HD-NSA: A real-valued negative selection algorithm based on hierarchy division

The negative selection algorithm (NSA) is an important algorithm for generating immune detectors in artificial immune systems. However, the original NSA randomly generates candidate detectors that produce a large number of redundant detectors, and it is difficult to cover the entire antibody space....

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 112; p. 107726
Main Authors He, Junjiang, Chen, Wen, Li, Tao, Li, Beibei, Zhu, Yongbin, Huang, Meng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2021
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2021.107726

Cover

Abstract The negative selection algorithm (NSA) is an important algorithm for generating immune detectors in artificial immune systems. However, the original NSA randomly generates candidate detectors that produce a large number of redundant detectors, and it is difficult to cover the entire antibody space. Moreover, the randomly generated candidate detectors have to be compared with all the self-sets; therefore, the inefficient generation of the detector seriously influences the application of NSA. To overcome these defects, a real-valued NSA based on hierarchy division (HD-NSA) is proposed. First, the feature space is divided into self and non-self subgrids, and the center point of the non-self subgrid is specified as the candidate detector, and the specified candidate detector is compared with the self-antigens located in adjacent subgrids rather than with all the self-sets. Theoretical analysis demonstrated that the HD-NSA can effectively reduce the time complexity of the NSA algorithm. Furthermore, experiments on the Abalone data set show that the detector training time of HD-NSA decreased by 97.9%, 71.2%, 56.9% and 90.1%, respectively, compared with the classical RNSA, V-Detector, GF-RNSA and BIORV-NSA, whereas the detector detection rate increased by 50%, 25.8%, 13.8% and 10.5%, respectively. •We improved the negative selection algorithm by specifying candidate detector.•We proposed a termination condition to improve the hole repair rate of algorithm.•Comparing four NSA methods to validate the proposed approach.
AbstractList The negative selection algorithm (NSA) is an important algorithm for generating immune detectors in artificial immune systems. However, the original NSA randomly generates candidate detectors that produce a large number of redundant detectors, and it is difficult to cover the entire antibody space. Moreover, the randomly generated candidate detectors have to be compared with all the self-sets; therefore, the inefficient generation of the detector seriously influences the application of NSA. To overcome these defects, a real-valued NSA based on hierarchy division (HD-NSA) is proposed. First, the feature space is divided into self and non-self subgrids, and the center point of the non-self subgrid is specified as the candidate detector, and the specified candidate detector is compared with the self-antigens located in adjacent subgrids rather than with all the self-sets. Theoretical analysis demonstrated that the HD-NSA can effectively reduce the time complexity of the NSA algorithm. Furthermore, experiments on the Abalone data set show that the detector training time of HD-NSA decreased by 97.9%, 71.2%, 56.9% and 90.1%, respectively, compared with the classical RNSA, V-Detector, GF-RNSA and BIORV-NSA, whereas the detector detection rate increased by 50%, 25.8%, 13.8% and 10.5%, respectively. •We improved the negative selection algorithm by specifying candidate detector.•We proposed a termination condition to improve the hole repair rate of algorithm.•Comparing four NSA methods to validate the proposed approach.
ArticleNumber 107726
Author Huang, Meng
He, Junjiang
Li, Tao
Li, Beibei
Zhu, Yongbin
Chen, Wen
Author_xml – sequence: 1
  givenname: Junjiang
  surname: He
  fullname: He, Junjiang
– sequence: 2
  givenname: Wen
  surname: Chen
  fullname: Chen, Wen
  email: wenchen@scu.edu.cn
– sequence: 3
  givenname: Tao
  surname: Li
  fullname: Li, Tao
– sequence: 4
  givenname: Beibei
  surname: Li
  fullname: Li, Beibei
– sequence: 5
  givenname: Yongbin
  surname: Zhu
  fullname: Zhu, Yongbin
– sequence: 6
  givenname: Meng
  surname: Huang
  fullname: Huang, Meng
BookMark eNp9kE1OwzAQRi1UJNrCBVjlAi620zg2YlOVX6kqC2BtTe1J6ypNkB0i9fY4KisWXXk08z1r5k3IqGkbJOSWsxlnXN7tZxBbOxNM8NQoSyEvyJirUlAtFR-lupCKzvVcXpFJjHuWIC3UmKxfH-n6Y3GfLbKAUNMe6h90WYNb6HyPWcQabefbJoN62wbf7Q7ZBmKKpNbOY4Bgd8fM-d7HlLomlxXUEW_-3in5en76XL7S1fvL23KxojZnrKMAhbZWO8ccRy2cyoViKHOUvOKFhTQo5jqlHNc6l67i1rqN2mitbMmhyKdEnf61oY0xYGWs72DYswvga8OZGbyYvRm8mMGLOXlJqPiHfgd_gHA8Dz2cIExH9elsE63HxqLzIfkxrvXn8F9x5X7c
CitedBy_id crossref_primary_10_1016_j_ijcip_2025_100739
crossref_primary_10_1007_s10489_022_04334_1
crossref_primary_10_3233_JIFS_222994
crossref_primary_10_1007_s11227_021_04133_4
crossref_primary_10_1155_2023_8980876
crossref_primary_10_1177_1748006X221087501
crossref_primary_10_1016_j_asoc_2024_112152
crossref_primary_10_1016_j_knosys_2021_107661
crossref_primary_10_3233_JIFS_235724
crossref_primary_10_1007_s10489_024_05288_2
crossref_primary_10_1016_j_asoc_2024_111339
crossref_primary_10_1016_j_future_2023_06_011
crossref_primary_10_1016_j_knosys_2023_110892
crossref_primary_10_1007_s10489_024_05673_x
Cites_doi 10.1016/j.neucom.2014.08.022
10.1109/ACCESS.2017.2723621
10.1016/j.knosys.2013.10.018
10.1360/112011-1409
10.1016/j.asoc.2017.03.031
10.1007/s00521-013-1447-2
10.1007/s11432-013-4909-3
10.1155/2018/2520940
10.1016/j.asoc.2015.03.031
10.1016/j.ijleo.2017.06.034
10.1016/j.engappai.2016.08.014
10.1023/A:1026195112518
10.1073/pnas.90.5.1691
10.1016/j.engappai.2013.12.001
10.1016/j.asoc.2014.01.025
10.1016/j.asoc.2014.05.002
10.1007/BF03183665
10.1007/s12652-017-0621-2
10.1016/j.ins.2008.12.015
10.1109/JSYST.2017.2753851
10.1007/s10489-014-0599-9
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107726
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107726
S1568494621006475
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-aa59cc9dd0d1e92d83280e63e61f15cadd0549aa5d19936df1ccdb8b998c71a53
IEDL.DBID AIKHN
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:11 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Fri Feb 23 02:46:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Specified candidate detector
Negative selection algorithm
Artificial immune system
Hierarchical division
Hole repair
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-aa59cc9dd0d1e92d83280e63e61f15cadd0549aa5d19936df1ccdb8b998c71a53
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107726
crossref_primary_10_1016_j_asoc_2021_107726
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zheng, Fang, Li (b14) 2013; 43
Ji, Dasgupta (b13) 2009; 179
Idris, Selamat (b16) 2014; 22
Chen, Li, Liu, Zhang (b27) 2013; 56
Hunt, Cooke (b8) 1995; 3
Raja, Natarajan (b19) 2017
D’haeseleer, Forrest, Helman (b9) 1996
Yang, Deng, Chen, Wang (b26) 2011
Costa Silva, Caminhas, Palhares (b6) 2017; 57
Idris, Selamat, Omatu (b3) 2014; 28
Zhu, Chen, Yang, Li, Yang, Zhang (b7) 2017
Gonzalez, Dasgupta, Niño (b12) 2003
González, Dasgupta (b10) 2003; 4
Chen, Li, Shi, Fu (b25) 2010
Yu, Fu, Yang, Riha (b5) 2015
Balthrop, Esponda, Forrest, Glickman (b24) 2002
Wen, Xiaoming, Tao, Tao (b28) 2014; 56
Chikh, Chikhi (b22) 2019; 10
Gao, Wang, Zenger (b4) 2014; 25
Jinyin, Mengmeng, Haibin (b20) 2017; 142
Xiao, Li, Zhang (b17) 2015; 42
Zhang, Luo (b15) 2014; 19
Zhang, Xiao (b21) 2018; 2018
Abid, Khan, de Silva (b31) 2017; 12
Fangdong Zhu (b32) 2020; 50
Liu, Li, Yang, Yang (b29) 2017; 5
Li, Liu, Zhang (b33) 2015; 149
Fouladvand, Osareh, Shadgar, Pavone, Sharafi (b30) 2017; 62
Cui, Pi, Chen (b18) 2015; 32
Forrest, Perelson, Allen, Cherukuri (b1) 1994
Ji, Dasgupta (b11) 2004
Percus, Percus, Perelson (b23) 1993; 90
Li (b2) 2005; 50
Zheng (10.1016/j.asoc.2021.107726_b14) 2013; 43
Idris (10.1016/j.asoc.2021.107726_b16) 2014; 22
Percus (10.1016/j.asoc.2021.107726_b23) 1993; 90
Gonzalez (10.1016/j.asoc.2021.107726_b12) 2003
Li (10.1016/j.asoc.2021.107726_b2) 2005; 50
González (10.1016/j.asoc.2021.107726_b10) 2003; 4
Xiao (10.1016/j.asoc.2021.107726_b17) 2015; 42
Fouladvand (10.1016/j.asoc.2021.107726_b30) 2017; 62
Ji (10.1016/j.asoc.2021.107726_b11) 2004
Chikh (10.1016/j.asoc.2021.107726_b22) 2019; 10
Yu (10.1016/j.asoc.2021.107726_b5) 2015
Gao (10.1016/j.asoc.2021.107726_b4) 2014; 25
Zhang (10.1016/j.asoc.2021.107726_b15) 2014; 19
Idris (10.1016/j.asoc.2021.107726_b3) 2014; 28
Liu (10.1016/j.asoc.2021.107726_b29) 2017; 5
Zhang (10.1016/j.asoc.2021.107726_b21) 2018; 2018
Balthrop (10.1016/j.asoc.2021.107726_b24) 2002
Cui (10.1016/j.asoc.2021.107726_b18) 2015; 32
Costa Silva (10.1016/j.asoc.2021.107726_b6) 2017; 57
Forrest (10.1016/j.asoc.2021.107726_b1) 1994
Raja (10.1016/j.asoc.2021.107726_b19) 2017
Yang (10.1016/j.asoc.2021.107726_b26) 2011
Chen (10.1016/j.asoc.2021.107726_b25) 2010
Jinyin (10.1016/j.asoc.2021.107726_b20) 2017; 142
Chen (10.1016/j.asoc.2021.107726_b27) 2013; 56
Hunt (10.1016/j.asoc.2021.107726_b8) 1995; 3
Abid (10.1016/j.asoc.2021.107726_b31) 2017; 12
D’haeseleer (10.1016/j.asoc.2021.107726_b9) 1996
Zhu (10.1016/j.asoc.2021.107726_b7) 2017
Fangdong Zhu (10.1016/j.asoc.2021.107726_b32) 2020; 50
Li (10.1016/j.asoc.2021.107726_b33) 2015; 149
Ji (10.1016/j.asoc.2021.107726_b13) 2009; 179
Wen (10.1016/j.asoc.2021.107726_b28) 2014; 56
References_xml – volume: 179
  start-page: 1390
  year: 2009
  end-page: 1406
  ident: b13
  article-title: V-detector: An efficient negative selection algorithm with “probably adequate” detector coverage
  publication-title: Inform. Sci.
– volume: 56
  start-page: 26
  year: 2014
  end-page: 35
  ident: b28
  article-title: Negative selection algorithm based on grid file of the feature space
  publication-title: Knowl.-Based Syst.
– volume: 42
  start-page: 289
  year: 2015
  end-page: 302
  ident: b17
  article-title: An immune optimization based real-valued negative selection algorithm
  publication-title: Appl. Intell.
– start-page: 776
  year: 2015
  end-page: 780
  ident: b5
  article-title: The application of negative selection algorithm in multi-angle infrared vehicle images recognition
  publication-title: 2015 38th International Conference on Telecommunications and Signal Processing, TSP
– volume: 57
  start-page: 118
  year: 2017
  end-page: 131
  ident: b6
  article-title: Artificial immune systems applied to fault detection and isolation
  publication-title: Appl. Soft Comput.
– volume: 2018
  year: 2018
  ident: b21
  article-title: A clone selection based real-valued negative selection algorithm
  publication-title: Complexity
– volume: 4
  start-page: 383
  year: 2003
  end-page: 403
  ident: b10
  article-title: Anomaly detection using real-valued negative selection
  publication-title: Genetic Program. Evolv. Mach.
– volume: 43
  start-page: 529
  year: 2013
  end-page: 544
  ident: b14
  article-title: Dual negative selection algorithm
  publication-title: Sci. Sinica Inform.
– volume: 90
  start-page: 1691
  year: 1993
  end-page: 1695
  ident: b23
  article-title: Predicting the size of the T-cell receptor and antibody combining region from consideration of efficient self-nonself discrimination
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 287
  year: 2004
  end-page: 298
  ident: b11
  article-title: Real-valued negative selection algorithm with variable-sized detectors
  publication-title: Genetic and Evolutionary Computation Conference
– start-page: 3200
  year: 2011
  end-page: 3203
  ident: b26
  article-title: GF-NSA: A negative selection algorithm based on self grid file
  publication-title: Applied Mechanics and Materials, vol. 44
– start-page: 3
  year: 2002
  end-page: 10
  ident: b24
  article-title: Coverage and generalization in an artificial immune system
  publication-title: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation
– volume: 3
  start-page: 2494
  year: 1995
  end-page: 2499
  ident: b8
  article-title: An adaptive, distributed learning system based on the immune system
  publication-title: 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century
– volume: 10
  start-page: 143
  year: 2019
  end-page: 152
  ident: b22
  article-title: Clustered negative selection algorithm and fruit fly optimization for email spam detection
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 12
  start-page: 2960
  year: 2017
  end-page: 2969
  ident: b31
  article-title: Layered and real-valued negative selection algorithm for fault detection
  publication-title: IEEE Syst. J.
– start-page: 202
  year: 1994
  end-page: 212
  ident: b1
  article-title: Self-nonself discrimination in a computer
  publication-title: Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy
– start-page: 110
  year: 1996
  end-page: 119
  ident: b9
  article-title: An immunological approach to change detection: algorithms, analysis and implications
  publication-title: Proceedings 1996 IEEE Symposium on Security and Privacy
– volume: 56
  start-page: 1
  year: 2013
  end-page: 13
  ident: b27
  article-title: A negative selection algorithm based on hierarchical clustering of self set
  publication-title: Sci. China Inf. Sci.
– volume: 149
  start-page: 515
  year: 2015
  end-page: 525
  ident: b33
  article-title: A negative selection algorithm with online adaptive learning under small samples for anomaly detection
  publication-title: Neurocomputing
– volume: 50
  start-page: 1529
  year: 2020
  ident: b32
  article-title: An NSA hole improvement method based on MHC
  publication-title: Sci. Sinica Inform.
– volume: 62
  start-page: 359
  year: 2017
  end-page: 372
  ident: b30
  article-title: DENSA: An effective negative selection algorithm with flexible boundaries for self-space and dynamic number of detectors
  publication-title: Eng. Appl. Artif. Intell.
– volume: 50
  start-page: 2650
  year: 2005
  end-page: 2657
  ident: b2
  article-title: An immune based dynamic intrusion detection model
  publication-title: Chin. Sci. Bull.
– start-page: 79
  year: 2010
  end-page: 82
  ident: b25
  article-title: Tree-RNSA: A negative selection algorithm based on self index tree
  publication-title: 2010 International Conference on Multimedia Communications
– volume: 142
  start-page: 621
  year: 2017
  end-page: 643
  ident: b20
  article-title: A novel radius adaptive hybrid detector generation algorithm
  publication-title: Optik
– volume: 25
  start-page: 55
  year: 2014
  end-page: 65
  ident: b4
  article-title: Motor fault diagnosis using negative selection algorithm
  publication-title: Neural Comput. Appl.
– volume: 19
  start-page: 18
  year: 2014
  end-page: 30
  ident: b15
  article-title: EvoSeedRNSAII: An improved evolutionary algorithm for generating detectors in the real-valued Negative Selection Algorithms
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2017
  end-page: 7
  ident: b7
  article-title: A quick negative selection algorithm for one-class classification in big data era
  publication-title: Math. Probl. Eng.
– volume: 5
  start-page: 12189
  year: 2017
  end-page: 12198
  ident: b29
  article-title: An improved negative selection algorithm based on subspace density seeking
  publication-title: IEEE Access
– start-page: 261
  year: 2003
  end-page: 272
  ident: b12
  article-title: A randomized real-valued negative selection algorithm
  publication-title: International Conference on Artificial Immune Systems
– volume: 22
  start-page: 11
  year: 2014
  end-page: 27
  ident: b16
  article-title: Improved email spam detection model with negative selection algorithm and particle swarm optimization
  publication-title: Appl. Soft Comput.
– volume: 28
  start-page: 97
  year: 2014
  end-page: 110
  ident: b3
  article-title: Hybrid email spam detection model with negative selection algorithm and differential evolution
  publication-title: Eng. Appl. Artif. Intell.
– volume: 32
  start-page: 544
  year: 2015
  end-page: 552
  ident: b18
  article-title: BIORV-NSA: Bidirectional inhibition optimization r-variable negative selection algorithm and its application
  publication-title: Appl. Soft Comput.
– start-page: 293
  year: 2017
  end-page: 300
  ident: b19
  article-title: Enhanced negative selection algorithm for malicious node detection in MANET
  publication-title: 2017 Ninth International Conference on Advanced Computing, ICoAC
– start-page: 202
  year: 1994
  ident: 10.1016/j.asoc.2021.107726_b1
  article-title: Self-nonself discrimination in a computer
– volume: 149
  start-page: 515
  year: 2015
  ident: 10.1016/j.asoc.2021.107726_b33
  article-title: A negative selection algorithm with online adaptive learning under small samples for anomaly detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.022
– volume: 5
  start-page: 12189
  year: 2017
  ident: 10.1016/j.asoc.2021.107726_b29
  article-title: An improved negative selection algorithm based on subspace density seeking
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2723621
– volume: 56
  start-page: 26
  year: 2014
  ident: 10.1016/j.asoc.2021.107726_b28
  article-title: Negative selection algorithm based on grid file of the feature space
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.10.018
– volume: 43
  start-page: 529
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2021.107726_b14
  article-title: Dual negative selection algorithm
  publication-title: Sci. Sinica Inform.
  doi: 10.1360/112011-1409
– volume: 57
  start-page: 118
  issue: C
  year: 2017
  ident: 10.1016/j.asoc.2021.107726_b6
  article-title: Artificial immune systems applied to fault detection and isolation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.031
– volume: 25
  start-page: 55
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2021.107726_b4
  article-title: Motor fault diagnosis using negative selection algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1447-2
– start-page: 110
  year: 1996
  ident: 10.1016/j.asoc.2021.107726_b9
  article-title: An immunological approach to change detection: algorithms, analysis and implications
– volume: 56
  start-page: 1
  issue: 8
  year: 2013
  ident: 10.1016/j.asoc.2021.107726_b27
  article-title: A negative selection algorithm based on hierarchical clustering of self set
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-013-4909-3
– start-page: 3
  year: 2002
  ident: 10.1016/j.asoc.2021.107726_b24
  article-title: Coverage and generalization in an artificial immune system
– volume: 3
  start-page: 2494
  year: 1995
  ident: 10.1016/j.asoc.2021.107726_b8
  article-title: An adaptive, distributed learning system based on the immune system
– volume: 2018
  year: 2018
  ident: 10.1016/j.asoc.2021.107726_b21
  article-title: A clone selection based real-valued negative selection algorithm
  publication-title: Complexity
  doi: 10.1155/2018/2520940
– volume: 32
  start-page: 544
  year: 2015
  ident: 10.1016/j.asoc.2021.107726_b18
  article-title: BIORV-NSA: Bidirectional inhibition optimization r-variable negative selection algorithm and its application
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.031
– volume: 142
  start-page: 621
  year: 2017
  ident: 10.1016/j.asoc.2021.107726_b20
  article-title: A novel radius adaptive hybrid detector generation algorithm
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.06.034
– start-page: 79
  year: 2010
  ident: 10.1016/j.asoc.2021.107726_b25
  article-title: Tree-RNSA: A negative selection algorithm based on self index tree
– volume: 62
  start-page: 359
  year: 2017
  ident: 10.1016/j.asoc.2021.107726_b30
  article-title: DENSA: An effective negative selection algorithm with flexible boundaries for self-space and dynamic number of detectors
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.08.014
– volume: 4
  start-page: 383
  issue: 4
  year: 2003
  ident: 10.1016/j.asoc.2021.107726_b10
  article-title: Anomaly detection using real-valued negative selection
  publication-title: Genetic Program. Evolv. Mach.
  doi: 10.1023/A:1026195112518
– start-page: 261
  year: 2003
  ident: 10.1016/j.asoc.2021.107726_b12
  article-title: A randomized real-valued negative selection algorithm
– volume: 90
  start-page: 1691
  issue: 5
  year: 1993
  ident: 10.1016/j.asoc.2021.107726_b23
  article-title: Predicting the size of the T-cell receptor and antibody combining region from consideration of efficient self-nonself discrimination
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.90.5.1691
– volume: 28
  start-page: 97
  year: 2014
  ident: 10.1016/j.asoc.2021.107726_b3
  article-title: Hybrid email spam detection model with negative selection algorithm and differential evolution
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.12.001
– volume: 19
  start-page: 18
  year: 2014
  ident: 10.1016/j.asoc.2021.107726_b15
  article-title: EvoSeedRNSAII: An improved evolutionary algorithm for generating detectors in the real-valued Negative Selection Algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.01.025
– start-page: 293
  year: 2017
  ident: 10.1016/j.asoc.2021.107726_b19
  article-title: Enhanced negative selection algorithm for malicious node detection in MANET
– volume: 50
  start-page: 1529
  issue: 10
  year: 2020
  ident: 10.1016/j.asoc.2021.107726_b32
  article-title: An NSA hole improvement method based on MHC
  publication-title: Sci. Sinica Inform.
– volume: 22
  start-page: 11
  year: 2014
  ident: 10.1016/j.asoc.2021.107726_b16
  article-title: Improved email spam detection model with negative selection algorithm and particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.05.002
– volume: 50
  start-page: 2650
  issue: 22
  year: 2005
  ident: 10.1016/j.asoc.2021.107726_b2
  article-title: An immune based dynamic intrusion detection model
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/BF03183665
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2021.107726_b7
  article-title: A quick negative selection algorithm for one-class classification in big data era
  publication-title: Math. Probl. Eng.
– volume: 10
  start-page: 143
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107726_b22
  article-title: Clustered negative selection algorithm and fruit fly optimization for email spam detection
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-017-0621-2
– start-page: 776
  year: 2015
  ident: 10.1016/j.asoc.2021.107726_b5
  article-title: The application of negative selection algorithm in multi-angle infrared vehicle images recognition
– start-page: 3200
  year: 2011
  ident: 10.1016/j.asoc.2021.107726_b26
  article-title: GF-NSA: A negative selection algorithm based on self grid file
– volume: 179
  start-page: 1390
  issue: 10
  year: 2009
  ident: 10.1016/j.asoc.2021.107726_b13
  article-title: V-detector: An efficient negative selection algorithm with “probably adequate” detector coverage
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2008.12.015
– start-page: 287
  year: 2004
  ident: 10.1016/j.asoc.2021.107726_b11
  article-title: Real-valued negative selection algorithm with variable-sized detectors
– volume: 12
  start-page: 2960
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2021.107726_b31
  article-title: Layered and real-valued negative selection algorithm for fault detection
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2017.2753851
– volume: 42
  start-page: 289
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2021.107726_b17
  article-title: An immune optimization based real-valued negative selection algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0599-9
SSID ssj0016928
Score 2.4092906
Snippet The negative selection algorithm (NSA) is an important algorithm for generating immune detectors in artificial immune systems. However, the original NSA...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107726
SubjectTerms Artificial immune system
Hierarchical division
Hole repair
Negative selection algorithm
Specified candidate detector
Title HD-NSA: A real-valued negative selection algorithm based on hierarchy division
URI https://dx.doi.org/10.1016/j.asoc.2021.107726
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VsrDwRpRH5YENmcaJ48ZsVQGVhyrEQ2KLHNuFolJQKQMLv527xkEgIQbGWD7J-nK-R3L3HcDewKnMJU5zj8aOS2ljrtMo4T7yUSGlITJKqrboq96tPLtL72rQrXphqKwy2P7Sps-sdVhpBTRbL8Nh6xozj0xqqTBpoY7JdA7m40SrtA7zndPzXv_rZ4LSsxGrtJ-TQOidKcu8DIKAaWIscAEjTfW7f_rmc06WYTEEi6xTnmcFan68CkvVIAYW7uUa9HtHvH_dOWQdhjHgiBODt3ds7O9ntN7sdTbsBt8AM6P758lw-vDEyH05hks0DJu0_Z1RaxZ9PFuH25Pjm26Ph0EJ3CZRNOXGpNpa7VzkhNexw1uaRV4lXomBSC2aMAzMNO5yVK6n3EBY64qswFTLtoVJkw2oj5_HfhNYERMDliUmOC2li7RLhG87M5DGF22TNUBU8OQ2sIjTMItRXpWLPeYEaU6Q5iWkDdj_knkpOTT-3J1WqOc_NCFHI_-H3NY_5bZhgZ7K_sIdqE8nb34XA41p0YS5gw_RRHXqXl1cNoNafQIs6NKS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD2zINE6cNGarClWAkqWt1C1ybLcUlbYqZWDht3OXRwUSYmB17iTrk32-i777jpDLoQlC4xnJLAQ7JoR2mfQdj1nHOqkQCsUokW0RB1FfPAz8QYW0yl4YpFUWsT-P6Vm0LlbqBZr1-Xhc70LlEQopAihasGPSXyPrwvcayOu7_lzxPHggswGraM3QvOicyUleCiCAItHlsAB5ZvD76_TtxWnvkK0iVaTNfDe7pGKne2S7HMNAi1u5T-LolsXd5g1tUsgAJwz1u62hUzvKRL3pWzbqBvCnajKaLcbL51eKj5ehsISjsPGsf1BszMJfZwek377rtSJWjElg2nOcJVPKl1pLYxzDrXQN3NHQsYFnAz7kvoYABmmZBCuDZL3ADLnWJg1TKLR0gyvfOyTV6WxqjwhNXdS_0qgDJ4UwjjQetw2jhkLZtKHCGuElPIkuNMRxlMUkKcliLwlCmiCkSQ5pjVytfOa5gsaf1n6JevLjHCQQ4v_wO_6n3wXZiHpPnaRzHz-ekE38kncanpLqcvFuzyDlWKbn2ZH6Al2e0cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HD-NSA%3A+A+real-valued+negative+selection+algorithm+based+on+hierarchy+division&rft.jtitle=Applied+soft+computing&rft.au=He%2C+Junjiang&rft.au=Chen%2C+Wen&rft.au=Li%2C+Tao&rft.au=Li%2C+Beibei&rft.date=2021-11-01&rft.issn=1568-4946&rft.volume=112&rft.spage=107726&rft_id=info:doi/10.1016%2Fj.asoc.2021.107726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon