspect, monthly time series referring to the price paid to producers in the state of Parana, Brazil for a 60 kg bag of soybean (case study 1) and wheat (case study 2) are used. The ensembles bagging (random forests — RF), boosting (gradient boosting machine — GBM and extreme gradient boosting machine — XGB), and stacking (STACK) are adopted. The support vector machine for regression (SVR), multilayer perceptron neural network (MLP) and K-nearest neighbors (KNN) are adopted as reference models. Performance measures such as mean absolute percentage error (MAPE), root mean squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE) are used for models comparison. Friedman and Wilcoxon signed rank tests are applied to evaluate the models’ absolute percentage errors (APE). From the comparison of test set results, MAPE lower than 1% is observed for the best ensemble approaches. In this context, the XGB/STACK (Least Absolute Shrinkage and Selection Operator-KNN-XGB-SVR) and RF models showed better performance for short-term forecasting tasks for case studies 1 and 2, respectively. Better APE (statistically smaller) is observed for XGB/STACK and RF in relation to reference models. Besides that, approaches based on boosting are consistent, providing good results in both case studies. Alongside, a rank according to the performances is: XGB, GBM, RF, STACK, MLP, SVR and KNN. It can be concluded that the ensemble approach presents statistically significant gains, reducing prediction errors for the price series studied. The use of ensembles is recommended to forecast agricultural commodities prices one month ahead, since a more assertive performance is observed, which allows to increase the accuracy of the constructed model and reduce decision-making risk.
•Ensembles and single models are compared for short-term forecasting in agribusiness.•Soybean and wheat commodities are adopted as case studies.•Boosting approaches showed lower predictions errors.•XGB or STACK and RF models are adopted in soybean and wheat cases, respectively.•Ensemble performance is better than SVR, KNN and MLP performance. |
---|---|
AbstractList | The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the development of effective models is necessary. Regression ensembles can be used for this purpose. An ensemble is a set of combined models which act together to forecast a response variable with lower error. Faced with this, the general contribution of this work is to explore the predictive capability of regression ensembles by comparing ensembles among themselves, as well as with approaches that consider a single model (reference models) in the agribusiness area to forecast prices one month ahead. In this aspect, monthly time series referring to the price paid to producers in the state of Parana, Brazil for a 60 kg bag of soybean (case study 1) and wheat (case study 2) are used. The ensembles bagging (random forests — RF), boosting (gradient boosting machine — GBM and extreme gradient boosting machine — XGB), and stacking (STACK) are adopted. The support vector machine for regression (SVR), multilayer perceptron neural network (MLP) and K-nearest neighbors (KNN) are adopted as reference models. Performance measures such as mean absolute percentage error (MAPE), root mean squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE) are used for models comparison. Friedman and Wilcoxon signed rank tests are applied to evaluate the models’ absolute percentage errors (APE). From the comparison of test set results, MAPE lower than 1% is observed for the best ensemble approaches. In this context, the XGB/STACK (Least Absolute Shrinkage and Selection Operator-KNN-XGB-SVR) and RF models showed better performance for short-term forecasting tasks for case studies 1 and 2, respectively. Better APE (statistically smaller) is observed for XGB/STACK and RF in relation to reference models. Besides that, approaches based on boosting are consistent, providing good results in both case studies. Alongside, a rank according to the performances is: XGB, GBM, RF, STACK, MLP, SVR and KNN. It can be concluded that the ensemble approach presents statistically significant gains, reducing prediction errors for the price series studied. The use of ensembles is recommended to forecast agricultural commodities prices one month ahead, since a more assertive performance is observed, which allows to increase the accuracy of the constructed model and reduce decision-making risk.
•Ensembles and single models are compared for short-term forecasting in agribusiness.•Soybean and wheat commodities are adopted as case studies.•Boosting approaches showed lower predictions errors.•XGB or STACK and RF models are adopted in soybean and wheat cases, respectively.•Ensemble performance is better than SVR, KNN and MLP performance. |
ArticleNumber | 105837 |
Author | Ribeiro, Matheus Henrique Dal Molin dos Santos Coelho, Leandro |
Author_xml | – sequence: 1 givenname: Matheus Henrique Dal Molin orcidid: 0000-0001-7387-9077 surname: Ribeiro fullname: Ribeiro, Matheus Henrique Dal Molin email: matheus.dalmolinribeiro@gmail.com organization: Graduate Program in Industrial & Systems Engineering (PPGEPS), Pontifical Catholic University of Parana (PUCPR), 1155, Rua Imaculada Conceicao, Curitiba, Parana, 80215-901, Brazil – sequence: 2 givenname: Leandro surname: dos Santos Coelho fullname: dos Santos Coelho, Leandro email: lscoelho2009@gmail.com organization: Graduate Program in Industrial & Systems Engineering (PPGEPS), Pontifical Catholic University of Parana (PUCPR), 1155, Rua Imaculada Conceicao, Curitiba, Parana, 80215-901, Brazil |
BookMark | eNp9kM9KAzEQh4NUsK2-gKc8gFuT3W2agBcp9Q8UvOg5JNnZNrVNSiYKvr1Z6slDT_ObgW-Y-SZkFGIAQm45m3HGxf1uZjC6Wc24KoO5bBYXZMzloq6UkHxU8lzIqlWtuCITxB0rkKrlmMRVQDjYPVBzPKZo3JZag9DRGErYbHzY3FEbI-aSqAkdxWzc59D0MVHcxpSrDOlAjwk677IvoA_UbJK3X-gDINLsD0ARkge8Jpe92SPc_NUp-XhavS9fqvXb8-vycV25hrFcGadayZmwgjfCyAXYlhvLVK0WjeihFcowya2DlnFoZa9a3nELTS3mnVVSNlMiT3tdiogJeu18NsN1ORm_15zpQZze6UGcHsTpk7iC1v_QY_IHk37OQw8nCMpT3x6SRuchuOIkgcu6i_4c_gvSVosO |
CitedBy_id | crossref_primary_10_1002_srin_202400896 crossref_primary_10_3390_app12199729 crossref_primary_10_3390_rs12071095 crossref_primary_10_1002_for_2894 crossref_primary_10_1007_s00704_024_04920_y crossref_primary_10_1016_j_molliq_2023_121691 crossref_primary_10_1080_23270012_2024_2377168 crossref_primary_10_1039_D3NR04974D crossref_primary_10_1016_j_jrmge_2024_05_024 crossref_primary_10_1016_j_jup_2021_101185 crossref_primary_10_1177_03019233241297720 crossref_primary_10_1016_j_aei_2022_101542 crossref_primary_10_1007_s42824_024_00123_y crossref_primary_10_1016_j_engappai_2020_103819 crossref_primary_10_1088_2515_7620_ad7e81 crossref_primary_10_3390_app14030978 crossref_primary_10_1016_j_jafr_2024_101107 crossref_primary_10_1016_j_ijepes_2020_106269 crossref_primary_10_1016_j_procs_2021_07_049 crossref_primary_10_1016_j_engstruct_2021_112109 crossref_primary_10_1016_j_ejpb_2024_114214 crossref_primary_10_1080_03610918_2024_2330700 crossref_primary_10_1016_j_jmrt_2023_02_024 crossref_primary_10_1016_j_jocs_2022_101570 crossref_primary_10_1109_ACCESS_2024_3502542 crossref_primary_10_3390_su141710483 crossref_primary_10_1109_ACCESS_2021_3125895 crossref_primary_10_3389_fphar_2022_975855 crossref_primary_10_1007_s13563_024_00457_8 crossref_primary_10_1016_j_mex_2022_101758 crossref_primary_10_3390_appliedmath5010006 crossref_primary_10_3788_COL202422_063601 crossref_primary_10_1016_j_rineng_2023_101595 crossref_primary_10_3390_molecules28083521 crossref_primary_10_1016_j_jhydrol_2024_132565 crossref_primary_10_1177_00368504241274999 crossref_primary_10_1007_s40808_023_01882_4 crossref_primary_10_1007_s10489_021_02602_0 crossref_primary_10_1007_s00607_024_01320_y crossref_primary_10_1016_j_ymssp_2023_110543 crossref_primary_10_1016_j_aej_2024_02_008 crossref_primary_10_1016_j_molliq_2022_120748 crossref_primary_10_1007_s10489_021_02845_x crossref_primary_10_1007_s13563_024_00483_6 crossref_primary_10_1142_S0218539323500316 crossref_primary_10_1049_gtd2_12881 crossref_primary_10_1016_j_ins_2020_12_039 crossref_primary_10_1109_JAS_2024_124962 crossref_primary_10_1016_j_asoc_2020_106422 crossref_primary_10_1016_j_epsr_2021_107584 crossref_primary_10_3390_su16219574 crossref_primary_10_1186_s13007_022_00933_8 crossref_primary_10_1109_JSEN_2021_3077021 crossref_primary_10_1109_TEM_2024_3385298 crossref_primary_10_1007_s12530_021_09404_2 crossref_primary_10_1016_j_ymssp_2022_109148 crossref_primary_10_1007_s10489_021_02879_1 crossref_primary_10_1002_suco_202200424 crossref_primary_10_1016_j_optlastec_2024_110891 crossref_primary_10_1016_j_measen_2022_100501 crossref_primary_10_1080_22797254_2023_2294127 crossref_primary_10_1016_j_asoc_2021_108110 crossref_primary_10_3390_jmse9040449 crossref_primary_10_1016_j_matdes_2023_112331 crossref_primary_10_1155_2020_7212368 crossref_primary_10_3390_en14092653 crossref_primary_10_1515_rams_2024_0014 crossref_primary_10_1080_23789689_2021_2017736 crossref_primary_10_1016_j_istruc_2023_02_080 crossref_primary_10_3390_rs15163946 crossref_primary_10_1016_j_jksuci_2023_101628 crossref_primary_10_59277_PRA_SER_A_25_4_08 crossref_primary_10_1016_j_crfs_2023_100495 crossref_primary_10_1016_j_nexus_2023_100250 crossref_primary_10_3390_ma14195762 crossref_primary_10_3390_math9182307 crossref_primary_10_1016_j_catena_2021_105957 crossref_primary_10_1016_j_engappai_2020_104132 crossref_primary_10_1080_00207543_2023_2217286 crossref_primary_10_1007_s11269_022_03077_5 crossref_primary_10_1016_j_compag_2021_106631 crossref_primary_10_1007_s43674_023_00054_2 crossref_primary_10_1109_JBHI_2024_3428512 crossref_primary_10_3233_JIFS_232986 crossref_primary_10_3390_buildings14124027 crossref_primary_10_1007_s11356_023_25369_y crossref_primary_10_3917_mav_137_0113 crossref_primary_10_5194_essd_16_4161_2024 crossref_primary_10_1016_j_ins_2022_09_002 crossref_primary_10_1016_j_compag_2023_108096 crossref_primary_10_3390_rs13040775 crossref_primary_10_1007_s40009_023_01213_2 crossref_primary_10_1016_j_atech_2024_100397 crossref_primary_10_1007_s12517_022_11045_x crossref_primary_10_1002_ese3_799 crossref_primary_10_3390_app131810464 crossref_primary_10_1016_j_rse_2022_112980 crossref_primary_10_3390_en15072327 crossref_primary_10_1016_j_molliq_2022_121113 crossref_primary_10_1177_03611981221086645 crossref_primary_10_1007_s12145_024_01641_8 crossref_primary_10_1016_j_iswa_2022_200061 crossref_primary_10_1038_s41598_022_06218_3 crossref_primary_10_1007_s40948_023_00690_5 crossref_primary_10_1016_j_apenergy_2021_117449 crossref_primary_10_1021_acs_energyfuels_2c03033 crossref_primary_10_1142_S2737599425500021 crossref_primary_10_3233_JIFS_210708 crossref_primary_10_1016_j_bspc_2024_107207 crossref_primary_10_1080_15567036_2022_2087804 crossref_primary_10_1016_j_engappai_2022_105617 crossref_primary_10_3390_math12233872 crossref_primary_10_1109_ACCESS_2022_3161506 crossref_primary_10_1142_S2737599424500130 crossref_primary_10_1186_s12920_022_01231_x crossref_primary_10_1016_j_energy_2023_128669 crossref_primary_10_1109_ACCESS_2021_3100483 crossref_primary_10_1002_for_2985 crossref_primary_10_3390_economies12110310 crossref_primary_10_3390_s22166121 crossref_primary_10_1038_s41598_024_68040_3 crossref_primary_10_1109_ACCESS_2021_3076410 crossref_primary_10_1007_s10479_024_05821_z crossref_primary_10_1016_j_jobe_2023_107932 crossref_primary_10_1108_JM2_09_2023_0207 crossref_primary_10_3390_electronics13152901 crossref_primary_10_1061__ASCE_IR_1943_4774_0001610 crossref_primary_10_3390_rs14041038 crossref_primary_10_1016_j_asoc_2020_106906 crossref_primary_10_3389_fphys_2025_1542240 crossref_primary_10_3390_electronics11132094 crossref_primary_10_1002_for_3174 crossref_primary_10_1007_s10812_023_01491_0 crossref_primary_10_3390_f15050887 crossref_primary_10_3390_rs13132555 crossref_primary_10_1016_j_csite_2023_103419 crossref_primary_10_1007_s11269_023_03613_x crossref_primary_10_1016_j_engappai_2025_110295 crossref_primary_10_1016_j_arabjc_2023_104785 crossref_primary_10_1016_j_cscm_2022_e01805 crossref_primary_10_1007_s42461_023_00747_9 crossref_primary_10_1016_j_chaos_2020_110512 crossref_primary_10_3390_ma15124108 crossref_primary_10_1108_FS_01_2023_0016 crossref_primary_10_1016_j_energy_2020_119174 crossref_primary_10_1007_s11600_023_01169_3 crossref_primary_10_1007_s41939_024_00378_7 crossref_primary_10_1080_00207543_2020_1837407 crossref_primary_10_3390_land12020494 crossref_primary_10_1002_isaf_1519 crossref_primary_10_1002_for_3224 crossref_primary_10_1093_nargab_lqad012 crossref_primary_10_1093_tse_tdad014 crossref_primary_10_1016_j_compind_2020_103387 crossref_primary_10_1109_TKDE_2024_3397878 crossref_primary_10_3390_sym12101620 crossref_primary_10_1016_j_jhydrol_2024_131658 crossref_primary_10_1016_j_tourman_2021_104436 crossref_primary_10_1007_s10614_023_10421_3 crossref_primary_10_1016_j_solmat_2023_112488 crossref_primary_10_1016_j_est_2025_115715 crossref_primary_10_1109_ACCESS_2022_3207287 crossref_primary_10_1016_j_asej_2024_102905 crossref_primary_10_3390_app15063129 crossref_primary_10_4103_jpgm_jpgm_357_24 crossref_primary_10_3390_buildings13112783 crossref_primary_10_1016_j_ijforecast_2022_11_005 crossref_primary_10_1007_s12145_024_01633_8 crossref_primary_10_3390_pr11051339 crossref_primary_10_3390_s22218323 crossref_primary_10_1111_tgis_13141 crossref_primary_10_3389_fpls_2025_1511097 crossref_primary_10_3389_fpls_2022_982562 crossref_primary_10_1016_j_engappai_2023_106654 crossref_primary_10_1142_S1469026823500244 crossref_primary_10_1016_j_molliq_2023_122251 crossref_primary_10_1155_2022_9928836 crossref_primary_10_1080_00207543_2021_2013563 crossref_primary_10_48077_scihor11_2023_166 crossref_primary_10_1016_j_biortech_2022_127587 crossref_primary_10_1016_j_cie_2022_107956 crossref_primary_10_1016_j_molliq_2023_122010 crossref_primary_10_3390_bdcc8090112 crossref_primary_10_3390_en13195190 crossref_primary_10_1016_j_techfore_2021_121371 crossref_primary_10_1088_1742_6596_2373_5_052006 crossref_primary_10_7717_peerj_cs_514 crossref_primary_10_1016_j_buildenv_2024_112424 crossref_primary_10_1016_j_eswa_2023_122778 crossref_primary_10_32604_iasc_2021_014811 crossref_primary_10_1007_s11356_023_27109_8 crossref_primary_10_1080_10255842_2023_2263125 crossref_primary_10_3390_ma14040794 crossref_primary_10_24017_science_2023_1_7 crossref_primary_10_1007_s11042_023_14858_4 crossref_primary_10_1016_j_heliyon_2020_e05618 crossref_primary_10_1016_j_scitotenv_2021_145292 crossref_primary_10_1016_j_susmat_2022_e00429 crossref_primary_10_1016_j_meatsci_2022_108764 crossref_primary_10_3390_s20185386 crossref_primary_10_1007_s11356_023_30774_4 crossref_primary_10_1016_j_inffus_2021_03_004 crossref_primary_10_1155_2024_6087208 crossref_primary_10_1186_s40537_023_00854_w crossref_primary_10_1002_for_3122 crossref_primary_10_1016_j_rineng_2024_101837 crossref_primary_10_1016_j_mtcomm_2023_107428 crossref_primary_10_3390_diagnostics14212385 crossref_primary_10_1177_03611981241278354 crossref_primary_10_1016_j_engappai_2023_106870 crossref_primary_10_1016_j_arabjc_2022_104337 crossref_primary_10_1007_s12145_024_01583_1 crossref_primary_10_1016_j_cscm_2021_e00840 crossref_primary_10_1016_j_oceaneng_2023_113659 crossref_primary_10_1016_j_jenvman_2024_123845 crossref_primary_10_1109_ACCESS_2022_3213081 crossref_primary_10_1515_rams_2025_0097 crossref_primary_10_1186_s12879_024_09138_x crossref_primary_10_1080_02664763_2022_2068514 crossref_primary_10_1007_s13563_022_00357_9 crossref_primary_10_1016_j_engappai_2024_108434 crossref_primary_10_1063_5_0223030 crossref_primary_10_3390_app12178654 crossref_primary_10_1016_j_knosys_2021_107393 crossref_primary_10_1016_j_mtcomm_2024_108804 crossref_primary_10_1109_ACCESS_2024_3356073 crossref_primary_10_1016_j_ress_2023_109479 crossref_primary_10_1186_s40537_023_00842_0 crossref_primary_10_1007_s00521_023_08730_7 crossref_primary_10_1007_s10586_024_04684_0 crossref_primary_10_1016_j_jfoodeng_2025_112492 crossref_primary_10_3390_en17092113 crossref_primary_10_1007_s43674_022_00045_9 crossref_primary_10_1016_j_jbi_2021_103803 crossref_primary_10_1080_03019233_2023_2218243 crossref_primary_10_3390_rs13163222 crossref_primary_10_3390_su142315522 crossref_primary_10_1515_rams_2025_0092 crossref_primary_10_3390_rs14153654 crossref_primary_10_17221_128_2021_AGRICECON crossref_primary_10_1016_j_ijheatmasstransfer_2020_120097 crossref_primary_10_1108_ECON_05_2022_0026 crossref_primary_10_3390_a13100255 crossref_primary_10_1016_j_engappai_2020_103573 crossref_primary_10_3390_forecast4030040 crossref_primary_10_1016_j_energy_2025_134738 crossref_primary_10_1016_j_jmrt_2023_12_175 crossref_primary_10_1016_j_jenvman_2022_117194 crossref_primary_10_1016_j_eti_2023_103018 crossref_primary_10_1016_j_compbiomed_2020_103845 crossref_primary_10_54021_seesv5n2_508 crossref_primary_10_1016_j_jmrt_2023_04_223 crossref_primary_10_1088_1361_6501_ad56b0 crossref_primary_10_1016_j_eswa_2023_120148 crossref_primary_10_1016_j_asoc_2023_110997 crossref_primary_10_3390_s23167049 crossref_primary_10_1007_s00521_022_07119_2 crossref_primary_10_1002_asmb_2717 crossref_primary_10_1016_j_jobe_2023_106589 crossref_primary_10_3390_jcm11195772 crossref_primary_10_3389_fpls_2025_1539068 crossref_primary_10_3390_app14219806 crossref_primary_10_1108_AJEB_01_2024_0007 crossref_primary_10_3390_a13100246 crossref_primary_10_1007_s00366_020_01260_z crossref_primary_10_3390_pr10040725 crossref_primary_10_1016_j_meatsci_2021_108455 crossref_primary_10_1155_2022_3198636 crossref_primary_10_1016_j_neucom_2020_10_003 crossref_primary_10_1016_j_atmosres_2022_106159 crossref_primary_10_1016_j_oceaneng_2025_120331 crossref_primary_10_1016_j_ress_2022_108587 crossref_primary_10_1016_j_eswa_2023_122459 crossref_primary_10_1007_s00521_024_09531_2 crossref_primary_10_1016_j_irfa_2022_102174 crossref_primary_10_1080_02564602_2022_2136270 crossref_primary_10_1016_j_gfj_2023_100825 crossref_primary_10_1007_s10586_024_04876_8 crossref_primary_10_1016_j_chemosphere_2024_142697 crossref_primary_10_7769_gesec_v13i4_1483 crossref_primary_10_1016_j_scitotenv_2022_154284 crossref_primary_10_1016_j_jag_2024_104158 crossref_primary_10_1016_j_engappai_2020_103910 crossref_primary_10_1080_15332667_2021_1889743 crossref_primary_10_1109_TFUZZ_2023_3276263 crossref_primary_10_1016_j_trgeo_2022_100827 crossref_primary_10_1038_s41598_024_52181_6 crossref_primary_10_1007_s12145_024_01345_z crossref_primary_10_1155_2020_8887364 crossref_primary_10_3390_ma15124194 crossref_primary_10_1016_j_mtcomm_2023_107066 crossref_primary_10_1016_j_cscm_2022_e01774 crossref_primary_10_3233_JIFS_201279 crossref_primary_10_1007_s10922_023_09727_2 crossref_primary_10_1080_15623599_2025_2467065 crossref_primary_10_1002_cpe_7035 crossref_primary_10_3390_app112110380 crossref_primary_10_3390_app131911112 crossref_primary_10_1007_s11042_024_19635_5 crossref_primary_10_7769_gesec_v13i3_1380 crossref_primary_10_3390_data9010013 crossref_primary_10_1007_s42835_023_01378_2 crossref_primary_10_1177_03019233241312772 crossref_primary_10_1016_j_meatsci_2024_109623 crossref_primary_10_1007_s00521_024_10270_7 crossref_primary_10_1007_s42243_021_00611_4 crossref_primary_10_1016_j_cscm_2023_e02357 crossref_primary_10_1080_23080477_2024_2387929 |
Cites_doi | 10.1016/j.eswa.2018.01.012 10.1016/j.asoc.2018.03.042 10.1016/j.iref.2017.01.030 10.1016/j.enbuild.2017.11.039 10.1016/j.eneco.2016.05.014 10.1111/1477-9552.12172 10.1016/j.csda.2017.11.003 10.1016/j.asoc.2016.09.010 10.1007/BF00058655 10.1016/j.asoc.2018.03.052 10.1016/j.asoc.2017.02.013 10.1007/BF00153759 10.1016/j.resourpol.2016.01.003 10.1016/j.resourpol.2018.03.004 10.1007/978-3-319-71246-8_29 10.1016/j.energy.2018.04.133 10.1007/BF00116037 10.1016/0169-2070(89)90008-3 10.1145/2939672.2939785 10.1016/j.asoc.2016.08.026 10.1002/9780470404324 10.1016/j.eswa.2011.09.108 10.1016/j.trc.2015.02.019 10.1093/biomet/68.2.551 10.1023/A:1010933404324 10.1145/2379776.2379786 10.1016/j.ejor.2016.10.031 10.1016/j.enconman.2018.02.087 10.1016/j.engappai.2015.04.016 10.1016/j.asoc.2017.05.031 10.24023/FutureJournal/2175-5825/2018.v10i1.334 10.1016/j.asoc.2018.07.024 10.1016/j.eswa.2017.08.011 10.1016/j.asoc.2018.06.005 10.1016/j.eneco.2017.05.023 10.1016/j.ecolecon.2018.04.015 10.1016/j.jimonfin.2014.11.021 10.1016/j.rser.2015.04.081 10.3390/a10030108 10.1016/j.compag.2018.07.016 10.1016/j.inteco.2017.12.003 10.1007/s00181-017-1311-9 10.1016/j.apenergy.2018.02.118 10.1016/j.asoc.2015.08.015 10.1016/j.asoc.2016.07.024 10.1016/j.asoc.2014.10.022 10.1007/3-540-45014-9_1 10.1016/j.eswa.2018.06.016 10.1016/j.asoc.2016.03.009 10.1007/978-3-319-13572-4_24 10.1016/j.jece.2017.06.053 10.1016/S0893-6080(05)80023-1 10.21527/2237-6453.2016.34.301-319 10.3390/en11040949 10.1007/978-3-319-48317-7_13 10.1111/j.2517-6161.1964.tb00553.x 10.1016/j.asoc.2018.03.006 10.1016/j.elerap.2018.08.002 10.1590/S0103-63512012000100005 10.1016/j.solener.2017.04.066 10.1016/j.compag.2018.03.023 10.1016/j.asoc.2014.10.017 10.1080/13504851.2014.925040 10.1016/j.asoc.2015.07.020 10.1214/aos/1013203451 10.1016/j.asoc.2017.12.032 10.1016/j.renene.2018.02.006 10.1016/j.neucom.2017.05.104 10.1590/0103-6351/1985 10.1016/j.asoc.2016.09.023 10.1080/0952813X.2016.1198936 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2019.105837 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2019_105837 S1568494619306180 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-ac948106b6136a87eb41ab0929736fe469a081bce401e48f941d1be3265db9883 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:04 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Fri Feb 23 02:49:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Boosting Agricultural commodity Stacking Ensemble regression Bagging Time series |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-ac948106b6136a87eb41ab0929736fe469a081bce401e48f941d1be3265db9883 |
ORCID | 0000-0001-7387-9077 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2019_105837 crossref_primary_10_1016_j_asoc_2019_105837 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ren, Suganthan, Srikanth (b6) 2015; 50 Ma, Sha, Wang, Yu, Yang, Niu (b63) 2018; 31 Bonato, Demirer, Gupta, Pierdzioch (b29) 2018; 57 Kuhn (b92) 2008; 28 Rezende, de Oliveira Neto, Silva (b44) 2018; 10 Hamze-Ziabari, Bakhshpoori (b50) 2018; 68 Kedem, Slud (b90) 1981; 68 Soares, Costa, Costa, Leite (b8) 2018; 64 David E. Rumelhart (b77) 1987 Serbes, Sakar, Gulcur, Aydin (b69) 2015; 37 Messikh, Bousba, Bougdah (b79) 2017; 5 Chen, Liang, Hong, Gu (b81) 2015; 26 Pierdzioch, Risse (b26) 2018 Cerqueira, Torgo, Pinto, Soares (b73) 2017 Torres-Barrán, Álvaro Alonso, Dorronsoro (b10) 2019; 326–327 Cerqueira, Torgo, Smailović, Mozetič (b32) 2017 Mabu, Obayashi, Kuremoto (b78) 2015; 36 Minga, Alves, Parré (b39) 2016; 37 Zhang, Haghani (b94) 2015; 58 Erdal, İlhami Karahanoğlu (b49) 2016; 49 Pernía-Espinoza, Fernandez-Ceniceros, Antonanzas, Urraca, de Pison (b71) 2018; 70 Aha, Kibler, Albert (b76) 1991; 6 Breiman (b51) 2001; 45 Cerqueira, Torgo, Oliveira, Pfahringer (b72) 2017 Ding, Cao, Naess (b60) 2018; 110 Haykin (b4) 1999 Petropoulos, Chatzis, Siakoulis, Vlachogiannakis (b70) 2017; 90 Divina, Gilson, Goméz-Vela, García Torres, Torres (b7) 2018; 11 Paris (b36) 2018; 155 Pierdzioch, Risse, Rohloff (b18) 2015; 22 Weng, Lu, Wang, Megahed, Martinez (b86) 2018; 112 Xiong, Chongguang, Yukun (b25) 2017; 63 Moraes, Bender Filho, Vieira, Ceretta (b43) 2016; 14 Allende, Valle (b47) 2017 Wolpert (b66) 1992; 5 Kuhn, Johnson (b82) 2013 Thakur, Kumar (b52) 2018; 67 Chen, Guestrin (b61) 2016 Persson, Bacher, Shiga, Madsen (b57) 2017; 150 Drucker, Burges, Kaufman, Smola, Vapnik (b80) 1997 Qureshi, Khan, Zameer, Usman (b75) 2017; 58 Fan, Wang, Wu, Zhou, Zhang, Yu, Lu, Xiang (b93) 2018; 164 Fabozzi (b15) 2008 Ipardes (b2) 2018 Yu, Xu, Tang (b21) 2017; 56 Wang, Yue, Wei, Lv (b23) 2017; 10 Dietterich (b5) 2000 Zhang, Li, Pan (b11) 2016; 49 Trostle (b33) 2008 Gabralla, Mahersia, Abraham (b17) 2015 Bini, Canever, Denardim (b34) 2015; 25 Morettin, Toloi (b97) 2006 Chen, He, Benesty, Khotilovich, Tang (b62) 2017 Villanueva (b46) 2006 Bergmeir, Hyndman, Koo (b88) 2018; 120 He, Lai, Yen (b16) 2012; 39 Tang, Wu, Yu (b27) 2018; 70 R Core Team (b91) 2018 Van der Laan, Polley, Hubbard (b67) 2007; 6 Touzani, Granderson, Fernandes (b58) 2018; 158 Schapire (b55) 1990; 5 Brasil (b3) 2018 Flores (b89) 1989; 5 Wang, Duan, Qu, Wang (b28) 2018; 54 Caldarelli, Bacchi (b37) 2012; 22 Breiman (b48) 1996; 24 Yu, Dai, Tang (b20) 2016; 47 Yang, Tian, Chen, Li (b24) 2017; 49 Baffes, Haniotis (b41) 2016; 67 Pereira, Silva, Maia (b42) 2017; 48 Zhao, Li, Yu (b22) 2017; 66 Fernandez-Perez, Frijns, Tourani-Rad (b35) 2016; 58 Athanasopoulos, Hyndman (b87) 2018 Box, Cox (b83) 1964; 26 Mendes-Moreira, Soares, Jorge, Sousa (b9) 2012; 45 Peimankar, Weddell, Jalal, Lapthorn (b14) 2018; 68 Ding (b30) 2018; 154 James, Witten, Hastie, Tibshirani (b65) 2017 Carmona, Climent, Momparler (b64) 2018 Bodart, Candelon, Carpantier (b40) 2015; 51 Friedman (b56) 2001; 29 He, Zhang, Zhang (b54) 2018; 98 Assouline, Mohajeri, Scartezzini (b53) 2018; 217 Anifowose, Khoukhi, Abdulraheem (b31) 2017; 29 McTaggart, Daroczi, Leung (b45) 2016 Pierdzioch, Risse, Rohloff (b19) 2016; 47 Shine, Murphy, Upton, Scully (b85) 2018; 150 Ridgeway (b59) 2017 Khanal, Fulton, Klopfenstein, Douridas, Shearer (b95) 2018; 153 Shamaei, Kaedi (b68) 2016; 45 Krauss, Do, Huck (b12) 2017; 259 Anifowose, Labadin, Abdulraheem (b74) 2015; 26 Wang, Hou, Wang, Shen (b84) 2016; 49 Cepea (b1) 2018 Weng, Martinez, Tsai, Li, Lu, Barth, Megahed (b13) 2018; 71 Pedro, Coimbra, David, Lauret (b96) 2018; 123 Thompson, Lu, Gerlt, Yang, Campbell, Kueppers, Snyder (b98) 2018; 152 Alves, Cardoso, Felipe, Campion (b38) 2015; 4 Thompson (10.1016/j.asoc.2019.105837_b98) 2018; 152 Mabu (10.1016/j.asoc.2019.105837_b78) 2015; 36 Bodart (10.1016/j.asoc.2019.105837_b40) 2015; 51 Brasil (10.1016/j.asoc.2019.105837_b3) 2018 Carmona (10.1016/j.asoc.2019.105837_b64) 2018 Athanasopoulos (10.1016/j.asoc.2019.105837_b87) 2018 Zhang (10.1016/j.asoc.2019.105837_b11) 2016; 49 Haykin (10.1016/j.asoc.2019.105837_b4) 1999 Pedro (10.1016/j.asoc.2019.105837_b96) 2018; 123 Cerqueira (10.1016/j.asoc.2019.105837_b73) 2017 Tang (10.1016/j.asoc.2019.105837_b27) 2018; 70 Kuhn (10.1016/j.asoc.2019.105837_b92) 2008; 28 Wang (10.1016/j.asoc.2019.105837_b23) 2017; 10 Torres-Barrán (10.1016/j.asoc.2019.105837_b10) 2019; 326–327 Shine (10.1016/j.asoc.2019.105837_b85) 2018; 150 Ding (10.1016/j.asoc.2019.105837_b30) 2018; 154 Soares (10.1016/j.asoc.2019.105837_b8) 2018; 64 Baffes (10.1016/j.asoc.2019.105837_b41) 2016; 67 Flores (10.1016/j.asoc.2019.105837_b89) 1989; 5 Fan (10.1016/j.asoc.2019.105837_b93) 2018; 164 Chen (10.1016/j.asoc.2019.105837_b61) 2016 Breiman (10.1016/j.asoc.2019.105837_b51) 2001; 45 Serbes (10.1016/j.asoc.2019.105837_b69) 2015; 37 Ipardes (10.1016/j.asoc.2019.105837_b2) 2018 Peimankar (10.1016/j.asoc.2019.105837_b14) 2018; 68 Pierdzioch (10.1016/j.asoc.2019.105837_b18) 2015; 22 Wang (10.1016/j.asoc.2019.105837_b28) 2018; 54 Minga (10.1016/j.asoc.2019.105837_b39) 2016; 37 Kuhn (10.1016/j.asoc.2019.105837_b82) 2013 Erdal (10.1016/j.asoc.2019.105837_b49) 2016; 49 Drucker (10.1016/j.asoc.2019.105837_b80) 1997 Morettin (10.1016/j.asoc.2019.105837_b97) 2006 Yang (10.1016/j.asoc.2019.105837_b24) 2017; 49 Ridgeway (10.1016/j.asoc.2019.105837_b59) 2017 Wolpert (10.1016/j.asoc.2019.105837_b66) 1992; 5 Anifowose (10.1016/j.asoc.2019.105837_b31) 2017; 29 Anifowose (10.1016/j.asoc.2019.105837_b74) 2015; 26 David E. Rumelhart (10.1016/j.asoc.2019.105837_b77) 1987 Alves (10.1016/j.asoc.2019.105837_b38) 2015; 4 Cerqueira (10.1016/j.asoc.2019.105837_b32) 2017 Cerqueira (10.1016/j.asoc.2019.105837_b72) 2017 Hamze-Ziabari (10.1016/j.asoc.2019.105837_b50) 2018; 68 Thakur (10.1016/j.asoc.2019.105837_b52) 2018; 67 Shamaei (10.1016/j.asoc.2019.105837_b68) 2016; 45 James (10.1016/j.asoc.2019.105837_b65) 2017 Allende (10.1016/j.asoc.2019.105837_b47) 2017 Divina (10.1016/j.asoc.2019.105837_b7) 2018; 11 Krauss (10.1016/j.asoc.2019.105837_b12) 2017; 259 Yu (10.1016/j.asoc.2019.105837_b20) 2016; 47 Bergmeir (10.1016/j.asoc.2019.105837_b88) 2018; 120 Fernandez-Perez (10.1016/j.asoc.2019.105837_b35) 2016; 58 Fabozzi (10.1016/j.asoc.2019.105837_b15) 2008 Kedem (10.1016/j.asoc.2019.105837_b90) 1981; 68 Pereira (10.1016/j.asoc.2019.105837_b42) 2017; 48 Gabralla (10.1016/j.asoc.2019.105837_b17) 2015 Zhao (10.1016/j.asoc.2019.105837_b22) 2017; 66 Mendes-Moreira (10.1016/j.asoc.2019.105837_b9) 2012; 45 Ding (10.1016/j.asoc.2019.105837_b60) 2018; 110 Chen (10.1016/j.asoc.2019.105837_b62) 2017 Aha (10.1016/j.asoc.2019.105837_b76) 1991; 6 Bini (10.1016/j.asoc.2019.105837_b34) 2015; 25 Villanueva (10.1016/j.asoc.2019.105837_b46) 2006 Trostle (10.1016/j.asoc.2019.105837_b33) 2008 Moraes (10.1016/j.asoc.2019.105837_b43) 2016; 14 Wang (10.1016/j.asoc.2019.105837_b84) 2016; 49 Pierdzioch (10.1016/j.asoc.2019.105837_b26) 2018 Pierdzioch (10.1016/j.asoc.2019.105837_b19) 2016; 47 Caldarelli (10.1016/j.asoc.2019.105837_b37) 2012; 22 Touzani (10.1016/j.asoc.2019.105837_b58) 2018; 158 Weng (10.1016/j.asoc.2019.105837_b86) 2018; 112 Persson (10.1016/j.asoc.2019.105837_b57) 2017; 150 Assouline (10.1016/j.asoc.2019.105837_b53) 2018; 217 Friedman (10.1016/j.asoc.2019.105837_b56) 2001; 29 Rezende (10.1016/j.asoc.2019.105837_b44) 2018; 10 Cepea (10.1016/j.asoc.2019.105837_b1) 2018 Ma (10.1016/j.asoc.2019.105837_b63) 2018; 31 Box (10.1016/j.asoc.2019.105837_b83) 1964; 26 Weng (10.1016/j.asoc.2019.105837_b13) 2018; 71 Pernía-Espinoza (10.1016/j.asoc.2019.105837_b71) 2018; 70 Zhang (10.1016/j.asoc.2019.105837_b94) 2015; 58 Xiong (10.1016/j.asoc.2019.105837_b25) 2017; 63 Petropoulos (10.1016/j.asoc.2019.105837_b70) 2017; 90 Dietterich (10.1016/j.asoc.2019.105837_b5) 2000 Ren (10.1016/j.asoc.2019.105837_b6) 2015; 50 McTaggart (10.1016/j.asoc.2019.105837_b45) 2016 Bonato (10.1016/j.asoc.2019.105837_b29) 2018; 57 Paris (10.1016/j.asoc.2019.105837_b36) 2018; 155 He (10.1016/j.asoc.2019.105837_b16) 2012; 39 Schapire (10.1016/j.asoc.2019.105837_b55) 1990; 5 Van der Laan (10.1016/j.asoc.2019.105837_b67) 2007; 6 Chen (10.1016/j.asoc.2019.105837_b81) 2015; 26 Messikh (10.1016/j.asoc.2019.105837_b79) 2017; 5 Khanal (10.1016/j.asoc.2019.105837_b95) 2018; 153 He (10.1016/j.asoc.2019.105837_b54) 2018; 98 Yu (10.1016/j.asoc.2019.105837_b21) 2017; 56 R Core Team (10.1016/j.asoc.2019.105837_b91) 2018 Breiman (10.1016/j.asoc.2019.105837_b48) 1996; 24 Qureshi (10.1016/j.asoc.2019.105837_b75) 2017; 58 |
References_xml | – volume: 47 start-page: 110 year: 2016 end-page: 121 ident: b20 article-title: A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting publication-title: Eng. Appl. Artif. Intell. – volume: 68 start-page: 551 year: 1981 end-page: 556 ident: b90 article-title: On goodness of fit of time series models: An application of higher order crossings publication-title: Biometrika – start-page: 242 year: 2017 end-page: 251 ident: b72 article-title: Dynamic and heterogeneous ensembles for time series forecasting publication-title: 2017 IEEE International Conference on Data Science and Advanced Analytics, DSAA – volume: 155 start-page: 48 year: 2018 end-page: 60 ident: b36 article-title: On the link between oil and agricultural commodity prices: Do biofuels matter? publication-title: Int. Econ. – volume: 10 start-page: 132 year: 2018 end-page: 159 ident: b44 article-title: Volatilidade e transmissão dos preços internacionais do trigo para os preços domésticos do trigo e derivados no Brasil publication-title: Future Stud. Res. J.: Trends Strateg. – volume: 153 start-page: 213 year: 2018 end-page: 225 ident: b95 article-title: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield publication-title: Comput. Electron. Agric. – volume: 51 start-page: 264 year: 2015 end-page: 284 ident: b40 article-title: Real exchanges rates, commodity prices and structural factors in developing countries publication-title: J. Int. Money Finance – year: 2008 ident: b33 article-title: Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices – volume: 31 start-page: 24 year: 2018 end-page: 39 ident: b63 article-title: Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning publication-title: Electron. Commer. Res. Appl. – volume: 29 start-page: 517 year: 2017 end-page: 535 ident: b31 article-title: Investigating the effect of training–testing data stratification on the performance of soft computing techniques: an experimental study publication-title: J. Exp. Theor. Artif. Intell. – volume: 152 start-page: 98 year: 2018 end-page: 105 ident: b98 article-title: Automatic responses of crop stocks and policies buffer climate change effects on crop markets and price volatility publication-title: Ecol. Econom. – volume: 54 start-page: 1549 year: 2018 end-page: 1572 ident: b28 article-title: What matters for global food price volatility? publication-title: Empir. Econom. – volume: 58 start-page: 742 year: 2017 end-page: 755 ident: b75 article-title: Wind power prediction using deep neural network based meta regression and transfer learning publication-title: Appl. Soft Comput. – volume: 158 start-page: 1533 year: 2018 end-page: 1543 ident: b58 article-title: Gradient boosting machine for modeling the energy consumption of commercial buildings publication-title: Energy Build. – volume: 49 start-page: 861 year: 2016 end-page: 867 ident: b49 article-title: Bagging ensemble models for bank profitability: An emprical research on Turkish development and investment banks publication-title: Appl. Soft Comput. – start-page: 1 year: 2018 end-page: 18 ident: b26 article-title: Forecasting precious metal returns with multivariate random forests publication-title: Empir. Econom. – year: 2018 ident: b91 article-title: R: A Language and Environment for Statistical Computing – volume: 26 start-page: 483 year: 2015 end-page: 496 ident: b74 article-title: Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines publication-title: Appl. Soft Comput. – volume: 5 start-page: 197 year: 1990 end-page: 227 ident: b55 article-title: The strength of weak learnability publication-title: Mach. Learn. – volume: 217 start-page: 189 year: 2018 end-page: 211 ident: b53 article-title: Large-scale rooftop solar photovoltaic technical potential estimation using random forests publication-title: Appl. Energy – volume: 50 start-page: 82 year: 2015 end-page: 91 ident: b6 article-title: Ensemble methods for wind and solar power forecasting—A state-of-the-art review publication-title: Renew. Sustain. Energy Rev. – volume: 26 start-page: 435 year: 2015 end-page: 443 ident: b81 article-title: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm publication-title: Appl. Soft Comput. – volume: 58 start-page: 308 year: 2015 end-page: 324 ident: b94 article-title: A gradient boosting method to improve travel time prediction publication-title: Transp. Res. C – volume: 11 year: 2018 ident: b7 article-title: Stacking ensemble learning for short-term electricity consumption forecasting publication-title: Energies – volume: 70 start-page: 737 year: 2018 end-page: 750 ident: b71 article-title: Stacking ensemble with parsimonious base models to improve generalization capability in the characterization of steel bolted components publication-title: Appl. Soft Comput. – volume: 49 start-page: 164 year: 2016 end-page: 178 ident: b84 article-title: Improved v-support vector regression model based on variable selection and brain storm optimization for stock price forecasting publication-title: Appl. Soft Comput. – volume: 6 year: 2007 ident: b67 article-title: Super learner publication-title: Stat. Appl. Genet. Mol. Biol. – start-page: 785 year: 2016 end-page: 794 ident: b61 article-title: XGBoost: A scalable tree boosting system publication-title: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16 – year: 2018 ident: b2 article-title: Instituto Paranaense de Desenvolvimento Econômico e Social. Economia do Paraná cresceu 2,5% - mais que o dobro do Brasil – volume: 37 start-page: 87 year: 2015 end-page: 94 ident: b69 article-title: An emboli detection system based on dual tree complex wavelet transform and ensemble learning publication-title: Appl. Soft Comput. – volume: 66 start-page: 9 year: 2017 end-page: 16 ident: b22 article-title: A deep learning ensemble approach for crude oil price forecasting publication-title: Energy Econ. – year: 2016 ident: b45 article-title: Quandl: API wrapper for – year: 2018 ident: b1 article-title: Centro de Estudos Avançados em Economia Aplicada. PIB do Agronegócio Brasileiro – volume: 48 start-page: 131 year: 2017 end-page: 144 ident: b42 article-title: Os efeitos da taxa de câmbio e dos preços do petróleo nos preços internacionais das commodities brasileiras publication-title: Rev. Econ. Nordeste – volume: 70 start-page: 1097 year: 2018 end-page: 1108 ident: b27 article-title: A non-iterative decomposition-ensemble learning paradigm using RVFL network for crude oil price forecasting publication-title: Appl. Soft Comput. – volume: 45 start-page: 10:1 year: 2012 end-page: 10:40 ident: b9 article-title: Ensemble approaches for regression: A survey publication-title: ACM Comput. Surv. – volume: 6 start-page: 37 year: 1991 end-page: 66 ident: b76 article-title: Instance-based learning algorithms publication-title: Mach. Learn. – volume: 63 year: 2017 ident: b25 article-title: An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China publication-title: Agricult. Econ. – start-page: 293 year: 2015 end-page: 302 ident: b17 article-title: Ensemble neurocomputing based oil price prediction publication-title: Afro-European Conference for Industrial Advancement – volume: 71 start-page: 685 year: 2018 end-page: 697 ident: b13 article-title: Macroeconomic indicators alone can predict the monthly closing price of major U.S. indices: Insights from artificial intelligence, time-series analysis and hybrid models publication-title: Appl. Soft Comput. – volume: 110 start-page: 107 year: 2018 end-page: 117 ident: b60 article-title: Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo publication-title: Transp. Res. A – year: 2006 ident: b46 article-title: Comitê de máquinas em previsão em séries temporais – volume: 112 start-page: 258 year: 2018 end-page: 273 ident: b86 article-title: Predicting short-term stock prices using ensemble methods and online data sources publication-title: Expert Syst. Appl. – volume: 45 start-page: 187 year: 2016 end-page: 196 ident: b68 article-title: Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy predictions publication-title: Appl. Soft Comput. – volume: 68 start-page: 233 year: 2018 end-page: 248 ident: b14 article-title: Multi-objective ensemble forecasting with an application to power transformers publication-title: Appl. Soft Comput. – volume: 26 start-page: 211 year: 1964 end-page: 243 ident: b83 article-title: An analysis of transformations publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 67 start-page: 706 year: 2016 end-page: 721 ident: b41 article-title: What explains agricultural price movements? publication-title: J. Agric. Econ. – volume: 56 start-page: 692 year: 2017 end-page: 701 ident: b21 article-title: LSSVR ensemble learning with uncertain parameters for crude oil price forecasting publication-title: Appl. Soft Comput. – volume: 150 start-page: 423 year: 2017 end-page: 436 ident: b57 article-title: Multi-site solar power forecasting using gradient boosted regression trees publication-title: Sol. Energy – volume: 120 start-page: 70 year: 2018 end-page: 83 ident: b88 article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction publication-title: Comput. Statist. Data Anal. – volume: 68 start-page: 147 year: 2018 end-page: 161 ident: b50 article-title: Improving the prediction of ground motion parameters based on an efficient bagging ensemble model of M5 and CART algorithms publication-title: Appl. Soft Comput. – start-page: 155 year: 1997 end-page: 161 ident: b80 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems 9 – volume: 164 start-page: 102 year: 2018 end-page: 111 ident: b93 article-title: Comparison of support Vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China publication-title: Energy Convers. Manage. – volume: 5 start-page: 3483 year: 2017 end-page: 3489 ident: b79 article-title: The use of a multilayer perceptron (MLP) for modelling the phenol removal by emulsion liquid membrane publication-title: J. Environ. Chem. Eng. – volume: 14 start-page: 301 year: 2016 end-page: 319 ident: b43 article-title: Análise de causalidade de Preços no mercado internacional da soja: O caso do Brasil, Argentina e Estados Unidos publication-title: Desenvolv. Questão – year: 2013 ident: b82 article-title: Applied Predictive Modeling – start-page: 1 year: 2000 end-page: 15 ident: b5 article-title: Ensemble methods in machine learning publication-title: Multiple Classifier Systems – year: 1999 ident: b4 article-title: Neural Networks: A Comprehensive Foundation – volume: 58 start-page: 1 year: 2016 end-page: 10 ident: b35 article-title: Contemporaneous interactions among fuel, biofuel and agricultural commodities publication-title: Energy Econ. – volume: 67 start-page: 337 year: 2018 end-page: 349 ident: b52 article-title: A hybrid financial trading support system using multi-category classifiers and random forest publication-title: Appl. Soft Comput. – start-page: 217 year: 2017 end-page: 232 ident: b47 article-title: Ensemble methods for time series forecasting publication-title: Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing, vol. 349 – year: 2017 ident: b59 article-title: gbm: generalized boosted regression models – volume: 47 start-page: 95 year: 2016 end-page: 107 ident: b19 article-title: A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss publication-title: Resour. Policy – volume: 10 year: 2017 ident: b23 article-title: Performance analysis of four decomposition-ensemble models for one-day-ahead agricultural commodity futures price forecasting publication-title: Algorithms – volume: 57 start-page: 196 year: 2018 end-page: 212 ident: b29 article-title: Gold futures returns and realized moments: A forecasting experiment using a quantile-boosting approach publication-title: Resour. Policy – volume: 22 start-page: 141 year: 2012 end-page: 164 ident: b37 article-title: Fatores de influência no preço do milho no Brasil publication-title: Nova Econ. – year: 1987 ident: b77 article-title: Parallel Distributed Processing, Vol. 1: Foundations, vol. 1 – start-page: 852 year: 2008 ident: b15 article-title: Handbook of Finance, Financial Markets and Instruments, vol. 1 – volume: 154 start-page: 328 year: 2018 end-page: 336 ident: b30 article-title: A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting publication-title: Energy – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b51 article-title: Random forests publication-title: Mach. Learn. – volume: 5 start-page: 241 year: 1992 end-page: 259 ident: b66 article-title: Stacked generalization publication-title: Neural Netw. – volume: 90 start-page: 290 year: 2017 end-page: 302 ident: b70 article-title: A stacked generalization system for automated forex portfolio trading publication-title: Expert Syst. Appl. – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b56 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. – year: 2018 ident: b64 article-title: Predicting failure in the U.S. banking sector: An extreme gradient boosting approach publication-title: Int. Rev. Econ. Finance – year: 2017 ident: b62 article-title: Xgboost: Extreme gradient boosting – start-page: 564 year: 2006 ident: b97 article-title: Análise de séries temporais – volume: 150 start-page: 74 year: 2018 end-page: 87 ident: b85 article-title: Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms publication-title: Comput. Electron. Agric. – volume: 39 start-page: 4258 year: 2012 end-page: 4267 ident: b16 article-title: Ensemble forecasting of value at risk via multi resolution analysis based methodology in metals markets publication-title: Expert Syst. Appl. – year: 2018 ident: b3 article-title: Ministério da Agricultura, Pecuária e Abastecimento. Projeções do agronegócio 2017/2018 a 2027/2028: Projeções de Longo Prazo – year: 2018 ident: b87 article-title: Forecasting: Principles and Practice – volume: 49 start-page: 276 year: 2017 end-page: 291 ident: b24 article-title: Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches publication-title: Int. Rev. Econ. Finance – start-page: 478 year: 2017 end-page: 494 ident: b73 article-title: Arbitrated ensemble for time series forecasting publication-title: Machine Learning and Knowledge Discovery in Databases – volume: 49 start-page: 385 year: 2016 end-page: 398 ident: b11 article-title: Stock trend prediction based on a new status box method and AdaBoost probabilistic support vector machine publication-title: Appl. Soft Comput. – volume: 326–327 start-page: 151 year: 2019 end-page: 160 ident: b10 article-title: Regression tree ensembles for wind energy and solar radiation prediction publication-title: Neurocomputing – volume: 259 start-page: 689 year: 2017 end-page: 702 ident: b12 article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500 publication-title: European J. Oper. Res. – start-page: 529 year: 2017 end-page: 538 ident: b32 article-title: A comparative study of performance estimation methods for time series forecasting publication-title: 2017 IEEE International Conference on Data Science and Advanced Analytics, DSAA – volume: 25 start-page: 143 year: 2015 end-page: 160 ident: b34 article-title: Correlação e causalidade entre os preços de commodities e energia publication-title: Nova Econ. – volume: 37 year: 2016 ident: b39 article-title: Especulação afeta o preço das commodities agrícolas? publication-title: Rev. Espac. – volume: 36 start-page: 357 year: 2015 end-page: 367 ident: b78 article-title: Ensemble learning of rule-based evolutionary algorithm using multi-layer perceptron for supporting decisions in stock trading problems publication-title: Appl. Soft Comput. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b48 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 5 start-page: 529 year: 1989 end-page: 535 ident: b89 article-title: The utilization of the wilcoxon test to compare forecasting methods: A note publication-title: Int. J. Forecast. – volume: 123 start-page: 191 year: 2018 end-page: 203 ident: b96 article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts publication-title: Renew. Energy – volume: 28 start-page: 1 year: 2008 end-page: 26 ident: b92 article-title: Building predictive models in r using the caret package publication-title: J. Stat. Softw. Artic. – volume: 98 start-page: 105 year: 2018 end-page: 117 ident: b54 article-title: A novel ensemble method for credit scoring: Adaption of different imbalance ratios publication-title: Expert Syst. Appl. – volume: 22 start-page: 46 year: 2015 end-page: 50 ident: b18 article-title: Forecasting gold-price fluctuations: a real-time boosting approach publication-title: Appl. Econ. Lett. – volume: 64 start-page: 445 year: 2018 end-page: 453 ident: b8 article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction publication-title: Appl. Soft Comput. – start-page: 426 year: 2017 ident: b65 article-title: An Introduction to Statistical Learning – volume: 4 year: 2015 ident: b38 article-title: Causalidade e transmissão entre preços de mandioca, trigo, milho e seus derivados no Paraná publication-title: Rev. Econ. Agronegócio – volume: 98 start-page: 105 year: 2018 ident: 10.1016/j.asoc.2019.105837_b54 article-title: A novel ensemble method for credit scoring: Adaption of different imbalance ratios publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.01.012 – volume: 68 start-page: 233 year: 2018 ident: 10.1016/j.asoc.2019.105837_b14 article-title: Multi-objective ensemble forecasting with an application to power transformers publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.042 – volume: 6 issue: 1 year: 2007 ident: 10.1016/j.asoc.2019.105837_b67 article-title: Super learner publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 49 start-page: 276 year: 2017 ident: 10.1016/j.asoc.2019.105837_b24 article-title: Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches publication-title: Int. Rev. Econ. Finance doi: 10.1016/j.iref.2017.01.030 – year: 2017 ident: 10.1016/j.asoc.2019.105837_b59 – volume: 63 issue: 3 year: 2017 ident: 10.1016/j.asoc.2019.105837_b25 article-title: An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China publication-title: Agricult. Econ. – volume: 158 start-page: 1533 year: 2018 ident: 10.1016/j.asoc.2019.105837_b58 article-title: Gradient boosting machine for modeling the energy consumption of commercial buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.11.039 – year: 2008 ident: 10.1016/j.asoc.2019.105837_b33 – year: 2018 ident: 10.1016/j.asoc.2019.105837_b87 – volume: 58 start-page: 1 year: 2016 ident: 10.1016/j.asoc.2019.105837_b35 article-title: Contemporaneous interactions among fuel, biofuel and agricultural commodities publication-title: Energy Econ. doi: 10.1016/j.eneco.2016.05.014 – volume: 67 start-page: 706 issue: 3 year: 2016 ident: 10.1016/j.asoc.2019.105837_b41 article-title: What explains agricultural price movements? publication-title: J. Agric. Econ. doi: 10.1111/1477-9552.12172 – start-page: 155 year: 1997 ident: 10.1016/j.asoc.2019.105837_b80 article-title: Support vector regression machines – volume: 120 start-page: 70 year: 2018 ident: 10.1016/j.asoc.2019.105837_b88 article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2017.11.003 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.105837_b26 article-title: Forecasting precious metal returns with multivariate random forests publication-title: Empir. Econom. – volume: 49 start-page: 861 year: 2016 ident: 10.1016/j.asoc.2019.105837_b49 article-title: Bagging ensemble models for bank profitability: An emprical research on Turkish development and investment banks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.09.010 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.asoc.2019.105837_b48 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – year: 2018 ident: 10.1016/j.asoc.2019.105837_b1 – volume: 68 start-page: 147 year: 2018 ident: 10.1016/j.asoc.2019.105837_b50 article-title: Improving the prediction of ground motion parameters based on an efficient bagging ensemble model of M5 and CART algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.052 – volume: 70 start-page: 1097 year: 2018 ident: 10.1016/j.asoc.2019.105837_b27 article-title: A non-iterative decomposition-ensemble learning paradigm using RVFL network for crude oil price forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.02.013 – volume: 6 start-page: 37 issue: 1 year: 1991 ident: 10.1016/j.asoc.2019.105837_b76 article-title: Instance-based learning algorithms publication-title: Mach. Learn. doi: 10.1007/BF00153759 – volume: 47 start-page: 95 year: 2016 ident: 10.1016/j.asoc.2019.105837_b19 article-title: A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss publication-title: Resour. Policy doi: 10.1016/j.resourpol.2016.01.003 – year: 2018 ident: 10.1016/j.asoc.2019.105837_b3 – volume: 57 start-page: 196 year: 2018 ident: 10.1016/j.asoc.2019.105837_b29 article-title: Gold futures returns and realized moments: A forecasting experiment using a quantile-boosting approach publication-title: Resour. Policy doi: 10.1016/j.resourpol.2018.03.004 – start-page: 478 year: 2017 ident: 10.1016/j.asoc.2019.105837_b73 article-title: Arbitrated ensemble for time series forecasting doi: 10.1007/978-3-319-71246-8_29 – volume: 154 start-page: 328 year: 2018 ident: 10.1016/j.asoc.2019.105837_b30 article-title: A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting publication-title: Energy doi: 10.1016/j.energy.2018.04.133 – volume: 5 start-page: 197 issue: 2 year: 1990 ident: 10.1016/j.asoc.2019.105837_b55 article-title: The strength of weak learnability publication-title: Mach. Learn. doi: 10.1007/BF00116037 – volume: 5 start-page: 529 issue: 4 year: 1989 ident: 10.1016/j.asoc.2019.105837_b89 article-title: The utilization of the wilcoxon test to compare forecasting methods: A note publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(89)90008-3 – start-page: 785 year: 2016 ident: 10.1016/j.asoc.2019.105837_b61 article-title: XGBoost: A scalable tree boosting system doi: 10.1145/2939672.2939785 – volume: 4 issue: 3 year: 2015 ident: 10.1016/j.asoc.2019.105837_b38 article-title: Causalidade e transmissão entre preços de mandioca, trigo, milho e seus derivados no Paraná publication-title: Rev. Econ. Agronegócio – volume: 49 start-page: 385 year: 2016 ident: 10.1016/j.asoc.2019.105837_b11 article-title: Stock trend prediction based on a new status box method and AdaBoost probabilistic support vector machine publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.08.026 – year: 2018 ident: 10.1016/j.asoc.2019.105837_b64 article-title: Predicting failure in the U.S. banking sector: An extreme gradient boosting approach publication-title: Int. Rev. Econ. Finance – start-page: 852 year: 2008 ident: 10.1016/j.asoc.2019.105837_b15 doi: 10.1002/9780470404324 – volume: 39 start-page: 4258 issue: 4 year: 2012 ident: 10.1016/j.asoc.2019.105837_b16 article-title: Ensemble forecasting of value at risk via multi resolution analysis based methodology in metals markets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.108 – volume: 58 start-page: 308 year: 2015 ident: 10.1016/j.asoc.2019.105837_b94 article-title: A gradient boosting method to improve travel time prediction publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.02.019 – volume: 68 start-page: 551 issue: 2 year: 1981 ident: 10.1016/j.asoc.2019.105837_b90 article-title: On goodness of fit of time series models: An application of higher order crossings publication-title: Biometrika doi: 10.1093/biomet/68.2.551 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.asoc.2019.105837_b51 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 45 start-page: 10:1 issue: 1 year: 2012 ident: 10.1016/j.asoc.2019.105837_b9 article-title: Ensemble approaches for regression: A survey publication-title: ACM Comput. Surv. doi: 10.1145/2379776.2379786 – volume: 259 start-page: 689 issue: 2 year: 2017 ident: 10.1016/j.asoc.2019.105837_b12 article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500 publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2016.10.031 – start-page: 242 year: 2017 ident: 10.1016/j.asoc.2019.105837_b72 article-title: Dynamic and heterogeneous ensembles for time series forecasting – volume: 164 start-page: 102 year: 2018 ident: 10.1016/j.asoc.2019.105837_b93 article-title: Comparison of support Vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.02.087 – volume: 37 issue: 20 year: 2016 ident: 10.1016/j.asoc.2019.105837_b39 article-title: Especulação afeta o preço das commodities agrícolas? publication-title: Rev. Espac. – year: 2017 ident: 10.1016/j.asoc.2019.105837_b62 – volume: 47 start-page: 110 year: 2016 ident: 10.1016/j.asoc.2019.105837_b20 article-title: A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.04.016 – volume: 58 start-page: 742 year: 2017 ident: 10.1016/j.asoc.2019.105837_b75 article-title: Wind power prediction using deep neural network based meta regression and transfer learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.031 – volume: 10 start-page: 132 issue: 1 year: 2018 ident: 10.1016/j.asoc.2019.105837_b44 article-title: Volatilidade e transmissão dos preços internacionais do trigo para os preços domésticos do trigo e derivados no Brasil publication-title: Future Stud. Res. J.: Trends Strateg. doi: 10.24023/FutureJournal/2175-5825/2018.v10i1.334 – volume: 71 start-page: 685 year: 2018 ident: 10.1016/j.asoc.2019.105837_b13 article-title: Macroeconomic indicators alone can predict the monthly closing price of major U.S. indices: Insights from artificial intelligence, time-series analysis and hybrid models publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.024 – volume: 90 start-page: 290 year: 2017 ident: 10.1016/j.asoc.2019.105837_b70 article-title: A stacked generalization system for automated forex portfolio trading publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.011 – year: 2016 ident: 10.1016/j.asoc.2019.105837_b45 – year: 1987 ident: 10.1016/j.asoc.2019.105837_b77 – volume: 70 start-page: 737 year: 2018 ident: 10.1016/j.asoc.2019.105837_b71 article-title: Stacking ensemble with parsimonious base models to improve generalization capability in the characterization of steel bolted components publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.06.005 – volume: 66 start-page: 9 year: 2017 ident: 10.1016/j.asoc.2019.105837_b22 article-title: A deep learning ensemble approach for crude oil price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.05.023 – year: 2013 ident: 10.1016/j.asoc.2019.105837_b82 – volume: 152 start-page: 98 year: 2018 ident: 10.1016/j.asoc.2019.105837_b98 article-title: Automatic responses of crop stocks and policies buffer climate change effects on crop markets and price volatility publication-title: Ecol. Econom. doi: 10.1016/j.ecolecon.2018.04.015 – volume: 110 start-page: 107 year: 2018 ident: 10.1016/j.asoc.2019.105837_b60 article-title: Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo publication-title: Transp. Res. A – start-page: 426 year: 2017 ident: 10.1016/j.asoc.2019.105837_b65 – volume: 51 start-page: 264 year: 2015 ident: 10.1016/j.asoc.2019.105837_b40 article-title: Real exchanges rates, commodity prices and structural factors in developing countries publication-title: J. Int. Money Finance doi: 10.1016/j.jimonfin.2014.11.021 – volume: 50 start-page: 82 year: 2015 ident: 10.1016/j.asoc.2019.105837_b6 article-title: Ensemble methods for wind and solar power forecasting—A state-of-the-art review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.04.081 – volume: 10 issue: 3 year: 2017 ident: 10.1016/j.asoc.2019.105837_b23 article-title: Performance analysis of four decomposition-ensemble models for one-day-ahead agricultural commodity futures price forecasting publication-title: Algorithms doi: 10.3390/a10030108 – volume: 153 start-page: 213 year: 2018 ident: 10.1016/j.asoc.2019.105837_b95 article-title: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.07.016 – volume: 155 start-page: 48 year: 2018 ident: 10.1016/j.asoc.2019.105837_b36 article-title: On the link between oil and agricultural commodity prices: Do biofuels matter? publication-title: Int. Econ. doi: 10.1016/j.inteco.2017.12.003 – volume: 54 start-page: 1549 issue: 4 year: 2018 ident: 10.1016/j.asoc.2019.105837_b28 article-title: What matters for global food price volatility? publication-title: Empir. Econom. doi: 10.1007/s00181-017-1311-9 – volume: 217 start-page: 189 year: 2018 ident: 10.1016/j.asoc.2019.105837_b53 article-title: Large-scale rooftop solar photovoltaic technical potential estimation using random forests publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.118 – volume: 37 start-page: 87 year: 2015 ident: 10.1016/j.asoc.2019.105837_b69 article-title: An emboli detection system based on dual tree complex wavelet transform and ensemble learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.08.015 – volume: 49 start-page: 164 year: 2016 ident: 10.1016/j.asoc.2019.105837_b84 article-title: Improved v-support vector regression model based on variable selection and brain storm optimization for stock price forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.07.024 – year: 1999 ident: 10.1016/j.asoc.2019.105837_b4 – start-page: 529 year: 2017 ident: 10.1016/j.asoc.2019.105837_b32 article-title: A comparative study of performance estimation methods for time series forecasting – volume: 26 start-page: 435 year: 2015 ident: 10.1016/j.asoc.2019.105837_b81 article-title: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.10.022 – start-page: 1 year: 2000 ident: 10.1016/j.asoc.2019.105837_b5 article-title: Ensemble methods in machine learning doi: 10.1007/3-540-45014-9_1 – volume: 112 start-page: 258 year: 2018 ident: 10.1016/j.asoc.2019.105837_b86 article-title: Predicting short-term stock prices using ensemble methods and online data sources publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.016 – volume: 45 start-page: 187 year: 2016 ident: 10.1016/j.asoc.2019.105837_b68 article-title: Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy predictions publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.03.009 – start-page: 293 year: 2015 ident: 10.1016/j.asoc.2019.105837_b17 article-title: Ensemble neurocomputing based oil price prediction doi: 10.1007/978-3-319-13572-4_24 – year: 2006 ident: 10.1016/j.asoc.2019.105837_b46 – volume: 5 start-page: 3483 issue: 4 year: 2017 ident: 10.1016/j.asoc.2019.105837_b79 article-title: The use of a multilayer perceptron (MLP) for modelling the phenol removal by emulsion liquid membrane publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.06.053 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 10.1016/j.asoc.2019.105837_b66 article-title: Stacked generalization publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80023-1 – volume: 14 start-page: 301 issue: 34 year: 2016 ident: 10.1016/j.asoc.2019.105837_b43 article-title: Análise de causalidade de Preços no mercado internacional da soja: O caso do Brasil, Argentina e Estados Unidos publication-title: Desenvolv. Questão doi: 10.21527/2237-6453.2016.34.301-319 – volume: 11 issue: 4 year: 2018 ident: 10.1016/j.asoc.2019.105837_b7 article-title: Stacking ensemble learning for short-term electricity consumption forecasting publication-title: Energies doi: 10.3390/en11040949 – start-page: 217 year: 2017 ident: 10.1016/j.asoc.2019.105837_b47 article-title: Ensemble methods for time series forecasting doi: 10.1007/978-3-319-48317-7_13 – volume: 26 start-page: 211 issue: 2 year: 1964 ident: 10.1016/j.asoc.2019.105837_b83 article-title: An analysis of transformations publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1964.tb00553.x – volume: 28 start-page: 1 issue: 5 year: 2008 ident: 10.1016/j.asoc.2019.105837_b92 article-title: Building predictive models in r using the caret package publication-title: J. Stat. Softw. Artic. – volume: 67 start-page: 337 year: 2018 ident: 10.1016/j.asoc.2019.105837_b52 article-title: A hybrid financial trading support system using multi-category classifiers and random forest publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.006 – volume: 31 start-page: 24 year: 2018 ident: 10.1016/j.asoc.2019.105837_b63 article-title: Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2018.08.002 – volume: 22 start-page: 141 year: 2012 ident: 10.1016/j.asoc.2019.105837_b37 article-title: Fatores de influência no preço do milho no Brasil publication-title: Nova Econ. doi: 10.1590/S0103-63512012000100005 – start-page: 564 year: 2006 ident: 10.1016/j.asoc.2019.105837_b97 article-title: Análise de séries temporais – volume: 150 start-page: 423 year: 2017 ident: 10.1016/j.asoc.2019.105837_b57 article-title: Multi-site solar power forecasting using gradient boosted regression trees publication-title: Sol. Energy doi: 10.1016/j.solener.2017.04.066 – volume: 150 start-page: 74 year: 2018 ident: 10.1016/j.asoc.2019.105837_b85 article-title: Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.023 – volume: 26 start-page: 483 year: 2015 ident: 10.1016/j.asoc.2019.105837_b74 article-title: Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.10.017 – volume: 22 start-page: 46 issue: 1 year: 2015 ident: 10.1016/j.asoc.2019.105837_b18 article-title: Forecasting gold-price fluctuations: a real-time boosting approach publication-title: Appl. Econ. Lett. doi: 10.1080/13504851.2014.925040 – volume: 36 start-page: 357 year: 2015 ident: 10.1016/j.asoc.2019.105837_b78 article-title: Ensemble learning of rule-based evolutionary algorithm using multi-layer perceptron for supporting decisions in stock trading problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.020 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.asoc.2019.105837_b56 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. doi: 10.1214/aos/1013203451 – volume: 64 start-page: 445 year: 2018 ident: 10.1016/j.asoc.2019.105837_b8 article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.032 – volume: 123 start-page: 191 year: 2018 ident: 10.1016/j.asoc.2019.105837_b96 article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts publication-title: Renew. Energy doi: 10.1016/j.renene.2018.02.006 – volume: 326–327 start-page: 151 year: 2019 ident: 10.1016/j.asoc.2019.105837_b10 article-title: Regression tree ensembles for wind energy and solar radiation prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.104 – volume: 25 start-page: 143 year: 2015 ident: 10.1016/j.asoc.2019.105837_b34 article-title: Correlação e causalidade entre os preços de commodities e energia publication-title: Nova Econ. doi: 10.1590/0103-6351/1985 – volume: 48 start-page: 131 issue: 1 year: 2017 ident: 10.1016/j.asoc.2019.105837_b42 article-title: Os efeitos da taxa de câmbio e dos preços do petróleo nos preços internacionais das commodities brasileiras publication-title: Rev. Econ. Nordeste – year: 2018 ident: 10.1016/j.asoc.2019.105837_b2 – year: 2018 ident: 10.1016/j.asoc.2019.105837_b91 – volume: 56 start-page: 692 year: 2017 ident: 10.1016/j.asoc.2019.105837_b21 article-title: LSSVR ensemble learning with uncertain parameters for crude oil price forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.09.023 – volume: 29 start-page: 517 issue: 3 year: 2017 ident: 10.1016/j.asoc.2019.105837_b31 article-title: Investigating the effect of training–testing data stratification on the performance of soft computing techniques: an experimental study publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2016.1198936 |
SSID | ssj0016928 |
Score | 2.6771169 |
Snippet | The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105837 |
SubjectTerms | Agricultural commodity Bagging Boosting Ensemble regression Stacking Time series |
Title | Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series |
URI | https://dx.doi.org/10.1016/j.asoc.2019.105837 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvHjxbcQH2YM3XWnZbdkeCYHgixiVhFuzLxCDhVC8-tud6YNoYjh4atPuJs10OvN929n5CLk0ykgZOMsibi0TJlRM-9IxwaW2IdeBbOFG4cdB2B-Ku1EwqpBOuRcGyyqL2J_H9CxaF1cahTUbi-m08QLMQ4pIAAMA2OtL5O1CtNDLb77WZR5-GGX6qjiY4ehi40xe46XAAljeFaHcrUQt9L-S04-E09sjOwVSpO38YfZJxSUHZLdUYaDFR3lI5t0kdR965mjZH5xiarJ0nsAJLihPrilg6RQLnKlKLAVAaHCFnAJgpekbAHCGAZoulvjXBt8UnSZUTbCpSF4WT1GCnqK3uvSIDHvd106fFTIKzHDPWzFlsCOLF2rI3KEC22vhK-1FqFoVjh3wYwW4QBsHVMsJOY6Eb33tANcFVkdS8mNSTeaJOyG0pbgTAdwxHIgYkLWm81QIJMc4wF2W14hf2i82RY9xlLqYxWUx2XuMNo_R5nFu8xq5Ws9Z5B02No4OytcS__KTGFLAhnmn_5x3RrabyLCzRZdzUl0tP90FwJCVrmd-Vidb7c7zwxMeb-_7g2-FaN5D |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC0RckguLAlRWAJ1IKekM17aTfuQQ8SiYb0EJG6mN8gg8IzwIMSFn-IHUzVuo0SKOETiZlluq10uV73Xrq4HsO6M07oIXpS590I6ZYRNdRAy19ar3BZ6gzcKHx6p_oncOy1Op-Cx2wvDZZUx9rcxfRKt45letGZvNBj0fhLz0LKUxAAI9qY6iZWV--H-jnhb8313i17y5yzb2T7e7IsoLSBcniRjYRx3KUmUpWymDM3HytTYpGQlJ3UeiDMaypXWBaIfQerzUqY-tYGwTuFtqXVO930FryWFC5ZN-PbwVFeSqnIi6MqzEzy9uFOnLSozZHKuJytZX1ez-Pq_suEfGW5nDmYiNMUf7dPPw1So38FsJ_uAMQq8h-F23YRrexWwa0iOnAs9Dms64BXsi69I4L3himo0tUdCoI6X5JEQMja_CPELzgg4uuHfROwaOKjRXHAXk7YOH1nzHvnzCM0CnLyIcT_AdD2sw0fADZMHMnKmXE7Mj9hhFhKjiFW5QEDP54uQdvarXGxqztoaV1VXvXZZsc0rtnnV2nwRvjyNGbUtPZ69uuheS_WXY1aUc54Zt_Sf49bgTf_48KA62D3aX4a3GdP7yYrPCkyPb27DJ8JAY7s68TmEs5d28t_jkRb_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+approach+based+on+bagging%2C+boosting+and+stacking+for+short-term+prediction+in+agribusiness+time+series&rft.jtitle=Applied+soft+computing&rft.au=Ribeiro%2C+Matheus+Henrique+Dal+Molin&rft.au=dos+Santos+Coelho%2C+Leandro&rft.date=2020-01-01&rft.issn=1568-4946&rft.volume=86&rft.spage=105837&rft_id=info:doi/10.1016%2Fj.asoc.2019.105837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105837 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |