Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images
•DCSNN optimized with AOA is proposed for Lung Disease Detection using Chest X-ray Images.•NIH chest X-ray image dataset is taken from Kaggle repository for detecting lung disease.•In feature extraction process, the empirical wavelet transform method is used.•Deep Convolutional Spiking Neural Networ...
Saved in:
Published in | Biomedical signal processing and control Vol. 79; p. 104197 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •DCSNN optimized with AOA is proposed for Lung Disease Detection using Chest X-ray Images.•NIH chest X-ray image dataset is taken from Kaggle repository for detecting lung disease.•In feature extraction process, the empirical wavelet transform method is used.•Deep Convolutional Spiking Neural Network classifier (DCSNN) for detecting lung diseases.•Weight with bias parameter of DCSNN is enhanced based upon Arithmetic Optimization Algorithm.
Lung disease is a most common disease all over the world. A numerous feature extraction with classification models were discussed previously about the lung disease, but those methods having high over fitting problem, consequently, decrease the accuracy of detection. To overwhelm this issue, a Deep Convolutional Spiking Neural Network optimized with Arithmetic Optimization Algorithm is proposed in this manuscript for Lung Disease Detection using Chest X-ray Images as COVID-19, normal and viral pneumonia. Initially, NIH chest X-ray image dataset is taken from Kaggle repository for detecting lung disease. Then, the chest X-ray images are pre-processed using the Anisotropic Diffusion Filter Based Unsharp Masking and crispening scheme for removing noise and enhancing the image quality. These pre-processed outputs are fed to feature extraction. In feature extraction process, the empirical wavelet transform method is used. These extracted features are given into Deep Convolutional Spiking Neural Network classifier (DCSNN) for detecting lung diseases. Here, the weight with bias parameter of DCSNN is enhanced based upon Arithmetic Optimization Algorithm (AOA), which improves detection accuracy. The simulation is executed in MATLAB. The proposed LDC-DCSNN-AOA technique attains higher accuracy, higher Precision, higher F-Score analyzed with the existing techniques, like Lung disease detection using Support Vector Machines optimized with Social Mimic Optimization (LDC-SVM-SMO), Lung disease detection using eXtreme Gradient Boosting optimized by particle swarm optimization (LDC-XGBoost-PSO), Lung disease detection using neuro-fuzzy classifier optimized with multi-objective genetic algorithm (LDC-NFC-MOGA), Lung disease detection using convolutional neural network optimized with Bayesian optimization LDC –CNN-BOA respectively. |
---|---|
AbstractList | •DCSNN optimized with AOA is proposed for Lung Disease Detection using Chest X-ray Images.•NIH chest X-ray image dataset is taken from Kaggle repository for detecting lung disease.•In feature extraction process, the empirical wavelet transform method is used.•Deep Convolutional Spiking Neural Network classifier (DCSNN) for detecting lung diseases.•Weight with bias parameter of DCSNN is enhanced based upon Arithmetic Optimization Algorithm.
Lung disease is a most common disease all over the world. A numerous feature extraction with classification models were discussed previously about the lung disease, but those methods having high over fitting problem, consequently, decrease the accuracy of detection. To overwhelm this issue, a Deep Convolutional Spiking Neural Network optimized with Arithmetic Optimization Algorithm is proposed in this manuscript for Lung Disease Detection using Chest X-ray Images as COVID-19, normal and viral pneumonia. Initially, NIH chest X-ray image dataset is taken from Kaggle repository for detecting lung disease. Then, the chest X-ray images are pre-processed using the Anisotropic Diffusion Filter Based Unsharp Masking and crispening scheme for removing noise and enhancing the image quality. These pre-processed outputs are fed to feature extraction. In feature extraction process, the empirical wavelet transform method is used. These extracted features are given into Deep Convolutional Spiking Neural Network classifier (DCSNN) for detecting lung diseases. Here, the weight with bias parameter of DCSNN is enhanced based upon Arithmetic Optimization Algorithm (AOA), which improves detection accuracy. The simulation is executed in MATLAB. The proposed LDC-DCSNN-AOA technique attains higher accuracy, higher Precision, higher F-Score analyzed with the existing techniques, like Lung disease detection using Support Vector Machines optimized with Social Mimic Optimization (LDC-SVM-SMO), Lung disease detection using eXtreme Gradient Boosting optimized by particle swarm optimization (LDC-XGBoost-PSO), Lung disease detection using neuro-fuzzy classifier optimized with multi-objective genetic algorithm (LDC-NFC-MOGA), Lung disease detection using convolutional neural network optimized with Bayesian optimization LDC –CNN-BOA respectively. |
ArticleNumber | 104197 |
Author | Rajagopal, R. Kalaichelvi, T. Karthick, R. Meenalochini, P. |
Author_xml | – sequence: 1 givenname: R. surname: Rajagopal fullname: Rajagopal, R. email: r.rajagopal1234@yahoo.com organization: Associate Professor, Department of Electrical and Electronics Engineering, Francis Xavier Engineering College, Vannarapettai, Tirunelveli, Tamilnadu, 627003, India – sequence: 2 givenname: R. surname: Karthick fullname: Karthick, R. email: karthickkiwi@gmail.com organization: Associate Professor, Department of Computer Science and Engineering, K.L.N. College of Engineering, Pottapalayam, Sivagangai, Tamilnadu, 630 612, India – sequence: 3 givenname: P. surname: Meenalochini fullname: Meenalochini, P. email: meenalochinip@gmail.com organization: Associate Professor, Department of Electrical and Electronics Engineering, Sethu Institute of Technology, Kariapatti, Virudhunagar, Tamil Nadu, 626115, India – sequence: 4 givenname: T. surname: Kalaichelvi fullname: Kalaichelvi, T. organization: Department of Artificial Intelligence and Data Science (AI&DS), Panimalar Engineering College, Chennai 600123, India |
BookMark | eNp9kM1uAiEQgEljk6rtC_TEC6yFXfYv6cXY38TYQ9ukN8Kyg6LrsgHU2IfoM3dX66UHLwzM8A3DN0C92tSA0C0lI0pocrccFa6Ro5CEYZtgNE8vUJ-mLAkySrLeaU9ydoUGzi0JYVlKWR_9PAA0eGLqrak2XptaVPi90Stdz_EMNrY9zsDvjF1h03i91t9Q4p32Czy27boGr-WpIjoei2puDiWsjMXVpm1UagfCAS7Bgzxc2rjuAbkA5_FXYMUe67WYg7tGl0pUDm7-4hB9Pj1-TF6C6dvz62Q8DWREiA-EiMo0h6JQKo7CKFMJY3FGWEQKxYDRqJCSZqViKoZQhVmax0wIFpMiSRNBRDRE2bGvtMY5C4pL7Q_zeyt0xSnhnVe-5J1X3nnlR68tGv5DG9sOb_fnofsjBO2nthosd1JDLaHUtlXCS6PP4b-xS5fr |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3373000 crossref_primary_10_1007_s11831_024_10081_y crossref_primary_10_1002_qre_3530 crossref_primary_10_1080_0954898X_2024_2354477 crossref_primary_10_1080_0954898X_2024_2339477 crossref_primary_10_1016_j_bspc_2023_105000 crossref_primary_10_1016_j_bspc_2024_107104 crossref_primary_10_1007_s11760_023_02701_0 crossref_primary_10_1080_03772063_2023_2297382 crossref_primary_10_1016_j_inffus_2023_101859 crossref_primary_10_1007_s11517_023_03001_y crossref_primary_10_1109_ACCESS_2023_3262167 crossref_primary_10_1080_03772063_2023_2233465 crossref_primary_10_1007_s10489_024_05420_2 crossref_primary_10_1016_j_swevo_2023_101430 crossref_primary_10_1049_cit2_12356 crossref_primary_10_1080_15368378_2024_2321352 crossref_primary_10_1007_s11042_024_18301_0 crossref_primary_10_1007_s11517_023_02973_1 crossref_primary_10_1080_03772063_2025_2452339 crossref_primary_10_1007_s11276_024_03769_3 crossref_primary_10_1007_s11042_023_17767_8 crossref_primary_10_1007_s12083_024_01685_z crossref_primary_10_1007_s00202_025_02958_3 crossref_primary_10_1016_j_bspc_2024_106701 crossref_primary_10_1016_j_bbe_2024_06_001 crossref_primary_10_1007_s10668_024_05507_3 crossref_primary_10_1016_j_bspc_2024_107157 crossref_primary_10_3390_math11132891 crossref_primary_10_1016_j_bspc_2023_105597 crossref_primary_10_1016_j_compbiomed_2025_109708 crossref_primary_10_1007_s11831_023_09902_3 crossref_primary_10_1016_j_tws_2024_112631 crossref_primary_10_1002_jemt_24727 crossref_primary_10_1016_j_cmpbup_2024_100171 crossref_primary_10_1016_j_bspc_2025_107607 crossref_primary_10_1177_30504554251319447 crossref_primary_10_1002_dac_5970 crossref_primary_10_1002_dac_70011 crossref_primary_10_1016_j_knosys_2025_113084 crossref_primary_10_1016_j_eswa_2023_122054 crossref_primary_10_1016_j_knosys_2025_113000 crossref_primary_10_1002_acs_3985 crossref_primary_10_1049_ipr2_13246 crossref_primary_10_1186_s12883_024_04001_7 crossref_primary_10_1007_s11760_024_03332_9 crossref_primary_10_1007_s13755_024_00284_9 crossref_primary_10_1007_s10668_025_05977_z crossref_primary_10_3390_electronics13040746 crossref_primary_10_1109_ACCESS_2024_3450194 crossref_primary_10_1007_s00500_024_09872_z crossref_primary_10_1016_j_bspc_2023_105268 crossref_primary_10_3390_s24123980 crossref_primary_10_1016_j_bspc_2025_107569 crossref_primary_10_1016_j_est_2024_114997 crossref_primary_10_3233_JIFS_235607 crossref_primary_10_1016_j_compbiomed_2024_108847 crossref_primary_10_1007_s00202_024_02813_x crossref_primary_10_3390_s24030958 crossref_primary_10_1002_jemt_24739 crossref_primary_10_1007_s11042_023_17371_w crossref_primary_10_1007_s11042_023_17084_0 crossref_primary_10_1016_j_eswa_2023_122987 crossref_primary_10_1016_j_solener_2024_112855 crossref_primary_10_1016_j_neunet_2024_106154 crossref_primary_10_1016_j_knosys_2025_113194 crossref_primary_10_1080_03772063_2024_2315208 crossref_primary_10_1002_dac_5825 crossref_primary_10_1002_oca_3066 crossref_primary_10_3390_diagnostics12123034 crossref_primary_10_1002_jemt_24550 crossref_primary_10_1007_s10668_024_05195_z crossref_primary_10_1016_j_est_2025_115465 crossref_primary_10_1016_j_vlsi_2025_102408 crossref_primary_10_1016_j_bbe_2023_06_003 crossref_primary_10_3934_mbe_2023896 crossref_primary_10_1002_dac_6041 crossref_primary_10_3390_jimaging10080176 crossref_primary_10_1016_j_est_2024_113353 crossref_primary_10_1002_ett_4968 crossref_primary_10_1007_s11831_024_10141_3 crossref_primary_10_1177_0958305X241276833 crossref_primary_10_1080_03772063_2024_2428736 crossref_primary_10_1177_09544119241293007 crossref_primary_10_3390_bioengineering11100993 |
Cites_doi | 10.1016/j.preteyeres.2020.100900 10.1016/j.compbiomed.2020.103805 10.1109/ACCESS.2020.3003810 10.1016/j.ceh.2020.03.001 10.1007/s00034-021-01850-2 10.1016/j.cma.2020.113609 10.1016/j.ejmp.2021.02.006 10.1016/S2214-109X(20)30343-0 10.1016/j.ijleo.2021.166405 10.1007/978-981-15-8534-0_22 10.1016/j.measurement.2020.108046 10.1016/j.eswa.2021.115519 10.1109/JBHI.2020.3037127 10.1016/j.eswa.2020.114361 10.32604/cmc.2021.018040 10.1016/j.chaos.2020.110245 10.1016/j.compbiomed.2022.105213 10.1016/j.imu.2020.100391 10.1186/s12879-020-05010-w 10.1016/j.procs.2020.03.223 10.1016/j.dt.2020.09.001 10.1007/s10916-021-01745-4 10.1016/j.scitotenv.2020.141158 10.1016/S1473-3099(20)30086-4 10.1007/s10489-019-01552-y 10.1016/j.patcog.2021.108255 10.1016/j.eswa.2019.01.060 10.1109/ACCESS.2020.3031384 10.1007/s40846-020-00529-4 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2022.104197 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2022_104197 S1746809422006516 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-aa3d79ebbff53238f644580430bf4e413bcc18df4f5e2f287954aa450b676a0a3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 22:52:21 EDT 2025 Tue Jul 01 01:34:15 EDT 2025 Tue Jul 16 04:31:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Arithmetic Optimization Algorithm Empirical wavelet transform Deep Convolutional Spiking Neural Network classifier Lung Disease detection Chest X-ray images Anisotropic Diffusion Filter Based Unsharp Masking and crispening |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-aa3d79ebbff53238f644580430bf4e413bcc18df4f5e2f287954aa450b676a0a3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2022_104197 crossref_primary_10_1016_j_bspc_2022_104197 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_104197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ouchicha, Ammor, Meknassi (b0170) 2020; 140 Elkorany, Elsharkawy (b0100) 2021; 231 Loey, El-Sappagh, Mirjalili (b0160) 2022 Lee, Bing, Kiang, Bashir, Spath, Stelzle, Mortimer, Bularga, Doudesis, Joshi, Strachan, Gumy, Adair-Rohani, Attia, Chung, Miller, Newby, Mills, McAllister, Shah (b0020) 2020; 8 Gautam, Singh (b0135) 2020; 50 Júnior, da Cruz, Diniz, da Silva, Junior, Silva, de Paiva, Nunes, Gattass (b0150) 2021; 183 Rajesh, Shajin, Cherukupalli (b0055) 2021 Wang, Wang (b0025) 2020; 746 Varela-Santos, Melin (b0015) 2021; 168 Rajesh, Shajin, Mouli Chandra, Kommula (b0065) 2021 Zhang, Khan, Zhu, Wang (b0180) 2021 Duong, Le, Tran, Ngo, Nguyen (b0095) 2021; 184 Bassi, Attux (b0110) 2021 Wang, Satapathy, Anderson, Chen, Zhang (b0185) 2021; 9 Toğaçar, Ergen, Cömert (b0145) 2020; 121 Varela-Santos, Melin (b0155) 2021; 168 Rajaraman, Siegelman, Alderson, Folio, Folio, Antani (b0120) 2020; 8 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b0140) 2021; 376 Apostolopoulos, Aznaouridis, Tzani (b0085) 2020; 40 Zhao, Xu, Yin, Hu, Xiong, Tang, Yang, Yu, Huang (b0035) 2020; 20 Hammoudi, Benhabiles, Melkemi, Dornaika, Arganda-Carreras, Collard, Scherpereel (b0175) 2021; 45 Li, Jiao, Gao (b0130) 2021; 17 Das, Kumar, Kaur, Kumar, Singh (b0105) 2020 Bharati, Podder, Mondal (b0010) 2020; 20 Shajin, Rajesh, Thilaha (b0070) 2020; 1 Tripathy, Swarnkar (b0125) 2020; 167 Bai, Yang, Wang, Tong, Zhu, Zhong, Bai, Powell, Chen, Zhou, Song, Zhou, Zhu, Han, Li, Shi, Li, Wang, Qiu, Zhang, Xu, Liu, Zhang, Wu, Li, Yu, Wang, Dong, Wang, Wang, Zhang, Zhang, Ma, Zhao, Yu, Xu, Jin, Wang, Wang, Jiang, Chen, Xiao, Zhang, Song, Zhang, Wu, Sun, Shen, Ye, Tu, Jiang, Yu, Tan (b0030) 2020; 3 Castiglioni, Rundo, Codari, Di Leo, Salvatore, Interlenghi, Gallivanone, Cozzi, D'Amico, Sardanelli (b0045) 2021; 83 S.N. Kumar, A. Lenin Fred, L.R. Jonisha Miriam, P. Padmanabhan, B. Gulyas, H.A. Kumar, Non Linear Tensor Diffusion Based Unsharp Masking for Filtering of COVID-19 CT Images, in: Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Springer, Singapore, 2021, pp. 415-436. Shi, Han, Jiang, Cao, Alwalid, Gu, Fan, Zheng (b0040) 2020; 20 Kumar, Tripathi, Satapathy, Zhang (b0115) 2022; 122 Rahman, Khandakar, Kadir, Islam, Islam, Mazhar, Hamid, Islam, Kashem, Mahbub, Ayari, Chowdhury (b0005) 2020; 8 Shajin, Rajesh, Raja (b0060) 2022; 41 Li, Liu, Ting, Jeon, Chan, Kim, Sim, Thomas, Lin, Chen, Sakomoto, Loewenstein, Lam, Pasquale, Wong, Lam, Ting (b0050) 2021; 82 Jain, Nagrath, Kataria, Sirish Kaushik, Jude Hemanth (b0075) 2020; 165 Ke, Zhang, Wei, Połap, Woźniak, Kośmider, Damaševĭcius (b0165) 2019; 126 Tabik, Gomez-Rios, Martin-Rodriguez, Sevillano-Garcia, Rey-Area, Charte, Guirado, Suarez, Luengo, Valero-Gonzalez, Garcia-Villanova, Olmedo-Sanchez, Herrera (b0080) 2020; 24 Apostolopoulos (10.1016/j.bspc.2022.104197_b0085) 2020; 40 Bassi (10.1016/j.bspc.2022.104197_b0110) 2021 Bai (10.1016/j.bspc.2022.104197_b0030) 2020; 3 Abualigah (10.1016/j.bspc.2022.104197_b0140) 2021; 376 Toğaçar (10.1016/j.bspc.2022.104197_b0145) 2020; 121 Li (10.1016/j.bspc.2022.104197_b0050) 2021; 82 10.1016/j.bspc.2022.104197_b0090 Varela-Santos (10.1016/j.bspc.2022.104197_b0155) 2021; 168 Tripathy (10.1016/j.bspc.2022.104197_b0125) 2020; 167 Júnior (10.1016/j.bspc.2022.104197_b0150) 2021; 183 Zhang (10.1016/j.bspc.2022.104197_b0180) 2021 Ouchicha (10.1016/j.bspc.2022.104197_b0170) 2020; 140 Shajin (10.1016/j.bspc.2022.104197_b0060) 2022; 41 Varela-Santos (10.1016/j.bspc.2022.104197_b0015) 2021; 168 Rahman (10.1016/j.bspc.2022.104197_b0005) 2020; 8 Tabik (10.1016/j.bspc.2022.104197_b0080) 2020; 24 Kumar (10.1016/j.bspc.2022.104197_b0115) 2022; 122 Das (10.1016/j.bspc.2022.104197_b0105) 2020 Jain (10.1016/j.bspc.2022.104197_b0075) 2020; 165 Elkorany (10.1016/j.bspc.2022.104197_b0100) 2021; 231 Loey (10.1016/j.bspc.2022.104197_b0160) 2022 Castiglioni (10.1016/j.bspc.2022.104197_b0045) 2021; 83 Wang (10.1016/j.bspc.2022.104197_b0185) 2021; 9 Zhao (10.1016/j.bspc.2022.104197_b0035) 2020; 20 Wang (10.1016/j.bspc.2022.104197_b0025) 2020; 746 Lee (10.1016/j.bspc.2022.104197_b0020) 2020; 8 Rajesh (10.1016/j.bspc.2022.104197_b0065) 2021 Rajesh (10.1016/j.bspc.2022.104197_b0055) 2021 Bharati (10.1016/j.bspc.2022.104197_b0010) 2020; 20 Gautam (10.1016/j.bspc.2022.104197_b0135) 2020; 50 Shajin (10.1016/j.bspc.2022.104197_b0070) 2020; 1 Duong (10.1016/j.bspc.2022.104197_b0095) 2021; 184 Rajaraman (10.1016/j.bspc.2022.104197_b0120) 2020; 8 Li (10.1016/j.bspc.2022.104197_b0130) 2021; 17 Shi (10.1016/j.bspc.2022.104197_b0040) 2020; 20 Hammoudi (10.1016/j.bspc.2022.104197_b0175) 2021; 45 Ke (10.1016/j.bspc.2022.104197_b0165) 2019; 126 |
References_xml | – volume: 8 start-page: 115041 year: 2020 end-page: 115050 ident: b0120 article-title: Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-rays publication-title: IEEE Access – volume: 746 start-page: 141158 year: 2020 ident: b0025 article-title: Preventing carbon emission retaliatory rebound post-COVID-19 requires expanding free trade and improving energy efficiency publication-title: Sci. Total Environ. – start-page: 1 year: 2021 end-page: 10 ident: b0110 article-title: A deep convolutional neural network for COVID-19 detection using chest X-rays publication-title: Res. Biomed. Eng. – volume: 20 start-page: 100391 year: 2020 ident: b0010 article-title: Hybrid deep learning for detecting lung diseases from X-ray images publication-title: Inf. Med. Unlocked – volume: 167 start-page: 285 year: 2020 end-page: 292 ident: b0125 article-title: Unified preprocessing and enhancement technique for mammogram images publication-title: Procedia Comput. Sci. – volume: 20 start-page: 425 year: 2020 end-page: 434 ident: b0040 article-title: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study publication-title: Lancet. Infect. Dis – volume: 376 year: 2021 ident: b0140 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. – volume: 122 year: 2022 ident: b0115 article-title: SARS-Net: COVID-19 detection from chest x-rays by combining graph convolutional network and convolutional neural network publication-title: Pattern Recogn. – volume: 8 start-page: 191586 year: 2020 end-page: 191601 ident: b0005 article-title: Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization publication-title: IEEE Access – start-page: 3145 year: 2021 end-page: 3162 ident: b0180 article-title: Pseudo zernike moment and deep stacked sparse autoencoder for COVID-19 diagnosis publication-title: Cmc-Computers Mater. Continua – volume: 24 start-page: 3595 year: 2020 end-page: 3605 ident: b0080 article-title: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on Chest X-Ray images publication-title: IEEE J. Biomed. Health. Inf. – volume: 20 start-page: 1 year: 2020 end-page: 8 ident: b0035 article-title: Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study publication-title: BMC Infect. Dis. – volume: 183 year: 2021 ident: b0150 article-title: Automatic method for classifying COVID-19 patients based on chest X-ray images, using deep features and PSO-optimized XGBoost publication-title: Expert Syst. Appl. – volume: 168 year: 2021 ident: b0155 article-title: A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images publication-title: Expert Syst. Appl. – year: 2020 ident: b0105 article-title: Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays publication-title: Irbm. – volume: 3 start-page: 7 year: 2020 end-page: 15 ident: b0030 article-title: Chinese experts’ consensus on the Internet of Things-aided diagnosis and treatment of coronavirus disease 2019 (COVID-19) publication-title: Clin. eHealth – volume: 8 start-page: e1427 year: 2020 end-page: e1434 ident: b0020 article-title: Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study publication-title: Lan et Global Health – start-page: 1 year: 2021 end-page: 19 ident: b0065 article-title: Diminishing Energy Consumption Cost and Optimal Energy Management of Photovoltaic Aided Electric Vehicle (PV-EV) By GFO-VITG Approach – volume: 165 start-page: 108046 year: 2020 ident: b0075 article-title: Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning publication-title: Measurement – volume: 40 start-page: 462 year: 2020 end-page: 469 ident: b0085 article-title: Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases publication-title: J. Med. Biol. Eng. – volume: 126 start-page: 218 year: 2019 end-page: 232 ident: b0165 article-title: A neuro-heuristic approach for recognition of lung diseases from X-ray images publication-title: Expert Syst. Appl. – reference: S.N. Kumar, A. Lenin Fred, L.R. Jonisha Miriam, P. Padmanabhan, B. Gulyas, H.A. Kumar, Non Linear Tensor Diffusion Based Unsharp Masking for Filtering of COVID-19 CT Images, in: Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Springer, Singapore, 2021, pp. 415-436. – volume: 41 start-page: 1751 year: 2022 end-page: 1774 ident: b0060 article-title: An efficient VLSI architecture for fast motion estimation exploiting zero motion prejudgment technique and a new quadrant-based search algorithm in HEVC publication-title: Circuits, Syst., Sig. Process. – volume: 9 year: 2021 ident: b0185 article-title: Deep fractional max pooling neural network for COVID-19 recognition publication-title: Front. Public Health – volume: 1 start-page: 7 year: 2020 ident: b0070 article-title: Bald eagle search optimization algorithm for cluster head selection with prolong lifetime in wireless sensor network publication-title: J. Soft Computing Eng. Applications – volume: 45 start-page: 1 year: 2021 end-page: 10 ident: b0175 article-title: Deep learning on chest x-ray images to detect and evaluate pneumonia cases at the era of covid-19 publication-title: J. Med. Syst. – volume: 83 start-page: 9 year: 2021 end-page: 24 ident: b0045 article-title: AI applications to medical images: from machine learning to deep learning publication-title: Physica Med. – volume: 140 year: 2020 ident: b0170 article-title: CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images publication-title: Chaos, Solitons Fractals – volume: 50 start-page: 830 year: 2020 end-page: 848 ident: b0135 article-title: CLR-based deep convolutional spiking neural network with validation based stopping for time series classification publication-title: Appl. Intell. – volume: 121 year: 2020 ident: b0145 article-title: COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches publication-title: Comput. Biol. Med. – volume: 17 start-page: 1625 year: 2021 end-page: 1635 ident: b0130 article-title: A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy publication-title: Defence Technol. – start-page: 105213 year: 2022 ident: b0160 article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data publication-title: Computers Biol. Med. – volume: 184 start-page: 115519 year: 2021 ident: b0095 article-title: Detection of tuberculosis from chest X-ray images: boosting the performance with vision transformer and transfer learning publication-title: Expert Syst. Appl. – volume: 82 start-page: 100900 year: 2021 ident: b0050 article-title: Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective publication-title: Prog. Retinal Eye Res. – volume: 168 start-page: 114361 year: 2021 ident: b0015 article-title: A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images publication-title: Expert Syst. Appl. – year: 2021 ident: b0055 article-title: An efficient hybrid tunicate swarm algorithm and radial basis function searching technique for maximum power point tracking in wind energy conversion system publication-title: J. Eng. Des. Technol. – volume: 231 start-page: 166405 year: 2021 ident: b0100 article-title: COVIDetection-Net: A tailored COVID-19 detection from chest radiography images using deep learning publication-title: Optik – volume: 82 start-page: 100900 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0050 article-title: Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective publication-title: Prog. Retinal Eye Res. doi: 10.1016/j.preteyeres.2020.100900 – volume: 121 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0145 article-title: COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103805 – volume: 1 start-page: 7 issue: 1 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0070 article-title: Bald eagle search optimization algorithm for cluster head selection with prolong lifetime in wireless sensor network publication-title: J. Soft Computing Eng. Applications – volume: 8 start-page: 115041 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0120 article-title: Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-rays publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003810 – volume: 3 start-page: 7 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0030 article-title: Chinese experts’ consensus on the Internet of Things-aided diagnosis and treatment of coronavirus disease 2019 (COVID-19) publication-title: Clin. eHealth doi: 10.1016/j.ceh.2020.03.001 – volume: 41 start-page: 1751 issue: 3 year: 2022 ident: 10.1016/j.bspc.2022.104197_b0060 article-title: An efficient VLSI architecture for fast motion estimation exploiting zero motion prejudgment technique and a new quadrant-based search algorithm in HEVC publication-title: Circuits, Syst., Sig. Process. doi: 10.1007/s00034-021-01850-2 – volume: 376 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0140 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113609 – volume: 83 start-page: 9 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0045 article-title: AI applications to medical images: from machine learning to deep learning publication-title: Physica Med. doi: 10.1016/j.ejmp.2021.02.006 – volume: 8 start-page: e1427 issue: 11 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0020 article-title: Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study publication-title: Lan et Global Health doi: 10.1016/S2214-109X(20)30343-0 – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0065 – volume: 231 start-page: 166405 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0100 article-title: COVIDetection-Net: A tailored COVID-19 detection from chest radiography images using deep learning publication-title: Optik doi: 10.1016/j.ijleo.2021.166405 – ident: 10.1016/j.bspc.2022.104197_b0090 doi: 10.1007/978-981-15-8534-0_22 – volume: 165 start-page: 108046 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0075 article-title: Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning publication-title: Measurement doi: 10.1016/j.measurement.2020.108046 – year: 2020 ident: 10.1016/j.bspc.2022.104197_b0105 article-title: Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays publication-title: Irbm. – volume: 184 start-page: 115519 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0095 article-title: Detection of tuberculosis from chest X-ray images: boosting the performance with vision transformer and transfer learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115519 – year: 2021 ident: 10.1016/j.bspc.2022.104197_b0055 article-title: An efficient hybrid tunicate swarm algorithm and radial basis function searching technique for maximum power point tracking in wind energy conversion system publication-title: J. Eng. Des. Technol. – volume: 24 start-page: 3595 issue: 12 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0080 article-title: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on Chest X-Ray images publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2020.3037127 – volume: 168 start-page: 114361 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0015 article-title: A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114361 – start-page: 3145 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0180 article-title: Pseudo zernike moment and deep stacked sparse autoencoder for COVID-19 diagnosis publication-title: Cmc-Computers Mater. Continua doi: 10.32604/cmc.2021.018040 – volume: 140 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0170 article-title: CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2020.110245 – start-page: 105213 year: 2022 ident: 10.1016/j.bspc.2022.104197_b0160 article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data publication-title: Computers Biol. Med. doi: 10.1016/j.compbiomed.2022.105213 – volume: 20 start-page: 100391 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0010 article-title: Hybrid deep learning for detecting lung diseases from X-ray images publication-title: Inf. Med. Unlocked doi: 10.1016/j.imu.2020.100391 – volume: 20 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0035 article-title: Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study publication-title: BMC Infect. Dis. doi: 10.1186/s12879-020-05010-w – volume: 167 start-page: 285 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0125 article-title: Unified preprocessing and enhancement technique for mammogram images publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.223 – volume: 183 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0150 article-title: Automatic method for classifying COVID-19 patients based on chest X-ray images, using deep features and PSO-optimized XGBoost publication-title: Expert Syst. Appl. – volume: 168 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0155 article-title: A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114361 – volume: 17 start-page: 1625 issue: 5 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0130 article-title: A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy publication-title: Defence Technol. doi: 10.1016/j.dt.2020.09.001 – volume: 45 start-page: 1 issue: 7 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0175 article-title: Deep learning on chest x-ray images to detect and evaluate pneumonia cases at the era of covid-19 publication-title: J. Med. Syst. doi: 10.1007/s10916-021-01745-4 – volume: 746 start-page: 141158 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0025 article-title: Preventing carbon emission retaliatory rebound post-COVID-19 requires expanding free trade and improving energy efficiency publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141158 – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0110 article-title: A deep convolutional neural network for COVID-19 detection using chest X-rays publication-title: Res. Biomed. Eng. – volume: 20 start-page: 425 issue: 4 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0040 article-title: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study publication-title: Lancet. Infect. Dis doi: 10.1016/S1473-3099(20)30086-4 – volume: 50 start-page: 830 issue: 3 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0135 article-title: CLR-based deep convolutional spiking neural network with validation based stopping for time series classification publication-title: Appl. Intell. doi: 10.1007/s10489-019-01552-y – volume: 9 year: 2021 ident: 10.1016/j.bspc.2022.104197_b0185 article-title: Deep fractional max pooling neural network for COVID-19 recognition publication-title: Front. Public Health – volume: 122 year: 2022 ident: 10.1016/j.bspc.2022.104197_b0115 article-title: SARS-Net: COVID-19 detection from chest x-rays by combining graph convolutional network and convolutional neural network publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2021.108255 – volume: 126 start-page: 218 year: 2019 ident: 10.1016/j.bspc.2022.104197_b0165 article-title: A neuro-heuristic approach for recognition of lung diseases from X-ray images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.060 – volume: 8 start-page: 191586 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0005 article-title: Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031384 – volume: 40 start-page: 462 issue: 3 year: 2020 ident: 10.1016/j.bspc.2022.104197_b0085 article-title: Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-020-00529-4 |
SSID | ssj0048714 |
Score | 2.6010811 |
Snippet | •DCSNN optimized with AOA is proposed for Lung Disease Detection using Chest X-ray Images.•NIH chest X-ray image dataset is taken from Kaggle repository for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104197 |
SubjectTerms | Anisotropic Diffusion Filter Based Unsharp Masking and crispening Arithmetic Optimization Algorithm Chest X-ray images Deep Convolutional Spiking Neural Network classifier Empirical wavelet transform Lung Disease detection |
Title | Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images |
URI | https://dx.doi.org/10.1016/j.bspc.2022.104197 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QuMAB8RTjpRy4obI-krU9osE0QOwyJu1WJa2DiraugoEEB34Cvxm7TSeQEAculdI4VRVbtuPYnxk7dQMTpa6XOgayzBEeoB6MI-Nk2hM6CgECoNrhu2F3MBY3EzlZYb2mFobSKq3ur3V6pa3tm47dzU6Z550R-tLdCE8nPp2KpUew20KEJOXnH8s0D_THK3xvInaI2hbO1Dle-rkkGEPfp6tOj4CffjNO3wxOf5NtWE-RX9Q_s8VWoNhm69_wA3fY5yVAyXvz4tUKENKPypyi35xQN3A4rNO8-RxVwyx_h4xT5BW_is8ZFTA2MxWHuJo-zKspjs4sn6Im4PYKh2ewqNK2Ck658g-86rTFJ86TeuP5DNXS8y4b96_uewPHNlhw0sB1F45SQRbGoLUxMkDbbdA5khGhgGkjAM2bTlMvyowwEnzjU19yoZSQru6GXeWqYI-1inkB-4xHBnwdoqGTnhZpDFGMowCkH6pM-rFuM6_Z2SS16OPUBGOaNGlmjwlxIyFuJDU32uxsuaassTf-pJYNw5IfEpSgcfhj3cE_1x2yNWo9X4djjlhr8fQCx-igLPRJJYEnbPXi-nYw_AJrR-ih |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6FcCg9VEBbkbbAHrghK36tH0eUggKEXAApN2vXnkVGiWMlaaX2R_Q3d8ZeI5AQBy6W1rtjWTurb2Z3Z74BOHEDk-SulzsGi8IJPSQcTBPjFNoLdRIjBsi5wzfTaHwfXs3krAejLheGwyot9reY3qC1fTO0szmsy3J4S750lNDuxOddsfSiLdhmdirZh-2zy-vxtANkcskbim8e77CAzZ1pw7z0umYmQ9_n206PuZ9es0_PbM7FLnyyzqI4a_9nD3pY7cPHZxSCn-HfT8RajJbVb7uGaPxtXfIBuGDiDWpO20hvsSR0WJR_sRB8-EpfpeeCcxi7nkZJQs0flk2XIH9WzAkMhL3FEQVumsitSnC4_INoim2JmbNSf0S5IGRaf4H7i_O70dixNRacPHDdjaNUUMQpam2MDMh8G_KPZMJEYNqESBZO57mXFCY0En3jc2nyUKlQujqKI-Wq4Cv0q2WFByASg76OydZJT4d5iklKrQClH6tC-qkegNfNbJZbAnKugzHPukizx4y1kbE2slYbAzh9kqlb-o03R8tOYdmLRZSRfXhD7ts75Y7hw_juZpJNLqfX32GHK9G3pzM_oL9Z_cJD8lc2-siux_9kS-tS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Spiking+Neural+Network+optimized+with+Arithmetic+optimization+algorithm+for+lung+disease+detection+using+chest+X-ray+images&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Rajagopal%2C+R.&rft.au=Karthick%2C+R.&rft.au=Meenalochini%2C+P.&rft.au=Kalaichelvi%2C+T.&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=79&rft_id=info:doi/10.1016%2Fj.bspc.2022.104197&rft.externalDocID=S1746809422006516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |