Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series

The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the development of effective models is necessary. Regression ensembles can be used for this purpose. An ensemble is a set of combined models which act tog...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 86; p. 105837
Main Authors Ribeiro, Matheus Henrique Dal Molin, dos Santos Coelho, Leandro
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the development of effective models is necessary. Regression ensembles can be used for this purpose. An ensemble is a set of combined models which act together to forecast a response variable with lower error. Faced with this, the general contribution of this work is to explore the predictive capability of regression ensembles by comparing ensembles among themselves, as well as with approaches that consider a single model (reference models) in the agribusiness area to forecast prices one month ahead. In this aspect, monthly time series referring to the price paid to producers in the state of Parana, Brazil for a 60 kg bag of soybean (case study 1) and wheat (case study 2) are used. The ensembles bagging (random forests — RF), boosting (gradient boosting machine — GBM and extreme gradient boosting machine — XGB), and stacking (STACK) are adopted. The support vector machine for regression (SVR), multilayer perceptron neural network (MLP) and K-nearest neighbors (KNN) are adopted as reference models. Performance measures such as mean absolute percentage error (MAPE), root mean squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE) are used for models comparison. Friedman and Wilcoxon signed rank tests are applied to evaluate the models’ absolute percentage errors (APE). From the comparison of test set results, MAPE lower than 1% is observed for the best ensemble approaches. In this context, the XGB/STACK (Least Absolute Shrinkage and Selection Operator-KNN-XGB-SVR) and RF models showed better performance for short-term forecasting tasks for case studies 1 and 2, respectively. Better APE (statistically smaller) is observed for XGB/STACK and RF in relation to reference models. Besides that, approaches based on boosting are consistent, providing good results in both case studies. Alongside, a rank according to the performances is: XGB, GBM, RF, STACK, MLP, SVR and KNN. It can be concluded that the ensemble approach presents statistically significant gains, reducing prediction errors for the price series studied. The use of ensembles is recommended to forecast agricultural commodities prices one month ahead, since a more assertive performance is observed, which allows to increase the accuracy of the constructed model and reduce decision-making risk. •Ensembles and single models are compared for short-term forecasting in agribusiness.•Soybean and wheat commodities are adopted as case studies.•Boosting approaches showed lower predictions errors.•XGB or STACK and RF models are adopted in soybean and wheat cases, respectively.•Ensemble performance is better than SVR, KNN and MLP performance.
AbstractList The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the development of effective models is necessary. Regression ensembles can be used for this purpose. An ensemble is a set of combined models which act together to forecast a response variable with lower error. Faced with this, the general contribution of this work is to explore the predictive capability of regression ensembles by comparing ensembles among themselves, as well as with approaches that consider a single model (reference models) in the agribusiness area to forecast prices one month ahead. In this aspect, monthly time series referring to the price paid to producers in the state of Parana, Brazil for a 60 kg bag of soybean (case study 1) and wheat (case study 2) are used. The ensembles bagging (random forests — RF), boosting (gradient boosting machine — GBM and extreme gradient boosting machine — XGB), and stacking (STACK) are adopted. The support vector machine for regression (SVR), multilayer perceptron neural network (MLP) and K-nearest neighbors (KNN) are adopted as reference models. Performance measures such as mean absolute percentage error (MAPE), root mean squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE) are used for models comparison. Friedman and Wilcoxon signed rank tests are applied to evaluate the models’ absolute percentage errors (APE). From the comparison of test set results, MAPE lower than 1% is observed for the best ensemble approaches. In this context, the XGB/STACK (Least Absolute Shrinkage and Selection Operator-KNN-XGB-SVR) and RF models showed better performance for short-term forecasting tasks for case studies 1 and 2, respectively. Better APE (statistically smaller) is observed for XGB/STACK and RF in relation to reference models. Besides that, approaches based on boosting are consistent, providing good results in both case studies. Alongside, a rank according to the performances is: XGB, GBM, RF, STACK, MLP, SVR and KNN. It can be concluded that the ensemble approach presents statistically significant gains, reducing prediction errors for the price series studied. The use of ensembles is recommended to forecast agricultural commodities prices one month ahead, since a more assertive performance is observed, which allows to increase the accuracy of the constructed model and reduce decision-making risk. •Ensembles and single models are compared for short-term forecasting in agribusiness.•Soybean and wheat commodities are adopted as case studies.•Boosting approaches showed lower predictions errors.•XGB or STACK and RF models are adopted in soybean and wheat cases, respectively.•Ensemble performance is better than SVR, KNN and MLP performance.
ArticleNumber 105837
Author Ribeiro, Matheus Henrique Dal Molin
dos Santos Coelho, Leandro
Author_xml – sequence: 1
  givenname: Matheus Henrique Dal Molin
  orcidid: 0000-0001-7387-9077
  surname: Ribeiro
  fullname: Ribeiro, Matheus Henrique Dal Molin
  email: matheus.dalmolinribeiro@gmail.com
  organization: Graduate Program in Industrial & Systems Engineering (PPGEPS), Pontifical Catholic University of Parana (PUCPR), 1155, Rua Imaculada Conceicao, Curitiba, Parana, 80215-901, Brazil
– sequence: 2
  givenname: Leandro
  surname: dos Santos Coelho
  fullname: dos Santos Coelho, Leandro
  email: lscoelho2009@gmail.com
  organization: Graduate Program in Industrial & Systems Engineering (PPGEPS), Pontifical Catholic University of Parana (PUCPR), 1155, Rua Imaculada Conceicao, Curitiba, Parana, 80215-901, Brazil
BookMark eNp9kM9KAzEQh4NUsK2-gKc8gFuT3W2agBcp9Q8UvOg5JNnZNrVNSiYKvr1Z6slDT_ObgW-Y-SZkFGIAQm45m3HGxf1uZjC6Wc24KoO5bBYXZMzloq6UkHxU8lzIqlWtuCITxB0rkKrlmMRVQDjYPVBzPKZo3JZag9DRGErYbHzY3FEbI-aSqAkdxWzc59D0MVHcxpSrDOlAjwk677IvoA_UbJK3X-gDINLsD0ARkge8Jpe92SPc_NUp-XhavS9fqvXb8-vycV25hrFcGadayZmwgjfCyAXYlhvLVK0WjeihFcowya2DlnFoZa9a3nELTS3mnVVSNlMiT3tdiogJeu18NsN1ORm_15zpQZze6UGcHsTpk7iC1v_QY_IHk37OQw8nCMpT3x6SRuchuOIkgcu6i_4c_gvSVosO
CitedBy_id crossref_primary_10_1002_srin_202400896
crossref_primary_10_3390_app12199729
crossref_primary_10_3390_rs12071095
crossref_primary_10_1002_for_2894
crossref_primary_10_1007_s00704_024_04920_y
crossref_primary_10_1016_j_molliq_2023_121691
crossref_primary_10_1080_23270012_2024_2377168
crossref_primary_10_1039_D3NR04974D
crossref_primary_10_1016_j_jrmge_2024_05_024
crossref_primary_10_1016_j_jup_2021_101185
crossref_primary_10_1177_03019233241297720
crossref_primary_10_1016_j_aei_2022_101542
crossref_primary_10_1007_s42824_024_00123_y
crossref_primary_10_1016_j_engappai_2020_103819
crossref_primary_10_1088_2515_7620_ad7e81
crossref_primary_10_3390_app14030978
crossref_primary_10_1016_j_jafr_2024_101107
crossref_primary_10_1016_j_ijepes_2020_106269
crossref_primary_10_1016_j_procs_2021_07_049
crossref_primary_10_1016_j_engstruct_2021_112109
crossref_primary_10_1016_j_ejpb_2024_114214
crossref_primary_10_1080_03610918_2024_2330700
crossref_primary_10_1016_j_jmrt_2023_02_024
crossref_primary_10_1016_j_jocs_2022_101570
crossref_primary_10_1109_ACCESS_2024_3502542
crossref_primary_10_3390_su141710483
crossref_primary_10_1109_ACCESS_2021_3125895
crossref_primary_10_3389_fphar_2022_975855
crossref_primary_10_1007_s13563_024_00457_8
crossref_primary_10_1016_j_mex_2022_101758
crossref_primary_10_3390_appliedmath5010006
crossref_primary_10_3788_COL202422_063601
crossref_primary_10_1016_j_rineng_2023_101595
crossref_primary_10_3390_molecules28083521
crossref_primary_10_1016_j_jhydrol_2024_132565
crossref_primary_10_1177_00368504241274999
crossref_primary_10_1007_s40808_023_01882_4
crossref_primary_10_1007_s10489_021_02602_0
crossref_primary_10_1007_s00607_024_01320_y
crossref_primary_10_1016_j_ymssp_2023_110543
crossref_primary_10_1016_j_aej_2024_02_008
crossref_primary_10_1016_j_molliq_2022_120748
crossref_primary_10_1007_s10489_021_02845_x
crossref_primary_10_1007_s13563_024_00483_6
crossref_primary_10_1142_S0218539323500316
crossref_primary_10_1049_gtd2_12881
crossref_primary_10_1016_j_ins_2020_12_039
crossref_primary_10_1109_JAS_2024_124962
crossref_primary_10_1016_j_asoc_2020_106422
crossref_primary_10_1016_j_epsr_2021_107584
crossref_primary_10_3390_su16219574
crossref_primary_10_1186_s13007_022_00933_8
crossref_primary_10_1109_JSEN_2021_3077021
crossref_primary_10_1109_TEM_2024_3385298
crossref_primary_10_1007_s12530_021_09404_2
crossref_primary_10_1016_j_ymssp_2022_109148
crossref_primary_10_1007_s10489_021_02879_1
crossref_primary_10_1002_suco_202200424
crossref_primary_10_1016_j_optlastec_2024_110891
crossref_primary_10_1016_j_measen_2022_100501
crossref_primary_10_1080_22797254_2023_2294127
crossref_primary_10_1016_j_asoc_2021_108110
crossref_primary_10_3390_jmse9040449
crossref_primary_10_1016_j_matdes_2023_112331
crossref_primary_10_1155_2020_7212368
crossref_primary_10_3390_en14092653
crossref_primary_10_1515_rams_2024_0014
crossref_primary_10_1080_23789689_2021_2017736
crossref_primary_10_1016_j_istruc_2023_02_080
crossref_primary_10_3390_rs15163946
crossref_primary_10_1016_j_jksuci_2023_101628
crossref_primary_10_59277_PRA_SER_A_25_4_08
crossref_primary_10_1016_j_crfs_2023_100495
crossref_primary_10_1016_j_nexus_2023_100250
crossref_primary_10_3390_ma14195762
crossref_primary_10_3390_math9182307
crossref_primary_10_1016_j_catena_2021_105957
crossref_primary_10_1016_j_engappai_2020_104132
crossref_primary_10_1080_00207543_2023_2217286
crossref_primary_10_1007_s11269_022_03077_5
crossref_primary_10_1016_j_compag_2021_106631
crossref_primary_10_1007_s43674_023_00054_2
crossref_primary_10_1109_JBHI_2024_3428512
crossref_primary_10_3233_JIFS_232986
crossref_primary_10_3390_buildings14124027
crossref_primary_10_1007_s11356_023_25369_y
crossref_primary_10_3917_mav_137_0113
crossref_primary_10_5194_essd_16_4161_2024
crossref_primary_10_1016_j_ins_2022_09_002
crossref_primary_10_1016_j_compag_2023_108096
crossref_primary_10_3390_rs13040775
crossref_primary_10_1007_s40009_023_01213_2
crossref_primary_10_1016_j_atech_2024_100397
crossref_primary_10_1007_s12517_022_11045_x
crossref_primary_10_1002_ese3_799
crossref_primary_10_3390_app131810464
crossref_primary_10_1016_j_rse_2022_112980
crossref_primary_10_3390_en15072327
crossref_primary_10_1016_j_molliq_2022_121113
crossref_primary_10_1177_03611981221086645
crossref_primary_10_1007_s12145_024_01641_8
crossref_primary_10_1016_j_iswa_2022_200061
crossref_primary_10_1038_s41598_022_06218_3
crossref_primary_10_1007_s40948_023_00690_5
crossref_primary_10_1016_j_apenergy_2021_117449
crossref_primary_10_1021_acs_energyfuels_2c03033
crossref_primary_10_1142_S2737599425500021
crossref_primary_10_3233_JIFS_210708
crossref_primary_10_1016_j_bspc_2024_107207
crossref_primary_10_1080_15567036_2022_2087804
crossref_primary_10_1016_j_engappai_2022_105617
crossref_primary_10_3390_math12233872
crossref_primary_10_1109_ACCESS_2022_3161506
crossref_primary_10_1142_S2737599424500130
crossref_primary_10_1186_s12920_022_01231_x
crossref_primary_10_1016_j_energy_2023_128669
crossref_primary_10_1109_ACCESS_2021_3100483
crossref_primary_10_1002_for_2985
crossref_primary_10_3390_economies12110310
crossref_primary_10_3390_s22166121
crossref_primary_10_1038_s41598_024_68040_3
crossref_primary_10_1109_ACCESS_2021_3076410
crossref_primary_10_1007_s10479_024_05821_z
crossref_primary_10_1016_j_jobe_2023_107932
crossref_primary_10_1108_JM2_09_2023_0207
crossref_primary_10_3390_electronics13152901
crossref_primary_10_1061__ASCE_IR_1943_4774_0001610
crossref_primary_10_3390_rs14041038
crossref_primary_10_1016_j_asoc_2020_106906
crossref_primary_10_3389_fphys_2025_1542240
crossref_primary_10_3390_electronics11132094
crossref_primary_10_1002_for_3174
crossref_primary_10_1007_s10812_023_01491_0
crossref_primary_10_3390_f15050887
crossref_primary_10_3390_rs13132555
crossref_primary_10_1016_j_csite_2023_103419
crossref_primary_10_1007_s11269_023_03613_x
crossref_primary_10_1016_j_engappai_2025_110295
crossref_primary_10_1016_j_arabjc_2023_104785
crossref_primary_10_1016_j_cscm_2022_e01805
crossref_primary_10_1007_s42461_023_00747_9
crossref_primary_10_1016_j_chaos_2020_110512
crossref_primary_10_3390_ma15124108
crossref_primary_10_1108_FS_01_2023_0016
crossref_primary_10_1016_j_energy_2020_119174
crossref_primary_10_1007_s11600_023_01169_3
crossref_primary_10_1007_s41939_024_00378_7
crossref_primary_10_1080_00207543_2020_1837407
crossref_primary_10_3390_land12020494
crossref_primary_10_1002_isaf_1519
crossref_primary_10_1002_for_3224
crossref_primary_10_1093_nargab_lqad012
crossref_primary_10_1093_tse_tdad014
crossref_primary_10_1016_j_compind_2020_103387
crossref_primary_10_1109_TKDE_2024_3397878
crossref_primary_10_3390_sym12101620
crossref_primary_10_1016_j_jhydrol_2024_131658
crossref_primary_10_1016_j_tourman_2021_104436
crossref_primary_10_1007_s10614_023_10421_3
crossref_primary_10_1016_j_solmat_2023_112488
crossref_primary_10_1016_j_est_2025_115715
crossref_primary_10_1109_ACCESS_2022_3207287
crossref_primary_10_1016_j_asej_2024_102905
crossref_primary_10_3390_app15063129
crossref_primary_10_4103_jpgm_jpgm_357_24
crossref_primary_10_3390_buildings13112783
crossref_primary_10_1016_j_ijforecast_2022_11_005
crossref_primary_10_1007_s12145_024_01633_8
crossref_primary_10_3390_pr11051339
crossref_primary_10_3390_s22218323
crossref_primary_10_1111_tgis_13141
crossref_primary_10_3389_fpls_2025_1511097
crossref_primary_10_3389_fpls_2022_982562
crossref_primary_10_1016_j_engappai_2023_106654
crossref_primary_10_1142_S1469026823500244
crossref_primary_10_1016_j_molliq_2023_122251
crossref_primary_10_1155_2022_9928836
crossref_primary_10_1080_00207543_2021_2013563
crossref_primary_10_48077_scihor11_2023_166
crossref_primary_10_1016_j_biortech_2022_127587
crossref_primary_10_1016_j_cie_2022_107956
crossref_primary_10_1016_j_molliq_2023_122010
crossref_primary_10_3390_bdcc8090112
crossref_primary_10_3390_en13195190
crossref_primary_10_1016_j_techfore_2021_121371
crossref_primary_10_1088_1742_6596_2373_5_052006
crossref_primary_10_7717_peerj_cs_514
crossref_primary_10_1016_j_buildenv_2024_112424
crossref_primary_10_1016_j_eswa_2023_122778
crossref_primary_10_32604_iasc_2021_014811
crossref_primary_10_1007_s11356_023_27109_8
crossref_primary_10_1080_10255842_2023_2263125
crossref_primary_10_3390_ma14040794
crossref_primary_10_24017_science_2023_1_7
crossref_primary_10_1007_s11042_023_14858_4
crossref_primary_10_1016_j_heliyon_2020_e05618
crossref_primary_10_1016_j_scitotenv_2021_145292
crossref_primary_10_1016_j_susmat_2022_e00429
crossref_primary_10_1016_j_meatsci_2022_108764
crossref_primary_10_3390_s20185386
crossref_primary_10_1007_s11356_023_30774_4
crossref_primary_10_1016_j_inffus_2021_03_004
crossref_primary_10_1155_2024_6087208
crossref_primary_10_1186_s40537_023_00854_w
crossref_primary_10_1002_for_3122
crossref_primary_10_1016_j_rineng_2024_101837
crossref_primary_10_1016_j_mtcomm_2023_107428
crossref_primary_10_3390_diagnostics14212385
crossref_primary_10_1177_03611981241278354
crossref_primary_10_1016_j_engappai_2023_106870
crossref_primary_10_1016_j_arabjc_2022_104337
crossref_primary_10_1007_s12145_024_01583_1
crossref_primary_10_1016_j_cscm_2021_e00840
crossref_primary_10_1016_j_oceaneng_2023_113659
crossref_primary_10_1016_j_jenvman_2024_123845
crossref_primary_10_1109_ACCESS_2022_3213081
crossref_primary_10_1515_rams_2025_0097
crossref_primary_10_1186_s12879_024_09138_x
crossref_primary_10_1080_02664763_2022_2068514
crossref_primary_10_1007_s13563_022_00357_9
crossref_primary_10_1016_j_engappai_2024_108434
crossref_primary_10_1063_5_0223030
crossref_primary_10_3390_app12178654
crossref_primary_10_1016_j_knosys_2021_107393
crossref_primary_10_1016_j_mtcomm_2024_108804
crossref_primary_10_1109_ACCESS_2024_3356073
crossref_primary_10_1016_j_ress_2023_109479
crossref_primary_10_1186_s40537_023_00842_0
crossref_primary_10_1007_s00521_023_08730_7
crossref_primary_10_1007_s10586_024_04684_0
crossref_primary_10_1016_j_jfoodeng_2025_112492
crossref_primary_10_3390_en17092113
crossref_primary_10_1007_s43674_022_00045_9
crossref_primary_10_1016_j_jbi_2021_103803
crossref_primary_10_1080_03019233_2023_2218243
crossref_primary_10_3390_rs13163222
crossref_primary_10_3390_su142315522
crossref_primary_10_1515_rams_2025_0092
crossref_primary_10_3390_rs14153654
crossref_primary_10_17221_128_2021_AGRICECON
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120097
crossref_primary_10_1108_ECON_05_2022_0026
crossref_primary_10_3390_a13100255
crossref_primary_10_1016_j_engappai_2020_103573
crossref_primary_10_3390_forecast4030040
crossref_primary_10_1016_j_energy_2025_134738
crossref_primary_10_1016_j_jmrt_2023_12_175
crossref_primary_10_1016_j_jenvman_2022_117194
crossref_primary_10_1016_j_eti_2023_103018
crossref_primary_10_1016_j_compbiomed_2020_103845
crossref_primary_10_54021_seesv5n2_508
crossref_primary_10_1016_j_jmrt_2023_04_223
crossref_primary_10_1088_1361_6501_ad56b0
crossref_primary_10_1016_j_eswa_2023_120148
crossref_primary_10_1016_j_asoc_2023_110997
crossref_primary_10_3390_s23167049
crossref_primary_10_1007_s00521_022_07119_2
crossref_primary_10_1002_asmb_2717
crossref_primary_10_1016_j_jobe_2023_106589
crossref_primary_10_3390_jcm11195772
crossref_primary_10_3389_fpls_2025_1539068
crossref_primary_10_3390_app14219806
crossref_primary_10_1108_AJEB_01_2024_0007
crossref_primary_10_3390_a13100246
crossref_primary_10_1007_s00366_020_01260_z
crossref_primary_10_3390_pr10040725
crossref_primary_10_1016_j_meatsci_2021_108455
crossref_primary_10_1155_2022_3198636
crossref_primary_10_1016_j_neucom_2020_10_003
crossref_primary_10_1016_j_atmosres_2022_106159
crossref_primary_10_1016_j_oceaneng_2025_120331
crossref_primary_10_1016_j_ress_2022_108587
crossref_primary_10_1016_j_eswa_2023_122459
crossref_primary_10_1007_s00521_024_09531_2
crossref_primary_10_1016_j_irfa_2022_102174
crossref_primary_10_1080_02564602_2022_2136270
crossref_primary_10_1016_j_gfj_2023_100825
crossref_primary_10_1007_s10586_024_04876_8
crossref_primary_10_1016_j_chemosphere_2024_142697
crossref_primary_10_7769_gesec_v13i4_1483
crossref_primary_10_1016_j_scitotenv_2022_154284
crossref_primary_10_1016_j_jag_2024_104158
crossref_primary_10_1016_j_engappai_2020_103910
crossref_primary_10_1080_15332667_2021_1889743
crossref_primary_10_1109_TFUZZ_2023_3276263
crossref_primary_10_1016_j_trgeo_2022_100827
crossref_primary_10_1038_s41598_024_52181_6
crossref_primary_10_1007_s12145_024_01345_z
crossref_primary_10_1155_2020_8887364
crossref_primary_10_3390_ma15124194
crossref_primary_10_1016_j_mtcomm_2023_107066
crossref_primary_10_1016_j_cscm_2022_e01774
crossref_primary_10_3233_JIFS_201279
crossref_primary_10_1007_s10922_023_09727_2
crossref_primary_10_1080_15623599_2025_2467065
crossref_primary_10_1002_cpe_7035
crossref_primary_10_3390_app112110380
crossref_primary_10_3390_app131911112
crossref_primary_10_1007_s11042_024_19635_5
crossref_primary_10_7769_gesec_v13i3_1380
crossref_primary_10_3390_data9010013
crossref_primary_10_1007_s42835_023_01378_2
crossref_primary_10_1177_03019233241312772
crossref_primary_10_1016_j_meatsci_2024_109623
crossref_primary_10_1007_s00521_024_10270_7
crossref_primary_10_1007_s42243_021_00611_4
crossref_primary_10_1016_j_cscm_2023_e02357
crossref_primary_10_1080_23080477_2024_2387929
Cites_doi 10.1016/j.eswa.2018.01.012
10.1016/j.asoc.2018.03.042
10.1016/j.iref.2017.01.030
10.1016/j.enbuild.2017.11.039
10.1016/j.eneco.2016.05.014
10.1111/1477-9552.12172
10.1016/j.csda.2017.11.003
10.1016/j.asoc.2016.09.010
10.1007/BF00058655
10.1016/j.asoc.2018.03.052
10.1016/j.asoc.2017.02.013
10.1007/BF00153759
10.1016/j.resourpol.2016.01.003
10.1016/j.resourpol.2018.03.004
10.1007/978-3-319-71246-8_29
10.1016/j.energy.2018.04.133
10.1007/BF00116037
10.1016/0169-2070(89)90008-3
10.1145/2939672.2939785
10.1016/j.asoc.2016.08.026
10.1002/9780470404324
10.1016/j.eswa.2011.09.108
10.1016/j.trc.2015.02.019
10.1093/biomet/68.2.551
10.1023/A:1010933404324
10.1145/2379776.2379786
10.1016/j.ejor.2016.10.031
10.1016/j.enconman.2018.02.087
10.1016/j.engappai.2015.04.016
10.1016/j.asoc.2017.05.031
10.24023/FutureJournal/2175-5825/2018.v10i1.334
10.1016/j.asoc.2018.07.024
10.1016/j.eswa.2017.08.011
10.1016/j.asoc.2018.06.005
10.1016/j.eneco.2017.05.023
10.1016/j.ecolecon.2018.04.015
10.1016/j.jimonfin.2014.11.021
10.1016/j.rser.2015.04.081
10.3390/a10030108
10.1016/j.compag.2018.07.016
10.1016/j.inteco.2017.12.003
10.1007/s00181-017-1311-9
10.1016/j.apenergy.2018.02.118
10.1016/j.asoc.2015.08.015
10.1016/j.asoc.2016.07.024
10.1016/j.asoc.2014.10.022
10.1007/3-540-45014-9_1
10.1016/j.eswa.2018.06.016
10.1016/j.asoc.2016.03.009
10.1007/978-3-319-13572-4_24
10.1016/j.jece.2017.06.053
10.1016/S0893-6080(05)80023-1
10.21527/2237-6453.2016.34.301-319
10.3390/en11040949
10.1007/978-3-319-48317-7_13
10.1111/j.2517-6161.1964.tb00553.x
10.1016/j.asoc.2018.03.006
10.1016/j.elerap.2018.08.002
10.1590/S0103-63512012000100005
10.1016/j.solener.2017.04.066
10.1016/j.compag.2018.03.023
10.1016/j.asoc.2014.10.017
10.1080/13504851.2014.925040
10.1016/j.asoc.2015.07.020
10.1214/aos/1013203451
10.1016/j.asoc.2017.12.032
10.1016/j.renene.2018.02.006
10.1016/j.neucom.2017.05.104
10.1590/0103-6351/1985
10.1016/j.asoc.2016.09.023
10.1080/0952813X.2016.1198936
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105837
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105837
S1568494619306180
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-ac948106b6136a87eb41ab0929736fe469a081bce401e48f941d1be3265db9883
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:04 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Fri Feb 23 02:49:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Boosting
Agricultural commodity
Stacking
Ensemble regression
Bagging
Time series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-ac948106b6136a87eb41ab0929736fe469a081bce401e48f941d1be3265db9883
ORCID 0000-0001-7387-9077
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2019_105837
crossref_primary_10_1016_j_asoc_2019_105837
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ren, Suganthan, Srikanth (b6) 2015; 50
Ma, Sha, Wang, Yu, Yang, Niu (b63) 2018; 31
Bonato, Demirer, Gupta, Pierdzioch (b29) 2018; 57
Kuhn (b92) 2008; 28
Rezende, de Oliveira Neto, Silva (b44) 2018; 10
Hamze-Ziabari, Bakhshpoori (b50) 2018; 68
Kedem, Slud (b90) 1981; 68
Soares, Costa, Costa, Leite (b8) 2018; 64
David E. Rumelhart (b77) 1987
Serbes, Sakar, Gulcur, Aydin (b69) 2015; 37
Messikh, Bousba, Bougdah (b79) 2017; 5
Chen, Liang, Hong, Gu (b81) 2015; 26
Pierdzioch, Risse (b26) 2018
Cerqueira, Torgo, Pinto, Soares (b73) 2017
Torres-Barrán, Álvaro Alonso, Dorronsoro (b10) 2019; 326–327
Cerqueira, Torgo, Smailović, Mozetič (b32) 2017
Mabu, Obayashi, Kuremoto (b78) 2015; 36
Minga, Alves, Parré (b39) 2016; 37
Zhang, Haghani (b94) 2015; 58
Erdal, İlhami Karahanoğlu (b49) 2016; 49
Pernía-Espinoza, Fernandez-Ceniceros, Antonanzas, Urraca, de Pison (b71) 2018; 70
Aha, Kibler, Albert (b76) 1991; 6
Breiman (b51) 2001; 45
Cerqueira, Torgo, Oliveira, Pfahringer (b72) 2017
Ding, Cao, Naess (b60) 2018; 110
Haykin (b4) 1999
Petropoulos, Chatzis, Siakoulis, Vlachogiannakis (b70) 2017; 90
Divina, Gilson, Goméz-Vela, García Torres, Torres (b7) 2018; 11
Paris (b36) 2018; 155
Pierdzioch, Risse, Rohloff (b18) 2015; 22
Weng, Lu, Wang, Megahed, Martinez (b86) 2018; 112
Xiong, Chongguang, Yukun (b25) 2017; 63
Moraes, Bender Filho, Vieira, Ceretta (b43) 2016; 14
Allende, Valle (b47) 2017
Wolpert (b66) 1992; 5
Kuhn, Johnson (b82) 2013
Thakur, Kumar (b52) 2018; 67
Chen, Guestrin (b61) 2016
Persson, Bacher, Shiga, Madsen (b57) 2017; 150
Drucker, Burges, Kaufman, Smola, Vapnik (b80) 1997
Qureshi, Khan, Zameer, Usman (b75) 2017; 58
Fan, Wang, Wu, Zhou, Zhang, Yu, Lu, Xiang (b93) 2018; 164
Fabozzi (b15) 2008
Ipardes (b2) 2018
Yu, Xu, Tang (b21) 2017; 56
Wang, Yue, Wei, Lv (b23) 2017; 10
Dietterich (b5) 2000
Zhang, Li, Pan (b11) 2016; 49
Trostle (b33) 2008
Gabralla, Mahersia, Abraham (b17) 2015
Bini, Canever, Denardim (b34) 2015; 25
Morettin, Toloi (b97) 2006
Chen, He, Benesty, Khotilovich, Tang (b62) 2017
Villanueva (b46) 2006
Bergmeir, Hyndman, Koo (b88) 2018; 120
He, Lai, Yen (b16) 2012; 39
Tang, Wu, Yu (b27) 2018; 70
R Core Team (b91) 2018
Van der Laan, Polley, Hubbard (b67) 2007; 6
Touzani, Granderson, Fernandes (b58) 2018; 158
Schapire (b55) 1990; 5
Brasil (b3) 2018
Flores (b89) 1989; 5
Wang, Duan, Qu, Wang (b28) 2018; 54
Caldarelli, Bacchi (b37) 2012; 22
Breiman (b48) 1996; 24
Yu, Dai, Tang (b20) 2016; 47
Yang, Tian, Chen, Li (b24) 2017; 49
Baffes, Haniotis (b41) 2016; 67
Pereira, Silva, Maia (b42) 2017; 48
Zhao, Li, Yu (b22) 2017; 66
Fernandez-Perez, Frijns, Tourani-Rad (b35) 2016; 58
Athanasopoulos, Hyndman (b87) 2018
Box, Cox (b83) 1964; 26
Mendes-Moreira, Soares, Jorge, Sousa (b9) 2012; 45
Peimankar, Weddell, Jalal, Lapthorn (b14) 2018; 68
Ding (b30) 2018; 154
James, Witten, Hastie, Tibshirani (b65) 2017
Carmona, Climent, Momparler (b64) 2018
Bodart, Candelon, Carpantier (b40) 2015; 51
Friedman (b56) 2001; 29
He, Zhang, Zhang (b54) 2018; 98
Assouline, Mohajeri, Scartezzini (b53) 2018; 217
Anifowose, Khoukhi, Abdulraheem (b31) 2017; 29
McTaggart, Daroczi, Leung (b45) 2016
Pierdzioch, Risse, Rohloff (b19) 2016; 47
Shine, Murphy, Upton, Scully (b85) 2018; 150
Ridgeway (b59) 2017
Khanal, Fulton, Klopfenstein, Douridas, Shearer (b95) 2018; 153
Shamaei, Kaedi (b68) 2016; 45
Krauss, Do, Huck (b12) 2017; 259
Anifowose, Labadin, Abdulraheem (b74) 2015; 26
Wang, Hou, Wang, Shen (b84) 2016; 49
Cepea (b1) 2018
Weng, Martinez, Tsai, Li, Lu, Barth, Megahed (b13) 2018; 71
Pedro, Coimbra, David, Lauret (b96) 2018; 123
Thompson, Lu, Gerlt, Yang, Campbell, Kueppers, Snyder (b98) 2018; 152
Alves, Cardoso, Felipe, Campion (b38) 2015; 4
Thompson (10.1016/j.asoc.2019.105837_b98) 2018; 152
Mabu (10.1016/j.asoc.2019.105837_b78) 2015; 36
Bodart (10.1016/j.asoc.2019.105837_b40) 2015; 51
Brasil (10.1016/j.asoc.2019.105837_b3) 2018
Carmona (10.1016/j.asoc.2019.105837_b64) 2018
Athanasopoulos (10.1016/j.asoc.2019.105837_b87) 2018
Zhang (10.1016/j.asoc.2019.105837_b11) 2016; 49
Haykin (10.1016/j.asoc.2019.105837_b4) 1999
Pedro (10.1016/j.asoc.2019.105837_b96) 2018; 123
Cerqueira (10.1016/j.asoc.2019.105837_b73) 2017
Tang (10.1016/j.asoc.2019.105837_b27) 2018; 70
Kuhn (10.1016/j.asoc.2019.105837_b92) 2008; 28
Wang (10.1016/j.asoc.2019.105837_b23) 2017; 10
Torres-Barrán (10.1016/j.asoc.2019.105837_b10) 2019; 326–327
Shine (10.1016/j.asoc.2019.105837_b85) 2018; 150
Ding (10.1016/j.asoc.2019.105837_b30) 2018; 154
Soares (10.1016/j.asoc.2019.105837_b8) 2018; 64
Baffes (10.1016/j.asoc.2019.105837_b41) 2016; 67
Flores (10.1016/j.asoc.2019.105837_b89) 1989; 5
Fan (10.1016/j.asoc.2019.105837_b93) 2018; 164
Chen (10.1016/j.asoc.2019.105837_b61) 2016
Breiman (10.1016/j.asoc.2019.105837_b51) 2001; 45
Serbes (10.1016/j.asoc.2019.105837_b69) 2015; 37
Ipardes (10.1016/j.asoc.2019.105837_b2) 2018
Peimankar (10.1016/j.asoc.2019.105837_b14) 2018; 68
Pierdzioch (10.1016/j.asoc.2019.105837_b18) 2015; 22
Wang (10.1016/j.asoc.2019.105837_b28) 2018; 54
Minga (10.1016/j.asoc.2019.105837_b39) 2016; 37
Kuhn (10.1016/j.asoc.2019.105837_b82) 2013
Erdal (10.1016/j.asoc.2019.105837_b49) 2016; 49
Drucker (10.1016/j.asoc.2019.105837_b80) 1997
Morettin (10.1016/j.asoc.2019.105837_b97) 2006
Yang (10.1016/j.asoc.2019.105837_b24) 2017; 49
Ridgeway (10.1016/j.asoc.2019.105837_b59) 2017
Wolpert (10.1016/j.asoc.2019.105837_b66) 1992; 5
Anifowose (10.1016/j.asoc.2019.105837_b31) 2017; 29
Anifowose (10.1016/j.asoc.2019.105837_b74) 2015; 26
David E. Rumelhart (10.1016/j.asoc.2019.105837_b77) 1987
Alves (10.1016/j.asoc.2019.105837_b38) 2015; 4
Cerqueira (10.1016/j.asoc.2019.105837_b32) 2017
Cerqueira (10.1016/j.asoc.2019.105837_b72) 2017
Hamze-Ziabari (10.1016/j.asoc.2019.105837_b50) 2018; 68
Thakur (10.1016/j.asoc.2019.105837_b52) 2018; 67
Shamaei (10.1016/j.asoc.2019.105837_b68) 2016; 45
James (10.1016/j.asoc.2019.105837_b65) 2017
Allende (10.1016/j.asoc.2019.105837_b47) 2017
Divina (10.1016/j.asoc.2019.105837_b7) 2018; 11
Krauss (10.1016/j.asoc.2019.105837_b12) 2017; 259
Yu (10.1016/j.asoc.2019.105837_b20) 2016; 47
Bergmeir (10.1016/j.asoc.2019.105837_b88) 2018; 120
Fernandez-Perez (10.1016/j.asoc.2019.105837_b35) 2016; 58
Fabozzi (10.1016/j.asoc.2019.105837_b15) 2008
Kedem (10.1016/j.asoc.2019.105837_b90) 1981; 68
Pereira (10.1016/j.asoc.2019.105837_b42) 2017; 48
Gabralla (10.1016/j.asoc.2019.105837_b17) 2015
Zhao (10.1016/j.asoc.2019.105837_b22) 2017; 66
Mendes-Moreira (10.1016/j.asoc.2019.105837_b9) 2012; 45
Ding (10.1016/j.asoc.2019.105837_b60) 2018; 110
Chen (10.1016/j.asoc.2019.105837_b62) 2017
Aha (10.1016/j.asoc.2019.105837_b76) 1991; 6
Bini (10.1016/j.asoc.2019.105837_b34) 2015; 25
Villanueva (10.1016/j.asoc.2019.105837_b46) 2006
Trostle (10.1016/j.asoc.2019.105837_b33) 2008
Moraes (10.1016/j.asoc.2019.105837_b43) 2016; 14
Wang (10.1016/j.asoc.2019.105837_b84) 2016; 49
Pierdzioch (10.1016/j.asoc.2019.105837_b26) 2018
Pierdzioch (10.1016/j.asoc.2019.105837_b19) 2016; 47
Caldarelli (10.1016/j.asoc.2019.105837_b37) 2012; 22
Touzani (10.1016/j.asoc.2019.105837_b58) 2018; 158
Weng (10.1016/j.asoc.2019.105837_b86) 2018; 112
Persson (10.1016/j.asoc.2019.105837_b57) 2017; 150
Assouline (10.1016/j.asoc.2019.105837_b53) 2018; 217
Friedman (10.1016/j.asoc.2019.105837_b56) 2001; 29
Rezende (10.1016/j.asoc.2019.105837_b44) 2018; 10
Cepea (10.1016/j.asoc.2019.105837_b1) 2018
Ma (10.1016/j.asoc.2019.105837_b63) 2018; 31
Box (10.1016/j.asoc.2019.105837_b83) 1964; 26
Weng (10.1016/j.asoc.2019.105837_b13) 2018; 71
Pernía-Espinoza (10.1016/j.asoc.2019.105837_b71) 2018; 70
Zhang (10.1016/j.asoc.2019.105837_b94) 2015; 58
Xiong (10.1016/j.asoc.2019.105837_b25) 2017; 63
Petropoulos (10.1016/j.asoc.2019.105837_b70) 2017; 90
Dietterich (10.1016/j.asoc.2019.105837_b5) 2000
Ren (10.1016/j.asoc.2019.105837_b6) 2015; 50
McTaggart (10.1016/j.asoc.2019.105837_b45) 2016
Bonato (10.1016/j.asoc.2019.105837_b29) 2018; 57
Paris (10.1016/j.asoc.2019.105837_b36) 2018; 155
He (10.1016/j.asoc.2019.105837_b16) 2012; 39
Schapire (10.1016/j.asoc.2019.105837_b55) 1990; 5
Van der Laan (10.1016/j.asoc.2019.105837_b67) 2007; 6
Chen (10.1016/j.asoc.2019.105837_b81) 2015; 26
Messikh (10.1016/j.asoc.2019.105837_b79) 2017; 5
Khanal (10.1016/j.asoc.2019.105837_b95) 2018; 153
He (10.1016/j.asoc.2019.105837_b54) 2018; 98
Yu (10.1016/j.asoc.2019.105837_b21) 2017; 56
R Core Team (10.1016/j.asoc.2019.105837_b91) 2018
Breiman (10.1016/j.asoc.2019.105837_b48) 1996; 24
Qureshi (10.1016/j.asoc.2019.105837_b75) 2017; 58
References_xml – volume: 47
  start-page: 110
  year: 2016
  end-page: 121
  ident: b20
  article-title: A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting
  publication-title: Eng. Appl. Artif. Intell.
– volume: 68
  start-page: 551
  year: 1981
  end-page: 556
  ident: b90
  article-title: On goodness of fit of time series models: An application of higher order crossings
  publication-title: Biometrika
– start-page: 242
  year: 2017
  end-page: 251
  ident: b72
  article-title: Dynamic and heterogeneous ensembles for time series forecasting
  publication-title: 2017 IEEE International Conference on Data Science and Advanced Analytics, DSAA
– volume: 155
  start-page: 48
  year: 2018
  end-page: 60
  ident: b36
  article-title: On the link between oil and agricultural commodity prices: Do biofuels matter?
  publication-title: Int. Econ.
– volume: 10
  start-page: 132
  year: 2018
  end-page: 159
  ident: b44
  article-title: Volatilidade e transmissão dos preços internacionais do trigo para os preços domésticos do trigo e derivados no Brasil
  publication-title: Future Stud. Res. J.: Trends Strateg.
– volume: 153
  start-page: 213
  year: 2018
  end-page: 225
  ident: b95
  article-title: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield
  publication-title: Comput. Electron. Agric.
– volume: 51
  start-page: 264
  year: 2015
  end-page: 284
  ident: b40
  article-title: Real exchanges rates, commodity prices and structural factors in developing countries
  publication-title: J. Int. Money Finance
– year: 2008
  ident: b33
  article-title: Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices
– volume: 31
  start-page: 24
  year: 2018
  end-page: 39
  ident: b63
  article-title: Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning
  publication-title: Electron. Commer. Res. Appl.
– volume: 29
  start-page: 517
  year: 2017
  end-page: 535
  ident: b31
  article-title: Investigating the effect of training–testing data stratification on the performance of soft computing techniques: an experimental study
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 152
  start-page: 98
  year: 2018
  end-page: 105
  ident: b98
  article-title: Automatic responses of crop stocks and policies buffer climate change effects on crop markets and price volatility
  publication-title: Ecol. Econom.
– volume: 54
  start-page: 1549
  year: 2018
  end-page: 1572
  ident: b28
  article-title: What matters for global food price volatility?
  publication-title: Empir. Econom.
– volume: 58
  start-page: 742
  year: 2017
  end-page: 755
  ident: b75
  article-title: Wind power prediction using deep neural network based meta regression and transfer learning
  publication-title: Appl. Soft Comput.
– volume: 158
  start-page: 1533
  year: 2018
  end-page: 1543
  ident: b58
  article-title: Gradient boosting machine for modeling the energy consumption of commercial buildings
  publication-title: Energy Build.
– volume: 49
  start-page: 861
  year: 2016
  end-page: 867
  ident: b49
  article-title: Bagging ensemble models for bank profitability: An emprical research on Turkish development and investment banks
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2018
  end-page: 18
  ident: b26
  article-title: Forecasting precious metal returns with multivariate random forests
  publication-title: Empir. Econom.
– year: 2018
  ident: b91
  article-title: R: A Language and Environment for Statistical Computing
– volume: 26
  start-page: 483
  year: 2015
  end-page: 496
  ident: b74
  article-title: Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 197
  year: 1990
  end-page: 227
  ident: b55
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
– volume: 217
  start-page: 189
  year: 2018
  end-page: 211
  ident: b53
  article-title: Large-scale rooftop solar photovoltaic technical potential estimation using random forests
  publication-title: Appl. Energy
– volume: 50
  start-page: 82
  year: 2015
  end-page: 91
  ident: b6
  article-title: Ensemble methods for wind and solar power forecasting—A state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 26
  start-page: 435
  year: 2015
  end-page: 443
  ident: b81
  article-title: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm
  publication-title: Appl. Soft Comput.
– volume: 58
  start-page: 308
  year: 2015
  end-page: 324
  ident: b94
  article-title: A gradient boosting method to improve travel time prediction
  publication-title: Transp. Res. C
– volume: 11
  year: 2018
  ident: b7
  article-title: Stacking ensemble learning for short-term electricity consumption forecasting
  publication-title: Energies
– volume: 70
  start-page: 737
  year: 2018
  end-page: 750
  ident: b71
  article-title: Stacking ensemble with parsimonious base models to improve generalization capability in the characterization of steel bolted components
  publication-title: Appl. Soft Comput.
– volume: 49
  start-page: 164
  year: 2016
  end-page: 178
  ident: b84
  article-title: Improved v-support vector regression model based on variable selection and brain storm optimization for stock price forecasting
  publication-title: Appl. Soft Comput.
– volume: 6
  year: 2007
  ident: b67
  article-title: Super learner
  publication-title: Stat. Appl. Genet. Mol. Biol.
– start-page: 785
  year: 2016
  end-page: 794
  ident: b61
  article-title: XGBoost: A scalable tree boosting system
  publication-title: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16
– year: 2018
  ident: b2
  article-title: Instituto Paranaense de Desenvolvimento Econômico e Social. Economia do Paraná cresceu 2,5% - mais que o dobro do Brasil
– volume: 37
  start-page: 87
  year: 2015
  end-page: 94
  ident: b69
  article-title: An emboli detection system based on dual tree complex wavelet transform and ensemble learning
  publication-title: Appl. Soft Comput.
– volume: 66
  start-page: 9
  year: 2017
  end-page: 16
  ident: b22
  article-title: A deep learning ensemble approach for crude oil price forecasting
  publication-title: Energy Econ.
– year: 2016
  ident: b45
  article-title: Quandl: API wrapper for
– year: 2018
  ident: b1
  article-title: Centro de Estudos Avançados em Economia Aplicada. PIB do Agronegócio Brasileiro
– volume: 48
  start-page: 131
  year: 2017
  end-page: 144
  ident: b42
  article-title: Os efeitos da taxa de câmbio e dos preços do petróleo nos preços internacionais das commodities brasileiras
  publication-title: Rev. Econ. Nordeste
– volume: 70
  start-page: 1097
  year: 2018
  end-page: 1108
  ident: b27
  article-title: A non-iterative decomposition-ensemble learning paradigm using RVFL network for crude oil price forecasting
  publication-title: Appl. Soft Comput.
– volume: 45
  start-page: 10:1
  year: 2012
  end-page: 10:40
  ident: b9
  article-title: Ensemble approaches for regression: A survey
  publication-title: ACM Comput. Surv.
– volume: 6
  start-page: 37
  year: 1991
  end-page: 66
  ident: b76
  article-title: Instance-based learning algorithms
  publication-title: Mach. Learn.
– volume: 63
  year: 2017
  ident: b25
  article-title: An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China
  publication-title: Agricult. Econ.
– start-page: 293
  year: 2015
  end-page: 302
  ident: b17
  article-title: Ensemble neurocomputing based oil price prediction
  publication-title: Afro-European Conference for Industrial Advancement
– volume: 71
  start-page: 685
  year: 2018
  end-page: 697
  ident: b13
  article-title: Macroeconomic indicators alone can predict the monthly closing price of major U.S. indices: Insights from artificial intelligence, time-series analysis and hybrid models
  publication-title: Appl. Soft Comput.
– volume: 110
  start-page: 107
  year: 2018
  end-page: 117
  ident: b60
  article-title: Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo
  publication-title: Transp. Res. A
– year: 2006
  ident: b46
  article-title: Comitê de máquinas em previsão em séries temporais
– volume: 112
  start-page: 258
  year: 2018
  end-page: 273
  ident: b86
  article-title: Predicting short-term stock prices using ensemble methods and online data sources
  publication-title: Expert Syst. Appl.
– volume: 45
  start-page: 187
  year: 2016
  end-page: 196
  ident: b68
  article-title: Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy predictions
  publication-title: Appl. Soft Comput.
– volume: 68
  start-page: 233
  year: 2018
  end-page: 248
  ident: b14
  article-title: Multi-objective ensemble forecasting with an application to power transformers
  publication-title: Appl. Soft Comput.
– volume: 26
  start-page: 211
  year: 1964
  end-page: 243
  ident: b83
  article-title: An analysis of transformations
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 67
  start-page: 706
  year: 2016
  end-page: 721
  ident: b41
  article-title: What explains agricultural price movements?
  publication-title: J. Agric. Econ.
– volume: 56
  start-page: 692
  year: 2017
  end-page: 701
  ident: b21
  article-title: LSSVR ensemble learning with uncertain parameters for crude oil price forecasting
  publication-title: Appl. Soft Comput.
– volume: 150
  start-page: 423
  year: 2017
  end-page: 436
  ident: b57
  article-title: Multi-site solar power forecasting using gradient boosted regression trees
  publication-title: Sol. Energy
– volume: 120
  start-page: 70
  year: 2018
  end-page: 83
  ident: b88
  article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction
  publication-title: Comput. Statist. Data Anal.
– volume: 68
  start-page: 147
  year: 2018
  end-page: 161
  ident: b50
  article-title: Improving the prediction of ground motion parameters based on an efficient bagging ensemble model of M5 and CART algorithms
  publication-title: Appl. Soft Comput.
– start-page: 155
  year: 1997
  end-page: 161
  ident: b80
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems 9
– volume: 164
  start-page: 102
  year: 2018
  end-page: 111
  ident: b93
  article-title: Comparison of support Vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China
  publication-title: Energy Convers. Manage.
– volume: 5
  start-page: 3483
  year: 2017
  end-page: 3489
  ident: b79
  article-title: The use of a multilayer perceptron (MLP) for modelling the phenol removal by emulsion liquid membrane
  publication-title: J. Environ. Chem. Eng.
– volume: 14
  start-page: 301
  year: 2016
  end-page: 319
  ident: b43
  article-title: Análise de causalidade de Preços no mercado internacional da soja: O caso do Brasil, Argentina e Estados Unidos
  publication-title: Desenvolv. Questão
– year: 2013
  ident: b82
  article-title: Applied Predictive Modeling
– start-page: 1
  year: 2000
  end-page: 15
  ident: b5
  article-title: Ensemble methods in machine learning
  publication-title: Multiple Classifier Systems
– year: 1999
  ident: b4
  article-title: Neural Networks: A Comprehensive Foundation
– volume: 58
  start-page: 1
  year: 2016
  end-page: 10
  ident: b35
  article-title: Contemporaneous interactions among fuel, biofuel and agricultural commodities
  publication-title: Energy Econ.
– volume: 67
  start-page: 337
  year: 2018
  end-page: 349
  ident: b52
  article-title: A hybrid financial trading support system using multi-category classifiers and random forest
  publication-title: Appl. Soft Comput.
– start-page: 217
  year: 2017
  end-page: 232
  ident: b47
  article-title: Ensemble methods for time series forecasting
  publication-title: Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing, vol. 349
– year: 2017
  ident: b59
  article-title: gbm: generalized boosted regression models
– volume: 47
  start-page: 95
  year: 2016
  end-page: 107
  ident: b19
  article-title: A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss
  publication-title: Resour. Policy
– volume: 10
  year: 2017
  ident: b23
  article-title: Performance analysis of four decomposition-ensemble models for one-day-ahead agricultural commodity futures price forecasting
  publication-title: Algorithms
– volume: 57
  start-page: 196
  year: 2018
  end-page: 212
  ident: b29
  article-title: Gold futures returns and realized moments: A forecasting experiment using a quantile-boosting approach
  publication-title: Resour. Policy
– volume: 22
  start-page: 141
  year: 2012
  end-page: 164
  ident: b37
  article-title: Fatores de influência no preço do milho no Brasil
  publication-title: Nova Econ.
– year: 1987
  ident: b77
  article-title: Parallel Distributed Processing, Vol. 1: Foundations, vol. 1
– start-page: 852
  year: 2008
  ident: b15
  article-title: Handbook of Finance, Financial Markets and Instruments, vol. 1
– volume: 154
  start-page: 328
  year: 2018
  end-page: 336
  ident: b30
  article-title: A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting
  publication-title: Energy
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b51
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: b66
  article-title: Stacked generalization
  publication-title: Neural Netw.
– volume: 90
  start-page: 290
  year: 2017
  end-page: 302
  ident: b70
  article-title: A stacked generalization system for automated forex portfolio trading
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b56
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
– year: 2018
  ident: b64
  article-title: Predicting failure in the U.S. banking sector: An extreme gradient boosting approach
  publication-title: Int. Rev. Econ. Finance
– year: 2017
  ident: b62
  article-title: Xgboost: Extreme gradient boosting
– start-page: 564
  year: 2006
  ident: b97
  article-title: Análise de séries temporais
– volume: 150
  start-page: 74
  year: 2018
  end-page: 87
  ident: b85
  article-title: Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms
  publication-title: Comput. Electron. Agric.
– volume: 39
  start-page: 4258
  year: 2012
  end-page: 4267
  ident: b16
  article-title: Ensemble forecasting of value at risk via multi resolution analysis based methodology in metals markets
  publication-title: Expert Syst. Appl.
– year: 2018
  ident: b3
  article-title: Ministério da Agricultura, Pecuária e Abastecimento. Projeções do agronegócio 2017/2018 a 2027/2028: Projeções de Longo Prazo
– year: 2018
  ident: b87
  article-title: Forecasting: Principles and Practice
– volume: 49
  start-page: 276
  year: 2017
  end-page: 291
  ident: b24
  article-title: Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches
  publication-title: Int. Rev. Econ. Finance
– start-page: 478
  year: 2017
  end-page: 494
  ident: b73
  article-title: Arbitrated ensemble for time series forecasting
  publication-title: Machine Learning and Knowledge Discovery in Databases
– volume: 49
  start-page: 385
  year: 2016
  end-page: 398
  ident: b11
  article-title: Stock trend prediction based on a new status box method and AdaBoost probabilistic support vector machine
  publication-title: Appl. Soft Comput.
– volume: 326–327
  start-page: 151
  year: 2019
  end-page: 160
  ident: b10
  article-title: Regression tree ensembles for wind energy and solar radiation prediction
  publication-title: Neurocomputing
– volume: 259
  start-page: 689
  year: 2017
  end-page: 702
  ident: b12
  article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500
  publication-title: European J. Oper. Res.
– start-page: 529
  year: 2017
  end-page: 538
  ident: b32
  article-title: A comparative study of performance estimation methods for time series forecasting
  publication-title: 2017 IEEE International Conference on Data Science and Advanced Analytics, DSAA
– volume: 25
  start-page: 143
  year: 2015
  end-page: 160
  ident: b34
  article-title: Correlação e causalidade entre os preços de commodities e energia
  publication-title: Nova Econ.
– volume: 37
  year: 2016
  ident: b39
  article-title: Especulação afeta o preço das commodities agrícolas?
  publication-title: Rev. Espac.
– volume: 36
  start-page: 357
  year: 2015
  end-page: 367
  ident: b78
  article-title: Ensemble learning of rule-based evolutionary algorithm using multi-layer perceptron for supporting decisions in stock trading problems
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b48
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 5
  start-page: 529
  year: 1989
  end-page: 535
  ident: b89
  article-title: The utilization of the wilcoxon test to compare forecasting methods: A note
  publication-title: Int. J. Forecast.
– volume: 123
  start-page: 191
  year: 2018
  end-page: 203
  ident: b96
  article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts
  publication-title: Renew. Energy
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  ident: b92
  article-title: Building predictive models in r using the caret package
  publication-title: J. Stat. Softw. Artic.
– volume: 98
  start-page: 105
  year: 2018
  end-page: 117
  ident: b54
  article-title: A novel ensemble method for credit scoring: Adaption of different imbalance ratios
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 46
  year: 2015
  end-page: 50
  ident: b18
  article-title: Forecasting gold-price fluctuations: a real-time boosting approach
  publication-title: Appl. Econ. Lett.
– volume: 64
  start-page: 445
  year: 2018
  end-page: 453
  ident: b8
  article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction
  publication-title: Appl. Soft Comput.
– start-page: 426
  year: 2017
  ident: b65
  article-title: An Introduction to Statistical Learning
– volume: 4
  year: 2015
  ident: b38
  article-title: Causalidade e transmissão entre preços de mandioca, trigo, milho e seus derivados no Paraná
  publication-title: Rev. Econ. Agronegócio
– volume: 98
  start-page: 105
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b54
  article-title: A novel ensemble method for credit scoring: Adaption of different imbalance ratios
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.01.012
– volume: 68
  start-page: 233
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b14
  article-title: Multi-objective ensemble forecasting with an application to power transformers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.042
– volume: 6
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2019.105837_b67
  article-title: Super learner
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 49
  start-page: 276
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b24
  article-title: Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches
  publication-title: Int. Rev. Econ. Finance
  doi: 10.1016/j.iref.2017.01.030
– year: 2017
  ident: 10.1016/j.asoc.2019.105837_b59
– volume: 63
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b25
  article-title: An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China
  publication-title: Agricult. Econ.
– volume: 158
  start-page: 1533
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b58
  article-title: Gradient boosting machine for modeling the energy consumption of commercial buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.039
– year: 2008
  ident: 10.1016/j.asoc.2019.105837_b33
– year: 2018
  ident: 10.1016/j.asoc.2019.105837_b87
– volume: 58
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b35
  article-title: Contemporaneous interactions among fuel, biofuel and agricultural commodities
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2016.05.014
– volume: 67
  start-page: 706
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b41
  article-title: What explains agricultural price movements?
  publication-title: J. Agric. Econ.
  doi: 10.1111/1477-9552.12172
– start-page: 155
  year: 1997
  ident: 10.1016/j.asoc.2019.105837_b80
  article-title: Support vector regression machines
– volume: 120
  start-page: 70
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b88
  article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2017.11.003
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b26
  article-title: Forecasting precious metal returns with multivariate random forests
  publication-title: Empir. Econom.
– volume: 49
  start-page: 861
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b49
  article-title: Bagging ensemble models for bank profitability: An emprical research on Turkish development and investment banks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.09.010
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.asoc.2019.105837_b48
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– year: 2018
  ident: 10.1016/j.asoc.2019.105837_b1
– volume: 68
  start-page: 147
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b50
  article-title: Improving the prediction of ground motion parameters based on an efficient bagging ensemble model of M5 and CART algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.052
– volume: 70
  start-page: 1097
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b27
  article-title: A non-iterative decomposition-ensemble learning paradigm using RVFL network for crude oil price forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.02.013
– volume: 6
  start-page: 37
  issue: 1
  year: 1991
  ident: 10.1016/j.asoc.2019.105837_b76
  article-title: Instance-based learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1007/BF00153759
– volume: 47
  start-page: 95
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b19
  article-title: A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2016.01.003
– year: 2018
  ident: 10.1016/j.asoc.2019.105837_b3
– volume: 57
  start-page: 196
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b29
  article-title: Gold futures returns and realized moments: A forecasting experiment using a quantile-boosting approach
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2018.03.004
– start-page: 478
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b73
  article-title: Arbitrated ensemble for time series forecasting
  doi: 10.1007/978-3-319-71246-8_29
– volume: 154
  start-page: 328
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b30
  article-title: A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.133
– volume: 5
  start-page: 197
  issue: 2
  year: 1990
  ident: 10.1016/j.asoc.2019.105837_b55
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116037
– volume: 5
  start-page: 529
  issue: 4
  year: 1989
  ident: 10.1016/j.asoc.2019.105837_b89
  article-title: The utilization of the wilcoxon test to compare forecasting methods: A note
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(89)90008-3
– start-page: 785
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b61
  article-title: XGBoost: A scalable tree boosting system
  doi: 10.1145/2939672.2939785
– volume: 4
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b38
  article-title: Causalidade e transmissão entre preços de mandioca, trigo, milho e seus derivados no Paraná
  publication-title: Rev. Econ. Agronegócio
– volume: 49
  start-page: 385
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b11
  article-title: Stock trend prediction based on a new status box method and AdaBoost probabilistic support vector machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.08.026
– year: 2018
  ident: 10.1016/j.asoc.2019.105837_b64
  article-title: Predicting failure in the U.S. banking sector: An extreme gradient boosting approach
  publication-title: Int. Rev. Econ. Finance
– start-page: 852
  year: 2008
  ident: 10.1016/j.asoc.2019.105837_b15
  doi: 10.1002/9780470404324
– volume: 39
  start-page: 4258
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2019.105837_b16
  article-title: Ensemble forecasting of value at risk via multi resolution analysis based methodology in metals markets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.108
– volume: 58
  start-page: 308
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b94
  article-title: A gradient boosting method to improve travel time prediction
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.02.019
– volume: 68
  start-page: 551
  issue: 2
  year: 1981
  ident: 10.1016/j.asoc.2019.105837_b90
  article-title: On goodness of fit of time series models: An application of higher order crossings
  publication-title: Biometrika
  doi: 10.1093/biomet/68.2.551
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2019.105837_b51
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 45
  start-page: 10:1
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2019.105837_b9
  article-title: Ensemble approaches for regression: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2379776.2379786
– volume: 259
  start-page: 689
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b12
  article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2016.10.031
– start-page: 242
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b72
  article-title: Dynamic and heterogeneous ensembles for time series forecasting
– volume: 164
  start-page: 102
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b93
  article-title: Comparison of support Vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.02.087
– volume: 37
  issue: 20
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b39
  article-title: Especulação afeta o preço das commodities agrícolas?
  publication-title: Rev. Espac.
– year: 2017
  ident: 10.1016/j.asoc.2019.105837_b62
– volume: 47
  start-page: 110
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b20
  article-title: A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.04.016
– volume: 58
  start-page: 742
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b75
  article-title: Wind power prediction using deep neural network based meta regression and transfer learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.031
– volume: 10
  start-page: 132
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b44
  article-title: Volatilidade e transmissão dos preços internacionais do trigo para os preços domésticos do trigo e derivados no Brasil
  publication-title: Future Stud. Res. J.: Trends Strateg.
  doi: 10.24023/FutureJournal/2175-5825/2018.v10i1.334
– volume: 71
  start-page: 685
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b13
  article-title: Macroeconomic indicators alone can predict the monthly closing price of major U.S. indices: Insights from artificial intelligence, time-series analysis and hybrid models
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.024
– volume: 90
  start-page: 290
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b70
  article-title: A stacked generalization system for automated forex portfolio trading
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.011
– year: 2016
  ident: 10.1016/j.asoc.2019.105837_b45
– year: 1987
  ident: 10.1016/j.asoc.2019.105837_b77
– volume: 70
  start-page: 737
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b71
  article-title: Stacking ensemble with parsimonious base models to improve generalization capability in the characterization of steel bolted components
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.06.005
– volume: 66
  start-page: 9
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b22
  article-title: A deep learning ensemble approach for crude oil price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2017.05.023
– year: 2013
  ident: 10.1016/j.asoc.2019.105837_b82
– volume: 152
  start-page: 98
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b98
  article-title: Automatic responses of crop stocks and policies buffer climate change effects on crop markets and price volatility
  publication-title: Ecol. Econom.
  doi: 10.1016/j.ecolecon.2018.04.015
– volume: 110
  start-page: 107
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b60
  article-title: Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo
  publication-title: Transp. Res. A
– start-page: 426
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b65
– volume: 51
  start-page: 264
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b40
  article-title: Real exchanges rates, commodity prices and structural factors in developing countries
  publication-title: J. Int. Money Finance
  doi: 10.1016/j.jimonfin.2014.11.021
– volume: 50
  start-page: 82
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b6
  article-title: Ensemble methods for wind and solar power forecasting—A state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.081
– volume: 10
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b23
  article-title: Performance analysis of four decomposition-ensemble models for one-day-ahead agricultural commodity futures price forecasting
  publication-title: Algorithms
  doi: 10.3390/a10030108
– volume: 153
  start-page: 213
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b95
  article-title: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.07.016
– volume: 155
  start-page: 48
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b36
  article-title: On the link between oil and agricultural commodity prices: Do biofuels matter?
  publication-title: Int. Econ.
  doi: 10.1016/j.inteco.2017.12.003
– volume: 54
  start-page: 1549
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b28
  article-title: What matters for global food price volatility?
  publication-title: Empir. Econom.
  doi: 10.1007/s00181-017-1311-9
– volume: 217
  start-page: 189
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b53
  article-title: Large-scale rooftop solar photovoltaic technical potential estimation using random forests
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.118
– volume: 37
  start-page: 87
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b69
  article-title: An emboli detection system based on dual tree complex wavelet transform and ensemble learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.015
– volume: 49
  start-page: 164
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b84
  article-title: Improved v-support vector regression model based on variable selection and brain storm optimization for stock price forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.07.024
– year: 1999
  ident: 10.1016/j.asoc.2019.105837_b4
– start-page: 529
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b32
  article-title: A comparative study of performance estimation methods for time series forecasting
– volume: 26
  start-page: 435
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b81
  article-title: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.10.022
– start-page: 1
  year: 2000
  ident: 10.1016/j.asoc.2019.105837_b5
  article-title: Ensemble methods in machine learning
  doi: 10.1007/3-540-45014-9_1
– volume: 112
  start-page: 258
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b86
  article-title: Predicting short-term stock prices using ensemble methods and online data sources
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.016
– volume: 45
  start-page: 187
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b68
  article-title: Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy predictions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.03.009
– start-page: 293
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b17
  article-title: Ensemble neurocomputing based oil price prediction
  doi: 10.1007/978-3-319-13572-4_24
– year: 2006
  ident: 10.1016/j.asoc.2019.105837_b46
– volume: 5
  start-page: 3483
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b79
  article-title: The use of a multilayer perceptron (MLP) for modelling the phenol removal by emulsion liquid membrane
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.06.053
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 10.1016/j.asoc.2019.105837_b66
  article-title: Stacked generalization
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 14
  start-page: 301
  issue: 34
  year: 2016
  ident: 10.1016/j.asoc.2019.105837_b43
  article-title: Análise de causalidade de Preços no mercado internacional da soja: O caso do Brasil, Argentina e Estados Unidos
  publication-title: Desenvolv. Questão
  doi: 10.21527/2237-6453.2016.34.301-319
– volume: 11
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b7
  article-title: Stacking ensemble learning for short-term electricity consumption forecasting
  publication-title: Energies
  doi: 10.3390/en11040949
– start-page: 217
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b47
  article-title: Ensemble methods for time series forecasting
  doi: 10.1007/978-3-319-48317-7_13
– volume: 26
  start-page: 211
  issue: 2
  year: 1964
  ident: 10.1016/j.asoc.2019.105837_b83
  article-title: An analysis of transformations
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– volume: 28
  start-page: 1
  issue: 5
  year: 2008
  ident: 10.1016/j.asoc.2019.105837_b92
  article-title: Building predictive models in r using the caret package
  publication-title: J. Stat. Softw. Artic.
– volume: 67
  start-page: 337
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b52
  article-title: A hybrid financial trading support system using multi-category classifiers and random forest
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.006
– volume: 31
  start-page: 24
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b63
  article-title: Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning
  publication-title: Electron. Commer. Res. Appl.
  doi: 10.1016/j.elerap.2018.08.002
– volume: 22
  start-page: 141
  year: 2012
  ident: 10.1016/j.asoc.2019.105837_b37
  article-title: Fatores de influência no preço do milho no Brasil
  publication-title: Nova Econ.
  doi: 10.1590/S0103-63512012000100005
– start-page: 564
  year: 2006
  ident: 10.1016/j.asoc.2019.105837_b97
  article-title: Análise de séries temporais
– volume: 150
  start-page: 423
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b57
  article-title: Multi-site solar power forecasting using gradient boosted regression trees
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.04.066
– volume: 150
  start-page: 74
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b85
  article-title: Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.023
– volume: 26
  start-page: 483
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b74
  article-title: Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.10.017
– volume: 22
  start-page: 46
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b18
  article-title: Forecasting gold-price fluctuations: a real-time boosting approach
  publication-title: Appl. Econ. Lett.
  doi: 10.1080/13504851.2014.925040
– volume: 36
  start-page: 357
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b78
  article-title: Ensemble learning of rule-based evolutionary algorithm using multi-layer perceptron for supporting decisions in stock trading problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.07.020
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.asoc.2019.105837_b56
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– volume: 64
  start-page: 445
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b8
  article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.032
– volume: 123
  start-page: 191
  year: 2018
  ident: 10.1016/j.asoc.2019.105837_b96
  article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.02.006
– volume: 326–327
  start-page: 151
  year: 2019
  ident: 10.1016/j.asoc.2019.105837_b10
  article-title: Regression tree ensembles for wind energy and solar radiation prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.104
– volume: 25
  start-page: 143
  year: 2015
  ident: 10.1016/j.asoc.2019.105837_b34
  article-title: Correlação e causalidade entre os preços de commodities e energia
  publication-title: Nova Econ.
  doi: 10.1590/0103-6351/1985
– volume: 48
  start-page: 131
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b42
  article-title: Os efeitos da taxa de câmbio e dos preços do petróleo nos preços internacionais das commodities brasileiras
  publication-title: Rev. Econ. Nordeste
– year: 2018
  ident: 10.1016/j.asoc.2019.105837_b2
– year: 2018
  ident: 10.1016/j.asoc.2019.105837_b91
– volume: 56
  start-page: 692
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b21
  article-title: LSSVR ensemble learning with uncertain parameters for crude oil price forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.09.023
– volume: 29
  start-page: 517
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2019.105837_b31
  article-title: Investigating the effect of training–testing data stratification on the performance of soft computing techniques: an experimental study
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2016.1198936
SSID ssj0016928
Score 2.6771169
Snippet The investigation of the accuracy of methods employed to forecast agricultural commodities prices is an important area of study. In this context, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105837
SubjectTerms Agricultural commodity
Bagging
Boosting
Ensemble regression
Stacking
Time series
Title Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series
URI https://dx.doi.org/10.1016/j.asoc.2019.105837
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvHjxbcQH2YM3XWnZbdkeCYHgixiVhFuzLxCDhVC8-tud6YNoYjh4atPuJs10OvN929n5CLk0ykgZOMsibi0TJlRM-9IxwaW2IdeBbOFG4cdB2B-Ku1EwqpBOuRcGyyqL2J_H9CxaF1cahTUbi-m08QLMQ4pIAAMA2OtL5O1CtNDLb77WZR5-GGX6qjiY4ehi40xe46XAAljeFaHcrUQt9L-S04-E09sjOwVSpO38YfZJxSUHZLdUYaDFR3lI5t0kdR965mjZH5xiarJ0nsAJLihPrilg6RQLnKlKLAVAaHCFnAJgpekbAHCGAZoulvjXBt8UnSZUTbCpSF4WT1GCnqK3uvSIDHvd106fFTIKzHDPWzFlsCOLF2rI3KEC22vhK-1FqFoVjh3wYwW4QBsHVMsJOY6Eb33tANcFVkdS8mNSTeaJOyG0pbgTAdwxHIgYkLWm81QIJMc4wF2W14hf2i82RY9xlLqYxWUx2XuMNo_R5nFu8xq5Ws9Z5B02No4OytcS__KTGFLAhnmn_5x3RrabyLCzRZdzUl0tP90FwJCVrmd-Vidb7c7zwxMeb-_7g2-FaN5D
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC0RckguLAlRWAJ1IKekM17aTfuQQ8SiYb0EJG6mN8gg8IzwIMSFn-IHUzVuo0SKOETiZlluq10uV73Xrq4HsO6M07oIXpS590I6ZYRNdRAy19ar3BZ6gzcKHx6p_oncOy1Op-Cx2wvDZZUx9rcxfRKt45letGZvNBj0fhLz0LKUxAAI9qY6iZWV--H-jnhb8313i17y5yzb2T7e7IsoLSBcniRjYRx3KUmUpWymDM3HytTYpGQlJ3UeiDMaypXWBaIfQerzUqY-tYGwTuFtqXVO930FryWFC5ZN-PbwVFeSqnIi6MqzEzy9uFOnLSozZHKuJytZX1ez-Pq_suEfGW5nDmYiNMUf7dPPw1So38FsJ_uAMQq8h-F23YRrexWwa0iOnAs9Dms64BXsi69I4L3himo0tUdCoI6X5JEQMja_CPELzgg4uuHfROwaOKjRXHAXk7YOH1nzHvnzCM0CnLyIcT_AdD2sw0fADZMHMnKmXE7Mj9hhFhKjiFW5QEDP54uQdvarXGxqztoaV1VXvXZZsc0rtnnV2nwRvjyNGbUtPZ69uuheS_WXY1aUc54Zt_Sf49bgTf_48KA62D3aX4a3GdP7yYrPCkyPb27DJ8JAY7s68TmEs5d28t_jkRb_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+approach+based+on+bagging%2C+boosting+and+stacking+for+short-term+prediction+in+agribusiness+time+series&rft.jtitle=Applied+soft+computing&rft.au=Ribeiro%2C+Matheus+Henrique+Dal+Molin&rft.au=dos+Santos+Coelho%2C+Leandro&rft.date=2020-01-01&rft.issn=1568-4946&rft.volume=86&rft.spage=105837&rft_id=info:doi/10.1016%2Fj.asoc.2019.105837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon