Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images

•DCSNN optimized with AOA is proposed for Lung Disease Detection using Chest X-ray Images.•NIH chest X-ray image dataset is taken from Kaggle repository for detecting lung disease.•In feature extraction process, the empirical wavelet transform method is used.•Deep Convolutional Spiking Neural Networ...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 79; p. 104197
Main Authors Rajagopal, R., Karthick, R., Meenalochini, P., Kalaichelvi, T.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •DCSNN optimized with AOA is proposed for Lung Disease Detection using Chest X-ray Images.•NIH chest X-ray image dataset is taken from Kaggle repository for detecting lung disease.•In feature extraction process, the empirical wavelet transform method is used.•Deep Convolutional Spiking Neural Network classifier (DCSNN) for detecting lung diseases.•Weight with bias parameter of DCSNN is enhanced based upon Arithmetic Optimization Algorithm. Lung disease is a most common disease all over the world. A numerous feature extraction with classification models were discussed previously about the lung disease, but those methods having high over fitting problem, consequently, decrease the accuracy of detection. To overwhelm this issue, a Deep Convolutional Spiking Neural Network optimized with Arithmetic Optimization Algorithm is proposed in this manuscript for Lung Disease Detection using Chest X-ray Images as COVID-19, normal and viral pneumonia. Initially, NIH chest X-ray image dataset is taken from Kaggle repository for detecting lung disease. Then, the chest X-ray images are pre-processed using the Anisotropic Diffusion Filter Based Unsharp Masking and crispening scheme for removing noise and enhancing the image quality. These pre-processed outputs are fed to feature extraction. In feature extraction process, the empirical wavelet transform method is used. These extracted features are given into Deep Convolutional Spiking Neural Network classifier (DCSNN) for detecting lung diseases. Here, the weight with bias parameter of DCSNN is enhanced based upon Arithmetic Optimization Algorithm (AOA), which improves detection accuracy. The simulation is executed in MATLAB. The proposed LDC-DCSNN-AOA technique attains higher accuracy, higher Precision, higher F-Score analyzed with the existing techniques, like Lung disease detection using Support Vector Machines optimized with Social Mimic Optimization (LDC-SVM-SMO), Lung disease detection using eXtreme Gradient Boosting optimized by particle swarm optimization (LDC-XGBoost-PSO), Lung disease detection using neuro-fuzzy classifier optimized with multi-objective genetic algorithm (LDC-NFC-MOGA), Lung disease detection using convolutional neural network optimized with Bayesian optimization LDC –CNN-BOA respectively.
AbstractList •DCSNN optimized with AOA is proposed for Lung Disease Detection using Chest X-ray Images.•NIH chest X-ray image dataset is taken from Kaggle repository for detecting lung disease.•In feature extraction process, the empirical wavelet transform method is used.•Deep Convolutional Spiking Neural Network classifier (DCSNN) for detecting lung diseases.•Weight with bias parameter of DCSNN is enhanced based upon Arithmetic Optimization Algorithm. Lung disease is a most common disease all over the world. A numerous feature extraction with classification models were discussed previously about the lung disease, but those methods having high over fitting problem, consequently, decrease the accuracy of detection. To overwhelm this issue, a Deep Convolutional Spiking Neural Network optimized with Arithmetic Optimization Algorithm is proposed in this manuscript for Lung Disease Detection using Chest X-ray Images as COVID-19, normal and viral pneumonia. Initially, NIH chest X-ray image dataset is taken from Kaggle repository for detecting lung disease. Then, the chest X-ray images are pre-processed using the Anisotropic Diffusion Filter Based Unsharp Masking and crispening scheme for removing noise and enhancing the image quality. These pre-processed outputs are fed to feature extraction. In feature extraction process, the empirical wavelet transform method is used. These extracted features are given into Deep Convolutional Spiking Neural Network classifier (DCSNN) for detecting lung diseases. Here, the weight with bias parameter of DCSNN is enhanced based upon Arithmetic Optimization Algorithm (AOA), which improves detection accuracy. The simulation is executed in MATLAB. The proposed LDC-DCSNN-AOA technique attains higher accuracy, higher Precision, higher F-Score analyzed with the existing techniques, like Lung disease detection using Support Vector Machines optimized with Social Mimic Optimization (LDC-SVM-SMO), Lung disease detection using eXtreme Gradient Boosting optimized by particle swarm optimization (LDC-XGBoost-PSO), Lung disease detection using neuro-fuzzy classifier optimized with multi-objective genetic algorithm (LDC-NFC-MOGA), Lung disease detection using convolutional neural network optimized with Bayesian optimization LDC –CNN-BOA respectively.
ArticleNumber 104197
Author Rajagopal, R.
Kalaichelvi, T.
Karthick, R.
Meenalochini, P.
Author_xml – sequence: 1
  givenname: R.
  surname: Rajagopal
  fullname: Rajagopal, R.
  email: r.rajagopal1234@yahoo.com
  organization: Associate Professor, Department of Electrical and Electronics Engineering, Francis Xavier Engineering College, Vannarapettai, Tirunelveli, Tamilnadu, 627003, India
– sequence: 2
  givenname: R.
  surname: Karthick
  fullname: Karthick, R.
  email: karthickkiwi@gmail.com
  organization: Associate Professor, Department of Computer Science and Engineering, K.L.N. College of Engineering, Pottapalayam, Sivagangai, Tamilnadu, 630 612, India
– sequence: 3
  givenname: P.
  surname: Meenalochini
  fullname: Meenalochini, P.
  email: meenalochinip@gmail.com
  organization: Associate Professor, Department of Electrical and Electronics Engineering, Sethu Institute of Technology, Kariapatti, Virudhunagar, Tamil Nadu, 626115, India
– sequence: 4
  givenname: T.
  surname: Kalaichelvi
  fullname: Kalaichelvi, T.
  organization: Department of Artificial Intelligence and Data Science (AI&DS), Panimalar Engineering College, Chennai 600123, India
BookMark eNp9kM1uAiEQgEljk6rtC_TEC6yFXfYv6cXY38TYQ9ukN8Kyg6LrsgHU2IfoM3dX66UHLwzM8A3DN0C92tSA0C0lI0pocrccFa6Ro5CEYZtgNE8vUJ-mLAkySrLeaU9ydoUGzi0JYVlKWR_9PAA0eGLqrak2XptaVPi90Stdz_EMNrY9zsDvjF1h03i91t9Q4p32Czy27boGr-WpIjoei2puDiWsjMXVpm1UagfCAS7Bgzxc2rjuAbkA5_FXYMUe67WYg7tGl0pUDm7-4hB9Pj1-TF6C6dvz62Q8DWREiA-EiMo0h6JQKo7CKFMJY3FGWEQKxYDRqJCSZqViKoZQhVmax0wIFpMiSRNBRDRE2bGvtMY5C4pL7Q_zeyt0xSnhnVe-5J1X3nnlR68tGv5DG9sOb_fnofsjBO2nthosd1JDLaHUtlXCS6PP4b-xS5fr
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3373000
crossref_primary_10_1007_s11831_024_10081_y
crossref_primary_10_1002_qre_3530
crossref_primary_10_1080_0954898X_2024_2354477
crossref_primary_10_1080_0954898X_2024_2339477
crossref_primary_10_1016_j_bspc_2023_105000
crossref_primary_10_1016_j_bspc_2024_107104
crossref_primary_10_1007_s11760_023_02701_0
crossref_primary_10_1080_03772063_2023_2297382
crossref_primary_10_1016_j_inffus_2023_101859
crossref_primary_10_1007_s11517_023_03001_y
crossref_primary_10_1109_ACCESS_2023_3262167
crossref_primary_10_1080_03772063_2023_2233465
crossref_primary_10_1007_s10489_024_05420_2
crossref_primary_10_1016_j_swevo_2023_101430
crossref_primary_10_1049_cit2_12356
crossref_primary_10_1080_15368378_2024_2321352
crossref_primary_10_1007_s11042_024_18301_0
crossref_primary_10_1007_s11517_023_02973_1
crossref_primary_10_1080_03772063_2025_2452339
crossref_primary_10_1007_s11276_024_03769_3
crossref_primary_10_1007_s11042_023_17767_8
crossref_primary_10_1007_s12083_024_01685_z
crossref_primary_10_1007_s00202_025_02958_3
crossref_primary_10_1016_j_bspc_2024_106701
crossref_primary_10_1016_j_bbe_2024_06_001
crossref_primary_10_1007_s10668_024_05507_3
crossref_primary_10_1016_j_bspc_2024_107157
crossref_primary_10_3390_math11132891
crossref_primary_10_1016_j_bspc_2023_105597
crossref_primary_10_1016_j_compbiomed_2025_109708
crossref_primary_10_1007_s11831_023_09902_3
crossref_primary_10_1016_j_tws_2024_112631
crossref_primary_10_1002_jemt_24727
crossref_primary_10_1016_j_cmpbup_2024_100171
crossref_primary_10_1016_j_bspc_2025_107607
crossref_primary_10_1177_30504554251319447
crossref_primary_10_1002_dac_5970
crossref_primary_10_1002_dac_70011
crossref_primary_10_1016_j_knosys_2025_113084
crossref_primary_10_1016_j_eswa_2023_122054
crossref_primary_10_1016_j_knosys_2025_113000
crossref_primary_10_1002_acs_3985
crossref_primary_10_1049_ipr2_13246
crossref_primary_10_1186_s12883_024_04001_7
crossref_primary_10_1007_s11760_024_03332_9
crossref_primary_10_1007_s13755_024_00284_9
crossref_primary_10_1007_s10668_025_05977_z
crossref_primary_10_3390_electronics13040746
crossref_primary_10_1109_ACCESS_2024_3450194
crossref_primary_10_1007_s00500_024_09872_z
crossref_primary_10_1016_j_bspc_2023_105268
crossref_primary_10_3390_s24123980
crossref_primary_10_1016_j_bspc_2025_107569
crossref_primary_10_1016_j_est_2024_114997
crossref_primary_10_3233_JIFS_235607
crossref_primary_10_1016_j_compbiomed_2024_108847
crossref_primary_10_1007_s00202_024_02813_x
crossref_primary_10_3390_s24030958
crossref_primary_10_1002_jemt_24739
crossref_primary_10_1007_s11042_023_17371_w
crossref_primary_10_1007_s11042_023_17084_0
crossref_primary_10_1016_j_eswa_2023_122987
crossref_primary_10_1016_j_solener_2024_112855
crossref_primary_10_1016_j_neunet_2024_106154
crossref_primary_10_1016_j_knosys_2025_113194
crossref_primary_10_1080_03772063_2024_2315208
crossref_primary_10_1002_dac_5825
crossref_primary_10_1002_oca_3066
crossref_primary_10_3390_diagnostics12123034
crossref_primary_10_1002_jemt_24550
crossref_primary_10_1007_s10668_024_05195_z
crossref_primary_10_1016_j_est_2025_115465
crossref_primary_10_1016_j_vlsi_2025_102408
crossref_primary_10_1016_j_bbe_2023_06_003
crossref_primary_10_3934_mbe_2023896
crossref_primary_10_1002_dac_6041
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_1016_j_est_2024_113353
crossref_primary_10_1002_ett_4968
crossref_primary_10_1007_s11831_024_10141_3
crossref_primary_10_1177_0958305X241276833
crossref_primary_10_1080_03772063_2024_2428736
crossref_primary_10_1177_09544119241293007
crossref_primary_10_3390_bioengineering11100993
Cites_doi 10.1016/j.preteyeres.2020.100900
10.1016/j.compbiomed.2020.103805
10.1109/ACCESS.2020.3003810
10.1016/j.ceh.2020.03.001
10.1007/s00034-021-01850-2
10.1016/j.cma.2020.113609
10.1016/j.ejmp.2021.02.006
10.1016/S2214-109X(20)30343-0
10.1016/j.ijleo.2021.166405
10.1007/978-981-15-8534-0_22
10.1016/j.measurement.2020.108046
10.1016/j.eswa.2021.115519
10.1109/JBHI.2020.3037127
10.1016/j.eswa.2020.114361
10.32604/cmc.2021.018040
10.1016/j.chaos.2020.110245
10.1016/j.compbiomed.2022.105213
10.1016/j.imu.2020.100391
10.1186/s12879-020-05010-w
10.1016/j.procs.2020.03.223
10.1016/j.dt.2020.09.001
10.1007/s10916-021-01745-4
10.1016/j.scitotenv.2020.141158
10.1016/S1473-3099(20)30086-4
10.1007/s10489-019-01552-y
10.1016/j.patcog.2021.108255
10.1016/j.eswa.2019.01.060
10.1109/ACCESS.2020.3031384
10.1007/s40846-020-00529-4
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.104197
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_104197
S1746809422006516
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-aa3d79ebbff53238f644580430bf4e413bcc18df4f5e2f287954aa450b676a0a3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 22:52:21 EDT 2025
Tue Jul 01 01:34:15 EDT 2025
Tue Jul 16 04:31:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Arithmetic Optimization Algorithm
Empirical wavelet transform
Deep Convolutional Spiking Neural Network classifier
Lung Disease detection
Chest X-ray images
Anisotropic Diffusion Filter Based Unsharp Masking and crispening
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-aa3d79ebbff53238f644580430bf4e413bcc18df4f5e2f287954aa450b676a0a3
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2022_104197
crossref_primary_10_1016_j_bspc_2022_104197
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_104197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ouchicha, Ammor, Meknassi (b0170) 2020; 140
Elkorany, Elsharkawy (b0100) 2021; 231
Loey, El-Sappagh, Mirjalili (b0160) 2022
Lee, Bing, Kiang, Bashir, Spath, Stelzle, Mortimer, Bularga, Doudesis, Joshi, Strachan, Gumy, Adair-Rohani, Attia, Chung, Miller, Newby, Mills, McAllister, Shah (b0020) 2020; 8
Gautam, Singh (b0135) 2020; 50
Júnior, da Cruz, Diniz, da Silva, Junior, Silva, de Paiva, Nunes, Gattass (b0150) 2021; 183
Rajesh, Shajin, Cherukupalli (b0055) 2021
Wang, Wang (b0025) 2020; 746
Varela-Santos, Melin (b0015) 2021; 168
Rajesh, Shajin, Mouli Chandra, Kommula (b0065) 2021
Zhang, Khan, Zhu, Wang (b0180) 2021
Duong, Le, Tran, Ngo, Nguyen (b0095) 2021; 184
Bassi, Attux (b0110) 2021
Wang, Satapathy, Anderson, Chen, Zhang (b0185) 2021; 9
Toğaçar, Ergen, Cömert (b0145) 2020; 121
Varela-Santos, Melin (b0155) 2021; 168
Rajaraman, Siegelman, Alderson, Folio, Folio, Antani (b0120) 2020; 8
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b0140) 2021; 376
Apostolopoulos, Aznaouridis, Tzani (b0085) 2020; 40
Zhao, Xu, Yin, Hu, Xiong, Tang, Yang, Yu, Huang (b0035) 2020; 20
Hammoudi, Benhabiles, Melkemi, Dornaika, Arganda-Carreras, Collard, Scherpereel (b0175) 2021; 45
Li, Jiao, Gao (b0130) 2021; 17
Das, Kumar, Kaur, Kumar, Singh (b0105) 2020
Bharati, Podder, Mondal (b0010) 2020; 20
Shajin, Rajesh, Thilaha (b0070) 2020; 1
Tripathy, Swarnkar (b0125) 2020; 167
Bai, Yang, Wang, Tong, Zhu, Zhong, Bai, Powell, Chen, Zhou, Song, Zhou, Zhu, Han, Li, Shi, Li, Wang, Qiu, Zhang, Xu, Liu, Zhang, Wu, Li, Yu, Wang, Dong, Wang, Wang, Zhang, Zhang, Ma, Zhao, Yu, Xu, Jin, Wang, Wang, Jiang, Chen, Xiao, Zhang, Song, Zhang, Wu, Sun, Shen, Ye, Tu, Jiang, Yu, Tan (b0030) 2020; 3
Castiglioni, Rundo, Codari, Di Leo, Salvatore, Interlenghi, Gallivanone, Cozzi, D'Amico, Sardanelli (b0045) 2021; 83
S.N. Kumar, A. Lenin Fred, L.R. Jonisha Miriam, P. Padmanabhan, B. Gulyas, H.A. Kumar, Non Linear Tensor Diffusion Based Unsharp Masking for Filtering of COVID-19 CT Images, in: Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Springer, Singapore, 2021, pp. 415-436.
Shi, Han, Jiang, Cao, Alwalid, Gu, Fan, Zheng (b0040) 2020; 20
Kumar, Tripathi, Satapathy, Zhang (b0115) 2022; 122
Rahman, Khandakar, Kadir, Islam, Islam, Mazhar, Hamid, Islam, Kashem, Mahbub, Ayari, Chowdhury (b0005) 2020; 8
Shajin, Rajesh, Raja (b0060) 2022; 41
Li, Liu, Ting, Jeon, Chan, Kim, Sim, Thomas, Lin, Chen, Sakomoto, Loewenstein, Lam, Pasquale, Wong, Lam, Ting (b0050) 2021; 82
Jain, Nagrath, Kataria, Sirish Kaushik, Jude Hemanth (b0075) 2020; 165
Ke, Zhang, Wei, Połap, Woźniak, Kośmider, Damaševĭcius (b0165) 2019; 126
Tabik, Gomez-Rios, Martin-Rodriguez, Sevillano-Garcia, Rey-Area, Charte, Guirado, Suarez, Luengo, Valero-Gonzalez, Garcia-Villanova, Olmedo-Sanchez, Herrera (b0080) 2020; 24
Apostolopoulos (10.1016/j.bspc.2022.104197_b0085) 2020; 40
Bassi (10.1016/j.bspc.2022.104197_b0110) 2021
Bai (10.1016/j.bspc.2022.104197_b0030) 2020; 3
Abualigah (10.1016/j.bspc.2022.104197_b0140) 2021; 376
Toğaçar (10.1016/j.bspc.2022.104197_b0145) 2020; 121
Li (10.1016/j.bspc.2022.104197_b0050) 2021; 82
10.1016/j.bspc.2022.104197_b0090
Varela-Santos (10.1016/j.bspc.2022.104197_b0155) 2021; 168
Tripathy (10.1016/j.bspc.2022.104197_b0125) 2020; 167
Júnior (10.1016/j.bspc.2022.104197_b0150) 2021; 183
Zhang (10.1016/j.bspc.2022.104197_b0180) 2021
Ouchicha (10.1016/j.bspc.2022.104197_b0170) 2020; 140
Shajin (10.1016/j.bspc.2022.104197_b0060) 2022; 41
Varela-Santos (10.1016/j.bspc.2022.104197_b0015) 2021; 168
Rahman (10.1016/j.bspc.2022.104197_b0005) 2020; 8
Tabik (10.1016/j.bspc.2022.104197_b0080) 2020; 24
Kumar (10.1016/j.bspc.2022.104197_b0115) 2022; 122
Das (10.1016/j.bspc.2022.104197_b0105) 2020
Jain (10.1016/j.bspc.2022.104197_b0075) 2020; 165
Elkorany (10.1016/j.bspc.2022.104197_b0100) 2021; 231
Loey (10.1016/j.bspc.2022.104197_b0160) 2022
Castiglioni (10.1016/j.bspc.2022.104197_b0045) 2021; 83
Wang (10.1016/j.bspc.2022.104197_b0185) 2021; 9
Zhao (10.1016/j.bspc.2022.104197_b0035) 2020; 20
Wang (10.1016/j.bspc.2022.104197_b0025) 2020; 746
Lee (10.1016/j.bspc.2022.104197_b0020) 2020; 8
Rajesh (10.1016/j.bspc.2022.104197_b0065) 2021
Rajesh (10.1016/j.bspc.2022.104197_b0055) 2021
Bharati (10.1016/j.bspc.2022.104197_b0010) 2020; 20
Gautam (10.1016/j.bspc.2022.104197_b0135) 2020; 50
Shajin (10.1016/j.bspc.2022.104197_b0070) 2020; 1
Duong (10.1016/j.bspc.2022.104197_b0095) 2021; 184
Rajaraman (10.1016/j.bspc.2022.104197_b0120) 2020; 8
Li (10.1016/j.bspc.2022.104197_b0130) 2021; 17
Shi (10.1016/j.bspc.2022.104197_b0040) 2020; 20
Hammoudi (10.1016/j.bspc.2022.104197_b0175) 2021; 45
Ke (10.1016/j.bspc.2022.104197_b0165) 2019; 126
References_xml – volume: 8
  start-page: 115041
  year: 2020
  end-page: 115050
  ident: b0120
  article-title: Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-rays
  publication-title: IEEE Access
– volume: 746
  start-page: 141158
  year: 2020
  ident: b0025
  article-title: Preventing carbon emission retaliatory rebound post-COVID-19 requires expanding free trade and improving energy efficiency
  publication-title: Sci. Total Environ.
– start-page: 1
  year: 2021
  end-page: 10
  ident: b0110
  article-title: A deep convolutional neural network for COVID-19 detection using chest X-rays
  publication-title: Res. Biomed. Eng.
– volume: 20
  start-page: 100391
  year: 2020
  ident: b0010
  article-title: Hybrid deep learning for detecting lung diseases from X-ray images
  publication-title: Inf. Med. Unlocked
– volume: 167
  start-page: 285
  year: 2020
  end-page: 292
  ident: b0125
  article-title: Unified preprocessing and enhancement technique for mammogram images
  publication-title: Procedia Comput. Sci.
– volume: 20
  start-page: 425
  year: 2020
  end-page: 434
  ident: b0040
  article-title: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study
  publication-title: Lancet. Infect. Dis
– volume: 376
  year: 2021
  ident: b0140
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 122
  year: 2022
  ident: b0115
  article-title: SARS-Net: COVID-19 detection from chest x-rays by combining graph convolutional network and convolutional neural network
  publication-title: Pattern Recogn.
– volume: 8
  start-page: 191586
  year: 2020
  end-page: 191601
  ident: b0005
  article-title: Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization
  publication-title: IEEE Access
– start-page: 3145
  year: 2021
  end-page: 3162
  ident: b0180
  article-title: Pseudo zernike moment and deep stacked sparse autoencoder for COVID-19 diagnosis
  publication-title: Cmc-Computers Mater. Continua
– volume: 24
  start-page: 3595
  year: 2020
  end-page: 3605
  ident: b0080
  article-title: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on Chest X-Ray images
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 8
  ident: b0035
  article-title: Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study
  publication-title: BMC Infect. Dis.
– volume: 183
  year: 2021
  ident: b0150
  article-title: Automatic method for classifying COVID-19 patients based on chest X-ray images, using deep features and PSO-optimized XGBoost
  publication-title: Expert Syst. Appl.
– volume: 168
  year: 2021
  ident: b0155
  article-title: A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b0105
  article-title: Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays
  publication-title: Irbm.
– volume: 3
  start-page: 7
  year: 2020
  end-page: 15
  ident: b0030
  article-title: Chinese experts’ consensus on the Internet of Things-aided diagnosis and treatment of coronavirus disease 2019 (COVID-19)
  publication-title: Clin. eHealth
– volume: 8
  start-page: e1427
  year: 2020
  end-page: e1434
  ident: b0020
  article-title: Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study
  publication-title: Lan et Global Health
– start-page: 1
  year: 2021
  end-page: 19
  ident: b0065
  article-title: Diminishing Energy Consumption Cost and Optimal Energy Management of Photovoltaic Aided Electric Vehicle (PV-EV) By GFO-VITG Approach
– volume: 165
  start-page: 108046
  year: 2020
  ident: b0075
  article-title: Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning
  publication-title: Measurement
– volume: 40
  start-page: 462
  year: 2020
  end-page: 469
  ident: b0085
  article-title: Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases
  publication-title: J. Med. Biol. Eng.
– volume: 126
  start-page: 218
  year: 2019
  end-page: 232
  ident: b0165
  article-title: A neuro-heuristic approach for recognition of lung diseases from X-ray images
  publication-title: Expert Syst. Appl.
– reference: S.N. Kumar, A. Lenin Fred, L.R. Jonisha Miriam, P. Padmanabhan, B. Gulyas, H.A. Kumar, Non Linear Tensor Diffusion Based Unsharp Masking for Filtering of COVID-19 CT Images, in: Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Springer, Singapore, 2021, pp. 415-436.
– volume: 41
  start-page: 1751
  year: 2022
  end-page: 1774
  ident: b0060
  article-title: An efficient VLSI architecture for fast motion estimation exploiting zero motion prejudgment technique and a new quadrant-based search algorithm in HEVC
  publication-title: Circuits, Syst., Sig. Process.
– volume: 9
  year: 2021
  ident: b0185
  article-title: Deep fractional max pooling neural network for COVID-19 recognition
  publication-title: Front. Public Health
– volume: 1
  start-page: 7
  year: 2020
  ident: b0070
  article-title: Bald eagle search optimization algorithm for cluster head selection with prolong lifetime in wireless sensor network
  publication-title: J. Soft Computing Eng. Applications
– volume: 45
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0175
  article-title: Deep learning on chest x-ray images to detect and evaluate pneumonia cases at the era of covid-19
  publication-title: J. Med. Syst.
– volume: 83
  start-page: 9
  year: 2021
  end-page: 24
  ident: b0045
  article-title: AI applications to medical images: from machine learning to deep learning
  publication-title: Physica Med.
– volume: 140
  year: 2020
  ident: b0170
  article-title: CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images
  publication-title: Chaos, Solitons Fractals
– volume: 50
  start-page: 830
  year: 2020
  end-page: 848
  ident: b0135
  article-title: CLR-based deep convolutional spiking neural network with validation based stopping for time series classification
  publication-title: Appl. Intell.
– volume: 121
  year: 2020
  ident: b0145
  article-title: COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches
  publication-title: Comput. Biol. Med.
– volume: 17
  start-page: 1625
  year: 2021
  end-page: 1635
  ident: b0130
  article-title: A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy
  publication-title: Defence Technol.
– start-page: 105213
  year: 2022
  ident: b0160
  article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
  publication-title: Computers Biol. Med.
– volume: 184
  start-page: 115519
  year: 2021
  ident: b0095
  article-title: Detection of tuberculosis from chest X-ray images: boosting the performance with vision transformer and transfer learning
  publication-title: Expert Syst. Appl.
– volume: 82
  start-page: 100900
  year: 2021
  ident: b0050
  article-title: Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective
  publication-title: Prog. Retinal Eye Res.
– volume: 168
  start-page: 114361
  year: 2021
  ident: b0015
  article-title: A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images
  publication-title: Expert Syst. Appl.
– year: 2021
  ident: b0055
  article-title: An efficient hybrid tunicate swarm algorithm and radial basis function searching technique for maximum power point tracking in wind energy conversion system
  publication-title: J. Eng. Des. Technol.
– volume: 231
  start-page: 166405
  year: 2021
  ident: b0100
  article-title: COVIDetection-Net: A tailored COVID-19 detection from chest radiography images using deep learning
  publication-title: Optik
– volume: 82
  start-page: 100900
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0050
  article-title: Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective
  publication-title: Prog. Retinal Eye Res.
  doi: 10.1016/j.preteyeres.2020.100900
– volume: 121
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0145
  article-title: COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103805
– volume: 1
  start-page: 7
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0070
  article-title: Bald eagle search optimization algorithm for cluster head selection with prolong lifetime in wireless sensor network
  publication-title: J. Soft Computing Eng. Applications
– volume: 8
  start-page: 115041
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0120
  article-title: Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-rays
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003810
– volume: 3
  start-page: 7
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0030
  article-title: Chinese experts’ consensus on the Internet of Things-aided diagnosis and treatment of coronavirus disease 2019 (COVID-19)
  publication-title: Clin. eHealth
  doi: 10.1016/j.ceh.2020.03.001
– volume: 41
  start-page: 1751
  issue: 3
  year: 2022
  ident: 10.1016/j.bspc.2022.104197_b0060
  article-title: An efficient VLSI architecture for fast motion estimation exploiting zero motion prejudgment technique and a new quadrant-based search algorithm in HEVC
  publication-title: Circuits, Syst., Sig. Process.
  doi: 10.1007/s00034-021-01850-2
– volume: 376
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0140
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113609
– volume: 83
  start-page: 9
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0045
  article-title: AI applications to medical images: from machine learning to deep learning
  publication-title: Physica Med.
  doi: 10.1016/j.ejmp.2021.02.006
– volume: 8
  start-page: e1427
  issue: 11
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0020
  article-title: Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study
  publication-title: Lan et Global Health
  doi: 10.1016/S2214-109X(20)30343-0
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0065
– volume: 231
  start-page: 166405
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0100
  article-title: COVIDetection-Net: A tailored COVID-19 detection from chest radiography images using deep learning
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.166405
– ident: 10.1016/j.bspc.2022.104197_b0090
  doi: 10.1007/978-981-15-8534-0_22
– volume: 165
  start-page: 108046
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0075
  article-title: Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108046
– year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0105
  article-title: Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays
  publication-title: Irbm.
– volume: 184
  start-page: 115519
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0095
  article-title: Detection of tuberculosis from chest X-ray images: boosting the performance with vision transformer and transfer learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115519
– year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0055
  article-title: An efficient hybrid tunicate swarm algorithm and radial basis function searching technique for maximum power point tracking in wind energy conversion system
  publication-title: J. Eng. Des. Technol.
– volume: 24
  start-page: 3595
  issue: 12
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0080
  article-title: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on Chest X-Ray images
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2020.3037127
– volume: 168
  start-page: 114361
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0015
  article-title: A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114361
– start-page: 3145
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0180
  article-title: Pseudo zernike moment and deep stacked sparse autoencoder for COVID-19 diagnosis
  publication-title: Cmc-Computers Mater. Continua
  doi: 10.32604/cmc.2021.018040
– volume: 140
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0170
  article-title: CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.110245
– start-page: 105213
  year: 2022
  ident: 10.1016/j.bspc.2022.104197_b0160
  article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
  publication-title: Computers Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105213
– volume: 20
  start-page: 100391
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0010
  article-title: Hybrid deep learning for detecting lung diseases from X-ray images
  publication-title: Inf. Med. Unlocked
  doi: 10.1016/j.imu.2020.100391
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0035
  article-title: Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-020-05010-w
– volume: 167
  start-page: 285
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0125
  article-title: Unified preprocessing and enhancement technique for mammogram images
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.223
– volume: 183
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0150
  article-title: Automatic method for classifying COVID-19 patients based on chest X-ray images, using deep features and PSO-optimized XGBoost
  publication-title: Expert Syst. Appl.
– volume: 168
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0155
  article-title: A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114361
– volume: 17
  start-page: 1625
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0130
  article-title: A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy
  publication-title: Defence Technol.
  doi: 10.1016/j.dt.2020.09.001
– volume: 45
  start-page: 1
  issue: 7
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0175
  article-title: Deep learning on chest x-ray images to detect and evaluate pneumonia cases at the era of covid-19
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-021-01745-4
– volume: 746
  start-page: 141158
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0025
  article-title: Preventing carbon emission retaliatory rebound post-COVID-19 requires expanding free trade and improving energy efficiency
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141158
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0110
  article-title: A deep convolutional neural network for COVID-19 detection using chest X-rays
  publication-title: Res. Biomed. Eng.
– volume: 20
  start-page: 425
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0040
  article-title: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study
  publication-title: Lancet. Infect. Dis
  doi: 10.1016/S1473-3099(20)30086-4
– volume: 50
  start-page: 830
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0135
  article-title: CLR-based deep convolutional spiking neural network with validation based stopping for time series classification
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01552-y
– volume: 9
  year: 2021
  ident: 10.1016/j.bspc.2022.104197_b0185
  article-title: Deep fractional max pooling neural network for COVID-19 recognition
  publication-title: Front. Public Health
– volume: 122
  year: 2022
  ident: 10.1016/j.bspc.2022.104197_b0115
  article-title: SARS-Net: COVID-19 detection from chest x-rays by combining graph convolutional network and convolutional neural network
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2021.108255
– volume: 126
  start-page: 218
  year: 2019
  ident: 10.1016/j.bspc.2022.104197_b0165
  article-title: A neuro-heuristic approach for recognition of lung diseases from X-ray images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.060
– volume: 8
  start-page: 191586
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0005
  article-title: Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031384
– volume: 40
  start-page: 462
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2022.104197_b0085
  article-title: Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-020-00529-4
SSID ssj0048714
Score 2.6010811
Snippet •DCSNN optimized with AOA is proposed for Lung Disease Detection using Chest X-ray Images.•NIH chest X-ray image dataset is taken from Kaggle repository for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104197
SubjectTerms Anisotropic Diffusion Filter Based Unsharp Masking and crispening
Arithmetic Optimization Algorithm
Chest X-ray images
Deep Convolutional Spiking Neural Network classifier
Empirical wavelet transform
Lung Disease detection
Title Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images
URI https://dx.doi.org/10.1016/j.bspc.2022.104197
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QuMAB8RTjpRy4obI-krU9osE0QOwyJu1WJa2DiraugoEEB34Cvxm7TSeQEAculdI4VRVbtuPYnxk7dQMTpa6XOgayzBEeoB6MI-Nk2hM6CgECoNrhu2F3MBY3EzlZYb2mFobSKq3ur3V6pa3tm47dzU6Z550R-tLdCE8nPp2KpUew20KEJOXnH8s0D_THK3xvInaI2hbO1Dle-rkkGEPfp6tOj4CffjNO3wxOf5NtWE-RX9Q_s8VWoNhm69_wA3fY5yVAyXvz4tUKENKPypyi35xQN3A4rNO8-RxVwyx_h4xT5BW_is8ZFTA2MxWHuJo-zKspjs4sn6Im4PYKh2ewqNK2Ck658g-86rTFJ86TeuP5DNXS8y4b96_uewPHNlhw0sB1F45SQRbGoLUxMkDbbdA5khGhgGkjAM2bTlMvyowwEnzjU19yoZSQru6GXeWqYI-1inkB-4xHBnwdoqGTnhZpDFGMowCkH6pM-rFuM6_Z2SS16OPUBGOaNGlmjwlxIyFuJDU32uxsuaassTf-pJYNw5IfEpSgcfhj3cE_1x2yNWo9X4djjlhr8fQCx-igLPRJJYEnbPXi-nYw_AJrR-ih
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6FcCg9VEBbkbbAHrghK36tH0eUggKEXAApN2vXnkVGiWMlaaX2R_Q3d8ZeI5AQBy6W1rtjWTurb2Z3Z74BOHEDk-SulzsGi8IJPSQcTBPjFNoLdRIjBsi5wzfTaHwfXs3krAejLheGwyot9reY3qC1fTO0szmsy3J4S750lNDuxOddsfSiLdhmdirZh-2zy-vxtANkcskbim8e77CAzZ1pw7z0umYmQ9_n206PuZ9es0_PbM7FLnyyzqI4a_9nD3pY7cPHZxSCn-HfT8RajJbVb7uGaPxtXfIBuGDiDWpO20hvsSR0WJR_sRB8-EpfpeeCcxi7nkZJQs0flk2XIH9WzAkMhL3FEQVumsitSnC4_INoim2JmbNSf0S5IGRaf4H7i_O70dixNRacPHDdjaNUUMQpam2MDMh8G_KPZMJEYNqESBZO57mXFCY0En3jc2nyUKlQujqKI-Wq4Cv0q2WFByASg76OydZJT4d5iklKrQClH6tC-qkegNfNbJZbAnKugzHPukizx4y1kbE2slYbAzh9kqlb-o03R8tOYdmLRZSRfXhD7ts75Y7hw_juZpJNLqfX32GHK9G3pzM_oL9Z_cJD8lc2-siux_9kS-tS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Spiking+Neural+Network+optimized+with+Arithmetic+optimization+algorithm+for+lung+disease+detection+using+chest+X-ray+images&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Rajagopal%2C+R.&rft.au=Karthick%2C+R.&rft.au=Meenalochini%2C+P.&rft.au=Kalaichelvi%2C+T.&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=79&rft_id=info:doi/10.1016%2Fj.bspc.2022.104197&rft.externalDocID=S1746809422006516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon