Unsupervised multi-source domain adaptation via contrastive learning for EEG classification

Individual differences in electroencephalography (EEG) present significant challenges for subject-independent EEG classification in brain–computer interfaces (BCIs). Existing domain adaptation methods often address individual differences by merging all source domains indistinguishably into a single...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 261; p. 125452
Main Authors Xu, Chengjian, Song, Yonghao, Zheng, Qingqing, Wang, Qiong, Heng, Pheng-Ann
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Individual differences in electroencephalography (EEG) present significant challenges for subject-independent EEG classification in brain–computer interfaces (BCIs). Existing domain adaptation methods often address individual differences by merging all source domains indistinguishably into a single source and aligning features between this aggregate source and the target domain. Neglecting the relationships between different source domains would hinder the model’s adaptability and generalization. Therefore, we propose a method called Contrastive Learning-based Unsupervised multi-source Domain Adaptation (CLUDA) for learning subject-independent representations in motor imagery. Our method not only aligns the conditional distributions of each source domain with the target domain but also reduces discrepancies among the source domains using contrastive learning, thus learning more generalized domain-invariant representations. Specifically, CLUDA effectively eliminates semantic variances by maximizing the similarity between positive pairs (same class) and minimizing the similarity between negative pairs (different classes) across subjects. Finally, we validated CLUDA on four motor imagery datasets and consistently achieved state-of-the-art performance. •We propose a novel unsupervised multi-source domain adaptation framework to effectively learn subject-invariant representations for EEG-based motor imagery.•We utilize contrastive learning to address each source-target and inter-source variability in the multi-source domain adaptation process, facilitating learning subject-independent representations.•We have validated the proposed method on four motor imagery datasets. The experimental results demonstrate the superior performance of our method.
AbstractList Individual differences in electroencephalography (EEG) present significant challenges for subject-independent EEG classification in brain–computer interfaces (BCIs). Existing domain adaptation methods often address individual differences by merging all source domains indistinguishably into a single source and aligning features between this aggregate source and the target domain. Neglecting the relationships between different source domains would hinder the model’s adaptability and generalization. Therefore, we propose a method called Contrastive Learning-based Unsupervised multi-source Domain Adaptation (CLUDA) for learning subject-independent representations in motor imagery. Our method not only aligns the conditional distributions of each source domain with the target domain but also reduces discrepancies among the source domains using contrastive learning, thus learning more generalized domain-invariant representations. Specifically, CLUDA effectively eliminates semantic variances by maximizing the similarity between positive pairs (same class) and minimizing the similarity between negative pairs (different classes) across subjects. Finally, we validated CLUDA on four motor imagery datasets and consistently achieved state-of-the-art performance. •We propose a novel unsupervised multi-source domain adaptation framework to effectively learn subject-invariant representations for EEG-based motor imagery.•We utilize contrastive learning to address each source-target and inter-source variability in the multi-source domain adaptation process, facilitating learning subject-independent representations.•We have validated the proposed method on four motor imagery datasets. The experimental results demonstrate the superior performance of our method.
ArticleNumber 125452
Author Song, Yonghao
Wang, Qiong
Heng, Pheng-Ann
Xu, Chengjian
Zheng, Qingqing
Author_xml – sequence: 1
  givenname: Chengjian
  orcidid: 0009-0000-8165-349X
  surname: Xu
  fullname: Xu, Chengjian
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
– sequence: 2
  givenname: Yonghao
  orcidid: 0000-0003-1700-1133
  surname: Song
  fullname: Song, Yonghao
  organization: Department of Biomedical Engineering, Tsinghua University, China
– sequence: 3
  givenname: Qingqing
  orcidid: 0000-0001-7726-1901
  surname: Zheng
  fullname: Zheng, Qingqing
  email: qq.zheng@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
– sequence: 4
  givenname: Qiong
  orcidid: 0000-0002-0835-3770
  surname: Wang
  fullname: Wang, Qiong
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
– sequence: 5
  givenname: Pheng-Ann
  surname: Heng
  fullname: Heng, Pheng-Ann
  organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
BookMark eNp9kLFOwzAURT0UiRb4ASb_QILtxHEjsaCqFKRKLHRisF6cF_Sq1K7stIi_pyVMDJ3u8s7TvWfGJj54ZOxeilwKWT1sc0xfkCuhylwqXWo1YVNRa5OV0pTXbJbSVghphDBT9rHx6bDHeKSELd8d-oGyFA7RIW_DDshzaGE_wEDB8yMBd8EPEdJAR-Q9QvTkP3kXIl8uV9z1kBJ15H7vb9lVB33Cu7-8YZvn5fviJVu_rV4XT-vMFUIMGdRCV4WoTaNNgzB3BkuJupFG1WWnatPNQXQOStNWnQABjapQV1oVhWqNkcUNm49_XQwpReyso7HxqSn1Vgp7FmO39izGnsXYUcwJVf_QfaQdxO_L0OMI4WnUkTDa5Ai9w5YiusG2gS7hPy5PgmY
CitedBy_id crossref_primary_10_1186_s12859_024_06024_w
Cites_doi 10.1109/TCDS.2023.3314351
10.1007/s12559-017-9533-x
10.1109/TBME.2004.827072
10.1109/TNSRE.2022.3194600
10.1109/TNSRE.2022.3199363
10.1016/j.compbiomed.2016.10.019
10.1109/JBHI.2020.2967128
10.1109/JAS.2022.106004
10.1109/TNSRE.2021.3059166
10.1016/j.eswa.2023.121612
10.1109/TCBB.2021.3052811
10.1109/JSEN.2021.3101684
10.1109/CVPR46437.2021.00997
10.1038/s41597-022-01647-1
10.1109/TBME.2019.2913914
10.1109/TAFFC.2022.3164516
10.3389/fnins.2012.00039
10.1109/CVPR42600.2020.00975
10.1088/1741-2552/aace8c
10.1109/TNSRE.2022.3230250
10.1109/TNSRE.2023.3243257
10.3389/fnins.2021.778488
10.1007/s10489-022-04077-z
10.1109/TNNLS.2020.3010780
10.1109/TAFFC.2018.2885474
10.1002/hbm.23730
10.1109/TNNLS.2023.3341807
10.1109/TNSRE.2021.3087506
10.1088/1741-2552/abb7a7
10.1109/TCDS.2022.3193731
10.1016/j.eswa.2022.118901
10.1109/TNSRE.2023.3285309
10.1016/j.neunet.2023.06.005
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.125452
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_125452
S0957417424023194
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-a90563097b57bea8c7e41e5b17294f297f8a0fca47d6f0a0ab26e5652332d7713
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Apr 24 22:51:47 EDT 2025
Tue Jul 01 01:51:26 EDT 2025
Sat Jan 04 15:43:48 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Brain–computer interfaces (BCIs)
Unsupervised domain adaptation
Motor imagery (MI)
Electroencephalography (EEG)
Contrastive learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a90563097b57bea8c7e41e5b17294f297f8a0fca47d6f0a0ab26e5652332d7713
ORCID 0000-0002-0835-3770
0000-0003-1700-1133
0000-0001-7726-1901
0009-0000-8165-349X
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2024_125452
crossref_primary_10_1016_j_eswa_2024_125452
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125452
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Deng, Zhang, Wu (b44) 2022; 10
Ahmed, S. M., Raychaudhuri, D. S., Paul, S., Oymak, S., & Roy-Chowdhury, A. K. (2021). Unsupervised multi-source domain adaptation without access to source data. In
Ang, Chin, Wang, Guan, Zhang (b2) 2012; 6
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b15) 2018; 15
Wang, Chen, Zhang, Zhang, Sun, Li, Yang, Gao (b38) 2023
Xu, Li (b42) 2023; 53
Lee, Jeong, Kim, Lee (b18) 2021; 29
Zhang, Chen, Jian, Yao (b43) 2020; 24
Zheng, W.-L., & Lu, B.-L. (2016). Personalizing EEG-based affective models with transfer learning. In
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b37) 2017; 30
Liu, Guo, Gao (b24) 2024; 237
Mohsenvand, Izadi, Maes (b27) 2020
He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In
.
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b30) 2017; 38
Woolson (b40) 2007
(pp. 9729–9738).
Li, Qiu, Shen, Liu, He (b20) 2019; 50
Ma, Yang, Qiu, Li, Gao, Xia (b25) 2022; 9
Song, Y., Liu, B., Li, X., Shi, N., Wang, Y., & Gao, X. (2024). Decoding Natural Images from EEG for Object Recognition. In
Ding, Robinson, Zhang, Zeng, Guan (b7) 2022
Chen, Jin, Li, Fan, Li, He (b5) 2021; 15
Van der Maaten, Hinton (b36) 2008; 9
Li, Zheng, Zong, Cui, Zhang, Zhou (b22) 2018; 12
Brunner, Leeb, Müller-Putz, Schlögl, Pfurtscheller (b3) 2008
Chai, Wang, Zhao, Liu, Bai, Li (b4) 2016; 79
Zhang, Wu (b46) 2022; 15
Schalk, McFarland, Hinterberger, Birbaumer, Wolpaw (b29) 2004; 51
Lee, Hwang, Lee, Shin, Jeon, Byun (b17) 2022
Mane, Chew, Chua, Ang, Robinson, Vinod, Lee, Guan (b26) 2021
Song, Jia, Yang, Xie (b32) 2021
He, Wu (b11) 2019; 67
Kostas, Rudzicz (b14) 2020; 17
Zhu, Xu, Hu, Wang, Zhou, Qin (b49) 2023; 73
Xie, Zhang, Sun, Ma, Qin, Li, Zhou, Zhan (b41) 2022; 30
Zhang, Li, Xie (b45) 2023; 165
(pp. 10103–10112).
Wei, Xu, Jia, Zhang, Wu (b39) 2023; 31
Gu, Cao, Jolfaei, Xu, Wu, Jung, Lin (b8) 2021; 18
Liang, Hu, Feng (b23) 2020
Devlin, Chang, Lee, Toutanova (b6) 2019
Shen, Liu, Hu, Zhang, Song (b31) 2022; 14
Kobler, Hirayama, Zhao, Kawanabe (b13) 2022; Vol. 35
Lee, Choi, Jo (b16) 2023; 16
Leeb, Brunner, Müller-Putz, Schlögl, Pfurtscheller (b19) 2008; 16
Song, Zheng, Liu, Gao (b34) 2022; 31
Li, Zhang, He (b21) 2018; 10
(pp. 2732–2738).
Phadikar, Sinha, Ghosh (b28) 2023; 213
Zhu, Yang, Ding, Zhu, Xu, Ying, Zhang (b50) 2021; 21
Zhao, Zheng, Ma, Li, Zheng (b47) 2020; 32
Hong, Zheng, Liu, Chen, Ma, Gao, Zheng (b12) 2021; 29
Song, Zheng, Wang, Gao, Heng (b35) 2023; 31
He, Lu, Wang, Ying, Shi (b10) 2022; 30
Van der Maaten (10.1016/j.eswa.2024.125452_b36) 2008; 9
He (10.1016/j.eswa.2024.125452_b11) 2019; 67
He (10.1016/j.eswa.2024.125452_b10) 2022; 30
Zhang (10.1016/j.eswa.2024.125452_b43) 2020; 24
10.1016/j.eswa.2024.125452_b1
Ma (10.1016/j.eswa.2024.125452_b25) 2022; 9
Schirrmeister (10.1016/j.eswa.2024.125452_b30) 2017; 38
Liu (10.1016/j.eswa.2024.125452_b24) 2024; 237
Mane (10.1016/j.eswa.2024.125452_b26) 2021
Kostas (10.1016/j.eswa.2024.125452_b14) 2020; 17
Mohsenvand (10.1016/j.eswa.2024.125452_b27) 2020
10.1016/j.eswa.2024.125452_b48
Chen (10.1016/j.eswa.2024.125452_b5) 2021; 15
Zhang (10.1016/j.eswa.2024.125452_b44) 2022; 10
Zhu (10.1016/j.eswa.2024.125452_b49) 2023; 73
Ding (10.1016/j.eswa.2024.125452_b7) 2022
Kobler (10.1016/j.eswa.2024.125452_b13) 2022; Vol. 35
Vaswani (10.1016/j.eswa.2024.125452_b37) 2017; 30
Xu (10.1016/j.eswa.2024.125452_b42) 2023; 53
10.1016/j.eswa.2024.125452_b9
Li (10.1016/j.eswa.2024.125452_b20) 2019; 50
Zhang (10.1016/j.eswa.2024.125452_b45) 2023; 165
Brunner (10.1016/j.eswa.2024.125452_b3) 2008
Schalk (10.1016/j.eswa.2024.125452_b29) 2004; 51
Lee (10.1016/j.eswa.2024.125452_b18) 2021; 29
Song (10.1016/j.eswa.2024.125452_b35) 2023; 31
Xie (10.1016/j.eswa.2024.125452_b41) 2022; 30
Wei (10.1016/j.eswa.2024.125452_b39) 2023; 31
Chai (10.1016/j.eswa.2024.125452_b4) 2016; 79
Lawhern (10.1016/j.eswa.2024.125452_b15) 2018; 15
Zhu (10.1016/j.eswa.2024.125452_b50) 2021; 21
Song (10.1016/j.eswa.2024.125452_b32) 2021
Phadikar (10.1016/j.eswa.2024.125452_b28) 2023; 213
Lee (10.1016/j.eswa.2024.125452_b17) 2022
Shen (10.1016/j.eswa.2024.125452_b31) 2022; 14
Li (10.1016/j.eswa.2024.125452_b21) 2018; 10
Zhao (10.1016/j.eswa.2024.125452_b47) 2020; 32
Zhang (10.1016/j.eswa.2024.125452_b46) 2022; 15
Gu (10.1016/j.eswa.2024.125452_b8) 2021; 18
Ang (10.1016/j.eswa.2024.125452_b2) 2012; 6
Woolson (10.1016/j.eswa.2024.125452_b40) 2007
Liang (10.1016/j.eswa.2024.125452_b23) 2020
Wang (10.1016/j.eswa.2024.125452_b38) 2023
Lee (10.1016/j.eswa.2024.125452_b16) 2023; 16
Song (10.1016/j.eswa.2024.125452_b34) 2022; 31
10.1016/j.eswa.2024.125452_b33
Li (10.1016/j.eswa.2024.125452_b22) 2018; 12
Devlin (10.1016/j.eswa.2024.125452_b6) 2019
Leeb (10.1016/j.eswa.2024.125452_b19) 2008; 16
Hong (10.1016/j.eswa.2024.125452_b12) 2021; 29
References_xml – start-page: 6028
  year: 2020
  end-page: 6039
  ident: b23
  article-title: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation
  publication-title: International conference on machine learning
– volume: 15
  year: 2021
  ident: b5
  article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Frontiers in Neuroscience
– volume: 15
  year: 2018
  ident: b15
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
– year: 2019
  ident: b6
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– volume: 9
  start-page: 531
  year: 2022
  ident: b25
  article-title: A large EEG dataset for studying cross-session variability in motor imagery brain-computer interface
  publication-title: Scientific Data
– volume: 21
  start-page: 21772
  year: 2021
  end-page: 21781
  ident: b50
  article-title: Multi-source fusion domain adaptation using resting-state knowledge for motor imagery classification tasks
  publication-title: IEEE Sensors Journal
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: b30
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
– volume: 6
  start-page: 21002
  year: 2012
  ident: b2
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Frontiers in Neuroscience
– year: 2022
  ident: b7
  article-title: TSception: Capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– reference: (pp. 10103–10112).
– volume: 29
  start-page: 556
  year: 2021
  end-page: 565
  ident: b12
  article-title: Dynamic joint domain adaptation network for motor imagery classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 24
  start-page: 2570
  year: 2020
  end-page: 2579
  ident: b43
  article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals
  publication-title: IEEE Journal of Biomedical and Health Informatics
– reference: He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In
– volume: 30
  start-page: 2406
  year: 2022
  end-page: 2417
  ident: b10
  article-title: A self-supervised learning based channel attention MLP-Mixer network for motor imagery decoding
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– year: 2021
  ident: b32
  article-title: Transformer-based spatial-temporal feature learning for EEG decoding
– volume: 165
  start-page: 451
  year: 2023
  end-page: 462
  ident: b45
  article-title: MI-CAT: A transformer-based domain adaptation network for motor imagery classification
  publication-title: Neural Networks
– volume: 31
  start-page: 710
  year: 2022
  end-page: 719
  ident: b34
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 31
  start-page: 1258
  year: 2023
  end-page: 1267
  ident: b39
  article-title: A multi-source transfer joint matching method for inter-subject motor imagery decoding
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 15
  start-page: 938
  year: 2022
  end-page: 949
  ident: b46
  article-title: Lightweight source-free transfer for privacy-preserving motor imagery classification
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 30
  year: 2017
  ident: b37
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– reference: Ahmed, S. M., Raychaudhuri, D. S., Paul, S., Oymak, S., & Roy-Chowdhury, A. K. (2021). Unsupervised multi-source domain adaptation without access to source data. In
– volume: 12
  start-page: 494
  year: 2018
  end-page: 504
  ident: b22
  article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– reference: (pp. 2732–2738).
– volume: 18
  start-page: 1645
  year: 2021
  end-page: 1666
  ident: b8
  article-title: EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– reference: Song, Y., Liu, B., Li, X., Shi, N., Wang, Y., & Gao, X. (2024). Decoding Natural Images from EEG for Object Recognition. In
– volume: 79
  start-page: 205
  year: 2016
  end-page: 214
  ident: b4
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Computers in Biology and Medicine
– volume: 32
  start-page: 535
  year: 2020
  end-page: 545
  ident: b47
  article-title: Deep representation-based domain adaptation for nonstationary EEG classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 1
  year: 2007
  end-page: 3
  ident: b40
  article-title: Wilcoxon signed-rank test
  publication-title: Wiley Encyclopedia of Clinical Trials
– volume: 67
  start-page: 399
  year: 2019
  end-page: 410
  ident: b11
  article-title: Transfer learning for brain–computer interfaces: A euclidean space data alignment approach
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 51
  start-page: 1034
  year: 2004
  end-page: 1043
  ident: b29
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Transactions on Biomedical Engineering
– year: 2021
  ident: b26
  article-title: FBCNet: A multi-view convolutional neural network for brain-computer interface
– volume: 73
  start-page: 1
  year: 2023
  end-page: 13
  ident: b49
  article-title: Dual contrastive training and transferability aware adaptation for multi-source privacy-preserving motor imagery classification
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 9
  year: 2008
  ident: b36
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 17
  year: 2020
  ident: b14
  article-title: Thinker invariance: enabling deep neural networks for BCI across more people
  publication-title: Journal of Neural Engineering
– reference: Zheng, W.-L., & Lu, B.-L. (2016). Personalizing EEG-based affective models with transfer learning. In
– volume: 237
  year: 2024
  ident: b24
  article-title: A cross-session motor imagery classification method based on Riemannian geometry and deep domain adaptation
  publication-title: Expert Systems with Applications
– volume: 14
  start-page: 2496
  year: 2022
  end-page: 2511
  ident: b31
  article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 16
  start-page: 923
  year: 2023
  end-page: 934
  ident: b16
  article-title: Selective multi-source domain adaptation network for cross-subject motor imagery discrimination
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– start-page: 1
  year: 2023
  end-page: 15
  ident: b38
  article-title: EEG-based motor imagery recognition framework via multisubject dynamic transfer and iterative self-training
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 238
  year: 2020
  end-page: 253
  ident: b27
  article-title: Contrastive representation learning for electroencephalogram classification
  publication-title: Machine learning for health
– volume: 50
  start-page: 3281
  year: 2019
  end-page: 3293
  ident: b20
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Transactions on Cybernetics
– volume: 29
  start-page: 1099
  year: 2021
  end-page: 1109
  ident: b18
  article-title: Decoding finger tapping with the affected hand in chronic stroke patients during motor imagery and execution
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 30
  start-page: 2126
  year: 2022
  end-page: 2136
  ident: b41
  article-title: A transformer-based approach combining deep learning network and spatial-temporal information for raw EEG classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: Vol. 35
  start-page: 6219
  year: 2022
  end-page: 6235
  ident: b13
  article-title: SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG
  publication-title: Advances in neural information processing systems
– start-page: 1
  year: 2008
  end-page: 6
  ident: b3
  publication-title: BCI competition 2008–Graz data set A
– volume: 10
  start-page: 305
  year: 2022
  end-page: 329
  ident: b44
  article-title: A survey on negative transfer
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 16
  start-page: 1
  year: 2008
  end-page: 6
  ident: b19
  article-title: BCI competition 2008–Graz data set B
  publication-title: Graz University of Technology (Austria)
– reference: .
– volume: 213
  year: 2023
  ident: b28
  article-title: Unsupervised feature extraction with autoencoders for EEG based multiclass motor imagery BCI
  publication-title: Expert Systems with Applications
– reference: (pp. 9729–9738).
– start-page: 1
  year: 2022
  end-page: 6
  ident: b17
  article-title: Inter-subject contrastive learning for subject adaptive EEG-based visual recognition
  publication-title: 2022 10th international winter conference on brain-computer interface
– volume: 53
  start-page: 10766
  year: 2023
  end-page: 10788
  ident: b42
  article-title: A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– volume: 10
  start-page: 368
  year: 2018
  end-page: 380
  ident: b21
  article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition
  publication-title: Cognitive Computation
– volume: 31
  start-page: 2767
  year: 2023
  end-page: 2777
  ident: b35
  article-title: Global adaptive transformer for cross-subject enhanced EEG classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 16
  start-page: 923
  issue: 3
  year: 2023
  ident: 10.1016/j.eswa.2024.125452_b16
  article-title: Selective multi-source domain adaptation network for cross-subject motor imagery discrimination
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2023.3314351
– start-page: 1
  year: 2007
  ident: 10.1016/j.eswa.2024.125452_b40
  article-title: Wilcoxon signed-rank test
  publication-title: Wiley Encyclopedia of Clinical Trials
– volume: 10
  start-page: 368
  year: 2018
  ident: 10.1016/j.eswa.2024.125452_b21
  article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-017-9533-x
– volume: 51
  start-page: 1034
  issue: 6
  year: 2004
  ident: 10.1016/j.eswa.2024.125452_b29
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2004.827072
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.eswa.2024.125452_b36
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 30
  start-page: 2126
  year: 2022
  ident: 10.1016/j.eswa.2024.125452_b41
  article-title: A transformer-based approach combining deep learning network and spatial-temporal information for raw EEG classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2022.3194600
– volume: 30
  start-page: 2406
  year: 2022
  ident: 10.1016/j.eswa.2024.125452_b10
  article-title: A self-supervised learning based channel attention MLP-Mixer network for motor imagery decoding
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2022.3199363
– volume: 79
  start-page: 205
  year: 2016
  ident: 10.1016/j.eswa.2024.125452_b4
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2016.10.019
– volume: 24
  start-page: 2570
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2024.125452_b43
  article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2020.2967128
– volume: 16
  start-page: 1
  year: 2008
  ident: 10.1016/j.eswa.2024.125452_b19
  article-title: BCI competition 2008–Graz data set B
  publication-title: Graz University of Technology (Austria)
– volume: 10
  start-page: 305
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2024.125452_b44
  article-title: A survey on negative transfer
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2022.106004
– volume: Vol. 35
  start-page: 6219
  year: 2022
  ident: 10.1016/j.eswa.2024.125452_b13
  article-title: SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG
– volume: 29
  start-page: 556
  year: 2021
  ident: 10.1016/j.eswa.2024.125452_b12
  article-title: Dynamic joint domain adaptation network for motor imagery classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2021.3059166
– year: 2022
  ident: 10.1016/j.eswa.2024.125452_b7
  article-title: TSception: Capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 237
  year: 2024
  ident: 10.1016/j.eswa.2024.125452_b24
  article-title: A cross-session motor imagery classification method based on Riemannian geometry and deep domain adaptation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121612
– volume: 18
  start-page: 1645
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2024.125452_b8
  article-title: EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2021.3052811
– volume: 21
  start-page: 21772
  issue: 19
  year: 2021
  ident: 10.1016/j.eswa.2024.125452_b50
  article-title: Multi-source fusion domain adaptation using resting-state knowledge for motor imagery classification tasks
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3101684
– ident: 10.1016/j.eswa.2024.125452_b1
  doi: 10.1109/CVPR46437.2021.00997
– volume: 9
  start-page: 531
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.125452_b25
  article-title: A large EEG dataset for studying cross-session variability in motor imagery brain-computer interface
  publication-title: Scientific Data
  doi: 10.1038/s41597-022-01647-1
– volume: 67
  start-page: 399
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2024.125452_b11
  article-title: Transfer learning for brain–computer interfaces: A euclidean space data alignment approach
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2019.2913914
– year: 2021
  ident: 10.1016/j.eswa.2024.125452_b26
– volume: 14
  start-page: 2496
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2024.125452_b31
  article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2022.3164516
– volume: 6
  start-page: 21002
  year: 2012
  ident: 10.1016/j.eswa.2024.125452_b2
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2012.00039
– year: 2019
  ident: 10.1016/j.eswa.2024.125452_b6
– ident: 10.1016/j.eswa.2024.125452_b9
  doi: 10.1109/CVPR42600.2020.00975
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2024.125452_b15
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aace8c
– volume: 31
  start-page: 710
  year: 2022
  ident: 10.1016/j.eswa.2024.125452_b34
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2022.3230250
– year: 2021
  ident: 10.1016/j.eswa.2024.125452_b32
– volume: 31
  start-page: 1258
  year: 2023
  ident: 10.1016/j.eswa.2024.125452_b39
  article-title: A multi-source transfer joint matching method for inter-subject motor imagery decoding
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3243257
– volume: 73
  start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.125452_b49
  article-title: Dual contrastive training and transferability aware adaptation for multi-source privacy-preserving motor imagery classification
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 15
  year: 2021
  ident: 10.1016/j.eswa.2024.125452_b5
  article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2021.778488
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.125452_b17
  article-title: Inter-subject contrastive learning for subject adaptive EEG-based visual recognition
– volume: 53
  start-page: 10766
  issue: 9
  year: 2023
  ident: 10.1016/j.eswa.2024.125452_b42
  article-title: A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1007/s10489-022-04077-z
– volume: 32
  start-page: 535
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2024.125452_b47
  article-title: Deep representation-based domain adaptation for nonstationary EEG classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3010780
– volume: 12
  start-page: 494
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2024.125452_b22
  article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2018.2885474
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.eswa.2024.125452_b30
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23730
– start-page: 6028
  year: 2020
  ident: 10.1016/j.eswa.2024.125452_b23
  article-title: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation
– start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.125452_b38
  article-title: EEG-based motor imagery recognition framework via multisubject dynamic transfer and iterative self-training
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2023.3341807
– ident: 10.1016/j.eswa.2024.125452_b33
– volume: 29
  start-page: 1099
  year: 2021
  ident: 10.1016/j.eswa.2024.125452_b18
  article-title: Decoding finger tapping with the affected hand in chronic stroke patients during motor imagery and execution
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2021.3087506
– start-page: 238
  year: 2020
  ident: 10.1016/j.eswa.2024.125452_b27
  article-title: Contrastive representation learning for electroencephalogram classification
– volume: 17
  issue: 5
  year: 2020
  ident: 10.1016/j.eswa.2024.125452_b14
  article-title: Thinker invariance: enabling deep neural networks for BCI across more people
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/abb7a7
– volume: 30
  year: 2017
  ident: 10.1016/j.eswa.2024.125452_b37
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.eswa.2024.125452_b48
– volume: 15
  start-page: 938
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2024.125452_b46
  article-title: Lightweight source-free transfer for privacy-preserving motor imagery classification
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2022.3193731
– volume: 213
  year: 2023
  ident: 10.1016/j.eswa.2024.125452_b28
  article-title: Unsupervised feature extraction with autoencoders for EEG based multiclass motor imagery BCI
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118901
– start-page: 1
  year: 2008
  ident: 10.1016/j.eswa.2024.125452_b3
– volume: 50
  start-page: 3281
  issue: 7
  year: 2019
  ident: 10.1016/j.eswa.2024.125452_b20
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Transactions on Cybernetics
– volume: 31
  start-page: 2767
  year: 2023
  ident: 10.1016/j.eswa.2024.125452_b35
  article-title: Global adaptive transformer for cross-subject enhanced EEG classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3285309
– volume: 165
  start-page: 451
  year: 2023
  ident: 10.1016/j.eswa.2024.125452_b45
  article-title: MI-CAT: A transformer-based domain adaptation network for motor imagery classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.06.005
SSID ssj0017007
Score 2.4635618
Snippet Individual differences in electroencephalography (EEG) present significant challenges for subject-independent EEG classification in brain–computer interfaces...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 125452
SubjectTerms Brain–computer interfaces (BCIs)
Contrastive learning
Electroencephalography (EEG)
Motor imagery (MI)
Unsupervised domain adaptation
Title Unsupervised multi-source domain adaptation via contrastive learning for EEG classification
URI https://dx.doi.org/10.1016/j.eswa.2024.125452
Volume 261
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSgflQc25DZN7DgZq6qlgOgClSoxRHZsoyJII9LCxm_HlzgVSKgDa2RL0fl89y559w6hS18aP9YsIkzxgNBYpUSyWBAbCUNQXJNCQjfy_SQcT-ntjM0aaFD3wgCt0sX-KqaX0do96TprdvP5vPtgwYFNh7a0o6BhFoMmKKUcvLzztaZ5gPwcr_T2OIHVrnGm4njp4hO0h3zasXmeMv_v5PQj4Yz20I5Dirhfvcw-aujsAO3WUxiwu5SH6GmaFascrnyhFS4JgqT6JI_V4s0W_lgokVd_3PHHXOCSnS4KiHPYDY14xha74uHwGqeApoE-VK4_QtPR8HEwJm5kAkkDz1sSEXsg-BVzybjUIkq5pj3NpIUpMbWnwk0kPJMKylVoPOEJ6YfaYjo_CHzFbcF6jJrZItMnCEsTiJSanjRwy1UU2cxFe8aTPDWGK9ZCvdpWSer0xGGsxWtSE8deErBvAvZNKvu20NV6T16paWxczeojSH75RGLD_YZ9p__cd4a2fZjuW3Kyz1Fz-b7SFxZyLGW79Kk22urf3I0n39p01oM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwIxEJ0oHvTitxE_e_BmKstuS3ePxoAgyEVJSDxs2m1rMApEQP--nd0u0cR48LrpJM20nXndvnkDcBEqGyaGx5RrEVGW6IwqnkjqImEDFdeUVFiNfN9vtAfsbsiHK3BT1sIgrdLH_iKm59Haf6l5b9amo1HtwYEDlw7d1Y6hhlnCVmEN1al4BdauO912f_mYIIKiatqNp2jga2cKmpeZfaL8UMiuXKpnPPw9P33LOa1t2PRgkVwX89mBFTPeha2yEQPx53IPngbj2WKKp35mNMk5grT4K0_05M3d_YnUclo8upOPkSQ5QV3OMNQR3zfimTj4SprNW5IhoEYGUT5-Hwat5uNNm_quCTSLgmBOZRKg5lciFBfKyDgThtUNVw6pJMwtjLCxDGwmmdANG8hAqrBhHKwLoyjUwt1ZD6AynozNIRBlI5kxW1cWD7qOY5e8WN0GSmTWCs2rUC99lWZeUhw7W7ymJXfsJUX_pujftPBvFS6XNtNCUOPP0bxcgvTHtkhdxP_D7uifduew3n6876W9Tr97DBshNvvNKdonUJm_L8ypQyBzdeZ32BdBBtk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+multi-source+domain+adaptation+via+contrastive+learning+for+EEG+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Xu%2C+Chengjian&rft.au=Song%2C+Yonghao&rft.au=Zheng%2C+Qingqing&rft.au=Wang%2C+Qiong&rft.date=2025-02-01&rft.issn=0957-4174&rft.volume=261&rft.spage=125452&rft_id=info:doi/10.1016%2Fj.eswa.2024.125452&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_125452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon