HD-NSA: A real-valued negative selection algorithm based on hierarchy division
The negative selection algorithm (NSA) is an important algorithm for generating immune detectors in artificial immune systems. However, the original NSA randomly generates candidate detectors that produce a large number of redundant detectors, and it is difficult to cover the entire antibody space....
Saved in:
Published in | Applied soft computing Vol. 112; p. 107726 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2021.107726 |
Cover
Abstract | The negative selection algorithm (NSA) is an important algorithm for generating immune detectors in artificial immune systems. However, the original NSA randomly generates candidate detectors that produce a large number of redundant detectors, and it is difficult to cover the entire antibody space. Moreover, the randomly generated candidate detectors have to be compared with all the self-sets; therefore, the inefficient generation of the detector seriously influences the application of NSA. To overcome these defects, a real-valued NSA based on hierarchy division (HD-NSA) is proposed. First, the feature space is divided into self and non-self subgrids, and the center point of the non-self subgrid is specified as the candidate detector, and the specified candidate detector is compared with the self-antigens located in adjacent subgrids rather than with all the self-sets. Theoretical analysis demonstrated that the HD-NSA can effectively reduce the time complexity of the NSA algorithm. Furthermore, experiments on the Abalone data set show that the detector training time of HD-NSA decreased by 97.9%, 71.2%, 56.9% and 90.1%, respectively, compared with the classical RNSA, V-Detector, GF-RNSA and BIORV-NSA, whereas the detector detection rate increased by 50%, 25.8%, 13.8% and 10.5%, respectively.
•We improved the negative selection algorithm by specifying candidate detector.•We proposed a termination condition to improve the hole repair rate of algorithm.•Comparing four NSA methods to validate the proposed approach. |
---|---|
AbstractList | The negative selection algorithm (NSA) is an important algorithm for generating immune detectors in artificial immune systems. However, the original NSA randomly generates candidate detectors that produce a large number of redundant detectors, and it is difficult to cover the entire antibody space. Moreover, the randomly generated candidate detectors have to be compared with all the self-sets; therefore, the inefficient generation of the detector seriously influences the application of NSA. To overcome these defects, a real-valued NSA based on hierarchy division (HD-NSA) is proposed. First, the feature space is divided into self and non-self subgrids, and the center point of the non-self subgrid is specified as the candidate detector, and the specified candidate detector is compared with the self-antigens located in adjacent subgrids rather than with all the self-sets. Theoretical analysis demonstrated that the HD-NSA can effectively reduce the time complexity of the NSA algorithm. Furthermore, experiments on the Abalone data set show that the detector training time of HD-NSA decreased by 97.9%, 71.2%, 56.9% and 90.1%, respectively, compared with the classical RNSA, V-Detector, GF-RNSA and BIORV-NSA, whereas the detector detection rate increased by 50%, 25.8%, 13.8% and 10.5%, respectively.
•We improved the negative selection algorithm by specifying candidate detector.•We proposed a termination condition to improve the hole repair rate of algorithm.•Comparing four NSA methods to validate the proposed approach. |
ArticleNumber | 107726 |
Author | Huang, Meng He, Junjiang Li, Tao Li, Beibei Zhu, Yongbin Chen, Wen |
Author_xml | – sequence: 1 givenname: Junjiang surname: He fullname: He, Junjiang – sequence: 2 givenname: Wen surname: Chen fullname: Chen, Wen email: wenchen@scu.edu.cn – sequence: 3 givenname: Tao surname: Li fullname: Li, Tao – sequence: 4 givenname: Beibei surname: Li fullname: Li, Beibei – sequence: 5 givenname: Yongbin surname: Zhu fullname: Zhu, Yongbin – sequence: 6 givenname: Meng surname: Huang fullname: Huang, Meng |
BookMark | eNp9kE1OwzAQRi1UJNrCBVjlAi620zg2YlOVX6kqC2BtTe1J6ypNkB0i9fY4KisWXXk08z1r5k3IqGkbJOSWsxlnXN7tZxBbOxNM8NQoSyEvyJirUlAtFR-lupCKzvVcXpFJjHuWIC3UmKxfH-n6Y3GfLbKAUNMe6h90WYNb6HyPWcQabefbJoN62wbf7Q7ZBmKKpNbOY4Bgd8fM-d7HlLomlxXUEW_-3in5en76XL7S1fvL23KxojZnrKMAhbZWO8ccRy2cyoViKHOUvOKFhTQo5jqlHNc6l67i1rqN2mitbMmhyKdEnf61oY0xYGWs72DYswvga8OZGbyYvRm8mMGLOXlJqPiHfgd_gHA8Dz2cIExH9elsE63HxqLzIfkxrvXn8F9x5X7c |
CitedBy_id | crossref_primary_10_1016_j_ijcip_2025_100739 crossref_primary_10_1007_s10489_022_04334_1 crossref_primary_10_3233_JIFS_222994 crossref_primary_10_1007_s11227_021_04133_4 crossref_primary_10_1155_2023_8980876 crossref_primary_10_1177_1748006X221087501 crossref_primary_10_1016_j_asoc_2024_112152 crossref_primary_10_1016_j_knosys_2021_107661 crossref_primary_10_3233_JIFS_235724 crossref_primary_10_1007_s10489_024_05288_2 crossref_primary_10_1016_j_asoc_2024_111339 crossref_primary_10_1016_j_future_2023_06_011 crossref_primary_10_1016_j_knosys_2023_110892 crossref_primary_10_1007_s10489_024_05673_x |
Cites_doi | 10.1016/j.neucom.2014.08.022 10.1109/ACCESS.2017.2723621 10.1016/j.knosys.2013.10.018 10.1360/112011-1409 10.1016/j.asoc.2017.03.031 10.1007/s00521-013-1447-2 10.1007/s11432-013-4909-3 10.1155/2018/2520940 10.1016/j.asoc.2015.03.031 10.1016/j.ijleo.2017.06.034 10.1016/j.engappai.2016.08.014 10.1023/A:1026195112518 10.1073/pnas.90.5.1691 10.1016/j.engappai.2013.12.001 10.1016/j.asoc.2014.01.025 10.1016/j.asoc.2014.05.002 10.1007/BF03183665 10.1007/s12652-017-0621-2 10.1016/j.ins.2008.12.015 10.1109/JSYST.2017.2753851 10.1007/s10489-014-0599-9 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107726 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107726 S1568494621006475 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-aa59cc9dd0d1e92d83280e63e61f15cadd0549aa5d19936df1ccdb8b998c71a53 |
IEDL.DBID | AIKHN |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:11 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Fri Feb 23 02:46:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Specified candidate detector Negative selection algorithm Artificial immune system Hierarchical division Hole repair |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-aa59cc9dd0d1e92d83280e63e61f15cadd0549aa5d19936df1ccdb8b998c71a53 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107726 crossref_primary_10_1016_j_asoc_2021_107726 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zheng, Fang, Li (b14) 2013; 43 Ji, Dasgupta (b13) 2009; 179 Idris, Selamat (b16) 2014; 22 Chen, Li, Liu, Zhang (b27) 2013; 56 Hunt, Cooke (b8) 1995; 3 Raja, Natarajan (b19) 2017 D’haeseleer, Forrest, Helman (b9) 1996 Yang, Deng, Chen, Wang (b26) 2011 Costa Silva, Caminhas, Palhares (b6) 2017; 57 Idris, Selamat, Omatu (b3) 2014; 28 Zhu, Chen, Yang, Li, Yang, Zhang (b7) 2017 Gonzalez, Dasgupta, Niño (b12) 2003 González, Dasgupta (b10) 2003; 4 Chen, Li, Shi, Fu (b25) 2010 Yu, Fu, Yang, Riha (b5) 2015 Balthrop, Esponda, Forrest, Glickman (b24) 2002 Wen, Xiaoming, Tao, Tao (b28) 2014; 56 Chikh, Chikhi (b22) 2019; 10 Gao, Wang, Zenger (b4) 2014; 25 Jinyin, Mengmeng, Haibin (b20) 2017; 142 Xiao, Li, Zhang (b17) 2015; 42 Zhang, Luo (b15) 2014; 19 Zhang, Xiao (b21) 2018; 2018 Abid, Khan, de Silva (b31) 2017; 12 Fangdong Zhu (b32) 2020; 50 Liu, Li, Yang, Yang (b29) 2017; 5 Li, Liu, Zhang (b33) 2015; 149 Fouladvand, Osareh, Shadgar, Pavone, Sharafi (b30) 2017; 62 Cui, Pi, Chen (b18) 2015; 32 Forrest, Perelson, Allen, Cherukuri (b1) 1994 Ji, Dasgupta (b11) 2004 Percus, Percus, Perelson (b23) 1993; 90 Li (b2) 2005; 50 Zheng (10.1016/j.asoc.2021.107726_b14) 2013; 43 Idris (10.1016/j.asoc.2021.107726_b16) 2014; 22 Percus (10.1016/j.asoc.2021.107726_b23) 1993; 90 Gonzalez (10.1016/j.asoc.2021.107726_b12) 2003 Li (10.1016/j.asoc.2021.107726_b2) 2005; 50 González (10.1016/j.asoc.2021.107726_b10) 2003; 4 Xiao (10.1016/j.asoc.2021.107726_b17) 2015; 42 Fouladvand (10.1016/j.asoc.2021.107726_b30) 2017; 62 Ji (10.1016/j.asoc.2021.107726_b11) 2004 Chikh (10.1016/j.asoc.2021.107726_b22) 2019; 10 Yu (10.1016/j.asoc.2021.107726_b5) 2015 Gao (10.1016/j.asoc.2021.107726_b4) 2014; 25 Zhang (10.1016/j.asoc.2021.107726_b15) 2014; 19 Idris (10.1016/j.asoc.2021.107726_b3) 2014; 28 Liu (10.1016/j.asoc.2021.107726_b29) 2017; 5 Zhang (10.1016/j.asoc.2021.107726_b21) 2018; 2018 Balthrop (10.1016/j.asoc.2021.107726_b24) 2002 Cui (10.1016/j.asoc.2021.107726_b18) 2015; 32 Costa Silva (10.1016/j.asoc.2021.107726_b6) 2017; 57 Forrest (10.1016/j.asoc.2021.107726_b1) 1994 Raja (10.1016/j.asoc.2021.107726_b19) 2017 Yang (10.1016/j.asoc.2021.107726_b26) 2011 Chen (10.1016/j.asoc.2021.107726_b25) 2010 Jinyin (10.1016/j.asoc.2021.107726_b20) 2017; 142 Chen (10.1016/j.asoc.2021.107726_b27) 2013; 56 Hunt (10.1016/j.asoc.2021.107726_b8) 1995; 3 Abid (10.1016/j.asoc.2021.107726_b31) 2017; 12 D’haeseleer (10.1016/j.asoc.2021.107726_b9) 1996 Zhu (10.1016/j.asoc.2021.107726_b7) 2017 Fangdong Zhu (10.1016/j.asoc.2021.107726_b32) 2020; 50 Li (10.1016/j.asoc.2021.107726_b33) 2015; 149 Ji (10.1016/j.asoc.2021.107726_b13) 2009; 179 Wen (10.1016/j.asoc.2021.107726_b28) 2014; 56 |
References_xml | – volume: 179 start-page: 1390 year: 2009 end-page: 1406 ident: b13 article-title: V-detector: An efficient negative selection algorithm with “probably adequate” detector coverage publication-title: Inform. Sci. – volume: 56 start-page: 26 year: 2014 end-page: 35 ident: b28 article-title: Negative selection algorithm based on grid file of the feature space publication-title: Knowl.-Based Syst. – volume: 42 start-page: 289 year: 2015 end-page: 302 ident: b17 article-title: An immune optimization based real-valued negative selection algorithm publication-title: Appl. Intell. – start-page: 776 year: 2015 end-page: 780 ident: b5 article-title: The application of negative selection algorithm in multi-angle infrared vehicle images recognition publication-title: 2015 38th International Conference on Telecommunications and Signal Processing, TSP – volume: 57 start-page: 118 year: 2017 end-page: 131 ident: b6 article-title: Artificial immune systems applied to fault detection and isolation publication-title: Appl. Soft Comput. – volume: 2018 year: 2018 ident: b21 article-title: A clone selection based real-valued negative selection algorithm publication-title: Complexity – volume: 4 start-page: 383 year: 2003 end-page: 403 ident: b10 article-title: Anomaly detection using real-valued negative selection publication-title: Genetic Program. Evolv. Mach. – volume: 43 start-page: 529 year: 2013 end-page: 544 ident: b14 article-title: Dual negative selection algorithm publication-title: Sci. Sinica Inform. – volume: 90 start-page: 1691 year: 1993 end-page: 1695 ident: b23 article-title: Predicting the size of the T-cell receptor and antibody combining region from consideration of efficient self-nonself discrimination publication-title: Proc. Natl. Acad. Sci. – start-page: 287 year: 2004 end-page: 298 ident: b11 article-title: Real-valued negative selection algorithm with variable-sized detectors publication-title: Genetic and Evolutionary Computation Conference – start-page: 3200 year: 2011 end-page: 3203 ident: b26 article-title: GF-NSA: A negative selection algorithm based on self grid file publication-title: Applied Mechanics and Materials, vol. 44 – start-page: 3 year: 2002 end-page: 10 ident: b24 article-title: Coverage and generalization in an artificial immune system publication-title: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation – volume: 3 start-page: 2494 year: 1995 end-page: 2499 ident: b8 article-title: An adaptive, distributed learning system based on the immune system publication-title: 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century – volume: 10 start-page: 143 year: 2019 end-page: 152 ident: b22 article-title: Clustered negative selection algorithm and fruit fly optimization for email spam detection publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 12 start-page: 2960 year: 2017 end-page: 2969 ident: b31 article-title: Layered and real-valued negative selection algorithm for fault detection publication-title: IEEE Syst. J. – start-page: 202 year: 1994 end-page: 212 ident: b1 article-title: Self-nonself discrimination in a computer publication-title: Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy – start-page: 110 year: 1996 end-page: 119 ident: b9 article-title: An immunological approach to change detection: algorithms, analysis and implications publication-title: Proceedings 1996 IEEE Symposium on Security and Privacy – volume: 56 start-page: 1 year: 2013 end-page: 13 ident: b27 article-title: A negative selection algorithm based on hierarchical clustering of self set publication-title: Sci. China Inf. Sci. – volume: 149 start-page: 515 year: 2015 end-page: 525 ident: b33 article-title: A negative selection algorithm with online adaptive learning under small samples for anomaly detection publication-title: Neurocomputing – volume: 50 start-page: 1529 year: 2020 ident: b32 article-title: An NSA hole improvement method based on MHC publication-title: Sci. Sinica Inform. – volume: 62 start-page: 359 year: 2017 end-page: 372 ident: b30 article-title: DENSA: An effective negative selection algorithm with flexible boundaries for self-space and dynamic number of detectors publication-title: Eng. Appl. Artif. Intell. – volume: 50 start-page: 2650 year: 2005 end-page: 2657 ident: b2 article-title: An immune based dynamic intrusion detection model publication-title: Chin. Sci. Bull. – start-page: 79 year: 2010 end-page: 82 ident: b25 article-title: Tree-RNSA: A negative selection algorithm based on self index tree publication-title: 2010 International Conference on Multimedia Communications – volume: 142 start-page: 621 year: 2017 end-page: 643 ident: b20 article-title: A novel radius adaptive hybrid detector generation algorithm publication-title: Optik – volume: 25 start-page: 55 year: 2014 end-page: 65 ident: b4 article-title: Motor fault diagnosis using negative selection algorithm publication-title: Neural Comput. Appl. – volume: 19 start-page: 18 year: 2014 end-page: 30 ident: b15 article-title: EvoSeedRNSAII: An improved evolutionary algorithm for generating detectors in the real-valued Negative Selection Algorithms publication-title: Appl. Soft Comput. – start-page: 1 year: 2017 end-page: 7 ident: b7 article-title: A quick negative selection algorithm for one-class classification in big data era publication-title: Math. Probl. Eng. – volume: 5 start-page: 12189 year: 2017 end-page: 12198 ident: b29 article-title: An improved negative selection algorithm based on subspace density seeking publication-title: IEEE Access – start-page: 261 year: 2003 end-page: 272 ident: b12 article-title: A randomized real-valued negative selection algorithm publication-title: International Conference on Artificial Immune Systems – volume: 22 start-page: 11 year: 2014 end-page: 27 ident: b16 article-title: Improved email spam detection model with negative selection algorithm and particle swarm optimization publication-title: Appl. Soft Comput. – volume: 28 start-page: 97 year: 2014 end-page: 110 ident: b3 article-title: Hybrid email spam detection model with negative selection algorithm and differential evolution publication-title: Eng. Appl. Artif. Intell. – volume: 32 start-page: 544 year: 2015 end-page: 552 ident: b18 article-title: BIORV-NSA: Bidirectional inhibition optimization r-variable negative selection algorithm and its application publication-title: Appl. Soft Comput. – start-page: 293 year: 2017 end-page: 300 ident: b19 article-title: Enhanced negative selection algorithm for malicious node detection in MANET publication-title: 2017 Ninth International Conference on Advanced Computing, ICoAC – start-page: 202 year: 1994 ident: 10.1016/j.asoc.2021.107726_b1 article-title: Self-nonself discrimination in a computer – volume: 149 start-page: 515 year: 2015 ident: 10.1016/j.asoc.2021.107726_b33 article-title: A negative selection algorithm with online adaptive learning under small samples for anomaly detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.022 – volume: 5 start-page: 12189 year: 2017 ident: 10.1016/j.asoc.2021.107726_b29 article-title: An improved negative selection algorithm based on subspace density seeking publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2723621 – volume: 56 start-page: 26 year: 2014 ident: 10.1016/j.asoc.2021.107726_b28 article-title: Negative selection algorithm based on grid file of the feature space publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.10.018 – volume: 43 start-page: 529 issue: 4 year: 2013 ident: 10.1016/j.asoc.2021.107726_b14 article-title: Dual negative selection algorithm publication-title: Sci. Sinica Inform. doi: 10.1360/112011-1409 – volume: 57 start-page: 118 issue: C year: 2017 ident: 10.1016/j.asoc.2021.107726_b6 article-title: Artificial immune systems applied to fault detection and isolation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.03.031 – volume: 25 start-page: 55 issue: 1 year: 2014 ident: 10.1016/j.asoc.2021.107726_b4 article-title: Motor fault diagnosis using negative selection algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1447-2 – start-page: 110 year: 1996 ident: 10.1016/j.asoc.2021.107726_b9 article-title: An immunological approach to change detection: algorithms, analysis and implications – volume: 56 start-page: 1 issue: 8 year: 2013 ident: 10.1016/j.asoc.2021.107726_b27 article-title: A negative selection algorithm based on hierarchical clustering of self set publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-013-4909-3 – start-page: 3 year: 2002 ident: 10.1016/j.asoc.2021.107726_b24 article-title: Coverage and generalization in an artificial immune system – volume: 3 start-page: 2494 year: 1995 ident: 10.1016/j.asoc.2021.107726_b8 article-title: An adaptive, distributed learning system based on the immune system – volume: 2018 year: 2018 ident: 10.1016/j.asoc.2021.107726_b21 article-title: A clone selection based real-valued negative selection algorithm publication-title: Complexity doi: 10.1155/2018/2520940 – volume: 32 start-page: 544 year: 2015 ident: 10.1016/j.asoc.2021.107726_b18 article-title: BIORV-NSA: Bidirectional inhibition optimization r-variable negative selection algorithm and its application publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.031 – volume: 142 start-page: 621 year: 2017 ident: 10.1016/j.asoc.2021.107726_b20 article-title: A novel radius adaptive hybrid detector generation algorithm publication-title: Optik doi: 10.1016/j.ijleo.2017.06.034 – start-page: 79 year: 2010 ident: 10.1016/j.asoc.2021.107726_b25 article-title: Tree-RNSA: A negative selection algorithm based on self index tree – volume: 62 start-page: 359 year: 2017 ident: 10.1016/j.asoc.2021.107726_b30 article-title: DENSA: An effective negative selection algorithm with flexible boundaries for self-space and dynamic number of detectors publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.08.014 – volume: 4 start-page: 383 issue: 4 year: 2003 ident: 10.1016/j.asoc.2021.107726_b10 article-title: Anomaly detection using real-valued negative selection publication-title: Genetic Program. Evolv. Mach. doi: 10.1023/A:1026195112518 – start-page: 261 year: 2003 ident: 10.1016/j.asoc.2021.107726_b12 article-title: A randomized real-valued negative selection algorithm – volume: 90 start-page: 1691 issue: 5 year: 1993 ident: 10.1016/j.asoc.2021.107726_b23 article-title: Predicting the size of the T-cell receptor and antibody combining region from consideration of efficient self-nonself discrimination publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.90.5.1691 – volume: 28 start-page: 97 year: 2014 ident: 10.1016/j.asoc.2021.107726_b3 article-title: Hybrid email spam detection model with negative selection algorithm and differential evolution publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.12.001 – volume: 19 start-page: 18 year: 2014 ident: 10.1016/j.asoc.2021.107726_b15 article-title: EvoSeedRNSAII: An improved evolutionary algorithm for generating detectors in the real-valued Negative Selection Algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.01.025 – start-page: 293 year: 2017 ident: 10.1016/j.asoc.2021.107726_b19 article-title: Enhanced negative selection algorithm for malicious node detection in MANET – volume: 50 start-page: 1529 issue: 10 year: 2020 ident: 10.1016/j.asoc.2021.107726_b32 article-title: An NSA hole improvement method based on MHC publication-title: Sci. Sinica Inform. – volume: 22 start-page: 11 year: 2014 ident: 10.1016/j.asoc.2021.107726_b16 article-title: Improved email spam detection model with negative selection algorithm and particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.05.002 – volume: 50 start-page: 2650 issue: 22 year: 2005 ident: 10.1016/j.asoc.2021.107726_b2 article-title: An immune based dynamic intrusion detection model publication-title: Chin. Sci. Bull. doi: 10.1007/BF03183665 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2021.107726_b7 article-title: A quick negative selection algorithm for one-class classification in big data era publication-title: Math. Probl. Eng. – volume: 10 start-page: 143 issue: 1 year: 2019 ident: 10.1016/j.asoc.2021.107726_b22 article-title: Clustered negative selection algorithm and fruit fly optimization for email spam detection publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-017-0621-2 – start-page: 776 year: 2015 ident: 10.1016/j.asoc.2021.107726_b5 article-title: The application of negative selection algorithm in multi-angle infrared vehicle images recognition – start-page: 3200 year: 2011 ident: 10.1016/j.asoc.2021.107726_b26 article-title: GF-NSA: A negative selection algorithm based on self grid file – volume: 179 start-page: 1390 issue: 10 year: 2009 ident: 10.1016/j.asoc.2021.107726_b13 article-title: V-detector: An efficient negative selection algorithm with “probably adequate” detector coverage publication-title: Inform. Sci. doi: 10.1016/j.ins.2008.12.015 – start-page: 287 year: 2004 ident: 10.1016/j.asoc.2021.107726_b11 article-title: Real-valued negative selection algorithm with variable-sized detectors – volume: 12 start-page: 2960 issue: 3 year: 2017 ident: 10.1016/j.asoc.2021.107726_b31 article-title: Layered and real-valued negative selection algorithm for fault detection publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2017.2753851 – volume: 42 start-page: 289 issue: 2 year: 2015 ident: 10.1016/j.asoc.2021.107726_b17 article-title: An immune optimization based real-valued negative selection algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-014-0599-9 |
SSID | ssj0016928 |
Score | 2.4092906 |
Snippet | The negative selection algorithm (NSA) is an important algorithm for generating immune detectors in artificial immune systems. However, the original NSA... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107726 |
SubjectTerms | Artificial immune system Hierarchical division Hole repair Negative selection algorithm Specified candidate detector |
Title | HD-NSA: A real-valued negative selection algorithm based on hierarchy division |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107726 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VsrDwRpRH5YENmcaJ48ZsVQGVhyrEQ2KLHNuFolJQKQMLv527xkEgIQbGWD7J-nK-R3L3HcDewKnMJU5zj8aOS2ljrtMo4T7yUSGlITJKqrboq96tPLtL72rQrXphqKwy2P7Sps-sdVhpBTRbL8Nh6xozj0xqqTBpoY7JdA7m40SrtA7zndPzXv_rZ4LSsxGrtJ-TQOidKcu8DIKAaWIscAEjTfW7f_rmc06WYTEEi6xTnmcFan68CkvVIAYW7uUa9HtHvH_dOWQdhjHgiBODt3ds7O9ntN7sdTbsBt8AM6P758lw-vDEyH05hks0DJu0_Z1RaxZ9PFuH25Pjm26Ph0EJ3CZRNOXGpNpa7VzkhNexw1uaRV4lXomBSC2aMAzMNO5yVK6n3EBY64qswFTLtoVJkw2oj5_HfhNYERMDliUmOC2li7RLhG87M5DGF22TNUBU8OQ2sIjTMItRXpWLPeYEaU6Q5iWkDdj_knkpOTT-3J1WqOc_NCFHI_-H3NY_5bZhgZ7K_sIdqE8nb34XA41p0YS5gw_RRHXqXl1cNoNafQIs6NKS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2zINE6cNGarClWAkqWt1C1ybLcUlbYqZWDht3OXRwUSYmB17iTrk32-i777jpDLoQlC4xnJLAQ7JoR2mfQdj1nHOqkQCsUokW0RB1FfPAz8QYW0yl4YpFUWsT-P6Vm0LlbqBZr1-Xhc70LlEQopAihasGPSXyPrwvcayOu7_lzxPHggswGraM3QvOicyUleCiCAItHlsAB5ZvD76_TtxWnvkK0iVaTNfDe7pGKne2S7HMNAi1u5T-LolsXd5g1tUsgAJwz1u62hUzvKRL3pWzbqBvCnajKaLcbL51eKj5ehsISjsPGsf1BszMJfZwek377rtSJWjElg2nOcJVPKl1pLYxzDrXQN3NHQsYFnAz7kvoYABmmZBCuDZL3ADLnWJg1TKLR0gyvfOyTV6WxqjwhNXdS_0qgDJ4UwjjQetw2jhkLZtKHCGuElPIkuNMRxlMUkKcliLwlCmiCkSQ5pjVytfOa5gsaf1n6JevLjHCQQ4v_wO_6n3wXZiHpPnaRzHz-ekE38kncanpLqcvFuzyDlWKbn2ZH6Al2e0cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HD-NSA%3A+A+real-valued+negative+selection+algorithm+based+on+hierarchy+division&rft.jtitle=Applied+soft+computing&rft.au=He%2C+Junjiang&rft.au=Chen%2C+Wen&rft.au=Li%2C+Tao&rft.au=Li%2C+Beibei&rft.date=2021-11-01&rft.issn=1568-4946&rft.volume=112&rft.spage=107726&rft_id=info:doi/10.1016%2Fj.asoc.2021.107726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |