Unsupervised multi-source domain adaptation via contrastive learning for EEG classification
Individual differences in electroencephalography (EEG) present significant challenges for subject-independent EEG classification in brain–computer interfaces (BCIs). Existing domain adaptation methods often address individual differences by merging all source domains indistinguishably into a single...
Saved in:
Published in | Expert systems with applications Vol. 261; p. 125452 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Individual differences in electroencephalography (EEG) present significant challenges for subject-independent EEG classification in brain–computer interfaces (BCIs). Existing domain adaptation methods often address individual differences by merging all source domains indistinguishably into a single source and aligning features between this aggregate source and the target domain. Neglecting the relationships between different source domains would hinder the model’s adaptability and generalization. Therefore, we propose a method called Contrastive Learning-based Unsupervised multi-source Domain Adaptation (CLUDA) for learning subject-independent representations in motor imagery. Our method not only aligns the conditional distributions of each source domain with the target domain but also reduces discrepancies among the source domains using contrastive learning, thus learning more generalized domain-invariant representations. Specifically, CLUDA effectively eliminates semantic variances by maximizing the similarity between positive pairs (same class) and minimizing the similarity between negative pairs (different classes) across subjects. Finally, we validated CLUDA on four motor imagery datasets and consistently achieved state-of-the-art performance.
•We propose a novel unsupervised multi-source domain adaptation framework to effectively learn subject-invariant representations for EEG-based motor imagery.•We utilize contrastive learning to address each source-target and inter-source variability in the multi-source domain adaptation process, facilitating learning subject-independent representations.•We have validated the proposed method on four motor imagery datasets. The experimental results demonstrate the superior performance of our method. |
---|---|
AbstractList | Individual differences in electroencephalography (EEG) present significant challenges for subject-independent EEG classification in brain–computer interfaces (BCIs). Existing domain adaptation methods often address individual differences by merging all source domains indistinguishably into a single source and aligning features between this aggregate source and the target domain. Neglecting the relationships between different source domains would hinder the model’s adaptability and generalization. Therefore, we propose a method called Contrastive Learning-based Unsupervised multi-source Domain Adaptation (CLUDA) for learning subject-independent representations in motor imagery. Our method not only aligns the conditional distributions of each source domain with the target domain but also reduces discrepancies among the source domains using contrastive learning, thus learning more generalized domain-invariant representations. Specifically, CLUDA effectively eliminates semantic variances by maximizing the similarity between positive pairs (same class) and minimizing the similarity between negative pairs (different classes) across subjects. Finally, we validated CLUDA on four motor imagery datasets and consistently achieved state-of-the-art performance.
•We propose a novel unsupervised multi-source domain adaptation framework to effectively learn subject-invariant representations for EEG-based motor imagery.•We utilize contrastive learning to address each source-target and inter-source variability in the multi-source domain adaptation process, facilitating learning subject-independent representations.•We have validated the proposed method on four motor imagery datasets. The experimental results demonstrate the superior performance of our method. |
ArticleNumber | 125452 |
Author | Song, Yonghao Wang, Qiong Heng, Pheng-Ann Xu, Chengjian Zheng, Qingqing |
Author_xml | – sequence: 1 givenname: Chengjian orcidid: 0009-0000-8165-349X surname: Xu fullname: Xu, Chengjian organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China – sequence: 2 givenname: Yonghao orcidid: 0000-0003-1700-1133 surname: Song fullname: Song, Yonghao organization: Department of Biomedical Engineering, Tsinghua University, China – sequence: 3 givenname: Qingqing orcidid: 0000-0001-7726-1901 surname: Zheng fullname: Zheng, Qingqing email: qq.zheng@siat.ac.cn organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China – sequence: 4 givenname: Qiong orcidid: 0000-0002-0835-3770 surname: Wang fullname: Wang, Qiong organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China – sequence: 5 givenname: Pheng-Ann surname: Heng fullname: Heng, Pheng-Ann organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong |
BookMark | eNp9kLFOwzAURT0UiRb4ASb_QILtxHEjsaCqFKRKLHRisF6cF_Sq1K7stIi_pyVMDJ3u8s7TvWfGJj54ZOxeilwKWT1sc0xfkCuhylwqXWo1YVNRa5OV0pTXbJbSVghphDBT9rHx6bDHeKSELd8d-oGyFA7RIW_DDshzaGE_wEDB8yMBd8EPEdJAR-Q9QvTkP3kXIl8uV9z1kBJ15H7vb9lVB33Cu7-8YZvn5fviJVu_rV4XT-vMFUIMGdRCV4WoTaNNgzB3BkuJupFG1WWnatPNQXQOStNWnQABjapQV1oVhWqNkcUNm49_XQwpReyso7HxqSn1Vgp7FmO39izGnsXYUcwJVf_QfaQdxO_L0OMI4WnUkTDa5Ai9w5YiusG2gS7hPy5PgmY |
CitedBy_id | crossref_primary_10_1186_s12859_024_06024_w |
Cites_doi | 10.1109/TCDS.2023.3314351 10.1007/s12559-017-9533-x 10.1109/TBME.2004.827072 10.1109/TNSRE.2022.3194600 10.1109/TNSRE.2022.3199363 10.1016/j.compbiomed.2016.10.019 10.1109/JBHI.2020.2967128 10.1109/JAS.2022.106004 10.1109/TNSRE.2021.3059166 10.1016/j.eswa.2023.121612 10.1109/TCBB.2021.3052811 10.1109/JSEN.2021.3101684 10.1109/CVPR46437.2021.00997 10.1038/s41597-022-01647-1 10.1109/TBME.2019.2913914 10.1109/TAFFC.2022.3164516 10.3389/fnins.2012.00039 10.1109/CVPR42600.2020.00975 10.1088/1741-2552/aace8c 10.1109/TNSRE.2022.3230250 10.1109/TNSRE.2023.3243257 10.3389/fnins.2021.778488 10.1007/s10489-022-04077-z 10.1109/TNNLS.2020.3010780 10.1109/TAFFC.2018.2885474 10.1002/hbm.23730 10.1109/TNNLS.2023.3341807 10.1109/TNSRE.2021.3087506 10.1088/1741-2552/abb7a7 10.1109/TCDS.2022.3193731 10.1016/j.eswa.2022.118901 10.1109/TNSRE.2023.3285309 10.1016/j.neunet.2023.06.005 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2024.125452 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2024_125452 S0957417424023194 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 R2- RIG SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-a90563097b57bea8c7e41e5b17294f297f8a0fca47d6f0a0ab26e5652332d7713 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Thu Apr 24 22:51:47 EDT 2025 Tue Jul 01 01:51:26 EDT 2025 Sat Jan 04 15:43:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain–computer interfaces (BCIs) Unsupervised domain adaptation Motor imagery (MI) Electroencephalography (EEG) Contrastive learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-a90563097b57bea8c7e41e5b17294f297f8a0fca47d6f0a0ab26e5652332d7713 |
ORCID | 0000-0002-0835-3770 0000-0003-1700-1133 0000-0001-7726-1901 0009-0000-8165-349X |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2024_125452 crossref_primary_10_1016_j_eswa_2024_125452 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125452 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 2025-02-00 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Deng, Zhang, Wu (b44) 2022; 10 Ahmed, S. M., Raychaudhuri, D. S., Paul, S., Oymak, S., & Roy-Chowdhury, A. K. (2021). Unsupervised multi-source domain adaptation without access to source data. In Ang, Chin, Wang, Guan, Zhang (b2) 2012; 6 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b15) 2018; 15 Wang, Chen, Zhang, Zhang, Sun, Li, Yang, Gao (b38) 2023 Xu, Li (b42) 2023; 53 Lee, Jeong, Kim, Lee (b18) 2021; 29 Zhang, Chen, Jian, Yao (b43) 2020; 24 Zheng, W.-L., & Lu, B.-L. (2016). Personalizing EEG-based affective models with transfer learning. In Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b37) 2017; 30 Liu, Guo, Gao (b24) 2024; 237 Mohsenvand, Izadi, Maes (b27) 2020 He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In . Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b30) 2017; 38 Woolson (b40) 2007 (pp. 9729–9738). Li, Qiu, Shen, Liu, He (b20) 2019; 50 Ma, Yang, Qiu, Li, Gao, Xia (b25) 2022; 9 Song, Y., Liu, B., Li, X., Shi, N., Wang, Y., & Gao, X. (2024). Decoding Natural Images from EEG for Object Recognition. In Ding, Robinson, Zhang, Zeng, Guan (b7) 2022 Chen, Jin, Li, Fan, Li, He (b5) 2021; 15 Van der Maaten, Hinton (b36) 2008; 9 Li, Zheng, Zong, Cui, Zhang, Zhou (b22) 2018; 12 Brunner, Leeb, Müller-Putz, Schlögl, Pfurtscheller (b3) 2008 Chai, Wang, Zhao, Liu, Bai, Li (b4) 2016; 79 Zhang, Wu (b46) 2022; 15 Schalk, McFarland, Hinterberger, Birbaumer, Wolpaw (b29) 2004; 51 Lee, Hwang, Lee, Shin, Jeon, Byun (b17) 2022 Mane, Chew, Chua, Ang, Robinson, Vinod, Lee, Guan (b26) 2021 Song, Jia, Yang, Xie (b32) 2021 He, Wu (b11) 2019; 67 Kostas, Rudzicz (b14) 2020; 17 Zhu, Xu, Hu, Wang, Zhou, Qin (b49) 2023; 73 Xie, Zhang, Sun, Ma, Qin, Li, Zhou, Zhan (b41) 2022; 30 Zhang, Li, Xie (b45) 2023; 165 (pp. 10103–10112). Wei, Xu, Jia, Zhang, Wu (b39) 2023; 31 Gu, Cao, Jolfaei, Xu, Wu, Jung, Lin (b8) 2021; 18 Liang, Hu, Feng (b23) 2020 Devlin, Chang, Lee, Toutanova (b6) 2019 Shen, Liu, Hu, Zhang, Song (b31) 2022; 14 Kobler, Hirayama, Zhao, Kawanabe (b13) 2022; Vol. 35 Lee, Choi, Jo (b16) 2023; 16 Leeb, Brunner, Müller-Putz, Schlögl, Pfurtscheller (b19) 2008; 16 Song, Zheng, Liu, Gao (b34) 2022; 31 Li, Zhang, He (b21) 2018; 10 (pp. 2732–2738). Phadikar, Sinha, Ghosh (b28) 2023; 213 Zhu, Yang, Ding, Zhu, Xu, Ying, Zhang (b50) 2021; 21 Zhao, Zheng, Ma, Li, Zheng (b47) 2020; 32 Hong, Zheng, Liu, Chen, Ma, Gao, Zheng (b12) 2021; 29 Song, Zheng, Wang, Gao, Heng (b35) 2023; 31 He, Lu, Wang, Ying, Shi (b10) 2022; 30 Van der Maaten (10.1016/j.eswa.2024.125452_b36) 2008; 9 He (10.1016/j.eswa.2024.125452_b11) 2019; 67 He (10.1016/j.eswa.2024.125452_b10) 2022; 30 Zhang (10.1016/j.eswa.2024.125452_b43) 2020; 24 10.1016/j.eswa.2024.125452_b1 Ma (10.1016/j.eswa.2024.125452_b25) 2022; 9 Schirrmeister (10.1016/j.eswa.2024.125452_b30) 2017; 38 Liu (10.1016/j.eswa.2024.125452_b24) 2024; 237 Mane (10.1016/j.eswa.2024.125452_b26) 2021 Kostas (10.1016/j.eswa.2024.125452_b14) 2020; 17 Mohsenvand (10.1016/j.eswa.2024.125452_b27) 2020 10.1016/j.eswa.2024.125452_b48 Chen (10.1016/j.eswa.2024.125452_b5) 2021; 15 Zhang (10.1016/j.eswa.2024.125452_b44) 2022; 10 Zhu (10.1016/j.eswa.2024.125452_b49) 2023; 73 Ding (10.1016/j.eswa.2024.125452_b7) 2022 Kobler (10.1016/j.eswa.2024.125452_b13) 2022; Vol. 35 Vaswani (10.1016/j.eswa.2024.125452_b37) 2017; 30 Xu (10.1016/j.eswa.2024.125452_b42) 2023; 53 10.1016/j.eswa.2024.125452_b9 Li (10.1016/j.eswa.2024.125452_b20) 2019; 50 Zhang (10.1016/j.eswa.2024.125452_b45) 2023; 165 Brunner (10.1016/j.eswa.2024.125452_b3) 2008 Schalk (10.1016/j.eswa.2024.125452_b29) 2004; 51 Lee (10.1016/j.eswa.2024.125452_b18) 2021; 29 Song (10.1016/j.eswa.2024.125452_b35) 2023; 31 Xie (10.1016/j.eswa.2024.125452_b41) 2022; 30 Wei (10.1016/j.eswa.2024.125452_b39) 2023; 31 Chai (10.1016/j.eswa.2024.125452_b4) 2016; 79 Lawhern (10.1016/j.eswa.2024.125452_b15) 2018; 15 Zhu (10.1016/j.eswa.2024.125452_b50) 2021; 21 Song (10.1016/j.eswa.2024.125452_b32) 2021 Phadikar (10.1016/j.eswa.2024.125452_b28) 2023; 213 Lee (10.1016/j.eswa.2024.125452_b17) 2022 Shen (10.1016/j.eswa.2024.125452_b31) 2022; 14 Li (10.1016/j.eswa.2024.125452_b21) 2018; 10 Zhao (10.1016/j.eswa.2024.125452_b47) 2020; 32 Zhang (10.1016/j.eswa.2024.125452_b46) 2022; 15 Gu (10.1016/j.eswa.2024.125452_b8) 2021; 18 Ang (10.1016/j.eswa.2024.125452_b2) 2012; 6 Woolson (10.1016/j.eswa.2024.125452_b40) 2007 Liang (10.1016/j.eswa.2024.125452_b23) 2020 Wang (10.1016/j.eswa.2024.125452_b38) 2023 Lee (10.1016/j.eswa.2024.125452_b16) 2023; 16 Song (10.1016/j.eswa.2024.125452_b34) 2022; 31 10.1016/j.eswa.2024.125452_b33 Li (10.1016/j.eswa.2024.125452_b22) 2018; 12 Devlin (10.1016/j.eswa.2024.125452_b6) 2019 Leeb (10.1016/j.eswa.2024.125452_b19) 2008; 16 Hong (10.1016/j.eswa.2024.125452_b12) 2021; 29 |
References_xml | – start-page: 6028 year: 2020 end-page: 6039 ident: b23 article-title: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation publication-title: International conference on machine learning – volume: 15 year: 2021 ident: b5 article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Frontiers in Neuroscience – volume: 15 year: 2018 ident: b15 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: Journal of Neural Engineering – year: 2019 ident: b6 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding – volume: 9 start-page: 531 year: 2022 ident: b25 article-title: A large EEG dataset for studying cross-session variability in motor imagery brain-computer interface publication-title: Scientific Data – volume: 21 start-page: 21772 year: 2021 end-page: 21781 ident: b50 article-title: Multi-source fusion domain adaptation using resting-state knowledge for motor imagery classification tasks publication-title: IEEE Sensors Journal – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: b30 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping – volume: 6 start-page: 21002 year: 2012 ident: b2 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Frontiers in Neuroscience – year: 2022 ident: b7 article-title: TSception: Capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition publication-title: IEEE Transactions on Affective Computing – reference: (pp. 10103–10112). – volume: 29 start-page: 556 year: 2021 end-page: 565 ident: b12 article-title: Dynamic joint domain adaptation network for motor imagery classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 24 start-page: 2570 year: 2020 end-page: 2579 ident: b43 article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals publication-title: IEEE Journal of Biomedical and Health Informatics – reference: He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In – volume: 30 start-page: 2406 year: 2022 end-page: 2417 ident: b10 article-title: A self-supervised learning based channel attention MLP-Mixer network for motor imagery decoding publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – year: 2021 ident: b32 article-title: Transformer-based spatial-temporal feature learning for EEG decoding – volume: 165 start-page: 451 year: 2023 end-page: 462 ident: b45 article-title: MI-CAT: A transformer-based domain adaptation network for motor imagery classification publication-title: Neural Networks – volume: 31 start-page: 710 year: 2022 end-page: 719 ident: b34 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 31 start-page: 1258 year: 2023 end-page: 1267 ident: b39 article-title: A multi-source transfer joint matching method for inter-subject motor imagery decoding publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 15 start-page: 938 year: 2022 end-page: 949 ident: b46 article-title: Lightweight source-free transfer for privacy-preserving motor imagery classification publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 30 year: 2017 ident: b37 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – reference: Ahmed, S. M., Raychaudhuri, D. S., Paul, S., Oymak, S., & Roy-Chowdhury, A. K. (2021). Unsupervised multi-source domain adaptation without access to source data. In – volume: 12 start-page: 494 year: 2018 end-page: 504 ident: b22 article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – reference: (pp. 2732–2738). – volume: 18 start-page: 1645 year: 2021 end-page: 1666 ident: b8 article-title: EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – reference: Song, Y., Liu, B., Li, X., Shi, N., Wang, Y., & Gao, X. (2024). Decoding Natural Images from EEG for Object Recognition. In – volume: 79 start-page: 205 year: 2016 end-page: 214 ident: b4 article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition publication-title: Computers in Biology and Medicine – volume: 32 start-page: 535 year: 2020 end-page: 545 ident: b47 article-title: Deep representation-based domain adaptation for nonstationary EEG classification publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 1 year: 2007 end-page: 3 ident: b40 article-title: Wilcoxon signed-rank test publication-title: Wiley Encyclopedia of Clinical Trials – volume: 67 start-page: 399 year: 2019 end-page: 410 ident: b11 article-title: Transfer learning for brain–computer interfaces: A euclidean space data alignment approach publication-title: IEEE Transactions on Biomedical Engineering – volume: 51 start-page: 1034 year: 2004 end-page: 1043 ident: b29 article-title: BCI2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Transactions on Biomedical Engineering – year: 2021 ident: b26 article-title: FBCNet: A multi-view convolutional neural network for brain-computer interface – volume: 73 start-page: 1 year: 2023 end-page: 13 ident: b49 article-title: Dual contrastive training and transferability aware adaptation for multi-source privacy-preserving motor imagery classification publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 9 year: 2008 ident: b36 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 17 year: 2020 ident: b14 article-title: Thinker invariance: enabling deep neural networks for BCI across more people publication-title: Journal of Neural Engineering – reference: Zheng, W.-L., & Lu, B.-L. (2016). Personalizing EEG-based affective models with transfer learning. In – volume: 237 year: 2024 ident: b24 article-title: A cross-session motor imagery classification method based on Riemannian geometry and deep domain adaptation publication-title: Expert Systems with Applications – volume: 14 start-page: 2496 year: 2022 end-page: 2511 ident: b31 article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 16 start-page: 923 year: 2023 end-page: 934 ident: b16 article-title: Selective multi-source domain adaptation network for cross-subject motor imagery discrimination publication-title: IEEE Transactions on Cognitive and Developmental Systems – start-page: 1 year: 2023 end-page: 15 ident: b38 article-title: EEG-based motor imagery recognition framework via multisubject dynamic transfer and iterative self-training publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 238 year: 2020 end-page: 253 ident: b27 article-title: Contrastive representation learning for electroencephalogram classification publication-title: Machine learning for health – volume: 50 start-page: 3281 year: 2019 end-page: 3293 ident: b20 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Transactions on Cybernetics – volume: 29 start-page: 1099 year: 2021 end-page: 1109 ident: b18 article-title: Decoding finger tapping with the affected hand in chronic stroke patients during motor imagery and execution publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 30 start-page: 2126 year: 2022 end-page: 2136 ident: b41 article-title: A transformer-based approach combining deep learning network and spatial-temporal information for raw EEG classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: Vol. 35 start-page: 6219 year: 2022 end-page: 6235 ident: b13 article-title: SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG publication-title: Advances in neural information processing systems – start-page: 1 year: 2008 end-page: 6 ident: b3 publication-title: BCI competition 2008–Graz data set A – volume: 10 start-page: 305 year: 2022 end-page: 329 ident: b44 article-title: A survey on negative transfer publication-title: IEEE/CAA Journal of Automatica Sinica – volume: 16 start-page: 1 year: 2008 end-page: 6 ident: b19 article-title: BCI competition 2008–Graz data set B publication-title: Graz University of Technology (Austria) – reference: . – volume: 213 year: 2023 ident: b28 article-title: Unsupervised feature extraction with autoencoders for EEG based multiclass motor imagery BCI publication-title: Expert Systems with Applications – reference: (pp. 9729–9738). – start-page: 1 year: 2022 end-page: 6 ident: b17 article-title: Inter-subject contrastive learning for subject adaptive EEG-based visual recognition publication-title: 2022 10th international winter conference on brain-computer interface – volume: 53 start-page: 10766 year: 2023 end-page: 10788 ident: b42 article-title: A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies – volume: 10 start-page: 368 year: 2018 end-page: 380 ident: b21 article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition publication-title: Cognitive Computation – volume: 31 start-page: 2767 year: 2023 end-page: 2777 ident: b35 article-title: Global adaptive transformer for cross-subject enhanced EEG classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 16 start-page: 923 issue: 3 year: 2023 ident: 10.1016/j.eswa.2024.125452_b16 article-title: Selective multi-source domain adaptation network for cross-subject motor imagery discrimination publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2023.3314351 – start-page: 1 year: 2007 ident: 10.1016/j.eswa.2024.125452_b40 article-title: Wilcoxon signed-rank test publication-title: Wiley Encyclopedia of Clinical Trials – volume: 10 start-page: 368 year: 2018 ident: 10.1016/j.eswa.2024.125452_b21 article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition publication-title: Cognitive Computation doi: 10.1007/s12559-017-9533-x – volume: 51 start-page: 1034 issue: 6 year: 2004 ident: 10.1016/j.eswa.2024.125452_b29 article-title: BCI2000: a general-purpose brain-computer interface (BCI) system publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2004.827072 – volume: 9 issue: 11 year: 2008 ident: 10.1016/j.eswa.2024.125452_b36 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 30 start-page: 2126 year: 2022 ident: 10.1016/j.eswa.2024.125452_b41 article-title: A transformer-based approach combining deep learning network and spatial-temporal information for raw EEG classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2022.3194600 – volume: 30 start-page: 2406 year: 2022 ident: 10.1016/j.eswa.2024.125452_b10 article-title: A self-supervised learning based channel attention MLP-Mixer network for motor imagery decoding publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2022.3199363 – volume: 79 start-page: 205 year: 2016 ident: 10.1016/j.eswa.2024.125452_b4 article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2016.10.019 – volume: 24 start-page: 2570 issue: 9 year: 2020 ident: 10.1016/j.eswa.2024.125452_b43 article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.2967128 – volume: 16 start-page: 1 year: 2008 ident: 10.1016/j.eswa.2024.125452_b19 article-title: BCI competition 2008–Graz data set B publication-title: Graz University of Technology (Austria) – volume: 10 start-page: 305 issue: 2 year: 2022 ident: 10.1016/j.eswa.2024.125452_b44 article-title: A survey on negative transfer publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2022.106004 – volume: Vol. 35 start-page: 6219 year: 2022 ident: 10.1016/j.eswa.2024.125452_b13 article-title: SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG – volume: 29 start-page: 556 year: 2021 ident: 10.1016/j.eswa.2024.125452_b12 article-title: Dynamic joint domain adaptation network for motor imagery classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3059166 – year: 2022 ident: 10.1016/j.eswa.2024.125452_b7 article-title: TSception: Capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 237 year: 2024 ident: 10.1016/j.eswa.2024.125452_b24 article-title: A cross-session motor imagery classification method based on Riemannian geometry and deep domain adaptation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121612 – volume: 18 start-page: 1645 issue: 5 year: 2021 ident: 10.1016/j.eswa.2024.125452_b8 article-title: EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2021.3052811 – volume: 21 start-page: 21772 issue: 19 year: 2021 ident: 10.1016/j.eswa.2024.125452_b50 article-title: Multi-source fusion domain adaptation using resting-state knowledge for motor imagery classification tasks publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3101684 – ident: 10.1016/j.eswa.2024.125452_b1 doi: 10.1109/CVPR46437.2021.00997 – volume: 9 start-page: 531 issue: 1 year: 2022 ident: 10.1016/j.eswa.2024.125452_b25 article-title: A large EEG dataset for studying cross-session variability in motor imagery brain-computer interface publication-title: Scientific Data doi: 10.1038/s41597-022-01647-1 – volume: 67 start-page: 399 issue: 2 year: 2019 ident: 10.1016/j.eswa.2024.125452_b11 article-title: Transfer learning for brain–computer interfaces: A euclidean space data alignment approach publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2019.2913914 – year: 2021 ident: 10.1016/j.eswa.2024.125452_b26 – volume: 14 start-page: 2496 issue: 3 year: 2022 ident: 10.1016/j.eswa.2024.125452_b31 article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2022.3164516 – volume: 6 start-page: 21002 year: 2012 ident: 10.1016/j.eswa.2024.125452_b2 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2012.00039 – year: 2019 ident: 10.1016/j.eswa.2024.125452_b6 – ident: 10.1016/j.eswa.2024.125452_b9 doi: 10.1109/CVPR42600.2020.00975 – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.eswa.2024.125452_b15 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/aace8c – volume: 31 start-page: 710 year: 2022 ident: 10.1016/j.eswa.2024.125452_b34 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2022.3230250 – year: 2021 ident: 10.1016/j.eswa.2024.125452_b32 – volume: 31 start-page: 1258 year: 2023 ident: 10.1016/j.eswa.2024.125452_b39 article-title: A multi-source transfer joint matching method for inter-subject motor imagery decoding publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3243257 – volume: 73 start-page: 1 year: 2023 ident: 10.1016/j.eswa.2024.125452_b49 article-title: Dual contrastive training and transferability aware adaptation for multi-source privacy-preserving motor imagery classification publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 15 year: 2021 ident: 10.1016/j.eswa.2024.125452_b5 article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2021.778488 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2024.125452_b17 article-title: Inter-subject contrastive learning for subject adaptive EEG-based visual recognition – volume: 53 start-page: 10766 issue: 9 year: 2023 ident: 10.1016/j.eswa.2024.125452_b42 article-title: A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies doi: 10.1007/s10489-022-04077-z – volume: 32 start-page: 535 issue: 2 year: 2020 ident: 10.1016/j.eswa.2024.125452_b47 article-title: Deep representation-based domain adaptation for nonstationary EEG classification publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3010780 – volume: 12 start-page: 494 issue: 2 year: 2018 ident: 10.1016/j.eswa.2024.125452_b22 article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2018.2885474 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.eswa.2024.125452_b30 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping doi: 10.1002/hbm.23730 – start-page: 6028 year: 2020 ident: 10.1016/j.eswa.2024.125452_b23 article-title: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation – start-page: 1 year: 2023 ident: 10.1016/j.eswa.2024.125452_b38 article-title: EEG-based motor imagery recognition framework via multisubject dynamic transfer and iterative self-training publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2023.3341807 – ident: 10.1016/j.eswa.2024.125452_b33 – volume: 29 start-page: 1099 year: 2021 ident: 10.1016/j.eswa.2024.125452_b18 article-title: Decoding finger tapping with the affected hand in chronic stroke patients during motor imagery and execution publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3087506 – start-page: 238 year: 2020 ident: 10.1016/j.eswa.2024.125452_b27 article-title: Contrastive representation learning for electroencephalogram classification – volume: 17 issue: 5 year: 2020 ident: 10.1016/j.eswa.2024.125452_b14 article-title: Thinker invariance: enabling deep neural networks for BCI across more people publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/abb7a7 – volume: 30 year: 2017 ident: 10.1016/j.eswa.2024.125452_b37 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – ident: 10.1016/j.eswa.2024.125452_b48 – volume: 15 start-page: 938 issue: 2 year: 2022 ident: 10.1016/j.eswa.2024.125452_b46 article-title: Lightweight source-free transfer for privacy-preserving motor imagery classification publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2022.3193731 – volume: 213 year: 2023 ident: 10.1016/j.eswa.2024.125452_b28 article-title: Unsupervised feature extraction with autoencoders for EEG based multiclass motor imagery BCI publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118901 – start-page: 1 year: 2008 ident: 10.1016/j.eswa.2024.125452_b3 – volume: 50 start-page: 3281 issue: 7 year: 2019 ident: 10.1016/j.eswa.2024.125452_b20 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Transactions on Cybernetics – volume: 31 start-page: 2767 year: 2023 ident: 10.1016/j.eswa.2024.125452_b35 article-title: Global adaptive transformer for cross-subject enhanced EEG classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3285309 – volume: 165 start-page: 451 year: 2023 ident: 10.1016/j.eswa.2024.125452_b45 article-title: MI-CAT: A transformer-based domain adaptation network for motor imagery classification publication-title: Neural Networks doi: 10.1016/j.neunet.2023.06.005 |
SSID | ssj0017007 |
Score | 2.4635618 |
Snippet | Individual differences in electroencephalography (EEG) present significant challenges for subject-independent EEG classification in brain–computer interfaces... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 125452 |
SubjectTerms | Brain–computer interfaces (BCIs) Contrastive learning Electroencephalography (EEG) Motor imagery (MI) Unsupervised domain adaptation |
Title | Unsupervised multi-source domain adaptation via contrastive learning for EEG classification |
URI | https://dx.doi.org/10.1016/j.eswa.2024.125452 |
Volume | 261 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSgflQc25DZN7DgZq6qlgOgClSoxRHZsoyJII9LCxm_HlzgVSKgDa2RL0fl89y559w6hS18aP9YsIkzxgNBYpUSyWBAbCUNQXJNCQjfy_SQcT-ntjM0aaFD3wgCt0sX-KqaX0do96TprdvP5vPtgwYFNh7a0o6BhFoMmKKUcvLzztaZ5gPwcr_T2OIHVrnGm4njp4hO0h3zasXmeMv_v5PQj4Yz20I5Dirhfvcw-aujsAO3WUxiwu5SH6GmaFascrnyhFS4JgqT6JI_V4s0W_lgokVd_3PHHXOCSnS4KiHPYDY14xha74uHwGqeApoE-VK4_QtPR8HEwJm5kAkkDz1sSEXsg-BVzybjUIkq5pj3NpIUpMbWnwk0kPJMKylVoPOEJ6YfaYjo_CHzFbcF6jJrZItMnCEsTiJSanjRwy1UU2cxFe8aTPDWGK9ZCvdpWSer0xGGsxWtSE8deErBvAvZNKvu20NV6T16paWxczeojSH75RGLD_YZ9p__cd4a2fZjuW3Kyz1Fz-b7SFxZyLGW79Kk22urf3I0n39p01oM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwIxEJ0oHvTitxE_e_BmKstuS3ePxoAgyEVJSDxs2m1rMApEQP--nd0u0cR48LrpJM20nXndvnkDcBEqGyaGx5RrEVGW6IwqnkjqImEDFdeUVFiNfN9vtAfsbsiHK3BT1sIgrdLH_iKm59Haf6l5b9amo1HtwYEDlw7d1Y6hhlnCVmEN1al4BdauO912f_mYIIKiatqNp2jga2cKmpeZfaL8UMiuXKpnPPw9P33LOa1t2PRgkVwX89mBFTPeha2yEQPx53IPngbj2WKKp35mNMk5grT4K0_05M3d_YnUclo8upOPkSQ5QV3OMNQR3zfimTj4SprNW5IhoEYGUT5-Hwat5uNNm_quCTSLgmBOZRKg5lciFBfKyDgThtUNVw6pJMwtjLCxDGwmmdANG8hAqrBhHKwLoyjUwt1ZD6AynozNIRBlI5kxW1cWD7qOY5e8WN0GSmTWCs2rUC99lWZeUhw7W7ymJXfsJUX_pujftPBvFS6XNtNCUOPP0bxcgvTHtkhdxP_D7uifduew3n6876W9Tr97DBshNvvNKdonUJm_L8ypQyBzdeZ32BdBBtk0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+multi-source+domain+adaptation+via+contrastive+learning+for+EEG+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Xu%2C+Chengjian&rft.au=Song%2C+Yonghao&rft.au=Zheng%2C+Qingqing&rft.au=Wang%2C+Qiong&rft.date=2025-02-01&rft.issn=0957-4174&rft.volume=261&rft.spage=125452&rft_id=info:doi/10.1016%2Fj.eswa.2024.125452&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_125452 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |