Intelligent modeling strategies for forecasting air quality time series: A review

In recent years, the deterioration of air quality, the frequent events of the air contaminants, and the health impacts from that have caused continuous attention by the government and the public. Based on that, suitable and effective forecasting tools are urgently needed in scientific research. In t...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 102; p. 106957
Main Authors Liu, Hui, Yan, Guangxi, Duan, Zhu, Chen, Chao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the deterioration of air quality, the frequent events of the air contaminants, and the health impacts from that have caused continuous attention by the government and the public. Based on that, suitable and effective forecasting tools are urgently needed in scientific research. In this study, the basic forecasting algorithms are introduced as the simple forecasting models with their background, applications, advantages, and limitations, which include shallow predictors and deep learning predictors. Then, to enhance the forecasting ability, the data processing methods and two commonly used auxiliary methods (the ensemble learning and the metaheuristic optimization) in the hybrid models have been reviewed. The recent articles of the spatiotemporal aspects have also brought changes in both the analysis and the modeling methods. Furthermore, the representative models are summarized to present the structures of efficient predictive models. Some possible research directions of the air pollution forecasting are given at the end. This review aims to provide a comprehensive literature summary of the intelligent modeling strategies in the air quality forecasting, which may be helpful for subsequent study. •Intelligent models and the improved versions are reviewed.•Various components and combinations in the hybrid models are analyzed.•The applications of the forecasting models are provided and compared.•The future directions and challenges of air quality forecasting are discussed.
AbstractList In recent years, the deterioration of air quality, the frequent events of the air contaminants, and the health impacts from that have caused continuous attention by the government and the public. Based on that, suitable and effective forecasting tools are urgently needed in scientific research. In this study, the basic forecasting algorithms are introduced as the simple forecasting models with their background, applications, advantages, and limitations, which include shallow predictors and deep learning predictors. Then, to enhance the forecasting ability, the data processing methods and two commonly used auxiliary methods (the ensemble learning and the metaheuristic optimization) in the hybrid models have been reviewed. The recent articles of the spatiotemporal aspects have also brought changes in both the analysis and the modeling methods. Furthermore, the representative models are summarized to present the structures of efficient predictive models. Some possible research directions of the air pollution forecasting are given at the end. This review aims to provide a comprehensive literature summary of the intelligent modeling strategies in the air quality forecasting, which may be helpful for subsequent study. •Intelligent models and the improved versions are reviewed.•Various components and combinations in the hybrid models are analyzed.•The applications of the forecasting models are provided and compared.•The future directions and challenges of air quality forecasting are discussed.
ArticleNumber 106957
Author Duan, Zhu
Liu, Hui
Yan, Guangxi
Chen, Chao
Author_xml – sequence: 1
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  email: csuliuhui@csu.edu.cn
– sequence: 2
  givenname: Guangxi
  surname: Yan
  fullname: Yan, Guangxi
– sequence: 3
  givenname: Zhu
  surname: Duan
  fullname: Duan, Zhu
– sequence: 4
  givenname: Chao
  surname: Chen
  fullname: Chen, Chao
BookMark eNp9kM9OAyEQh4mpiW31BTzxAlthYbdgvDSN_5ImxkTPhGWHhmYLCqjp28umnjz0MGECfJP5fTM08cEDQteULCih7c1uoVMwi5rU40Urm-UZmlKxrCvZCjopfdOKikveXqBZSjtSIFmLKXp99hmGwW3BZ7wPPQzOb3HKUWfYOkjYhjgWGJ3y-KRdxJ9fenD5gLPbA04Qy79bvMIRvh38XKJzq4cEV3_nHL0_3L-tn6rNy-PzerWpDCMkV1oIagXjNe2Y6GTHmdRd02tNpeSMMkug10IzLs2yBWm7RlDSNdwK4CVLz-ZIHOeaGFKKYJVxWWcXfFneDYoSNapROzWqUaMadVRT0Pof-hHdXsfDaejuCEEJVYJGlYwDb6B3xU5WfXCn8F85bIBS
CitedBy_id crossref_primary_10_1007_s11063_023_11332_y
crossref_primary_10_3390_en16041806
crossref_primary_10_37648_ijrst_v13i03_010
crossref_primary_10_1016_j_envpol_2024_124053
crossref_primary_10_3390_atmos15040398
crossref_primary_10_3390_atmos13121978
crossref_primary_10_3389_fenvs_2022_924986
crossref_primary_10_1007_s11356_021_17442_1
crossref_primary_10_1109_ACCESS_2023_3251105
crossref_primary_10_1109_TGRS_2023_3292006
crossref_primary_10_1016_j_eti_2025_104107
crossref_primary_10_1016_j_asoc_2024_111324
crossref_primary_10_3390_jmse10091270
crossref_primary_10_3390_atmos14050816
crossref_primary_10_1016_j_asoc_2023_110559
crossref_primary_10_1016_j_eswa_2023_121951
crossref_primary_10_1007_s00477_023_02512_2
crossref_primary_10_1007_s13762_023_04900_1
crossref_primary_10_1016_j_chaos_2022_112405
crossref_primary_10_33166_AETiC_2021_04_004
crossref_primary_10_48084_etasr_6981
crossref_primary_10_36548_jscp_2023_4_005
crossref_primary_10_1016_j_rser_2024_114791
crossref_primary_10_1038_s41598_023_49007_2
crossref_primary_10_1016_j_eswa_2024_124856
crossref_primary_10_3390_forecast5010017
crossref_primary_10_1007_s11356_025_36265_y
crossref_primary_10_1016_j_techfore_2023_122504
crossref_primary_10_1016_j_asoc_2025_113042
crossref_primary_10_1016_j_envres_2024_119751
crossref_primary_10_1016_j_eswa_2025_126937
crossref_primary_10_3934_environsci_2024021
crossref_primary_10_1016_j_envsoft_2024_106205
crossref_primary_10_1016_j_aej_2024_03_031
crossref_primary_10_1016_j_jes_2024_09_029
crossref_primary_10_1016_j_envint_2023_107848
crossref_primary_10_1007_s11227_023_05782_3
crossref_primary_10_3390_atmos14050902
crossref_primary_10_1016_j_eswa_2023_122178
crossref_primary_10_1016_j_jes_2025_02_041
crossref_primary_10_1016_j_atmosres_2024_107576
crossref_primary_10_1080_01431161_2024_2373338
crossref_primary_10_3389_fenvs_2024_1393878
crossref_primary_10_1016_j_asoc_2022_108933
crossref_primary_10_3390_app12010256
crossref_primary_10_1016_j_uclim_2024_102262
crossref_primary_10_3390_math10203910
crossref_primary_10_1002_for_2872
crossref_primary_10_3390_su14169951
crossref_primary_10_1021_acs_est_4c06486
crossref_primary_10_1016_j_envres_2023_117286
crossref_primary_10_1016_j_eswa_2022_118123
crossref_primary_10_1016_j_jece_2024_114658
crossref_primary_10_1016_j_apr_2021_101144
crossref_primary_10_1016_j_atmosenv_2022_119347
crossref_primary_10_1016_j_scs_2024_106010
crossref_primary_10_1016_j_apenergy_2023_121597
crossref_primary_10_1038_s41598_022_21769_1
crossref_primary_10_1016_j_energy_2023_127852
crossref_primary_10_1007_s11869_023_01380_7
crossref_primary_10_3390_s22083054
crossref_primary_10_3390_atmos15070856
crossref_primary_10_3390_math10173060
crossref_primary_10_3390_atmos14020340
crossref_primary_10_1021_acs_est_2c02961
crossref_primary_10_1016_j_scs_2023_104445
crossref_primary_10_1016_j_uclim_2024_102099
crossref_primary_10_1016_j_chemosphere_2023_139071
crossref_primary_10_3390_en18030660
crossref_primary_10_1007_s12145_024_01546_6
crossref_primary_10_1016_j_engappai_2023_107645
crossref_primary_10_3390_atmos14020308
crossref_primary_10_7717_peerj_cs_982
crossref_primary_10_1016_j_prime_2023_100234
crossref_primary_10_3390_su15064837
crossref_primary_10_1177_23998083241230707
crossref_primary_10_3390_s24155069
crossref_primary_10_1080_23311916_2023_2243743
crossref_primary_10_1016_j_ins_2021_10_061
crossref_primary_10_1371_journal_pone_0286325
crossref_primary_10_1016_j_eneco_2023_106683
crossref_primary_10_1063_5_0207834
crossref_primary_10_1016_j_asoc_2021_108110
crossref_primary_10_1007_s00500_023_08638_3
crossref_primary_10_1007_s11356_023_28028_4
crossref_primary_10_1016_j_scitotenv_2024_170777
crossref_primary_10_35377_saucis___1404116
Cites_doi 10.1016/j.asoc.2019.105789
10.1016/j.atmosenv.2017.01.020
10.1080/10962247.2018.1459956
10.1016/j.chemosphere.2019.01.121
10.1016/j.enpol.2010.04.034
10.1016/j.envpol.2017.08.114
10.1111/tgis.12302
10.1207/s15516709cog1402_1
10.3390/atmos7020015
10.1016/j.rser.2019.01.049
10.1016/j.procs.2018.05.094
10.1016/j.jclepro.2019.05.257
10.1109/TSP.2013.2288675
10.1016/j.scitotenv.2017.01.136
10.1016/j.envres.2003.11.003
10.1016/j.engappai.2011.10.013
10.1023/A:1010933404324
10.1016/j.apr.2017.11.004
10.1016/j.envpol.2017.01.043
10.1016/j.envpol.2017.08.069
10.1109/TNN.2006.880583
10.1016/j.mcm.2011.04.017
10.1016/j.asoc.2019.105972
10.1016/j.asoc.2018.09.005
10.1016/j.asoc.2018.05.044
10.1016/j.apr.2017.11.010
10.1109/ACCESS.2019.2897028
10.1016/j.amc.2013.03.018
10.1016/j.apr.2019.05.007
10.1109/ICCCBDA.2018.8386494
10.1016/j.scitotenv.2011.08.069
10.1016/j.jenvman.2016.12.011
10.1016/j.scs.2017.12.022
10.1016/j.is.2016.03.011
10.1016/j.atmosenv.2018.04.004
10.1007/s11356-009-0138-0
10.1016/j.eswa.2012.01.023
10.1016/j.envres.2017.08.039
10.1016/S0140-6736(17)30505-6
10.1016/j.atmosenv.2016.05.036
10.1016/j.scitotenv.2018.09.196
10.1016/j.scitotenv.2013.06.093
10.1007/s00477-016-1265-z
10.1016/0165-0114(93)90372-O
10.1155/2019/5304535
10.3390/ijerph14070764
10.1016/j.atmosenv.2012.01.051
10.1016/j.asoc.2020.106070
10.1016/j.atmosenv.2014.12.011
10.5094/APR.2015.033
10.5094/APR.2014.079
10.3390/ijerph14020114
10.1016/j.atmosenv.2018.12.025
10.1016/j.atmosenv.2009.05.006
10.1016/j.jenvman.2017.02.071
10.1016/j.ecoinf.2017.12.001
10.1016/j.apr.2019.11.019
10.1007/s11004-013-9483-0
10.1016/j.eswa.2010.05.093
10.1016/j.techfore.2019.05.015
10.1016/j.scitotenv.2017.08.272
10.1016/j.neucom.2018.06.049
10.1007/s11869-010-0073-8
10.1089/ees.2010.0219
10.1109/ICBBE.2008.808
10.1016/j.patrec.2020.04.032
10.1016/j.rmed.2018.11.019
10.1016/j.apr.2019.04.005
10.1007/s11869-019-00696-7
10.1016/j.atmosenv.2012.06.031
10.1016/j.asoc.2019.105827
10.1016/j.jclepro.2019.02.179
10.1016/j.atmosres.2013.05.021
10.1016/j.apr.2016.01.004
10.1016/j.atmosenv.2014.09.046
10.1016/j.asoc.2018.07.030
10.1023/A:1018628609742
10.1007/s10666-011-9270-6
10.1016/j.atmosenv.2018.03.015
10.1016/j.atmosenv.2016.03.056
10.1016/j.chemosphere.2005.08.070
10.1016/j.scitotenv.2018.01.195
10.3390/app9183765
10.1109/21.256541
10.1016/j.apr.2018.03.008
10.3390/app8122570
10.1016/j.envsoft.2019.06.014
10.1016/j.envint.2014.10.005
10.1016/j.jclepro.2019.06.201
10.1016/j.scitotenv.2016.12.018
10.1016/j.atmosenv.2011.01.002
10.1080/10962247.2012.755940
10.1002/cem.2505
10.5094/APR.2015.012
10.1016/j.chemosphere.2004.10.032
10.22260/ISARC2011/0212
10.1109/72.97934
10.1016/j.jclepro.2017.06.016
10.1016/j.atmosenv.2009.06.039
10.1155/2017/3131083
10.1016/j.uclim.2019.100473
10.1016/j.atmosenv.2011.06.071
10.1007/s11869-019-00695-8
10.3390/atmos10040223
10.3390/ijerph15040780
10.1016/j.asoc.2011.06.013
10.1016/j.atmosenv.2006.12.013
10.1016/j.jclepro.2017.10.195
10.1016/j.envpol.2013.02.019
10.1098/rspa.1998.0193
10.1016/j.scitotenv.2017.07.061
10.1016/j.scitotenv.2019.05.288
10.1016/j.scitotenv.2019.01.333
10.1155/2016/5694251
10.1007/s11869-020-00795-w
10.1016/j.atmosenv.2015.02.004
10.5094/APR.2011.050
10.1016/j.scs.2016.12.015
10.1016/j.asoc.2020.106620
10.1016/j.cma.2004.09.007
10.1016/j.scitotenv.2018.11.086
10.4303/iep/E101203
10.1016/j.apm.2019.04.032
10.1007/s11869-016-0414-3
10.1145/3141128.3141131
10.1016/j.scitotenv.2012.10.110
10.1016/j.buildenv.2006.05.011
10.1016/j.atmosenv.2015.02.030
10.1016/j.neucom.2005.12.126
10.1016/j.asoc.2020.106336
10.1016/j.envpol.2017.10.029
10.1016/j.scs.2019.101657
10.1016/j.knosys.2018.10.036
10.1016/j.scitotenv.2018.04.040
10.1016/j.asoc.2019.105898
10.1016/j.apr.2019.03.004
10.1016/j.scs.2020.102364
10.1016/j.jclepro.2019.117729
10.1016/S0048-9697(03)00335-8
10.1016/j.scitotenv.2019.135934
10.1016/j.engappai.2006.10.008
10.1016/j.scs.2019.101471
10.3390/atmos9020074
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106957
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106957
S1568494620308954
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-a881f83421b38b9b439ab5daa1994313f0eda8a349c76e9fb5810b54f8e4568d3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:52:26 EDT 2025
Tue Jul 01 01:50:08 EDT 2025
Fri Feb 23 02:40:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid modeling strategies
Air quality forecasting
Intelligent predictors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a881f83421b38b9b439ab5daa1994313f0eda8a349c76e9fb5810b54f8e4568d3
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106957
crossref_primary_10_1016_j_asoc_2020_106957
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106957
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rathore, Paul, Hong, Seo, Awan, Saeed (b177) 2018; 40
Tang, Zhou, He, Zhang (b109) 2017
Konovalov, Beekmann, Meleux, Dutot, Foret (b19) 2009; 43
Zhou, Xu, Xie, Chang, Gao, Gu, Zhou (b21) 2017; 153
De Vito, Di Francia, Esposito, Ferlito, Formisano, Massera (b178) 2020; 136
Mihăiţă, Dupont, Chery, Camargo, Cai (b179) 2019; 221
Liu, Chen (b170) 2020
Pak, Ma, Ryu, Ryom, Juhyok, Pak, Pak (b71) 2019; 669
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b143) 1998; 454
Kurt, Oktay (b67) 2010; 37
Krishan, Jha, Das, Singh, Goyal, Sekar (b129) 2019; 12
Cheng, Zhang, Liu, Chen, Wang (b79) 2019; 200
Ashish, Rashmi (b142) 2011; 2
Zhai, Chen (b65) 2018; 635
Wang, Tian (b164) 2017
Kumar, Goyal (b30) 2011; 409
Y. Teng, X. Huang, S. Ye, Y. Li, Prediction of particulate matter concentration in Chengdu based on improved differential evolution algorithm and BP neural network model, in: 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis, ICCCBDA, 2018.
Rybarczyk, Zalakeviciute (b51) 2018; 8
Xiao, Wang, Wu, Fu, Zhu (b12) 2018; 9
Chen, Wang, Zhang (b59) 2019; 146
Deng, Zheng, Chen (b127) 2009
Zhou, Xu, Zeng, Meng (b140) 2019
Qin, Liu, Wang, Sun (b62) 2014; 98
Zhang, Liu, Shi, Yao (b95) 2013; 63
Feng, Li, Zhu, Hou, Jin, Wang (b26) 2015; 107
Freeman, Taylor, Gharabaghi, Thé (b49) 2018; 68
Liu, Jin, Duan (b53) 2019; 10
Elman (b102) 1990; 14
Rao, Devi, Ramesh (b138) 2019; 11
Lee, Geem (b157) 2005; 194
Du, Wang, Hao, Niu, Yang (b163) 2020
Chuang, Zhang, Kang (b22) 2011; 45
Yang, Zhu, Li, Li (b161) 2020; 87
Brunelli, Piazza, Pignato, Sorbello, Vitabile (b104) 2008; 43
Chen, Chen, Wu, Hu, Pan (b28) 2017; 64
Kumar, Goyal (b33) 2011; 2
Gilles (b150) 2013
L. Zheng, S. Yu, M. Yu, Monitoring NOx emissions from coal fired boilers using generalized regression neural network, in: 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008.
Xu, Liu, Duan (b88) 2020; 13
Zvereva, Kozlov (b32) 2010; 17
Zainuddin, Pauline (b101) 2011; 11
Smolensky (b132) 1986
Gan, Sun, Wang, Wei (b153) 2018; 9
Wen, Liu, Yao, Peng, Li, Hu, Chi (b172) 2019; 654
Shimadera, Kojima, Kondo (b27) 2016; 2016
Cabaneros, Calautit, Hughes (b38) 2019; 119
Najjar (b3) 2011; 1
Jain, Khare (b118) 2010; 3
Chen, Zeng (b158) 2020; 93
Zhang, Bocquet, Mallet, Seigneur, Baklanov (b37) 2012; 60
Murillo-Escobar, Sepulveda-Suescun, Correa, Orrego-Metaute (b60) 2019; 29
Zhu, Wang, Zhang, Sun (b10) 2012; 51
Li, Yang (b44) 2010
Saxena, Shekhawat (b111) 2017; 2017
Niu, Wang, Sun, Li (b144) 2016; 134
Wu, Lin (b162) 2019; 683
Bueno, Coelho, Bertini (b125) 2017
Velasco, Retama (b16) 2017; 31
Sun, Wang, Zhang (b165) 2017; 162
Avnery, Mauzerall, Liu, Horowitz (b17) 2011; 45
Alhanafy, Zaghlool, Moustafa (b46) 2010; 6
M. Asgari, M. Farnaghi, Z. Ghaemi, Predictive mapping of urban air pollution using Apache Spark on a Hadoop cluster, in: Proceedings of the 2017 International Conference on Cloud and Big Data Computing, 2017, pp. 89–93.
Huang, Zhu, Siew (b121) 2006; 70
Peng, Lima, Teakles, Jin, Cannon, Hsieh (b126) 2017; 10
Liu, Yan, Li, Qu, Li, Lang, Gu (b139) 2018
Dotse, Petra, Dagar, De Silva (b64) 2018; 9
Prakash, Kumar, Kumar, Jain (b80) 2011; 16
Kim, Kabir, Kabir (b13) 2015; 74
Zhang, Yan, Li, Rui, Liu, Bie (b134) 2016
Seigneur, Moran (b20) 2010
Kamińska (b63) 2019; 651
Jiang, He, Tian (b81) 2019; 85
Rijal, Gutta, Cao, Lin, Bo, Zhang (b135) 2018
Awad, Koutrakis, Coull, Schwartz (b66) 2017; 159
Wang, Li, Lu (b87) 2018; 71
Zhang, Li, Li, Mei (b42) 2018
Liu, Guo, Chen, Chen (b159) 2019; 10
Wu, Feng, Du, Li (b105) 2011; 28
Taheri Shahraiyni, Sodoudi (b73) 2016; 7
Bai, Zeng, Li, Zhang (b85) 2019; 222
Zhu, Qiu, Yin, Fang, Liu, Zhao, Shi (b57) 2019; 10
Hao, Tian (b149) 2019; 74
Sotomayor-Olmedo, Aceves-Fernández, Gorrostieta-Hurtado, Pedraza-Ortega, Ramos-Arreguín, Vargas-Soto (b15) 2013; 3
Xie (b47) 2017
Dincer, Akkuş (b115) 2018; 43
Domańska, Wojtylak (b116) 2012; 39
Martınez-Espana, Bueno-Crespo, Timón, Soto, Munoz, Cecilia (b168) 2018; 24
Zhu, Lian, Liu, Hu, Wang, Che (b83) 2017; 231
Philibert, Loyce, Makowski (b169) 2013; 177
Brunelli, Piazza, Pignato, Sorbello, Vitabile (b103) 2007; 41
Mishra, Goyal (b54) 2015; 6
Han, Liu, Gao, Ma, Mao, Wang, Ma (b4) 2017; 607–608
Li, Li, Wang, Ren, Zhang, Yu (b43) 2018
Niu, Gan, Sun, Li (b84) 2017; 196
Zheng, Shang (b96) 2013
Li, Peng, Yao, Cui, Hu, You, Chi (b137) 2017; 231
Liang, Huang, Saratchandran, Sundararajan (b124) 2006; 17
Qi, Li, Karimian, Liu (b174) 2019; 664
Manders, Schaap, Hoogerbrugge (b25) 2009; 43
Deo, Tiwari, Adamowski, Quilty (b56) 2017; 31
de Gennaro, Trizio, Di Gilio, Pey, Pérez, Cusack, Alastuey, Querol (b93) 2013; 463
Wang, Song (b173) 2018; 314
Zhan, Luo, Deng, Grieneisen, Zhang, Di (b68) 2018; 233
Lu, Wang, Wang, Yan, Lam (b78) 2004; 96
Breiman (b167) 2001; 45
Zhao, van Heeswijk, Karhunen (b122) 2016
Salakhutdinov, Hinton (b133) 2009
Liu, Duan, Chen (b82) 2019; 12
Hao, Peng, Temulun, Liu, Mao, Lu, Chen (b6) 2018; 172
Russo, Soares (b35) 2014; 46
Xing, Yue, Chen, Xiang, Chen, Shi (b141) 2019; 9
Qiao, Ying, Li, Zhang, Hu, Tang, Chen (b24) 2018; 612
Cohen, Brauer, Burnett, Anderson, Frostad, Estep, Balakrishnan, Brunekreef, Dandona, Dandona (b5) 2017; 389
Sun, Hoff, Zelle, Smith (b100) 2008
Oprea, Mihalache, Popescu (b119) 2016
Sun, Li (b171) 2020
Jiang, Meng, Yang, Li (b94) 2008
Zhang, Ding (b123) 2017; 14
Zhou, Zhao, Lin, Wang, Li (b1) 2019; 85
Zhu, Ding, Lei, Cheng, Liu, Shen, Zhang, Xu, Xiao, Li (b14) 2019; 146
Xu, Du, Wang (b90) 2017; 223
Casazza, Lega, Jannelli, Minutillo, Jaffe, Severino, Ulgiati (b76) 2019; 231
Antanasijević, Ristić, Perić-Grujić, Pocajt (b99) 2013; 27
Wang, Wei, Luo, Yue, Grunder (b154) 2017; 580
Zhu, Lian, Wei, Che, Shen, Yang, Qiu, Liu, Gao, Ren (b86) 2018; 183
Kamal, Jailani, Shauri (b39) 2006
H. Wahid, Q.P. Ha, H.N. Duc, Computational intelligence estimation of natural background ozone level and its distribution for air quality modelling and emission control, in: Proceedings of the 28th International Symposium on Automation and Robotics in Construction, ISARC 2011, 2011.
Wang, Klemeš, Dong, Fan, Xu, Wang, Varbanov (b74) 2019; 105
Zhai, Ding, Jin, Zhao (b113) 2020; 89
Antanasijević, Pocajt, Povrenović, Ristić, Perić-Grujić (b41) 2013; 443
Wei, Peng, Wang, Song (b8) 2017; 9
Eslami, Choi, Lops, Sayeed (b48) 2019
Liu, Binaykia, Chang, Tiwari, Tsao (b107) 2017; 12
Xia, Guan, Jiang, Peng, Schroeder, Zhang (b7) 2016; 139
Deng, Yang, Liu, Jin, Xu, Zhang (b91) 2018; 22
Wu, Lin (b58) 2019; 50
Osowski, Garanty (b18) 2007; 20
Park, Yoo, Kim, Gu, Lee, Son (b130) 2017
Specht (b97) 1991; 2
Péres, Ruiz, Nesmachnow, Olivera (b2) 2018; 70
Donnelly, Misstear, Broderick (b34) 2015; 103
Song, Chissom (b114) 1993; 54
Jiang, Li, Li, Yang (b146) 2019; 164
Liu, Chen (b128) 2020; 11
Ritter, Müller, Tsai, Parlow (b29) 2013; 132
Sun, Sun (b175) 2016; 188
Gulia, Nagendra, Khare, Khanna (b75) 2015; 6
Wang, Xie, Wang (b136) 2018
Nam, Selin, Reilly, Paltsev (b9) 2010; 38
Rubal, Kumar (b61) 2018; 132
Nieto, Combarro, Díaz, Montañés (b106) 2013; 219
Zhao, Li (b166) 2019; 10
Singh, Sharma, Yoon, Shojafar, Cho, Ra (b176) 2020; 63
Wang, Bai, Wang, Wang (b89) 2019; 234
Masih (b50) 2019; 5
Elangasinghe, Singhal, Dirks, Salmond (b92) 2014; 5
Sharma, Deo, Prasad, Parisi (b147) 2020; 709
Yang, Deng, Xu, Wang (b69) 2018; 181
Lu, Wang (b110) 2005; 59
Suykens, Vandewalle (b112) 1999; 9
Lin, Lee, Ouyang, Wu (b120) 2020; 86
Cereceda-Balic, Toledo, Vidal, Guerrero, Diaz-Robles, Petit-Breuilh, Lapuerta (b11) 2017; 584
Liu, Wu, Lv, Ren, Liu, Li, Shi (b151) 2019; 47
Sun, Sun (b77) 2017; 188
Bai, Wang, Ma, Lu (b52) 2018; 15
Liu, Xu, Chen (b152) 2019; 73
Zhou, Zhao, Li (b31) 2010
Yildirim, Bayramoglu (b45) 2006; 63
Bai, Li, Wang, Xie, Li (b55) 2016; 7
Siwek, Osowski (b156) 2012; 25
Chaloulakou, Saisana, Spyrellis (b36) 2003; 313
Li, Zhu (b145) 2018; 626
Koo, Choi, Kwon, Jang, Han (b23) 2015; 106
Sánchez, Nieto, Fernández, del Coz Díaz, Iglesias-Rodríguez (b108) 2011; 54
Jang (b117) 1993; 23
Li, Shao, Sun (b131) 2019; 2019
Qin, Yu, Zou, Yong, Zhao, Zhang (b72) 2019; 7
Wang, Liu, Luo, Yue, Cheng (b155) 2017; 14
Dragomiretskiy, Zosso (b148) 2014
Ma, Ding, Cheng, Jiang, Wan (b70) 2019; 237
Wei (10.1016/j.asoc.2020.106957_b8) 2017; 9
Péres (10.1016/j.asoc.2020.106957_b2) 2018; 70
Zhang (10.1016/j.asoc.2020.106957_b42) 2018
Wu (10.1016/j.asoc.2020.106957_b105) 2011; 28
Lu (10.1016/j.asoc.2020.106957_b110) 2005; 59
Najjar (10.1016/j.asoc.2020.106957_b3) 2011; 1
Awad (10.1016/j.asoc.2020.106957_b66) 2017; 159
Siwek (10.1016/j.asoc.2020.106957_b156) 2012; 25
Zhu (10.1016/j.asoc.2020.106957_b86) 2018; 183
Jain (10.1016/j.asoc.2020.106957_b118) 2010; 3
Xing (10.1016/j.asoc.2020.106957_b141) 2019; 9
Cereceda-Balic (10.1016/j.asoc.2020.106957_b11) 2017; 584
Zhang (10.1016/j.asoc.2020.106957_b123) 2017; 14
Osowski (10.1016/j.asoc.2020.106957_b18) 2007; 20
Chen (10.1016/j.asoc.2020.106957_b59) 2019; 146
Konovalov (10.1016/j.asoc.2020.106957_b19) 2009; 43
Kamińska (10.1016/j.asoc.2020.106957_b63) 2019; 651
Rybarczyk (10.1016/j.asoc.2020.106957_b51) 2018; 8
Qiao (10.1016/j.asoc.2020.106957_b24) 2018; 612
Chen (10.1016/j.asoc.2020.106957_b28) 2017; 64
Chuang (10.1016/j.asoc.2020.106957_b22) 2011; 45
Sánchez (10.1016/j.asoc.2020.106957_b108) 2011; 54
Pak (10.1016/j.asoc.2020.106957_b71) 2019; 669
Sun (10.1016/j.asoc.2020.106957_b77) 2017; 188
Deng (10.1016/j.asoc.2020.106957_b127) 2009
Dragomiretskiy (10.1016/j.asoc.2020.106957_b148) 2014
Du (10.1016/j.asoc.2020.106957_b163) 2020
Eslami (10.1016/j.asoc.2020.106957_b48) 2019
Brunelli (10.1016/j.asoc.2020.106957_b103) 2007; 41
Niu (10.1016/j.asoc.2020.106957_b84) 2017; 196
Nam (10.1016/j.asoc.2020.106957_b9) 2010; 38
Velasco (10.1016/j.asoc.2020.106957_b16) 2017; 31
Zhu (10.1016/j.asoc.2020.106957_b14) 2019; 146
Wang (10.1016/j.asoc.2020.106957_b154) 2017; 580
10.1016/j.asoc.2020.106957_b180
Bai (10.1016/j.asoc.2020.106957_b85) 2019; 222
Prakash (10.1016/j.asoc.2020.106957_b80) 2011; 16
Mishra (10.1016/j.asoc.2020.106957_b54) 2015; 6
Zhu (10.1016/j.asoc.2020.106957_b83) 2017; 231
Niu (10.1016/j.asoc.2020.106957_b144) 2016; 134
Antanasijević (10.1016/j.asoc.2020.106957_b99) 2013; 27
Kim (10.1016/j.asoc.2020.106957_b13) 2015; 74
Wang (10.1016/j.asoc.2020.106957_b173) 2018; 314
Suykens (10.1016/j.asoc.2020.106957_b112) 1999; 9
Kumar (10.1016/j.asoc.2020.106957_b30) 2011; 409
Zhai (10.1016/j.asoc.2020.106957_b65) 2018; 635
Sun (10.1016/j.asoc.2020.106957_b175) 2016; 188
Bai (10.1016/j.asoc.2020.106957_b52) 2018; 15
Jang (10.1016/j.asoc.2020.106957_b117) 1993; 23
Yang (10.1016/j.asoc.2020.106957_b69) 2018; 181
Liu (10.1016/j.asoc.2020.106957_b159) 2019; 10
Mihăiţă (10.1016/j.asoc.2020.106957_b179) 2019; 221
Donnelly (10.1016/j.asoc.2020.106957_b34) 2015; 103
Huang (10.1016/j.asoc.2020.106957_b121) 2006; 70
Wang (10.1016/j.asoc.2020.106957_b89) 2019; 234
Jiang (10.1016/j.asoc.2020.106957_b146) 2019; 164
Sun (10.1016/j.asoc.2020.106957_b165) 2017; 162
Dincer (10.1016/j.asoc.2020.106957_b115) 2018; 43
Qin (10.1016/j.asoc.2020.106957_b72) 2019; 7
Liu (10.1016/j.asoc.2020.106957_b107) 2017; 12
Li (10.1016/j.asoc.2020.106957_b131) 2019; 2019
Liu (10.1016/j.asoc.2020.106957_b170) 2020
Kumar (10.1016/j.asoc.2020.106957_b33) 2011; 2
Zhu (10.1016/j.asoc.2020.106957_b57) 2019; 10
Deng (10.1016/j.asoc.2020.106957_b91) 2018; 22
Zhan (10.1016/j.asoc.2020.106957_b68) 2018; 233
Xu (10.1016/j.asoc.2020.106957_b90) 2017; 223
Tang (10.1016/j.asoc.2020.106957_b109) 2017
Domańska (10.1016/j.asoc.2020.106957_b116) 2012; 39
Gilles (10.1016/j.asoc.2020.106957_b150) 2013
Zheng (10.1016/j.asoc.2020.106957_b96) 2013
Avnery (10.1016/j.asoc.2020.106957_b17) 2011; 45
Krishan (10.1016/j.asoc.2020.106957_b129) 2019; 12
Liang (10.1016/j.asoc.2020.106957_b124) 2006; 17
Cabaneros (10.1016/j.asoc.2020.106957_b38) 2019; 119
Wang (10.1016/j.asoc.2020.106957_b155) 2017; 14
Jiang (10.1016/j.asoc.2020.106957_b81) 2019; 85
10.1016/j.asoc.2020.106957_b40
Antanasijević (10.1016/j.asoc.2020.106957_b41) 2013; 443
Sun (10.1016/j.asoc.2020.106957_b100) 2008
Qin (10.1016/j.asoc.2020.106957_b62) 2014; 98
Elangasinghe (10.1016/j.asoc.2020.106957_b92) 2014; 5
Wang (10.1016/j.asoc.2020.106957_b136) 2018
Yildirim (10.1016/j.asoc.2020.106957_b45) 2006; 63
Manders (10.1016/j.asoc.2020.106957_b25) 2009; 43
Huang (10.1016/j.asoc.2020.106957_b143) 1998; 454
Song (10.1016/j.asoc.2020.106957_b114) 1993; 54
Dotse (10.1016/j.asoc.2020.106957_b64) 2018; 9
Liu (10.1016/j.asoc.2020.106957_b151) 2019; 47
Liu (10.1016/j.asoc.2020.106957_b152) 2019; 73
Oprea (10.1016/j.asoc.2020.106957_b119) 2016
Hao (10.1016/j.asoc.2020.106957_b149) 2019; 74
Zhou (10.1016/j.asoc.2020.106957_b31) 2010
Gan (10.1016/j.asoc.2020.106957_b153) 2018; 9
Koo (10.1016/j.asoc.2020.106957_b23) 2015; 106
Zhao (10.1016/j.asoc.2020.106957_b122) 2016
Zhang (10.1016/j.asoc.2020.106957_b37) 2012; 60
Breiman (10.1016/j.asoc.2020.106957_b167) 2001; 45
Li (10.1016/j.asoc.2020.106957_b44) 2010
Xu (10.1016/j.asoc.2020.106957_b88) 2020; 13
Cheng (10.1016/j.asoc.2020.106957_b79) 2019; 200
Wu (10.1016/j.asoc.2020.106957_b58) 2019; 50
Chaloulakou (10.1016/j.asoc.2020.106957_b36) 2003; 313
Shimadera (10.1016/j.asoc.2020.106957_b27) 2016; 2016
Zhou (10.1016/j.asoc.2020.106957_b140) 2019
Nieto (10.1016/j.asoc.2020.106957_b106) 2013; 219
Hao (10.1016/j.asoc.2020.106957_b6) 2018; 172
Wang (10.1016/j.asoc.2020.106957_b164) 2017
Wu (10.1016/j.asoc.2020.106957_b162) 2019; 683
Rubal (10.1016/j.asoc.2020.106957_b61) 2018; 132
Lin (10.1016/j.asoc.2020.106957_b120) 2020; 86
Feng (10.1016/j.asoc.2020.106957_b26) 2015; 107
Zhao (10.1016/j.asoc.2020.106957_b166) 2019; 10
Freeman (10.1016/j.asoc.2020.106957_b49) 2018; 68
Li (10.1016/j.asoc.2020.106957_b137) 2017; 231
Ma (10.1016/j.asoc.2020.106957_b70) 2019; 237
Masih (10.1016/j.asoc.2020.106957_b50) 2019; 5
Saxena (10.1016/j.asoc.2020.106957_b111) 2017; 2017
Liu (10.1016/j.asoc.2020.106957_b82) 2019; 12
Chen (10.1016/j.asoc.2020.106957_b158) 2020; 93
Bueno (10.1016/j.asoc.2020.106957_b125) 2017
Peng (10.1016/j.asoc.2020.106957_b126) 2017; 10
Liu (10.1016/j.asoc.2020.106957_b53) 2019; 10
Ritter (10.1016/j.asoc.2020.106957_b29) 2013; 132
Russo (10.1016/j.asoc.2020.106957_b35) 2014; 46
Salakhutdinov (10.1016/j.asoc.2020.106957_b133) 2009
Han (10.1016/j.asoc.2020.106957_b4) 2017; 607–608
Ashish (10.1016/j.asoc.2020.106957_b142) 2011; 2
Lee (10.1016/j.asoc.2020.106957_b157) 2005; 194
Zainuddin (10.1016/j.asoc.2020.106957_b101) 2011; 11
Liu (10.1016/j.asoc.2020.106957_b128) 2020; 11
Qi (10.1016/j.asoc.2020.106957_b174) 2019; 664
Kurt (10.1016/j.asoc.2020.106957_b67) 2010; 37
De Vito (10.1016/j.asoc.2020.106957_b178) 2020; 136
Wang (10.1016/j.asoc.2020.106957_b74) 2019; 105
Rathore (10.1016/j.asoc.2020.106957_b177) 2018; 40
Murillo-Escobar (10.1016/j.asoc.2020.106957_b60) 2019; 29
Rao (10.1016/j.asoc.2020.106957_b138) 2019; 11
Yang (10.1016/j.asoc.2020.106957_b161) 2020; 87
Wang (10.1016/j.asoc.2020.106957_b87) 2018; 71
Specht (10.1016/j.asoc.2020.106957_b97) 1991; 2
Kamal (10.1016/j.asoc.2020.106957_b39) 2006
Li (10.1016/j.asoc.2020.106957_b43) 2018
Xie (10.1016/j.asoc.2020.106957_b47) 2017
Zhang (10.1016/j.asoc.2020.106957_b134) 2016
Li (10.1016/j.asoc.2020.106957_b145) 2018; 626
Xiao (10.1016/j.asoc.2020.106957_b12) 2018; 9
Zvereva (10.1016/j.asoc.2020.106957_b32) 2010; 17
10.1016/j.asoc.2020.106957_b98
Lu (10.1016/j.asoc.2020.106957_b78) 2004; 96
Elman (10.1016/j.asoc.2020.106957_b102) 1990; 14
Zhu (10.1016/j.asoc.2020.106957_b10) 2012; 51
Alhanafy (10.1016/j.asoc.2020.106957_b46) 2010; 6
Zhang (10.1016/j.asoc.2020.106957_b95) 2013; 63
Philibert (10.1016/j.asoc.2020.106957_b169) 2013; 177
Gulia (10.1016/j.asoc.2020.106957_b75) 2015; 6
Rijal (10.1016/j.asoc.2020.106957_b135) 2018
Zhou (10.1016/j.asoc.2020.106957_b1) 2019; 85
Liu (10.1016/j.asoc.2020.106957_b139) 2018
Singh (10.1016/j.asoc.2020.106957_b176) 2020; 63
Xia (10.1016/j.asoc.2020.106957_b7) 2016; 139
Seigneur (10.1016/j.asoc.2020.106957_b20) 2010
Sharma (10.1016/j.asoc.2020.106957_b147) 2020; 709
Sun (10.1016/j.asoc.2020.106957_b171) 2020
Bai (10.1016/j.asoc.2020.106957_b55) 2016; 7
de Gennaro (10.1016/j.asoc.2020.106957_b93) 2013; 463
Martınez-Espana (10.1016/j.asoc.2020.106957_b168) 2018; 24
Zhou (10.1016/j.asoc.2020.106957_b21) 2017; 153
Park (10.1016/j.asoc.2020.106957_b130) 2017
10.1016/j.asoc.2020.106957_b160
Wen (10.1016/j.asoc.2020.106957_b172) 2019; 654
Smolensky (10.1016/j.asoc.2020.106957_b132) 1986
Brunelli (10.1016/j.asoc.2020.106957_b104) 2008; 43
Cohen (10.1016/j.asoc.2020.106957_b5) 2017; 389
Jiang (10.1016/j.asoc.2020.106957_b94) 2008
Taheri Shahraiyni (10.1016/j.asoc.2020.106957_b73) 2016; 7
Sotomayor-Olmedo (10.1016/j.asoc.2020.106957_b15) 2013; 3
Deo (10.1016/j.asoc.2020.106957_b56) 2017; 31
Casazza (10.1016/j.asoc.2020.106957_b76) 2019; 231
Zhai (10.1016/j.asoc.2020.106957_b113) 2020; 89
References_xml – volume: 196
  start-page: 110
  year: 2017
  end-page: 118
  ident: b84
  article-title: Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead PM2.5 concentration forecasting
  publication-title: J. Environ. Manage.
– start-page: 576
  year: 2017
  end-page: 581
  ident: b130
  article-title: PM10 density forecast model using long short term memory
  publication-title: 2017 Ninth International Conference on Ubiquitous and Future Networks, ICUFN
– volume: 9
  start-page: 989
  year: 2018
  end-page: 999
  ident: b153
  article-title: A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration
  publication-title: Atmos. Pollut. Res.
– volume: 9
  start-page: 3765
  year: 2019
  ident: b141
  article-title: A deep belief network combined with modified grey wolf optimization algorithm for PM2.5 concentration prediction
  publication-title: Appl. Sci.
– volume: 159
  start-page: 427
  year: 2017
  end-page: 434
  ident: b66
  article-title: A spatiotemporal prediction model based on support vector machine regression: Ambient Black Carbon in three New England States
  publication-title: Environ. Res.
– volume: 664
  start-page: 1
  year: 2019
  end-page: 10
  ident: b174
  article-title: A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory
  publication-title: Sci. Total Environ.
– volume: 74
  start-page: 729
  year: 2019
  end-page: 746
  ident: b149
  article-title: The study and application of a novel hybrid system for air quality early-warning
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 6425
  year: 2009
  end-page: 6434
  ident: b19
  article-title: Combining deterministic and statistical approaches for PM10 forecasting in Europe
  publication-title: Atmos. Environ.
– volume: 146
  start-page: 41
  year: 2019
  end-page: 54
  ident: b59
  article-title: A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting
  publication-title: Technol. Forecast. Soc. Change
– start-page: 143
  year: 2010
  end-page: 146
  ident: b44
  article-title: PM-25 forecasting use reconstruct phase space LS-SVM
  publication-title: 2010 the 2nd Conference on Environmental Science and Information Application Technology
– volume: 87
  year: 2020
  ident: b161
  article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 157
  year: 2018
  end-page: 164
  ident: b115
  article-title: A new fuzzy time series model based on robust clustering for forecasting of air pollution
  publication-title: Ecol. Inform.
– volume: 6
  start-page: 286
  year: 2015
  end-page: 304
  ident: b75
  article-title: Urban air quality management-A review
  publication-title: Atmos. Pollut. Res.
– volume: 54
  start-page: 269
  year: 1993
  end-page: 277
  ident: b114
  article-title: Fuzzy time series and its models
  publication-title: Fuzzy Sets Systems
– volume: 20
  start-page: 745
  year: 2007
  end-page: 755
  ident: b18
  article-title: Forecasting of the daily meteorological pollution using wavelets and support vector machine
  publication-title: Eng. Appl. Artif. Intell.
– volume: 13
  start-page: 197
  year: 2020
  end-page: 207
  ident: b88
  article-title: A novel hybrid model for multi-step daily AQI forecasting driven by air pollution big data
  publication-title: Air Qual. Atmos. Health
– volume: 2017
  year: 2017
  ident: b111
  article-title: Ambient air quality classification by grey wolf optimizer based support vector machine
  publication-title: J. Environ. Publ. Health
– volume: 709
  year: 2020
  ident: b147
  article-title: A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms
  publication-title: Sci. Total Environ.
– volume: 107
  start-page: 118
  year: 2015
  end-page: 128
  ident: b26
  article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation
  publication-title: Atmos. Environ.
– volume: 12
  start-page: 785
  year: 2019
  end-page: 795
  ident: b82
  article-title: A hybrid framework for forecasting PM2.5 concentrations using multi-step deterministic and probabilistic strategy
  publication-title: Air Qual. Atmos. Health
– volume: 7
  start-page: 15
  year: 2016
  ident: b73
  article-title: Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies
  publication-title: Atmosphere
– reference: H. Wahid, Q.P. Ha, H.N. Duc, Computational intelligence estimation of natural background ozone level and its distribution for air quality modelling and emission control, in: Proceedings of the 28th International Symposium on Automation and Robotics in Construction, ISARC 2011, 2011.
– start-page: 5514
  year: 2018
  end-page: 5519
  ident: b42
  article-title: Prediction of urban PM 2.5 concentration based on wavelet neural network
  publication-title: 2018 Chinese Control and Decision Conference, CCDC
– start-page: 103
  year: 2016
  end-page: 108
  ident: b119
  article-title: A comparative study of computational intelligence techniques applied to PM2.5 air pollution forecasting
  publication-title: 2016 6th International Conference on Computers Communications and Control, ICCCC
– volume: 607–608
  start-page: 1009
  year: 2017
  end-page: 1017
  ident: b4
  article-title: Forecasting PM 2.5 induced male lung cancer morbidity in China using satellite retrieved PM 2.5 and spatial analysis
  publication-title: Sci. Total Environ.
– year: 2019
  ident: b140
  article-title: Air pollutant concentration prediction based on GRU method
  publication-title: J. Phys.: Conf. Ser.
– start-page: 733
  year: 2018
  end-page: 738
  ident: b135
  article-title: Ensemble of deep neural networks for estimating particulate matter from images
  publication-title: 2018 IEEE 3rd International Conference on Image, Vision and Computing, ICIVC
– volume: 314
  start-page: 198
  year: 2018
  end-page: 206
  ident: b173
  article-title: A deep spatial–temporal ensemble model for air quality prediction
  publication-title: Neurocomputing
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: b124
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 134
  start-page: 168
  year: 2016
  end-page: 180
  ident: b144
  article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting
  publication-title: Atmos. Environ.
– volume: 580
  start-page: 719
  year: 2017
  end-page: 733
  ident: b154
  article-title: A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine
  publication-title: Sci. Total Environ.
– reference: Y. Teng, X. Huang, S. Ye, Y. Li, Prediction of particulate matter concentration in Chengdu based on improved differential evolution algorithm and BP neural network model, in: 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis, ICCCBDA, 2018.
– volume: 43
  start-page: 4050
  year: 2009
  end-page: 4059
  ident: b25
  article-title: Testing the capability of the chemistry transport model LOTOS-EUROS to forecast PM10 levels in the Netherlands
  publication-title: Atmos. Environ.
– volume: 85
  year: 2019
  ident: b1
  article-title: A Gaussian process mixture model-based hard-cut iterative learning algorithm for air quality prediction
  publication-title: Appl. Soft Comput.
– volume: 96
  start-page: 79
  year: 2004
  end-page: 87
  ident: b78
  article-title: Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong
  publication-title: Environ. Res.
– volume: 71
  start-page: 783
  year: 2018
  end-page: 799
  ident: b87
  article-title: Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China
  publication-title: Appl. Soft Comput.
– volume: 38
  start-page: 5059
  year: 2010
  end-page: 5071
  ident: b9
  article-title: Measuring welfare loss caused by air pollution in Europe: A CGE analysis
  publication-title: Energy Policy
– volume: 389
  start-page: 1907
  year: 2017
  end-page: 1918
  ident: b5
  article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study, 2015
  publication-title: Lancet
– volume: 10
  start-page: 1588
  year: 2019
  end-page: 1600
  ident: b53
  article-title: Air PM 2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China
  publication-title: Atmos. Pollut. Res.
– start-page: 362
  year: 2008
  end-page: 370
  ident: b94
  article-title: A BP neural network prediction model of the urban air quality based on rough set
  publication-title: 2008 Fourth International Conference on Natural Computation
– start-page: 321
  year: 2010
  end-page: 323
  ident: b31
  article-title: Study on gray numerical model of air pollution in wuan city
  publication-title: 2010 International Conference on Challenges in Environmental Science and Computer Engineering
– start-page: 236
  year: 2017
  end-page: 240
  ident: b47
  article-title: Deep neural network for PM2.5 pollution forecasting based on manifold learning
  publication-title: 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC
– volume: 10
  start-page: 223
  year: 2019
  ident: b166
  article-title: A combined model based on feature selection and woa for pm2.5 concentration forecasting
  publication-title: Atmosphere
– volume: 5
  start-page: 696
  year: 2014
  end-page: 708
  ident: b92
  article-title: Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis
  publication-title: Atmos. Pollut. Res.
– volume: 59
  start-page: 693
  year: 2005
  end-page: 701
  ident: b110
  article-title: Potential assessment of the support vector machine method in forecasting ambient air pollutant trends
  publication-title: Chemosphere
– volume: 181
  start-page: 12
  year: 2018
  end-page: 19
  ident: b69
  article-title: Prediction of hourly PM2. 5 using a space–time support vector regression model
  publication-title: Atmos. Environ.
– reference: L. Zheng, S. Yu, M. Yu, Monitoring NOx emissions from coal fired boilers using generalized regression neural network, in: 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008.
– volume: 31
  start-page: 260
  year: 2017
  end-page: 263
  ident: b16
  article-title: Ozone’s threat hits back Mexico City
  publication-title: Sustain. Cities Soc.
– volume: 85
  year: 2019
  ident: b81
  article-title: A clustering-based ensemble approach with improved pigeon-inspired optimization and extreme learning machine for air quality prediction
  publication-title: Appl. Soft Comput.
– volume: 164
  start-page: 174
  year: 2019
  end-page: 192
  ident: b146
  article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and extenics evaluation
  publication-title: Knowl.-Based Syst.
– volume: 162
  start-page: 1095
  year: 2017
  end-page: 1101
  ident: b165
  article-title: Factor analysis and forecasting of CO2 emissions in Hebei, using extreme learning machine based on particle swarm optimization
  publication-title: J. Cleaner Prod.
– volume: 29
  year: 2019
  ident: b60
  article-title: Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia
  publication-title: Urban Clim.
– volume: 200
  start-page: 264
  year: 2019
  end-page: 279
  ident: b79
  article-title: Hybrid algorithm for short-term forecasting of PM2.5 in China
  publication-title: Atmos. Environ.
– volume: 3
  start-page: 126
  year: 2013
  ident: b15
  article-title: Forecast urban air pollution in Mexico City by using support vector machines: A kernel performance approach
  publication-title: Int. J. Intell. Sci.
– volume: 31
  start-page: 1211
  year: 2017
  end-page: 1240
  ident: b56
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 2019
  start-page: 9
  year: 2019
  ident: b131
  article-title: A DBN-based deep neural network model with multitask learning for online air quality prediction
  publication-title: J. Control Sci. Eng.
– volume: 25
  start-page: 1246
  year: 2012
  end-page: 1258
  ident: b156
  article-title: Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors
  publication-title: Eng. Appl. Artif. Intell.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b121
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 188
  start-page: 144
  year: 2016
  end-page: 152
  ident: b175
  article-title: Daily PM 2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm
  publication-title: J. Environ. Manag.
– volume: 443
  start-page: 511
  year: 2013
  end-page: 519
  ident: b41
  article-title: PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 503
  year: 2011
  end-page: 517
  ident: b80
  article-title: A wavelet-based neural network model to predict ambient air pollutants’ concentration
  publication-title: Environ. Model. Assess.
– volume: 409
  start-page: 5517
  year: 2011
  end-page: 5523
  ident: b30
  article-title: Forecasting of daily air quality index in Delhi
  publication-title: Sci. Total Environ.
– volume: 37
  start-page: 7986
  year: 2010
  end-page: 7992
  ident: b67
  article-title: Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks
  publication-title: Expert Syst. Appl.
– volume: 28
  start-page: 357
  year: 2011
  end-page: 363
  ident: b105
  article-title: Artificial neural network models for daily PM10 air pollution index prediction in the urban area of Wuhan, China
  publication-title: Environ. Eng. Sci.
– volume: 1
  start-page: 1
  year: 2011
  end-page: 9
  ident: b3
  article-title: Gaseous pollutants formation and their harmful effects on health and environment
  publication-title: Innov. Energy Policies
– volume: 105
  start-page: 71
  year: 2019
  end-page: 85
  ident: b74
  article-title: Air pollution terrain nexus: A review considering energy generation and consumption
  publication-title: Renew. Sustain. Energy Rev.
– volume: 41
  start-page: 2967
  year: 2007
  end-page: 2995
  ident: b103
  article-title: Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy
  publication-title: Atmos. Environ.
– volume: 60
  start-page: 632
  year: 2012
  end-page: 655
  ident: b37
  article-title: Real-time air quality forecasting, part I: History, techniques, and current status
  publication-title: Atmos. Environ.
– volume: 119
  start-page: 285
  year: 2019
  end-page: 304
  ident: b38
  article-title: A review of artificial neural network models for ambient air pollution prediction
  publication-title: Environ. Model. Softw.
– volume: 63
  year: 2020
  ident: b176
  article-title: Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city
  publication-title: Sustain. Cities Soc.
– volume: 132
  start-page: 824
  year: 2018
  end-page: 833
  ident: b61
  article-title: Evolving differential evolution method with random forest for prediction of air pollution
  publication-title: Procedia Comput. Sci.
– volume: 233
  start-page: 464
  year: 2018
  end-page: 473
  ident: b68
  article-title: Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment
  publication-title: Environ. Pollut.
– start-page: 115
  year: 2006
  end-page: 119
  ident: b39
  article-title: Prediction of ambient air quality based on neural network technique
  publication-title: 2006 4th Student Conference on Research and Development
– start-page: 531
  year: 2014
  end-page: 544
  ident: b148
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 9
  start-page: 74
  year: 2018
  ident: b12
  article-title: Spatiotemporal characteristics of air pollutants (PM10, PM2. 5, SO2, NO2, O3, and CO) in the inland basin city of Chengdu, southwest China
  publication-title: Atmosphere
– volume: 63
  start-page: 755
  year: 2013
  end-page: 763
  ident: b95
  article-title: Evaluation of PM10 forecasting based on the artificial neural network model and intake fraction in an urban area: A case study in Taiyuan City, China
  publication-title: J. Air Waste Manage. Assoc.
– volume: 46
  start-page: 75
  year: 2014
  end-page: 93
  ident: b35
  article-title: Hybrid model for urban air pollution forecasting: A stochastic spatiotemporal approach
  publication-title: Math. Geosci.
– volume: 68
  start-page: 866
  year: 2018
  end-page: 886
  ident: b49
  article-title: Forecasting air quality time series using deep learning
  publication-title: J. Air Waste Manage. Assoc.
– volume: 2016
  start-page: 13
  year: 2016
  ident: b27
  article-title: Evaluation of air quality model performance for simulating long-range transport and local pollution of PM2.5 in Japan
  publication-title: Adv. Meteorol.
– volume: 17
  start-page: 297
  year: 2010
  end-page: 311
  ident: b32
  article-title: Responses of terrestrial arthropods to air pollution: a meta-analysis
  publication-title: Environ. Sci. Pollut. Res.
– volume: 313
  start-page: 1
  year: 2003
  end-page: 13
  ident: b36
  article-title: Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens
  publication-title: Sci. Total Environ.
– start-page: 1
  year: 2019
  end-page: 15
  ident: b48
  article-title: A real-time hourly ozone prediction system using deep convolutional neural network
  publication-title: Neural Comput. Appl.
– year: 2020
  ident: b170
  article-title: Spatial air quality index prediction model based on decomposition, adaptive boosting, and three-stage feature selection: A case study in China
  publication-title: J. Cleaner Prod.
– volume: 231
  start-page: 1342
  year: 2019
  end-page: 1352
  ident: b76
  article-title: 3D monitoring and modelling of air quality for sustainable urban port planning: Review and perspectives
  publication-title: J. Cleaner Prod.
– volume: 74
  start-page: 136
  year: 2015
  end-page: 143
  ident: b13
  article-title: A review on the human health impact of airborne particulate matter
  publication-title: Environ. Int.
– volume: 10
  start-page: 1482
  year: 2019
  end-page: 1491
  ident: b159
  article-title: Meteorological pattern analysis assisted daily PM2. 5 grades prediction using SVM optimized by PSO algorithm
  publication-title: Atmos. Pollut. Res.
– volume: 6
  start-page: 99
  year: 2015
  end-page: 106
  ident: b54
  article-title: Development of artificial intelligence based NO2 forecasting models at Taj Mahal, Agra
  publication-title: Atmos. Pollut. Res.
– volume: 172
  start-page: 743
  year: 2018
  end-page: 757
  ident: b6
  article-title: How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities
  publication-title: J. Cleaner Prod.
– volume: 12
  year: 2017
  ident: b107
  article-title: Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang
  publication-title: PLoS One
– volume: 8
  start-page: 2570
  year: 2018
  ident: b51
  article-title: Machine learning approaches for outdoor air quality modelling: A systematic review
  publication-title: Appl. Sci.
– volume: 27
  start-page: 170
  year: 2013
  end-page: 177
  ident: b99
  article-title: Forecasting human exposure to PM10 at the national level using an artificial neural network approach
  publication-title: J. Chemometr.
– start-page: 448
  year: 2009
  end-page: 455
  ident: b133
  article-title: Deep boltzmann machines
  publication-title: Artificial Intelligence and Statistics
– volume: 50
  year: 2019
  ident: b58
  article-title: Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network
  publication-title: Sustain. Cities Soc.
– volume: 11
  start-page: 4866
  year: 2011
  end-page: 4874
  ident: b101
  article-title: Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 20050
  year: 2019
  end-page: 20059
  ident: b72
  article-title: A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration
  publication-title: IEEE Access
– start-page: 169
  year: 2017
  end-page: 174
  ident: b125
  article-title: Online sequential learning based on extreme learning machines for particulate matter forecasting
  publication-title: 2017 Brazilian Conference on Intelligent Systems, BRACIS
– volume: 106
  start-page: 318
  year: 2015
  end-page: 328
  ident: b23
  article-title: Improvement of PM10 prediction in East Asia using inverse modeling
  publication-title: Atmos. Environ.
– volume: 7
  start-page: 557
  year: 2016
  end-page: 566
  ident: b55
  article-title: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions
  publication-title: Atmos. Pollut. Res.
– volume: 14
  start-page: 764
  year: 2017
  ident: b155
  article-title: Day-ahead PM 2.5 concentration forecasting using WT-VMD based decomposition method and back propagation neural network improved by differential evolution
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 139
  start-page: 147
  year: 2016
  end-page: 156
  ident: b7
  article-title: Assessment of socioeconomic costs to China’s air pollution
  publication-title: Atmos. Environ.
– volume: 64
  start-page: 281
  year: 2017
  end-page: 291
  ident: b28
  article-title: Forecasting smog-related health hazard based on social media and physical sensor
  publication-title: Inf. Syst.
– volume: 223
  start-page: 435
  year: 2017
  end-page: 448
  ident: b90
  article-title: Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China
  publication-title: Environ. Pollut.
– volume: 3
  start-page: 203
  year: 2010
  end-page: 212
  ident: b118
  article-title: Adaptive neuro-fuzzy modeling for prediction of ambient CO concentration at urban intersections and roadways
  publication-title: Air Qual. Atmos. Health
– volume: 584
  start-page: 901
  year: 2017
  end-page: 910
  ident: b11
  article-title: Emission factors for PM2. 5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE
  publication-title: Sci. Total Environ.
– start-page: 728
  year: 2018
  end-page: 733
  ident: b139
  article-title: An attention-based air quality forecasting method
  publication-title: 2018 17th IEEE International Conference on Machine Learning and Applications, ICMLA
– start-page: 81
  year: 2018
  end-page: 86
  ident: b43
  article-title: Multi-model ensemble forecast method of PM2. 5 concentration based on wavelet neural networks
  publication-title: 2018 1st International Cognitive Cities Conference, IC3
– volume: 231
  start-page: 1232
  year: 2017
  end-page: 1244
  ident: b83
  article-title: Daily air quality index forecasting with hybrid models: A case in China
  publication-title: Environ. Pollut.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: b117
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 98
  start-page: 665
  year: 2014
  end-page: 675
  ident: b62
  article-title: Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models
  publication-title: Atmos. Environ.
– volume: 14
  start-page: 114
  year: 2017
  ident: b123
  article-title: Prediction of air pollutants concentration based on an extreme learning machine: the case of Hong Kong
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 188
  start-page: 144
  year: 2017
  end-page: 152
  ident: b77
  article-title: Daily PM 2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm
  publication-title: J. Environ. Manage.
– volume: 43
  start-page: 304
  year: 2008
  end-page: 314
  ident: b104
  article-title: Three hours ahead prevision of SO2 pollutant concentration using an elman neural based forecaster
  publication-title: Build. Environ.
– volume: 45
  start-page: 2297
  year: 2011
  end-page: 2309
  ident: b17
  article-title: Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution
  publication-title: Atmos. Environ.
– volume: 2
  start-page: 436
  year: 2011
  end-page: 444
  ident: b33
  article-title: Forecasting of air quality in Delhi using principal component regression technique
  publication-title: Atmos. Pollut. Res.
– volume: 132
  start-page: 209
  year: 2013
  end-page: 222
  ident: b29
  article-title: Air pollution modeling over very complex terrain: an evaluation of WRF-Chem over Switzerland for two 1-year periods
  publication-title: Atmos. Res.
– volume: 222
  start-page: 286
  year: 2019
  end-page: 294
  ident: b85
  article-title: An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting
  publication-title: Chemosphere
– start-page: 3999
  year: 2013
  end-page: 4010
  ident: b150
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
– volume: 54
  start-page: 1453
  year: 2011
  end-page: 1466
  ident: b108
  article-title: Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain)
  publication-title: Math. Comput. Modelling
– volume: 51
  start-page: 29
  year: 2012
  end-page: 38
  ident: b10
  article-title: Short-term effects of air pollution on lower respiratory diseases and forecasting by the group method of data handling
  publication-title: Atmos. Environ.
– volume: 47
  year: 2019
  ident: b151
  article-title: An intelligent hybrid model for air pollutant concentrations forecasting: Case of Beijing in China
  publication-title: Sustain. Cities Soc.
– volume: 40
  start-page: 600
  year: 2018
  end-page: 610
  ident: b177
  article-title: Exploiting IoT and big data analytics: Defining smart digital city using real-time urban data
  publication-title: Sustain. Cities Soc.
– volume: 11
  start-page: 18
  year: 2019
  end-page: 24
  ident: b138
  article-title: Air quality prediction in Visakhapatnam with LSTM based recurrent neural networks
  publication-title: Int. J. Intell. Syst. Appl.
– volume: 626
  start-page: 1421
  year: 2018
  end-page: 1438
  ident: b145
  article-title: Research and application of a novel hybrid air quality early-warning system: A case study in China
  publication-title: Sci. Total Environ.
– start-page: 297
  year: 2016
  end-page: 301
  ident: b134
  article-title: On estimating air pollution from photos using convolutional neural network
  publication-title: Proceedings of the 24th ACM International Conference on Multimedia
– volume: 70
  start-page: 472
  year: 2018
  end-page: 485
  ident: b2
  article-title: Multiobjective evolutionary optimization of traffic flow and pollution in Montevideo, Uruguay
  publication-title: Appl. Soft Comput.
– start-page: 1287
  year: 2013
  end-page: 1289
  ident: b96
  article-title: Study on prediction of atmospheric PM2.5 based on RBF neural network
  publication-title: 2013 Fourth International Conference on Digital Manufacturing & Automation
– volume: 10
  start-page: 195
  year: 2017
  end-page: 211
  ident: b126
  article-title: Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods
  publication-title: Air Qual. Atmos. Health
– volume: 177
  start-page: 156
  year: 2013
  end-page: 163
  ident: b169
  article-title: Prediction of N2O emission from local information with Random Forest
  publication-title: Environ. Pollut.
– volume: 103
  start-page: 53
  year: 2015
  end-page: 65
  ident: b34
  article-title: Real time air quality forecasting using integrated parametric and non-parametric regression techniques
  publication-title: Atmos. Environ.
– volume: 635
  start-page: 644
  year: 2018
  end-page: 658
  ident: b65
  article-title: Development of a stacked ensemble model for forecasting and analyzing daily average PM2. 5 concentrations in Beijing, China
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 261
  year: 2018
  end-page: 276
  ident: b168
  article-title: Air-pollution prediction in smart cities through machine learning methods: A case of study in Murcia, Spain
  publication-title: J. UCS
– year: 1986
  ident: b132
  article-title: Information Processing in Dynamical Systems: Foundations of Harmony Theory
– volume: 39
  start-page: 7673
  year: 2012
  end-page: 7679
  ident: b116
  article-title: Application of fuzzy time series models for forecasting pollution concentrations
  publication-title: Expert Syst. Appl.
– volume: 221
  start-page: 398
  year: 2019
  end-page: 418
  ident: b179
  article-title: Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling
  publication-title: J. Cleaner Prod.
– volume: 136
  start-page: 264
  year: 2020
  end-page: 271
  ident: b178
  article-title: Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices
  publication-title: Pattern Recognit. Lett.
– volume: 612
  start-page: 462
  year: 2018
  end-page: 471
  ident: b24
  article-title: Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: 1326
  year: 2019
  end-page: 1335
  ident: b57
  article-title: Two-step-hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting
  publication-title: Atmos. Pollut. Res.
– volume: 231
  start-page: 997
  year: 2017
  end-page: 1004
  ident: b137
  article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation
  publication-title: Environ. Pollut.
– volume: 2
  start-page: 185
  year: 2011
  ident: b142
  article-title: Prediction of daily air pollution using wavelet decomposition and adaptive-network-based fuzzy inference system
  publication-title: Int. J. Environ. Sci.
– volume: 93
  year: 2020
  ident: b158
  article-title: Developing two heuristic algorithms with metaheuristic algorithms to improve solutions of optimization problems with soft and hard constraints: An application to nurse rostering problems
  publication-title: Appl. Soft Comput.
– volume: 683
  start-page: 808
  year: 2019
  end-page: 821
  ident: b162
  article-title: A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors
  publication-title: Sci. Total Environ.
– volume: 63
  start-page: 1575
  year: 2006
  end-page: 1582
  ident: b45
  article-title: Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of Zonguldak
  publication-title: Chemosphere
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b143
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 146
  start-page: 57
  year: 2019
  end-page: 65
  ident: b14
  article-title: The short-term effects of air pollution on respiratory diseases and lung cancer mortality in hefei: A time-series analysis
  publication-title: Respir. Med.
– volume: 11
  start-page: 469
  year: 2020
  end-page: 481
  ident: b128
  article-title: Prediction of outdoor PM2.5 concentrations based on a three-stage hybrid neural network model
  publication-title: Atmos. Pollut. Res.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b167
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 2
  start-page: 568
  year: 1991
  end-page: 576
  ident: b97
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
– volume: 22
  start-page: 183
  year: 2018
  end-page: 201
  ident: b91
  article-title: Heterogeneous space–time artificial neural networks for space–time series prediction
  publication-title: Trans. GIS
– volume: 234
  start-page: 54
  year: 2019
  end-page: 70
  ident: b89
  article-title: Research and application of the hybrid forecasting model based on secondary denoising and multi-objective optimization for air pollution early warning system
  publication-title: J. Cleaner Prod.
– volume: 12
  start-page: 899
  year: 2019
  end-page: 908
  ident: b129
  article-title: Air quality modelling using long short-term memory (LSTM) over NCT-delhi, India
  publication-title: Air Qual. Atmos. Health
– start-page: 389
  year: 2009
  end-page: 395
  ident: b127
  article-title: Regularized extreme learning machine
  publication-title: 2009 IEEE Symposium on Computational Intelligence and Data Mining
– volume: 463
  start-page: 875
  year: 2013
  end-page: 883
  ident: b93
  article-title: Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean
  publication-title: Sci. Total Environ.
– volume: 219
  start-page: 8923
  year: 2013
  end-page: 8937
  ident: b106
  article-title: A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): A case study
  publication-title: Appl. Math. Comput.
– volume: 5
  start-page: 515
  year: 2019
  end-page: 534
  ident: b50
  article-title: Machine learning algorithms in air quality modeling
  publication-title: Glob. J. Environ. Sci. Manage.
– start-page: 1
  year: 2008
  ident: b100
  article-title: Development and comparison of backpropagation and generalized regression neural network models to predict diurnal and seasonal gas and PM10 concentrations and emissions from swine buildings
  publication-title: 2008 Providence, Rhode Island, June 29–July 2, 2008
– year: 2010
  ident: b20
  article-title: Chapter 8, Chemical-Transport Models
– volume: 9
  start-page: 358
  year: 2018
  end-page: 368
  ident: b64
  article-title: Application of computational intelligence techniques to forecast daily PM10 exceedances in Brunei Darussalam
  publication-title: Atmos. Pollut. Res.
– volume: 237
  year: 2019
  ident: b70
  article-title: A temporal-spatial interpolation and extrapolation method based on geographic Long Short-Term Memory neural network for PM2.5
  publication-title: J. Cleaner Prod.
– volume: 6
  start-page: 605
  year: 2010
  end-page: 616
  ident: b46
  article-title: Neuro fuzzy modeling scheme for the prediction of air pollution
  publication-title: J. Am. Sci.
– volume: 45
  start-page: 6241
  year: 2011
  end-page: 6250
  ident: b22
  article-title: Application of WRF/Chem-MADRID for real-time air quality forecasting over the Southeastern United States
  publication-title: Atmos. Environ.
– volume: 73
  start-page: 473
  year: 2019
  end-page: 486
  ident: b152
  article-title: Improved pollution forecasting hybrid algorithms based on the ensemble method
  publication-title: Appl. Math. Model.
– volume: 15
  start-page: 780
  year: 2018
  ident: b52
  article-title: Air pollution forecasts: An overview
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: b102
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
– volume: 89
  year: 2020
  ident: b113
  article-title: Adaptive LSSVM based iterative prediction method for NOx concentration prediction in coal-fired power plant considering system delay
  publication-title: Appl. Soft Comput.
– volume: 153
  start-page: 94
  year: 2017
  end-page: 108
  ident: b21
  article-title: Numerical air quality forecasting over eastern China: An operational application of WRF-Chem
  publication-title: Atmos. Environ.
– volume: 654
  start-page: 1091
  year: 2019
  end-page: 1099
  ident: b172
  article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction
  publication-title: Sci. Total Environ.
– year: 2020
  ident: b163
  article-title: A novel hybrid model based on multi-objective harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b112
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 669
  year: 2019
  ident: b71
  article-title: Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China
  publication-title: Sci. Total Environ.
– volume: 86
  year: 2020
  ident: b120
  article-title: Air quality prediction by neuro-fuzzy modeling approach
  publication-title: Appl. Soft Comput.
– start-page: 3486
  year: 2018
  end-page: 3491
  ident: b136
  article-title: Research on air pollution gases recognition method based on LSTM recurrent neural network and gas sensors array
  publication-title: 2018 Chinese Automation Congress, CAC
– start-page: 200
  year: 2017
  end-page: 204
  ident: b164
  article-title: Prediction of air quality index based on improved neural network
  publication-title: 2017 International Conference on Computer Systems, Electronics and Control, ICCSEC
– volume: 9
  start-page: 429
  year: 2017
  end-page: 438
  ident: b8
  article-title: Quantifying the effects of air pollution control policies: A case of Shanxi province in China
  publication-title: Atmos. Pollut. Res.
– reference: M. Asgari, M. Farnaghi, Z. Ghaemi, Predictive mapping of urban air pollution using Apache Spark on a Hadoop cluster, in: Proceedings of the 2017 International Conference on Cloud and Big Data Computing, 2017, pp. 89–93.
– volume: 651
  start-page: 475
  year: 2019
  end-page: 483
  ident: b63
  article-title: A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions
  publication-title: Sci. Total Environ.
– volume: 183
  start-page: 20
  year: 2018
  end-page: 32
  ident: b86
  article-title: PM2. 5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors
  publication-title: Atmos. Environ.
– year: 2017
  ident: b109
  article-title: Research on air quality of Beijing-Tianjin-Hebei region based on SVM and regression analysis
  publication-title: 2017 International Conference on Education, Economics and Management Research, ICEEMR 2017
– start-page: 1
  year: 2016
  end-page: 7
  ident: b122
  article-title: Air quality forecasting using neural networks
  publication-title: 2016 IEEE Symposium Series on Computational Intelligence, SSCI
– volume: 194
  start-page: 3902
  year: 2005
  end-page: 3933
  ident: b157
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2020
  ident: b171
  article-title: Hourly PM 2.5 concentration forecasting based on mode decomposition-recombination technique and ensemble learning approach in severe haze episodes of China
  publication-title: J. Cleaner Prod.
– start-page: 143
  year: 2010
  ident: 10.1016/j.asoc.2020.106957_b44
  article-title: PM-25 forecasting use reconstruct phase space LS-SVM
– volume: 85
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b1
  article-title: A Gaussian process mixture model-based hard-cut iterative learning algorithm for air quality prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105789
– volume: 153
  start-page: 94
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b21
  article-title: Numerical air quality forecasting over eastern China: An operational application of WRF-Chem
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.01.020
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b48
  article-title: A real-time hourly ozone prediction system using deep convolutional neural network
  publication-title: Neural Comput. Appl.
– volume: 68
  start-page: 866
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b49
  article-title: Forecasting air quality time series using deep learning
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10962247.2018.1459956
– volume: 222
  start-page: 286
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b85
  article-title: An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.121
– volume: 38
  start-page: 5059
  year: 2010
  ident: 10.1016/j.asoc.2020.106957_b9
  article-title: Measuring welfare loss caused by air pollution in Europe: A CGE analysis
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2010.04.034
– start-page: 3999
  year: 2013
  ident: 10.1016/j.asoc.2020.106957_b150
  article-title: Empirical wavelet transform
– volume: 231
  start-page: 997
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b137
  article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.08.114
– volume: 22
  start-page: 183
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b91
  article-title: Heterogeneous space–time artificial neural networks for space–time series prediction
  publication-title: Trans. GIS
  doi: 10.1111/tgis.12302
– volume: 14
  start-page: 179
  year: 1990
  ident: 10.1016/j.asoc.2020.106957_b102
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– volume: 7
  start-page: 15
  year: 2016
  ident: 10.1016/j.asoc.2020.106957_b73
  article-title: Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies
  publication-title: Atmosphere
  doi: 10.3390/atmos7020015
– volume: 105
  start-page: 71
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b74
  article-title: Air pollution terrain nexus: A review considering energy generation and consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.049
– volume: 2
  start-page: 185
  year: 2011
  ident: 10.1016/j.asoc.2020.106957_b142
  article-title: Prediction of daily air pollution using wavelet decomposition and adaptive-network-based fuzzy inference system
  publication-title: Int. J. Environ. Sci.
– volume: 24
  start-page: 261
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b168
  article-title: Air-pollution prediction in smart cities through machine learning methods: A case of study in Murcia, Spain
  publication-title: J. UCS
– volume: 132
  start-page: 824
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b61
  article-title: Evolving differential evolution method with random forest for prediction of air pollution
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.05.094
– volume: 231
  start-page: 1342
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b76
  article-title: 3D monitoring and modelling of air quality for sustainable urban port planning: Review and perspectives
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.05.257
– start-page: 531
  year: 2014
  ident: 10.1016/j.asoc.2020.106957_b148
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 584
  start-page: 901
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b11
  article-title: Emission factors for PM2. 5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.136
– volume: 96
  start-page: 79
  year: 2004
  ident: 10.1016/j.asoc.2020.106957_b78
  article-title: Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2003.11.003
– volume: 25
  start-page: 1246
  year: 2012
  ident: 10.1016/j.asoc.2020.106957_b156
  article-title: Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2011.10.013
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.asoc.2020.106957_b167
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 9
  start-page: 358
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b64
  article-title: Application of computational intelligence techniques to forecast daily PM10 exceedances in Brunei Darussalam
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2017.11.004
– volume: 223
  start-page: 435
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b90
  article-title: Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.01.043
– volume: 231
  start-page: 1232
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b83
  article-title: Daily air quality index forecasting with hybrid models: A case in China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.08.069
– volume: 17
  start-page: 1411
  year: 2006
  ident: 10.1016/j.asoc.2020.106957_b124
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– volume: 54
  start-page: 1453
  year: 2011
  ident: 10.1016/j.asoc.2020.106957_b108
  article-title: Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain)
  publication-title: Math. Comput. Modelling
  doi: 10.1016/j.mcm.2011.04.017
– volume: 87
  year: 2020
  ident: 10.1016/j.asoc.2020.106957_b161
  article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105972
– volume: 74
  start-page: 729
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b149
  article-title: The study and application of a novel hybrid system for air quality early-warning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.005
– year: 2010
  ident: 10.1016/j.asoc.2020.106957_b20
– volume: 70
  start-page: 472
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b2
  article-title: Multiobjective evolutionary optimization of traffic flow and pollution in Montevideo, Uruguay
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.044
– volume: 9
  start-page: 429
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b8
  article-title: Quantifying the effects of air pollution control policies: A case of Shanxi province in China
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2017.11.010
– volume: 7
  start-page: 20050
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b72
  article-title: A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897028
– volume: 219
  start-page: 8923
  year: 2013
  ident: 10.1016/j.asoc.2020.106957_b106
  article-title: A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): A case study
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.03.018
– start-page: 733
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b135
  article-title: Ensemble of deep neural networks for estimating particulate matter from images
– year: 1986
  ident: 10.1016/j.asoc.2020.106957_b132
– volume: 10
  start-page: 1588
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b53
  article-title: Air PM 2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.05.007
– start-page: 169
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b125
  article-title: Online sequential learning based on extreme learning machines for particulate matter forecasting
– ident: 10.1016/j.asoc.2020.106957_b160
  doi: 10.1109/ICCCBDA.2018.8386494
– volume: 409
  start-page: 5517
  year: 2011
  ident: 10.1016/j.asoc.2020.106957_b30
  article-title: Forecasting of daily air quality index in Delhi
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.08.069
– volume: 188
  start-page: 144
  year: 2016
  ident: 10.1016/j.asoc.2020.106957_b175
  article-title: Daily PM 2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.12.011
– volume: 40
  start-page: 600
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b177
  article-title: Exploiting IoT and big data analytics: Defining smart digital city using real-time urban data
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2017.12.022
– start-page: 728
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b139
  article-title: An attention-based air quality forecasting method
– volume: 64
  start-page: 281
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b28
  article-title: Forecasting smog-related health hazard based on social media and physical sensor
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2016.03.011
– volume: 183
  start-page: 20
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b86
  article-title: PM2. 5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.04.004
– volume: 17
  start-page: 297
  year: 2010
  ident: 10.1016/j.asoc.2020.106957_b32
  article-title: Responses of terrestrial arthropods to air pollution: a meta-analysis
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-009-0138-0
– volume: 39
  start-page: 7673
  year: 2012
  ident: 10.1016/j.asoc.2020.106957_b116
  article-title: Application of fuzzy time series models for forecasting pollution concentrations
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.023
– start-page: 81
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b43
  article-title: Multi-model ensemble forecast method of PM2. 5 concentration based on wavelet neural networks
– volume: 159
  start-page: 427
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b66
  article-title: A spatiotemporal prediction model based on support vector machine regression: Ambient Black Carbon in three New England States
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.08.039
– volume: 389
  start-page: 1907
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b5
  article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study, 2015
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)30505-6
– volume: 139
  start-page: 147
  year: 2016
  ident: 10.1016/j.asoc.2020.106957_b7
  article-title: Assessment of socioeconomic costs to China’s air pollution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.05.036
– volume: 651
  start-page: 475
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b63
  article-title: A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.196
– volume: 463
  start-page: 875
  year: 2013
  ident: 10.1016/j.asoc.2020.106957_b93
  article-title: Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.06.093
– volume: 31
  start-page: 1211
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b56
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-016-1265-z
– volume: 54
  start-page: 269
  year: 1993
  ident: 10.1016/j.asoc.2020.106957_b114
  article-title: Fuzzy time series and its models
  publication-title: Fuzzy Sets Systems
  doi: 10.1016/0165-0114(93)90372-O
– volume: 2019
  start-page: 9
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b131
  article-title: A DBN-based deep neural network model with multitask learning for online air quality prediction
  publication-title: J. Control Sci. Eng.
  doi: 10.1155/2019/5304535
– volume: 14
  start-page: 764
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b155
  article-title: Day-ahead PM 2.5 concentration forecasting using WT-VMD based decomposition method and back propagation neural network improved by differential evolution
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph14070764
– volume: 51
  start-page: 29
  year: 2012
  ident: 10.1016/j.asoc.2020.106957_b10
  article-title: Short-term effects of air pollution on lower respiratory diseases and forecasting by the group method of data handling
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.01.051
– volume: 12
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b107
  article-title: Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang
  publication-title: PLoS One
– volume: 89
  year: 2020
  ident: 10.1016/j.asoc.2020.106957_b113
  article-title: Adaptive LSSVM based iterative prediction method for NOx concentration prediction in coal-fired power plant considering system delay
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106070
– start-page: 236
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b47
  article-title: Deep neural network for PM2.5 pollution forecasting based on manifold learning
– volume: 103
  start-page: 53
  year: 2015
  ident: 10.1016/j.asoc.2020.106957_b34
  article-title: Real time air quality forecasting using integrated parametric and non-parametric regression techniques
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.12.011
– volume: 6
  start-page: 286
  year: 2015
  ident: 10.1016/j.asoc.2020.106957_b75
  article-title: Urban air quality management-A review
  publication-title: Atmos. Pollut. Res.
  doi: 10.5094/APR.2015.033
– volume: 5
  start-page: 696
  year: 2014
  ident: 10.1016/j.asoc.2020.106957_b92
  article-title: Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis
  publication-title: Atmos. Pollut. Res.
  doi: 10.5094/APR.2014.079
– volume: 14
  start-page: 114
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b123
  article-title: Prediction of air pollutants concentration based on an extreme learning machine: the case of Hong Kong
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph14020114
– volume: 200
  start-page: 264
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b79
  article-title: Hybrid algorithm for short-term forecasting of PM2.5 in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.12.025
– volume: 43
  start-page: 4050
  year: 2009
  ident: 10.1016/j.asoc.2020.106957_b25
  article-title: Testing the capability of the chemistry transport model LOTOS-EUROS to forecast PM10 levels in the Netherlands
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.05.006
– volume: 196
  start-page: 110
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b84
  article-title: Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead PM2.5 concentration forecasting
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2017.02.071
– volume: 43
  start-page: 157
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b115
  article-title: A new fuzzy time series model based on robust clustering for forecasting of air pollution
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2017.12.001
– volume: 11
  start-page: 469
  year: 2020
  ident: 10.1016/j.asoc.2020.106957_b128
  article-title: Prediction of outdoor PM2.5 concentrations based on a three-stage hybrid neural network model
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.11.019
– volume: 46
  start-page: 75
  year: 2014
  ident: 10.1016/j.asoc.2020.106957_b35
  article-title: Hybrid model for urban air pollution forecasting: A stochastic spatiotemporal approach
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-013-9483-0
– volume: 37
  start-page: 7986
  year: 2010
  ident: 10.1016/j.asoc.2020.106957_b67
  article-title: Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.05.093
– volume: 146
  start-page: 41
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b59
  article-title: A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2019.05.015
– volume: 612
  start-page: 462
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b24
  article-title: Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.272
– volume: 314
  start-page: 198
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b173
  article-title: A deep spatial–temporal ensemble model for air quality prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.049
– volume: 3
  start-page: 203
  year: 2010
  ident: 10.1016/j.asoc.2020.106957_b118
  article-title: Adaptive neuro-fuzzy modeling for prediction of ambient CO concentration at urban intersections and roadways
  publication-title: Air Qual. Atmos. Health
  doi: 10.1007/s11869-010-0073-8
– start-page: 576
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b130
  article-title: PM10 density forecast model using long short term memory
– volume: 28
  start-page: 357
  year: 2011
  ident: 10.1016/j.asoc.2020.106957_b105
  article-title: Artificial neural network models for daily PM10 air pollution index prediction in the urban area of Wuhan, China
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2010.0219
– ident: 10.1016/j.asoc.2020.106957_b98
  doi: 10.1109/ICBBE.2008.808
– volume: 136
  start-page: 264
  year: 2020
  ident: 10.1016/j.asoc.2020.106957_b178
  article-title: Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.04.032
– volume: 146
  start-page: 57
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b14
  article-title: The short-term effects of air pollution on respiratory diseases and lung cancer mortality in hefei: A time-series analysis
  publication-title: Respir. Med.
  doi: 10.1016/j.rmed.2018.11.019
– volume: 10
  start-page: 1482
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b159
  article-title: Meteorological pattern analysis assisted daily PM2. 5 grades prediction using SVM optimized by PSO algorithm
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.04.005
– volume: 12
  start-page: 899
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b129
  article-title: Air quality modelling using long short-term memory (LSTM) over NCT-delhi, India
  publication-title: Air Qual. Atmos. Health
  doi: 10.1007/s11869-019-00696-7
– volume: 60
  start-page: 632
  year: 2012
  ident: 10.1016/j.asoc.2020.106957_b37
  article-title: Real-time air quality forecasting, part I: History, techniques, and current status
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.06.031
– volume: 85
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b81
  article-title: A clustering-based ensemble approach with improved pigeon-inspired optimization and extreme learning machine for air quality prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105827
– volume: 221
  start-page: 398
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b179
  article-title: Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.02.179
– volume: 132
  start-page: 209
  year: 2013
  ident: 10.1016/j.asoc.2020.106957_b29
  article-title: Air pollution modeling over very complex terrain: an evaluation of WRF-Chem over Switzerland for two 1-year periods
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2013.05.021
– volume: 7
  start-page: 557
  year: 2016
  ident: 10.1016/j.asoc.2020.106957_b55
  article-title: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2016.01.004
– volume: 98
  start-page: 665
  year: 2014
  ident: 10.1016/j.asoc.2020.106957_b62
  article-title: Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.09.046
– volume: 71
  start-page: 783
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b87
  article-title: Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.030
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.asoc.2020.106957_b112
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 16
  start-page: 503
  year: 2011
  ident: 10.1016/j.asoc.2020.106957_b80
  article-title: A wavelet-based neural network model to predict ambient air pollutants’ concentration
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10666-011-9270-6
– volume: 181
  start-page: 12
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b69
  article-title: Prediction of hourly PM2. 5 using a space–time support vector regression model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.03.015
– volume: 134
  start-page: 168
  year: 2016
  ident: 10.1016/j.asoc.2020.106957_b144
  article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.03.056
– volume: 63
  start-page: 1575
  year: 2006
  ident: 10.1016/j.asoc.2020.106957_b45
  article-title: Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of Zonguldak
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.08.070
– volume: 626
  start-page: 1421
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b145
  article-title: Research and application of a novel hybrid air quality early-warning system: A case study in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.195
– volume: 9
  start-page: 3765
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b141
  article-title: A deep belief network combined with modified grey wolf optimization algorithm for PM2.5 concentration prediction
  publication-title: Appl. Sci.
  doi: 10.3390/app9183765
– volume: 23
  start-page: 665
  year: 1993
  ident: 10.1016/j.asoc.2020.106957_b117
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.256541
– start-page: 3486
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b136
  article-title: Research on air pollution gases recognition method based on LSTM recurrent neural network and gas sensors array
– year: 2019
  ident: 10.1016/j.asoc.2020.106957_b140
  article-title: Air pollutant concentration prediction based on GRU method
  publication-title: J. Phys.: Conf. Ser.
– volume: 9
  start-page: 989
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b153
  article-title: A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2018.03.008
– start-page: 321
  year: 2010
  ident: 10.1016/j.asoc.2020.106957_b31
  article-title: Study on gray numerical model of air pollution in wuan city
– volume: 8
  start-page: 2570
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b51
  article-title: Machine learning approaches for outdoor air quality modelling: A systematic review
  publication-title: Appl. Sci.
  doi: 10.3390/app8122570
– volume: 119
  start-page: 285
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b38
  article-title: A review of artificial neural network models for ambient air pollution prediction
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.06.014
– start-page: 1287
  year: 2013
  ident: 10.1016/j.asoc.2020.106957_b96
  article-title: Study on prediction of atmospheric PM2.5 based on RBF neural network
– volume: 74
  start-page: 136
  year: 2015
  ident: 10.1016/j.asoc.2020.106957_b13
  article-title: A review on the human health impact of airborne particulate matter
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.10.005
– volume: 234
  start-page: 54
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b89
  article-title: Research and application of the hybrid forecasting model based on secondary denoising and multi-objective optimization for air pollution early warning system
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.06.201
– volume: 580
  start-page: 719
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b154
  article-title: A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.12.018
– year: 2017
  ident: 10.1016/j.asoc.2020.106957_b109
  article-title: Research on air quality of Beijing-Tianjin-Hebei region based on SVM and regression analysis
– volume: 45
  start-page: 2297
  year: 2011
  ident: 10.1016/j.asoc.2020.106957_b17
  article-title: Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.01.002
– volume: 63
  start-page: 755
  year: 2013
  ident: 10.1016/j.asoc.2020.106957_b95
  article-title: Evaluation of PM10 forecasting based on the artificial neural network model and intake fraction in an urban area: A case study in Taiyuan City, China
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10962247.2012.755940
– volume: 27
  start-page: 170
  year: 2013
  ident: 10.1016/j.asoc.2020.106957_b99
  article-title: Forecasting human exposure to PM10 at the national level using an artificial neural network approach
  publication-title: J. Chemometr.
  doi: 10.1002/cem.2505
– volume: 6
  start-page: 99
  year: 2015
  ident: 10.1016/j.asoc.2020.106957_b54
  article-title: Development of artificial intelligence based NO2 forecasting models at Taj Mahal, Agra
  publication-title: Atmos. Pollut. Res.
  doi: 10.5094/APR.2015.012
– volume: 59
  start-page: 693
  year: 2005
  ident: 10.1016/j.asoc.2020.106957_b110
  article-title: Potential assessment of the support vector machine method in forecasting ambient air pollutant trends
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.10.032
– start-page: 5514
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b42
  article-title: Prediction of urban PM 2.5 concentration based on wavelet neural network
– volume: 3
  start-page: 126
  year: 2013
  ident: 10.1016/j.asoc.2020.106957_b15
  article-title: Forecast urban air pollution in Mexico City by using support vector machines: A kernel performance approach
  publication-title: Int. J. Intell. Sci.
– volume: 5
  start-page: 515
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b50
  article-title: Machine learning algorithms in air quality modeling
  publication-title: Glob. J. Environ. Sci. Manage.
– start-page: 448
  year: 2009
  ident: 10.1016/j.asoc.2020.106957_b133
  article-title: Deep boltzmann machines
– ident: 10.1016/j.asoc.2020.106957_b40
  doi: 10.22260/ISARC2011/0212
– volume: 2
  start-page: 568
  year: 1991
  ident: 10.1016/j.asoc.2020.106957_b97
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– start-page: 1
  year: 2008
  ident: 10.1016/j.asoc.2020.106957_b100
  article-title: Development and comparison of backpropagation and generalized regression neural network models to predict diurnal and seasonal gas and PM10 concentrations and emissions from swine buildings
– volume: 162
  start-page: 1095
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b165
  article-title: Factor analysis and forecasting of CO2 emissions in Hebei, using extreme learning machine based on particle swarm optimization
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2017.06.016
– volume: 43
  start-page: 6425
  year: 2009
  ident: 10.1016/j.asoc.2020.106957_b19
  article-title: Combining deterministic and statistical approaches for PM10 forecasting in Europe
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.06.039
– volume: 2017
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b111
  article-title: Ambient air quality classification by grey wolf optimizer based support vector machine
  publication-title: J. Environ. Publ. Health
  doi: 10.1155/2017/3131083
– volume: 29
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b60
  article-title: Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2019.100473
– start-page: 362
  year: 2008
  ident: 10.1016/j.asoc.2020.106957_b94
  article-title: A BP neural network prediction model of the urban air quality based on rough set
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.106957_b122
  article-title: Air quality forecasting using neural networks
– volume: 669
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b71
  article-title: Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China
  publication-title: Sci. Total Environ.
– volume: 45
  start-page: 6241
  year: 2011
  ident: 10.1016/j.asoc.2020.106957_b22
  article-title: Application of WRF/Chem-MADRID for real-time air quality forecasting over the Southeastern United States
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.06.071
– start-page: 389
  year: 2009
  ident: 10.1016/j.asoc.2020.106957_b127
  article-title: Regularized extreme learning machine
– volume: 188
  start-page: 144
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b77
  article-title: Daily PM 2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.12.011
– volume: 12
  start-page: 785
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b82
  article-title: A hybrid framework for forecasting PM2.5 concentrations using multi-step deterministic and probabilistic strategy
  publication-title: Air Qual. Atmos. Health
  doi: 10.1007/s11869-019-00695-8
– volume: 10
  start-page: 223
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b166
  article-title: A combined model based on feature selection and woa for pm2.5 concentration forecasting
  publication-title: Atmosphere
  doi: 10.3390/atmos10040223
– volume: 15
  start-page: 780
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b52
  article-title: Air pollution forecasts: An overview
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph15040780
– volume: 11
  start-page: 4866
  year: 2011
  ident: 10.1016/j.asoc.2020.106957_b101
  article-title: Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.06.013
– volume: 41
  start-page: 2967
  year: 2007
  ident: 10.1016/j.asoc.2020.106957_b103
  article-title: Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.12.013
– volume: 172
  start-page: 743
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b6
  article-title: How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2017.10.195
– volume: 177
  start-page: 156
  year: 2013
  ident: 10.1016/j.asoc.2020.106957_b169
  article-title: Prediction of N2O emission from local information with Random Forest
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.02.019
– start-page: 115
  year: 2006
  ident: 10.1016/j.asoc.2020.106957_b39
  article-title: Prediction of ambient air quality based on neural network technique
– year: 2020
  ident: 10.1016/j.asoc.2020.106957_b170
  article-title: Spatial air quality index prediction model based on decomposition, adaptive boosting, and three-stage feature selection: A case study in China
  publication-title: J. Cleaner Prod.
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.asoc.2020.106957_b143
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 607–608
  start-page: 1009
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b4
  article-title: Forecasting PM 2.5 induced male lung cancer morbidity in China using satellite retrieved PM 2.5 and spatial analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.061
– volume: 683
  start-page: 808
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b162
  article-title: A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.288
– volume: 664
  start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b174
  article-title: A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.333
– volume: 2016
  start-page: 13
  year: 2016
  ident: 10.1016/j.asoc.2020.106957_b27
  article-title: Evaluation of air quality model performance for simulating long-range transport and local pollution of PM2.5 in Japan
  publication-title: Adv. Meteorol.
  doi: 10.1155/2016/5694251
– volume: 11
  start-page: 18
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b138
  article-title: Air quality prediction in Visakhapatnam with LSTM based recurrent neural networks
  publication-title: Int. J. Intell. Syst. Appl.
– volume: 13
  start-page: 197
  year: 2020
  ident: 10.1016/j.asoc.2020.106957_b88
  article-title: A novel hybrid model for multi-step daily AQI forecasting driven by air pollution big data
  publication-title: Air Qual. Atmos. Health
  doi: 10.1007/s11869-020-00795-w
– volume: 106
  start-page: 318
  year: 2015
  ident: 10.1016/j.asoc.2020.106957_b23
  article-title: Improvement of PM10 prediction in East Asia using inverse modeling
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.02.004
– volume: 2
  start-page: 436
  year: 2011
  ident: 10.1016/j.asoc.2020.106957_b33
  article-title: Forecasting of air quality in Delhi using principal component regression technique
  publication-title: Atmos. Pollut. Res.
  doi: 10.5094/APR.2011.050
– volume: 6
  start-page: 605
  year: 2010
  ident: 10.1016/j.asoc.2020.106957_b46
  article-title: Neuro fuzzy modeling scheme for the prediction of air pollution
  publication-title: J. Am. Sci.
– year: 2020
  ident: 10.1016/j.asoc.2020.106957_b171
  article-title: Hourly PM 2.5 concentration forecasting based on mode decomposition-recombination technique and ensemble learning approach in severe haze episodes of China
  publication-title: J. Cleaner Prod.
– volume: 31
  start-page: 260
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b16
  article-title: Ozone’s threat hits back Mexico City
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2016.12.015
– year: 2020
  ident: 10.1016/j.asoc.2020.106957_b163
  article-title: A novel hybrid model based on multi-objective harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106620
– volume: 194
  start-page: 3902
  year: 2005
  ident: 10.1016/j.asoc.2020.106957_b157
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.09.007
– volume: 654
  start-page: 1091
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b172
  article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.086
– volume: 1
  start-page: 1
  year: 2011
  ident: 10.1016/j.asoc.2020.106957_b3
  article-title: Gaseous pollutants formation and their harmful effects on health and environment
  publication-title: Innov. Energy Policies
  doi: 10.4303/iep/E101203
– volume: 73
  start-page: 473
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b152
  article-title: Improved pollution forecasting hybrid algorithms based on the ensemble method
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.04.032
– volume: 10
  start-page: 195
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b126
  article-title: Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods
  publication-title: Air Qual. Atmos. Health
  doi: 10.1007/s11869-016-0414-3
– ident: 10.1016/j.asoc.2020.106957_b180
  doi: 10.1145/3141128.3141131
– volume: 443
  start-page: 511
  year: 2013
  ident: 10.1016/j.asoc.2020.106957_b41
  article-title: PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.10.110
– volume: 43
  start-page: 304
  year: 2008
  ident: 10.1016/j.asoc.2020.106957_b104
  article-title: Three hours ahead prevision of SO2 pollutant concentration using an elman neural based forecaster
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.05.011
– volume: 107
  start-page: 118
  year: 2015
  ident: 10.1016/j.asoc.2020.106957_b26
  article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.02.030
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.asoc.2020.106957_b121
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 93
  year: 2020
  ident: 10.1016/j.asoc.2020.106957_b158
  article-title: Developing two heuristic algorithms with metaheuristic algorithms to improve solutions of optimization problems with soft and hard constraints: An application to nurse rostering problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106336
– volume: 233
  start-page: 464
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b68
  article-title: Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.10.029
– volume: 50
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b58
  article-title: Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101657
– start-page: 297
  year: 2016
  ident: 10.1016/j.asoc.2020.106957_b134
  article-title: On estimating air pollution from photos using convolutional neural network
– volume: 164
  start-page: 174
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b146
  article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and extenics evaluation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.036
– start-page: 103
  year: 2016
  ident: 10.1016/j.asoc.2020.106957_b119
  article-title: A comparative study of computational intelligence techniques applied to PM2.5 air pollution forecasting
– volume: 635
  start-page: 644
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b65
  article-title: Development of a stacked ensemble model for forecasting and analyzing daily average PM2. 5 concentrations in Beijing, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.040
– volume: 86
  year: 2020
  ident: 10.1016/j.asoc.2020.106957_b120
  article-title: Air quality prediction by neuro-fuzzy modeling approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105898
– volume: 10
  start-page: 1326
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b57
  article-title: Two-step-hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.03.004
– start-page: 200
  year: 2017
  ident: 10.1016/j.asoc.2020.106957_b164
  article-title: Prediction of air quality index based on improved neural network
– volume: 63
  year: 2020
  ident: 10.1016/j.asoc.2020.106957_b176
  article-title: Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102364
– volume: 237
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b70
  article-title: A temporal-spatial interpolation and extrapolation method based on geographic Long Short-Term Memory neural network for PM2.5
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.117729
– volume: 313
  start-page: 1
  year: 2003
  ident: 10.1016/j.asoc.2020.106957_b36
  article-title: Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(03)00335-8
– volume: 709
  year: 2020
  ident: 10.1016/j.asoc.2020.106957_b147
  article-title: A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135934
– volume: 20
  start-page: 745
  year: 2007
  ident: 10.1016/j.asoc.2020.106957_b18
  article-title: Forecasting of the daily meteorological pollution using wavelets and support vector machine
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.10.008
– volume: 47
  year: 2019
  ident: 10.1016/j.asoc.2020.106957_b151
  article-title: An intelligent hybrid model for air pollutant concentrations forecasting: Case of Beijing in China
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101471
– volume: 9
  start-page: 74
  year: 2018
  ident: 10.1016/j.asoc.2020.106957_b12
  article-title: Spatiotemporal characteristics of air pollutants (PM10, PM2. 5, SO2, NO2, O3, and CO) in the inland basin city of Chengdu, southwest China
  publication-title: Atmosphere
  doi: 10.3390/atmos9020074
SSID ssj0016928
Score 2.593118
SecondaryResourceType review_article
Snippet In recent years, the deterioration of air quality, the frequent events of the air contaminants, and the health impacts from that have caused continuous...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106957
SubjectTerms Air quality forecasting
Hybrid modeling strategies
Intelligent predictors
Title Intelligent modeling strategies for forecasting air quality time series: A review
URI https://dx.doi.org/10.1016/j.asoc.2020.106957
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhXbr0XZo-goZuxY31sC11C6Eh6SP0FchmJFmGlJKGxB269LdXZ8uhhZKhgzGWJRAfp7sTfPcdQudCcvcHeH6UqIAbd-aUojbg7mpAaKYio6F2-H4UD8b8ZhJNGqhX18IArdL7_sqnl97aj3Q8mp35dNp5djcPwSWPKUiuyAg0QTlPwMovv1Y0DxLLsr8qTA5gti-cqTheyiHg7ogUBmIJIeqv4PQj4PR30JbPFHG32swuatjZHtquuzBgfyj30eNwpapZ4LKxjYtGeFnUGhDYpaXwWKOWwHHGarrAVS3lJ4bW8his0C6vcBdXhSwHaNy_fukNAt8oITAsDItACUFywTglmgkttUsylI4ypUD4lxGWhzZTQjEuTRJbmetIkFBHPBfW5U8iY4eoOXuf2SOEibBJoig1RkMmBZ9xog1lecYV1aSFSI1QaryKODSzeEtruthrCqimgGpaodpCF6s180pDY-3sqAY-_WUJqXPya9Yd_3PdCdqkwFMp2TinqFksPuyZSzQK3S4tqY02ur2nuwd4D28Ho29VGdPL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPejFt1ife9CTxHY3m3QjeCg-aH2BaKG3uLvZQEWq2Ij04p_yD7qTbIqC9CD0kEM2mbD5MpkHfDMDsC8ibq8gz49R6XFt_zkpmfG4TQ0oS2SgFdYO39yG7S6_7AW9CnyVtTBIq3S2v7DpubV2K3WHZv2136_f28xD8IiHDFuuRAF3zMorM_qwedvwpHNmP_IBYxfnD6dtz40W8LTfaGSeFIKmwueMKl-oSFm3LFWQSImtcn3qpw2TSCF9HulmaKJUBYI2VMBTYWzEIRLfPncGZrk1Fzg24ehzzCuhYZQPdMXdebg9V6lTkMqkhdwmpQwXwgh94l_e8IeHu1iCBReaklbx9stQMYMVWCzHPhBnBVbhrjNu45mRfJKOdX9kmJVNJ4iNg_EwWg6RVE1k_40UxZsjgrPsCaq9GR6TFikqZ9agOxX41qE6eBmYDSBUmGZTMqa1wtANT8Om0sxPEy6ZojWgJUKxdm3LcXrGc1zy055iRDVGVOMC1RocjmVei6YdE-8OSuDjX6oXW68yQW7zn3J7MNd-uLmOrzu3V1swz5Akk1OBtqGavb2bHRvlZGo31yoCj9NW428m-g1b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+modeling+strategies+for+forecasting+air+quality+time+series%3A+A+review&rft.jtitle=Applied+soft+computing&rft.au=Liu%2C+Hui&rft.au=Yan%2C+Guangxi&rft.au=Duan%2C+Zhu&rft.au=Chen%2C+Chao&rft.date=2021-04-01&rft.issn=1568-4946&rft.volume=102&rft.spage=106957&rft_id=info:doi/10.1016%2Fj.asoc.2020.106957&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon