Intelligent modeling strategies for forecasting air quality time series: A review
In recent years, the deterioration of air quality, the frequent events of the air contaminants, and the health impacts from that have caused continuous attention by the government and the public. Based on that, suitable and effective forecasting tools are urgently needed in scientific research. In t...
Saved in:
Published in | Applied soft computing Vol. 102; p. 106957 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the deterioration of air quality, the frequent events of the air contaminants, and the health impacts from that have caused continuous attention by the government and the public. Based on that, suitable and effective forecasting tools are urgently needed in scientific research. In this study, the basic forecasting algorithms are introduced as the simple forecasting models with their background, applications, advantages, and limitations, which include shallow predictors and deep learning predictors. Then, to enhance the forecasting ability, the data processing methods and two commonly used auxiliary methods (the ensemble learning and the metaheuristic optimization) in the hybrid models have been reviewed. The recent articles of the spatiotemporal aspects have also brought changes in both the analysis and the modeling methods. Furthermore, the representative models are summarized to present the structures of efficient predictive models. Some possible research directions of the air pollution forecasting are given at the end. This review aims to provide a comprehensive literature summary of the intelligent modeling strategies in the air quality forecasting, which may be helpful for subsequent study.
•Intelligent models and the improved versions are reviewed.•Various components and combinations in the hybrid models are analyzed.•The applications of the forecasting models are provided and compared.•The future directions and challenges of air quality forecasting are discussed. |
---|---|
AbstractList | In recent years, the deterioration of air quality, the frequent events of the air contaminants, and the health impacts from that have caused continuous attention by the government and the public. Based on that, suitable and effective forecasting tools are urgently needed in scientific research. In this study, the basic forecasting algorithms are introduced as the simple forecasting models with their background, applications, advantages, and limitations, which include shallow predictors and deep learning predictors. Then, to enhance the forecasting ability, the data processing methods and two commonly used auxiliary methods (the ensemble learning and the metaheuristic optimization) in the hybrid models have been reviewed. The recent articles of the spatiotemporal aspects have also brought changes in both the analysis and the modeling methods. Furthermore, the representative models are summarized to present the structures of efficient predictive models. Some possible research directions of the air pollution forecasting are given at the end. This review aims to provide a comprehensive literature summary of the intelligent modeling strategies in the air quality forecasting, which may be helpful for subsequent study.
•Intelligent models and the improved versions are reviewed.•Various components and combinations in the hybrid models are analyzed.•The applications of the forecasting models are provided and compared.•The future directions and challenges of air quality forecasting are discussed. |
ArticleNumber | 106957 |
Author | Duan, Zhu Liu, Hui Yan, Guangxi Chen, Chao |
Author_xml | – sequence: 1 givenname: Hui surname: Liu fullname: Liu, Hui email: csuliuhui@csu.edu.cn – sequence: 2 givenname: Guangxi surname: Yan fullname: Yan, Guangxi – sequence: 3 givenname: Zhu surname: Duan fullname: Duan, Zhu – sequence: 4 givenname: Chao surname: Chen fullname: Chen, Chao |
BookMark | eNp9kM9OAyEQh4mpiW31BTzxAlthYbdgvDSN_5ImxkTPhGWHhmYLCqjp28umnjz0MGECfJP5fTM08cEDQteULCih7c1uoVMwi5rU40Urm-UZmlKxrCvZCjopfdOKikveXqBZSjtSIFmLKXp99hmGwW3BZ7wPPQzOb3HKUWfYOkjYhjgWGJ3y-KRdxJ9fenD5gLPbA04Qy79bvMIRvh38XKJzq4cEV3_nHL0_3L-tn6rNy-PzerWpDCMkV1oIagXjNe2Y6GTHmdRd02tNpeSMMkug10IzLs2yBWm7RlDSNdwK4CVLz-ZIHOeaGFKKYJVxWWcXfFneDYoSNapROzWqUaMadVRT0Pof-hHdXsfDaejuCEEJVYJGlYwDb6B3xU5WfXCn8F85bIBS |
CitedBy_id | crossref_primary_10_1007_s11063_023_11332_y crossref_primary_10_3390_en16041806 crossref_primary_10_37648_ijrst_v13i03_010 crossref_primary_10_1016_j_envpol_2024_124053 crossref_primary_10_3390_atmos15040398 crossref_primary_10_3390_atmos13121978 crossref_primary_10_3389_fenvs_2022_924986 crossref_primary_10_1007_s11356_021_17442_1 crossref_primary_10_1109_ACCESS_2023_3251105 crossref_primary_10_1109_TGRS_2023_3292006 crossref_primary_10_1016_j_eti_2025_104107 crossref_primary_10_1016_j_asoc_2024_111324 crossref_primary_10_3390_jmse10091270 crossref_primary_10_3390_atmos14050816 crossref_primary_10_1016_j_asoc_2023_110559 crossref_primary_10_1016_j_eswa_2023_121951 crossref_primary_10_1007_s00477_023_02512_2 crossref_primary_10_1007_s13762_023_04900_1 crossref_primary_10_1016_j_chaos_2022_112405 crossref_primary_10_33166_AETiC_2021_04_004 crossref_primary_10_48084_etasr_6981 crossref_primary_10_36548_jscp_2023_4_005 crossref_primary_10_1016_j_rser_2024_114791 crossref_primary_10_1038_s41598_023_49007_2 crossref_primary_10_1016_j_eswa_2024_124856 crossref_primary_10_3390_forecast5010017 crossref_primary_10_1007_s11356_025_36265_y crossref_primary_10_1016_j_techfore_2023_122504 crossref_primary_10_1016_j_asoc_2025_113042 crossref_primary_10_1016_j_envres_2024_119751 crossref_primary_10_1016_j_eswa_2025_126937 crossref_primary_10_3934_environsci_2024021 crossref_primary_10_1016_j_envsoft_2024_106205 crossref_primary_10_1016_j_aej_2024_03_031 crossref_primary_10_1016_j_jes_2024_09_029 crossref_primary_10_1016_j_envint_2023_107848 crossref_primary_10_1007_s11227_023_05782_3 crossref_primary_10_3390_atmos14050902 crossref_primary_10_1016_j_eswa_2023_122178 crossref_primary_10_1016_j_jes_2025_02_041 crossref_primary_10_1016_j_atmosres_2024_107576 crossref_primary_10_1080_01431161_2024_2373338 crossref_primary_10_3389_fenvs_2024_1393878 crossref_primary_10_1016_j_asoc_2022_108933 crossref_primary_10_3390_app12010256 crossref_primary_10_1016_j_uclim_2024_102262 crossref_primary_10_3390_math10203910 crossref_primary_10_1002_for_2872 crossref_primary_10_3390_su14169951 crossref_primary_10_1021_acs_est_4c06486 crossref_primary_10_1016_j_envres_2023_117286 crossref_primary_10_1016_j_eswa_2022_118123 crossref_primary_10_1016_j_jece_2024_114658 crossref_primary_10_1016_j_apr_2021_101144 crossref_primary_10_1016_j_atmosenv_2022_119347 crossref_primary_10_1016_j_scs_2024_106010 crossref_primary_10_1016_j_apenergy_2023_121597 crossref_primary_10_1038_s41598_022_21769_1 crossref_primary_10_1016_j_energy_2023_127852 crossref_primary_10_1007_s11869_023_01380_7 crossref_primary_10_3390_s22083054 crossref_primary_10_3390_atmos15070856 crossref_primary_10_3390_math10173060 crossref_primary_10_3390_atmos14020340 crossref_primary_10_1021_acs_est_2c02961 crossref_primary_10_1016_j_scs_2023_104445 crossref_primary_10_1016_j_uclim_2024_102099 crossref_primary_10_1016_j_chemosphere_2023_139071 crossref_primary_10_3390_en18030660 crossref_primary_10_1007_s12145_024_01546_6 crossref_primary_10_1016_j_engappai_2023_107645 crossref_primary_10_3390_atmos14020308 crossref_primary_10_7717_peerj_cs_982 crossref_primary_10_1016_j_prime_2023_100234 crossref_primary_10_3390_su15064837 crossref_primary_10_1177_23998083241230707 crossref_primary_10_3390_s24155069 crossref_primary_10_1080_23311916_2023_2243743 crossref_primary_10_1016_j_ins_2021_10_061 crossref_primary_10_1371_journal_pone_0286325 crossref_primary_10_1016_j_eneco_2023_106683 crossref_primary_10_1063_5_0207834 crossref_primary_10_1016_j_asoc_2021_108110 crossref_primary_10_1007_s00500_023_08638_3 crossref_primary_10_1007_s11356_023_28028_4 crossref_primary_10_1016_j_scitotenv_2024_170777 crossref_primary_10_35377_saucis___1404116 |
Cites_doi | 10.1016/j.asoc.2019.105789 10.1016/j.atmosenv.2017.01.020 10.1080/10962247.2018.1459956 10.1016/j.chemosphere.2019.01.121 10.1016/j.enpol.2010.04.034 10.1016/j.envpol.2017.08.114 10.1111/tgis.12302 10.1207/s15516709cog1402_1 10.3390/atmos7020015 10.1016/j.rser.2019.01.049 10.1016/j.procs.2018.05.094 10.1016/j.jclepro.2019.05.257 10.1109/TSP.2013.2288675 10.1016/j.scitotenv.2017.01.136 10.1016/j.envres.2003.11.003 10.1016/j.engappai.2011.10.013 10.1023/A:1010933404324 10.1016/j.apr.2017.11.004 10.1016/j.envpol.2017.01.043 10.1016/j.envpol.2017.08.069 10.1109/TNN.2006.880583 10.1016/j.mcm.2011.04.017 10.1016/j.asoc.2019.105972 10.1016/j.asoc.2018.09.005 10.1016/j.asoc.2018.05.044 10.1016/j.apr.2017.11.010 10.1109/ACCESS.2019.2897028 10.1016/j.amc.2013.03.018 10.1016/j.apr.2019.05.007 10.1109/ICCCBDA.2018.8386494 10.1016/j.scitotenv.2011.08.069 10.1016/j.jenvman.2016.12.011 10.1016/j.scs.2017.12.022 10.1016/j.is.2016.03.011 10.1016/j.atmosenv.2018.04.004 10.1007/s11356-009-0138-0 10.1016/j.eswa.2012.01.023 10.1016/j.envres.2017.08.039 10.1016/S0140-6736(17)30505-6 10.1016/j.atmosenv.2016.05.036 10.1016/j.scitotenv.2018.09.196 10.1016/j.scitotenv.2013.06.093 10.1007/s00477-016-1265-z 10.1016/0165-0114(93)90372-O 10.1155/2019/5304535 10.3390/ijerph14070764 10.1016/j.atmosenv.2012.01.051 10.1016/j.asoc.2020.106070 10.1016/j.atmosenv.2014.12.011 10.5094/APR.2015.033 10.5094/APR.2014.079 10.3390/ijerph14020114 10.1016/j.atmosenv.2018.12.025 10.1016/j.atmosenv.2009.05.006 10.1016/j.jenvman.2017.02.071 10.1016/j.ecoinf.2017.12.001 10.1016/j.apr.2019.11.019 10.1007/s11004-013-9483-0 10.1016/j.eswa.2010.05.093 10.1016/j.techfore.2019.05.015 10.1016/j.scitotenv.2017.08.272 10.1016/j.neucom.2018.06.049 10.1007/s11869-010-0073-8 10.1089/ees.2010.0219 10.1109/ICBBE.2008.808 10.1016/j.patrec.2020.04.032 10.1016/j.rmed.2018.11.019 10.1016/j.apr.2019.04.005 10.1007/s11869-019-00696-7 10.1016/j.atmosenv.2012.06.031 10.1016/j.asoc.2019.105827 10.1016/j.jclepro.2019.02.179 10.1016/j.atmosres.2013.05.021 10.1016/j.apr.2016.01.004 10.1016/j.atmosenv.2014.09.046 10.1016/j.asoc.2018.07.030 10.1023/A:1018628609742 10.1007/s10666-011-9270-6 10.1016/j.atmosenv.2018.03.015 10.1016/j.atmosenv.2016.03.056 10.1016/j.chemosphere.2005.08.070 10.1016/j.scitotenv.2018.01.195 10.3390/app9183765 10.1109/21.256541 10.1016/j.apr.2018.03.008 10.3390/app8122570 10.1016/j.envsoft.2019.06.014 10.1016/j.envint.2014.10.005 10.1016/j.jclepro.2019.06.201 10.1016/j.scitotenv.2016.12.018 10.1016/j.atmosenv.2011.01.002 10.1080/10962247.2012.755940 10.1002/cem.2505 10.5094/APR.2015.012 10.1016/j.chemosphere.2004.10.032 10.22260/ISARC2011/0212 10.1109/72.97934 10.1016/j.jclepro.2017.06.016 10.1016/j.atmosenv.2009.06.039 10.1155/2017/3131083 10.1016/j.uclim.2019.100473 10.1016/j.atmosenv.2011.06.071 10.1007/s11869-019-00695-8 10.3390/atmos10040223 10.3390/ijerph15040780 10.1016/j.asoc.2011.06.013 10.1016/j.atmosenv.2006.12.013 10.1016/j.jclepro.2017.10.195 10.1016/j.envpol.2013.02.019 10.1098/rspa.1998.0193 10.1016/j.scitotenv.2017.07.061 10.1016/j.scitotenv.2019.05.288 10.1016/j.scitotenv.2019.01.333 10.1155/2016/5694251 10.1007/s11869-020-00795-w 10.1016/j.atmosenv.2015.02.004 10.5094/APR.2011.050 10.1016/j.scs.2016.12.015 10.1016/j.asoc.2020.106620 10.1016/j.cma.2004.09.007 10.1016/j.scitotenv.2018.11.086 10.4303/iep/E101203 10.1016/j.apm.2019.04.032 10.1007/s11869-016-0414-3 10.1145/3141128.3141131 10.1016/j.scitotenv.2012.10.110 10.1016/j.buildenv.2006.05.011 10.1016/j.atmosenv.2015.02.030 10.1016/j.neucom.2005.12.126 10.1016/j.asoc.2020.106336 10.1016/j.envpol.2017.10.029 10.1016/j.scs.2019.101657 10.1016/j.knosys.2018.10.036 10.1016/j.scitotenv.2018.04.040 10.1016/j.asoc.2019.105898 10.1016/j.apr.2019.03.004 10.1016/j.scs.2020.102364 10.1016/j.jclepro.2019.117729 10.1016/S0048-9697(03)00335-8 10.1016/j.scitotenv.2019.135934 10.1016/j.engappai.2006.10.008 10.1016/j.scs.2019.101471 10.3390/atmos9020074 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106957 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106957 S1568494620308954 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-a881f83421b38b9b439ab5daa1994313f0eda8a349c76e9fb5810b54f8e4568d3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:52:26 EDT 2025 Tue Jul 01 01:50:08 EDT 2025 Fri Feb 23 02:40:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hybrid modeling strategies Air quality forecasting Intelligent predictors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-a881f83421b38b9b439ab5daa1994313f0eda8a349c76e9fb5810b54f8e4568d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106957 crossref_primary_10_1016_j_asoc_2020_106957 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106957 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rathore, Paul, Hong, Seo, Awan, Saeed (b177) 2018; 40 Tang, Zhou, He, Zhang (b109) 2017 Konovalov, Beekmann, Meleux, Dutot, Foret (b19) 2009; 43 Zhou, Xu, Xie, Chang, Gao, Gu, Zhou (b21) 2017; 153 De Vito, Di Francia, Esposito, Ferlito, Formisano, Massera (b178) 2020; 136 Mihăiţă, Dupont, Chery, Camargo, Cai (b179) 2019; 221 Liu, Chen (b170) 2020 Pak, Ma, Ryu, Ryom, Juhyok, Pak, Pak (b71) 2019; 669 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b143) 1998; 454 Kurt, Oktay (b67) 2010; 37 Krishan, Jha, Das, Singh, Goyal, Sekar (b129) 2019; 12 Cheng, Zhang, Liu, Chen, Wang (b79) 2019; 200 Ashish, Rashmi (b142) 2011; 2 Zhai, Chen (b65) 2018; 635 Wang, Tian (b164) 2017 Kumar, Goyal (b30) 2011; 409 Y. Teng, X. Huang, S. Ye, Y. Li, Prediction of particulate matter concentration in Chengdu based on improved differential evolution algorithm and BP neural network model, in: 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis, ICCCBDA, 2018. Rybarczyk, Zalakeviciute (b51) 2018; 8 Xiao, Wang, Wu, Fu, Zhu (b12) 2018; 9 Chen, Wang, Zhang (b59) 2019; 146 Deng, Zheng, Chen (b127) 2009 Zhou, Xu, Zeng, Meng (b140) 2019 Qin, Liu, Wang, Sun (b62) 2014; 98 Zhang, Liu, Shi, Yao (b95) 2013; 63 Feng, Li, Zhu, Hou, Jin, Wang (b26) 2015; 107 Freeman, Taylor, Gharabaghi, Thé (b49) 2018; 68 Liu, Jin, Duan (b53) 2019; 10 Elman (b102) 1990; 14 Rao, Devi, Ramesh (b138) 2019; 11 Lee, Geem (b157) 2005; 194 Du, Wang, Hao, Niu, Yang (b163) 2020 Chuang, Zhang, Kang (b22) 2011; 45 Yang, Zhu, Li, Li (b161) 2020; 87 Brunelli, Piazza, Pignato, Sorbello, Vitabile (b104) 2008; 43 Chen, Chen, Wu, Hu, Pan (b28) 2017; 64 Kumar, Goyal (b33) 2011; 2 Gilles (b150) 2013 L. Zheng, S. Yu, M. Yu, Monitoring NOx emissions from coal fired boilers using generalized regression neural network, in: 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008. Xu, Liu, Duan (b88) 2020; 13 Zvereva, Kozlov (b32) 2010; 17 Zainuddin, Pauline (b101) 2011; 11 Smolensky (b132) 1986 Gan, Sun, Wang, Wei (b153) 2018; 9 Wen, Liu, Yao, Peng, Li, Hu, Chi (b172) 2019; 654 Shimadera, Kojima, Kondo (b27) 2016; 2016 Cabaneros, Calautit, Hughes (b38) 2019; 119 Najjar (b3) 2011; 1 Jain, Khare (b118) 2010; 3 Chen, Zeng (b158) 2020; 93 Zhang, Bocquet, Mallet, Seigneur, Baklanov (b37) 2012; 60 Murillo-Escobar, Sepulveda-Suescun, Correa, Orrego-Metaute (b60) 2019; 29 Zhu, Wang, Zhang, Sun (b10) 2012; 51 Li, Yang (b44) 2010 Saxena, Shekhawat (b111) 2017; 2017 Niu, Wang, Sun, Li (b144) 2016; 134 Wu, Lin (b162) 2019; 683 Bueno, Coelho, Bertini (b125) 2017 Velasco, Retama (b16) 2017; 31 Sun, Wang, Zhang (b165) 2017; 162 Avnery, Mauzerall, Liu, Horowitz (b17) 2011; 45 Alhanafy, Zaghlool, Moustafa (b46) 2010; 6 M. Asgari, M. Farnaghi, Z. Ghaemi, Predictive mapping of urban air pollution using Apache Spark on a Hadoop cluster, in: Proceedings of the 2017 International Conference on Cloud and Big Data Computing, 2017, pp. 89–93. Huang, Zhu, Siew (b121) 2006; 70 Peng, Lima, Teakles, Jin, Cannon, Hsieh (b126) 2017; 10 Liu, Yan, Li, Qu, Li, Lang, Gu (b139) 2018 Dotse, Petra, Dagar, De Silva (b64) 2018; 9 Prakash, Kumar, Kumar, Jain (b80) 2011; 16 Kim, Kabir, Kabir (b13) 2015; 74 Zhang, Yan, Li, Rui, Liu, Bie (b134) 2016 Seigneur, Moran (b20) 2010 Kamińska (b63) 2019; 651 Jiang, He, Tian (b81) 2019; 85 Rijal, Gutta, Cao, Lin, Bo, Zhang (b135) 2018 Awad, Koutrakis, Coull, Schwartz (b66) 2017; 159 Wang, Li, Lu (b87) 2018; 71 Zhang, Li, Li, Mei (b42) 2018 Liu, Guo, Chen, Chen (b159) 2019; 10 Wu, Feng, Du, Li (b105) 2011; 28 Taheri Shahraiyni, Sodoudi (b73) 2016; 7 Bai, Zeng, Li, Zhang (b85) 2019; 222 Zhu, Qiu, Yin, Fang, Liu, Zhao, Shi (b57) 2019; 10 Hao, Tian (b149) 2019; 74 Sotomayor-Olmedo, Aceves-Fernández, Gorrostieta-Hurtado, Pedraza-Ortega, Ramos-Arreguín, Vargas-Soto (b15) 2013; 3 Xie (b47) 2017 Dincer, Akkuş (b115) 2018; 43 Domańska, Wojtylak (b116) 2012; 39 Martınez-Espana, Bueno-Crespo, Timón, Soto, Munoz, Cecilia (b168) 2018; 24 Zhu, Lian, Liu, Hu, Wang, Che (b83) 2017; 231 Philibert, Loyce, Makowski (b169) 2013; 177 Brunelli, Piazza, Pignato, Sorbello, Vitabile (b103) 2007; 41 Mishra, Goyal (b54) 2015; 6 Han, Liu, Gao, Ma, Mao, Wang, Ma (b4) 2017; 607–608 Li, Li, Wang, Ren, Zhang, Yu (b43) 2018 Niu, Gan, Sun, Li (b84) 2017; 196 Zheng, Shang (b96) 2013 Li, Peng, Yao, Cui, Hu, You, Chi (b137) 2017; 231 Liang, Huang, Saratchandran, Sundararajan (b124) 2006; 17 Qi, Li, Karimian, Liu (b174) 2019; 664 Manders, Schaap, Hoogerbrugge (b25) 2009; 43 Deo, Tiwari, Adamowski, Quilty (b56) 2017; 31 de Gennaro, Trizio, Di Gilio, Pey, Pérez, Cusack, Alastuey, Querol (b93) 2013; 463 Wang, Song (b173) 2018; 314 Zhan, Luo, Deng, Grieneisen, Zhang, Di (b68) 2018; 233 Lu, Wang, Wang, Yan, Lam (b78) 2004; 96 Breiman (b167) 2001; 45 Zhao, van Heeswijk, Karhunen (b122) 2016 Salakhutdinov, Hinton (b133) 2009 Liu, Duan, Chen (b82) 2019; 12 Hao, Peng, Temulun, Liu, Mao, Lu, Chen (b6) 2018; 172 Russo, Soares (b35) 2014; 46 Xing, Yue, Chen, Xiang, Chen, Shi (b141) 2019; 9 Qiao, Ying, Li, Zhang, Hu, Tang, Chen (b24) 2018; 612 Cohen, Brauer, Burnett, Anderson, Frostad, Estep, Balakrishnan, Brunekreef, Dandona, Dandona (b5) 2017; 389 Sun, Hoff, Zelle, Smith (b100) 2008 Oprea, Mihalache, Popescu (b119) 2016 Sun, Li (b171) 2020 Jiang, Meng, Yang, Li (b94) 2008 Zhang, Ding (b123) 2017; 14 Zhou, Zhao, Lin, Wang, Li (b1) 2019; 85 Zhu, Ding, Lei, Cheng, Liu, Shen, Zhang, Xu, Xiao, Li (b14) 2019; 146 Xu, Du, Wang (b90) 2017; 223 Casazza, Lega, Jannelli, Minutillo, Jaffe, Severino, Ulgiati (b76) 2019; 231 Antanasijević, Ristić, Perić-Grujić, Pocajt (b99) 2013; 27 Wang, Wei, Luo, Yue, Grunder (b154) 2017; 580 Zhu, Lian, Wei, Che, Shen, Yang, Qiu, Liu, Gao, Ren (b86) 2018; 183 Kamal, Jailani, Shauri (b39) 2006 H. Wahid, Q.P. Ha, H.N. Duc, Computational intelligence estimation of natural background ozone level and its distribution for air quality modelling and emission control, in: Proceedings of the 28th International Symposium on Automation and Robotics in Construction, ISARC 2011, 2011. Wang, Klemeš, Dong, Fan, Xu, Wang, Varbanov (b74) 2019; 105 Zhai, Ding, Jin, Zhao (b113) 2020; 89 Antanasijević, Pocajt, Povrenović, Ristić, Perić-Grujić (b41) 2013; 443 Wei, Peng, Wang, Song (b8) 2017; 9 Eslami, Choi, Lops, Sayeed (b48) 2019 Liu, Binaykia, Chang, Tiwari, Tsao (b107) 2017; 12 Xia, Guan, Jiang, Peng, Schroeder, Zhang (b7) 2016; 139 Deng, Yang, Liu, Jin, Xu, Zhang (b91) 2018; 22 Wu, Lin (b58) 2019; 50 Osowski, Garanty (b18) 2007; 20 Park, Yoo, Kim, Gu, Lee, Son (b130) 2017 Specht (b97) 1991; 2 Péres, Ruiz, Nesmachnow, Olivera (b2) 2018; 70 Donnelly, Misstear, Broderick (b34) 2015; 103 Song, Chissom (b114) 1993; 54 Jiang, Li, Li, Yang (b146) 2019; 164 Liu, Chen (b128) 2020; 11 Ritter, Müller, Tsai, Parlow (b29) 2013; 132 Sun, Sun (b175) 2016; 188 Gulia, Nagendra, Khare, Khanna (b75) 2015; 6 Wang, Xie, Wang (b136) 2018 Nam, Selin, Reilly, Paltsev (b9) 2010; 38 Rubal, Kumar (b61) 2018; 132 Nieto, Combarro, Díaz, Montañés (b106) 2013; 219 Zhao, Li (b166) 2019; 10 Singh, Sharma, Yoon, Shojafar, Cho, Ra (b176) 2020; 63 Wang, Bai, Wang, Wang (b89) 2019; 234 Masih (b50) 2019; 5 Elangasinghe, Singhal, Dirks, Salmond (b92) 2014; 5 Sharma, Deo, Prasad, Parisi (b147) 2020; 709 Yang, Deng, Xu, Wang (b69) 2018; 181 Lu, Wang (b110) 2005; 59 Suykens, Vandewalle (b112) 1999; 9 Lin, Lee, Ouyang, Wu (b120) 2020; 86 Cereceda-Balic, Toledo, Vidal, Guerrero, Diaz-Robles, Petit-Breuilh, Lapuerta (b11) 2017; 584 Liu, Wu, Lv, Ren, Liu, Li, Shi (b151) 2019; 47 Sun, Sun (b77) 2017; 188 Bai, Wang, Ma, Lu (b52) 2018; 15 Liu, Xu, Chen (b152) 2019; 73 Zhou, Zhao, Li (b31) 2010 Yildirim, Bayramoglu (b45) 2006; 63 Bai, Li, Wang, Xie, Li (b55) 2016; 7 Siwek, Osowski (b156) 2012; 25 Chaloulakou, Saisana, Spyrellis (b36) 2003; 313 Li, Zhu (b145) 2018; 626 Koo, Choi, Kwon, Jang, Han (b23) 2015; 106 Sánchez, Nieto, Fernández, del Coz Díaz, Iglesias-Rodríguez (b108) 2011; 54 Jang (b117) 1993; 23 Li, Shao, Sun (b131) 2019; 2019 Qin, Yu, Zou, Yong, Zhao, Zhang (b72) 2019; 7 Wang, Liu, Luo, Yue, Cheng (b155) 2017; 14 Dragomiretskiy, Zosso (b148) 2014 Ma, Ding, Cheng, Jiang, Wan (b70) 2019; 237 Wei (10.1016/j.asoc.2020.106957_b8) 2017; 9 Péres (10.1016/j.asoc.2020.106957_b2) 2018; 70 Zhang (10.1016/j.asoc.2020.106957_b42) 2018 Wu (10.1016/j.asoc.2020.106957_b105) 2011; 28 Lu (10.1016/j.asoc.2020.106957_b110) 2005; 59 Najjar (10.1016/j.asoc.2020.106957_b3) 2011; 1 Awad (10.1016/j.asoc.2020.106957_b66) 2017; 159 Siwek (10.1016/j.asoc.2020.106957_b156) 2012; 25 Zhu (10.1016/j.asoc.2020.106957_b86) 2018; 183 Jain (10.1016/j.asoc.2020.106957_b118) 2010; 3 Xing (10.1016/j.asoc.2020.106957_b141) 2019; 9 Cereceda-Balic (10.1016/j.asoc.2020.106957_b11) 2017; 584 Zhang (10.1016/j.asoc.2020.106957_b123) 2017; 14 Osowski (10.1016/j.asoc.2020.106957_b18) 2007; 20 Chen (10.1016/j.asoc.2020.106957_b59) 2019; 146 Konovalov (10.1016/j.asoc.2020.106957_b19) 2009; 43 Kamińska (10.1016/j.asoc.2020.106957_b63) 2019; 651 Rybarczyk (10.1016/j.asoc.2020.106957_b51) 2018; 8 Qiao (10.1016/j.asoc.2020.106957_b24) 2018; 612 Chen (10.1016/j.asoc.2020.106957_b28) 2017; 64 Chuang (10.1016/j.asoc.2020.106957_b22) 2011; 45 Sánchez (10.1016/j.asoc.2020.106957_b108) 2011; 54 Pak (10.1016/j.asoc.2020.106957_b71) 2019; 669 Sun (10.1016/j.asoc.2020.106957_b77) 2017; 188 Deng (10.1016/j.asoc.2020.106957_b127) 2009 Dragomiretskiy (10.1016/j.asoc.2020.106957_b148) 2014 Du (10.1016/j.asoc.2020.106957_b163) 2020 Eslami (10.1016/j.asoc.2020.106957_b48) 2019 Brunelli (10.1016/j.asoc.2020.106957_b103) 2007; 41 Niu (10.1016/j.asoc.2020.106957_b84) 2017; 196 Nam (10.1016/j.asoc.2020.106957_b9) 2010; 38 Velasco (10.1016/j.asoc.2020.106957_b16) 2017; 31 Zhu (10.1016/j.asoc.2020.106957_b14) 2019; 146 Wang (10.1016/j.asoc.2020.106957_b154) 2017; 580 10.1016/j.asoc.2020.106957_b180 Bai (10.1016/j.asoc.2020.106957_b85) 2019; 222 Prakash (10.1016/j.asoc.2020.106957_b80) 2011; 16 Mishra (10.1016/j.asoc.2020.106957_b54) 2015; 6 Zhu (10.1016/j.asoc.2020.106957_b83) 2017; 231 Niu (10.1016/j.asoc.2020.106957_b144) 2016; 134 Antanasijević (10.1016/j.asoc.2020.106957_b99) 2013; 27 Kim (10.1016/j.asoc.2020.106957_b13) 2015; 74 Wang (10.1016/j.asoc.2020.106957_b173) 2018; 314 Suykens (10.1016/j.asoc.2020.106957_b112) 1999; 9 Kumar (10.1016/j.asoc.2020.106957_b30) 2011; 409 Zhai (10.1016/j.asoc.2020.106957_b65) 2018; 635 Sun (10.1016/j.asoc.2020.106957_b175) 2016; 188 Bai (10.1016/j.asoc.2020.106957_b52) 2018; 15 Jang (10.1016/j.asoc.2020.106957_b117) 1993; 23 Yang (10.1016/j.asoc.2020.106957_b69) 2018; 181 Liu (10.1016/j.asoc.2020.106957_b159) 2019; 10 Mihăiţă (10.1016/j.asoc.2020.106957_b179) 2019; 221 Donnelly (10.1016/j.asoc.2020.106957_b34) 2015; 103 Huang (10.1016/j.asoc.2020.106957_b121) 2006; 70 Wang (10.1016/j.asoc.2020.106957_b89) 2019; 234 Jiang (10.1016/j.asoc.2020.106957_b146) 2019; 164 Sun (10.1016/j.asoc.2020.106957_b165) 2017; 162 Dincer (10.1016/j.asoc.2020.106957_b115) 2018; 43 Qin (10.1016/j.asoc.2020.106957_b72) 2019; 7 Liu (10.1016/j.asoc.2020.106957_b107) 2017; 12 Li (10.1016/j.asoc.2020.106957_b131) 2019; 2019 Liu (10.1016/j.asoc.2020.106957_b170) 2020 Kumar (10.1016/j.asoc.2020.106957_b33) 2011; 2 Zhu (10.1016/j.asoc.2020.106957_b57) 2019; 10 Deng (10.1016/j.asoc.2020.106957_b91) 2018; 22 Zhan (10.1016/j.asoc.2020.106957_b68) 2018; 233 Xu (10.1016/j.asoc.2020.106957_b90) 2017; 223 Tang (10.1016/j.asoc.2020.106957_b109) 2017 Domańska (10.1016/j.asoc.2020.106957_b116) 2012; 39 Gilles (10.1016/j.asoc.2020.106957_b150) 2013 Zheng (10.1016/j.asoc.2020.106957_b96) 2013 Avnery (10.1016/j.asoc.2020.106957_b17) 2011; 45 Krishan (10.1016/j.asoc.2020.106957_b129) 2019; 12 Liang (10.1016/j.asoc.2020.106957_b124) 2006; 17 Cabaneros (10.1016/j.asoc.2020.106957_b38) 2019; 119 Wang (10.1016/j.asoc.2020.106957_b155) 2017; 14 Jiang (10.1016/j.asoc.2020.106957_b81) 2019; 85 10.1016/j.asoc.2020.106957_b40 Antanasijević (10.1016/j.asoc.2020.106957_b41) 2013; 443 Sun (10.1016/j.asoc.2020.106957_b100) 2008 Qin (10.1016/j.asoc.2020.106957_b62) 2014; 98 Elangasinghe (10.1016/j.asoc.2020.106957_b92) 2014; 5 Wang (10.1016/j.asoc.2020.106957_b136) 2018 Yildirim (10.1016/j.asoc.2020.106957_b45) 2006; 63 Manders (10.1016/j.asoc.2020.106957_b25) 2009; 43 Huang (10.1016/j.asoc.2020.106957_b143) 1998; 454 Song (10.1016/j.asoc.2020.106957_b114) 1993; 54 Dotse (10.1016/j.asoc.2020.106957_b64) 2018; 9 Liu (10.1016/j.asoc.2020.106957_b151) 2019; 47 Liu (10.1016/j.asoc.2020.106957_b152) 2019; 73 Oprea (10.1016/j.asoc.2020.106957_b119) 2016 Hao (10.1016/j.asoc.2020.106957_b149) 2019; 74 Zhou (10.1016/j.asoc.2020.106957_b31) 2010 Gan (10.1016/j.asoc.2020.106957_b153) 2018; 9 Koo (10.1016/j.asoc.2020.106957_b23) 2015; 106 Zhao (10.1016/j.asoc.2020.106957_b122) 2016 Zhang (10.1016/j.asoc.2020.106957_b37) 2012; 60 Breiman (10.1016/j.asoc.2020.106957_b167) 2001; 45 Li (10.1016/j.asoc.2020.106957_b44) 2010 Xu (10.1016/j.asoc.2020.106957_b88) 2020; 13 Cheng (10.1016/j.asoc.2020.106957_b79) 2019; 200 Wu (10.1016/j.asoc.2020.106957_b58) 2019; 50 Chaloulakou (10.1016/j.asoc.2020.106957_b36) 2003; 313 Shimadera (10.1016/j.asoc.2020.106957_b27) 2016; 2016 Zhou (10.1016/j.asoc.2020.106957_b140) 2019 Nieto (10.1016/j.asoc.2020.106957_b106) 2013; 219 Hao (10.1016/j.asoc.2020.106957_b6) 2018; 172 Wang (10.1016/j.asoc.2020.106957_b164) 2017 Wu (10.1016/j.asoc.2020.106957_b162) 2019; 683 Rubal (10.1016/j.asoc.2020.106957_b61) 2018; 132 Lin (10.1016/j.asoc.2020.106957_b120) 2020; 86 Feng (10.1016/j.asoc.2020.106957_b26) 2015; 107 Zhao (10.1016/j.asoc.2020.106957_b166) 2019; 10 Freeman (10.1016/j.asoc.2020.106957_b49) 2018; 68 Li (10.1016/j.asoc.2020.106957_b137) 2017; 231 Ma (10.1016/j.asoc.2020.106957_b70) 2019; 237 Masih (10.1016/j.asoc.2020.106957_b50) 2019; 5 Saxena (10.1016/j.asoc.2020.106957_b111) 2017; 2017 Liu (10.1016/j.asoc.2020.106957_b82) 2019; 12 Chen (10.1016/j.asoc.2020.106957_b158) 2020; 93 Bueno (10.1016/j.asoc.2020.106957_b125) 2017 Peng (10.1016/j.asoc.2020.106957_b126) 2017; 10 Liu (10.1016/j.asoc.2020.106957_b53) 2019; 10 Ritter (10.1016/j.asoc.2020.106957_b29) 2013; 132 Russo (10.1016/j.asoc.2020.106957_b35) 2014; 46 Salakhutdinov (10.1016/j.asoc.2020.106957_b133) 2009 Han (10.1016/j.asoc.2020.106957_b4) 2017; 607–608 Ashish (10.1016/j.asoc.2020.106957_b142) 2011; 2 Lee (10.1016/j.asoc.2020.106957_b157) 2005; 194 Zainuddin (10.1016/j.asoc.2020.106957_b101) 2011; 11 Liu (10.1016/j.asoc.2020.106957_b128) 2020; 11 Qi (10.1016/j.asoc.2020.106957_b174) 2019; 664 Kurt (10.1016/j.asoc.2020.106957_b67) 2010; 37 De Vito (10.1016/j.asoc.2020.106957_b178) 2020; 136 Wang (10.1016/j.asoc.2020.106957_b74) 2019; 105 Rathore (10.1016/j.asoc.2020.106957_b177) 2018; 40 Murillo-Escobar (10.1016/j.asoc.2020.106957_b60) 2019; 29 Rao (10.1016/j.asoc.2020.106957_b138) 2019; 11 Yang (10.1016/j.asoc.2020.106957_b161) 2020; 87 Wang (10.1016/j.asoc.2020.106957_b87) 2018; 71 Specht (10.1016/j.asoc.2020.106957_b97) 1991; 2 Kamal (10.1016/j.asoc.2020.106957_b39) 2006 Li (10.1016/j.asoc.2020.106957_b43) 2018 Xie (10.1016/j.asoc.2020.106957_b47) 2017 Zhang (10.1016/j.asoc.2020.106957_b134) 2016 Li (10.1016/j.asoc.2020.106957_b145) 2018; 626 Xiao (10.1016/j.asoc.2020.106957_b12) 2018; 9 Zvereva (10.1016/j.asoc.2020.106957_b32) 2010; 17 10.1016/j.asoc.2020.106957_b98 Lu (10.1016/j.asoc.2020.106957_b78) 2004; 96 Elman (10.1016/j.asoc.2020.106957_b102) 1990; 14 Zhu (10.1016/j.asoc.2020.106957_b10) 2012; 51 Alhanafy (10.1016/j.asoc.2020.106957_b46) 2010; 6 Zhang (10.1016/j.asoc.2020.106957_b95) 2013; 63 Philibert (10.1016/j.asoc.2020.106957_b169) 2013; 177 Gulia (10.1016/j.asoc.2020.106957_b75) 2015; 6 Rijal (10.1016/j.asoc.2020.106957_b135) 2018 Zhou (10.1016/j.asoc.2020.106957_b1) 2019; 85 Liu (10.1016/j.asoc.2020.106957_b139) 2018 Singh (10.1016/j.asoc.2020.106957_b176) 2020; 63 Xia (10.1016/j.asoc.2020.106957_b7) 2016; 139 Seigneur (10.1016/j.asoc.2020.106957_b20) 2010 Sharma (10.1016/j.asoc.2020.106957_b147) 2020; 709 Sun (10.1016/j.asoc.2020.106957_b171) 2020 Bai (10.1016/j.asoc.2020.106957_b55) 2016; 7 de Gennaro (10.1016/j.asoc.2020.106957_b93) 2013; 463 Martınez-Espana (10.1016/j.asoc.2020.106957_b168) 2018; 24 Zhou (10.1016/j.asoc.2020.106957_b21) 2017; 153 Park (10.1016/j.asoc.2020.106957_b130) 2017 10.1016/j.asoc.2020.106957_b160 Wen (10.1016/j.asoc.2020.106957_b172) 2019; 654 Smolensky (10.1016/j.asoc.2020.106957_b132) 1986 Brunelli (10.1016/j.asoc.2020.106957_b104) 2008; 43 Cohen (10.1016/j.asoc.2020.106957_b5) 2017; 389 Jiang (10.1016/j.asoc.2020.106957_b94) 2008 Taheri Shahraiyni (10.1016/j.asoc.2020.106957_b73) 2016; 7 Sotomayor-Olmedo (10.1016/j.asoc.2020.106957_b15) 2013; 3 Deo (10.1016/j.asoc.2020.106957_b56) 2017; 31 Casazza (10.1016/j.asoc.2020.106957_b76) 2019; 231 Zhai (10.1016/j.asoc.2020.106957_b113) 2020; 89 |
References_xml | – volume: 196 start-page: 110 year: 2017 end-page: 118 ident: b84 article-title: Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead PM2.5 concentration forecasting publication-title: J. Environ. Manage. – start-page: 576 year: 2017 end-page: 581 ident: b130 article-title: PM10 density forecast model using long short term memory publication-title: 2017 Ninth International Conference on Ubiquitous and Future Networks, ICUFN – volume: 9 start-page: 989 year: 2018 end-page: 999 ident: b153 article-title: A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration publication-title: Atmos. Pollut. Res. – volume: 9 start-page: 3765 year: 2019 ident: b141 article-title: A deep belief network combined with modified grey wolf optimization algorithm for PM2.5 concentration prediction publication-title: Appl. Sci. – volume: 159 start-page: 427 year: 2017 end-page: 434 ident: b66 article-title: A spatiotemporal prediction model based on support vector machine regression: Ambient Black Carbon in three New England States publication-title: Environ. Res. – volume: 664 start-page: 1 year: 2019 end-page: 10 ident: b174 article-title: A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory publication-title: Sci. Total Environ. – volume: 74 start-page: 729 year: 2019 end-page: 746 ident: b149 article-title: The study and application of a novel hybrid system for air quality early-warning publication-title: Appl. Soft Comput. – volume: 43 start-page: 6425 year: 2009 end-page: 6434 ident: b19 article-title: Combining deterministic and statistical approaches for PM10 forecasting in Europe publication-title: Atmos. Environ. – volume: 146 start-page: 41 year: 2019 end-page: 54 ident: b59 article-title: A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting publication-title: Technol. Forecast. Soc. Change – start-page: 143 year: 2010 end-page: 146 ident: b44 article-title: PM-25 forecasting use reconstruct phase space LS-SVM publication-title: 2010 the 2nd Conference on Environmental Science and Information Application Technology – volume: 87 year: 2020 ident: b161 article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight publication-title: Appl. Soft Comput. – volume: 43 start-page: 157 year: 2018 end-page: 164 ident: b115 article-title: A new fuzzy time series model based on robust clustering for forecasting of air pollution publication-title: Ecol. Inform. – volume: 6 start-page: 286 year: 2015 end-page: 304 ident: b75 article-title: Urban air quality management-A review publication-title: Atmos. Pollut. Res. – volume: 54 start-page: 269 year: 1993 end-page: 277 ident: b114 article-title: Fuzzy time series and its models publication-title: Fuzzy Sets Systems – volume: 20 start-page: 745 year: 2007 end-page: 755 ident: b18 article-title: Forecasting of the daily meteorological pollution using wavelets and support vector machine publication-title: Eng. Appl. Artif. Intell. – volume: 13 start-page: 197 year: 2020 end-page: 207 ident: b88 article-title: A novel hybrid model for multi-step daily AQI forecasting driven by air pollution big data publication-title: Air Qual. Atmos. Health – volume: 2017 year: 2017 ident: b111 article-title: Ambient air quality classification by grey wolf optimizer based support vector machine publication-title: J. Environ. Publ. Health – volume: 709 year: 2020 ident: b147 article-title: A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms publication-title: Sci. Total Environ. – volume: 107 start-page: 118 year: 2015 end-page: 128 ident: b26 article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation publication-title: Atmos. Environ. – volume: 12 start-page: 785 year: 2019 end-page: 795 ident: b82 article-title: A hybrid framework for forecasting PM2.5 concentrations using multi-step deterministic and probabilistic strategy publication-title: Air Qual. Atmos. Health – volume: 7 start-page: 15 year: 2016 ident: b73 article-title: Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies publication-title: Atmosphere – reference: H. Wahid, Q.P. Ha, H.N. Duc, Computational intelligence estimation of natural background ozone level and its distribution for air quality modelling and emission control, in: Proceedings of the 28th International Symposium on Automation and Robotics in Construction, ISARC 2011, 2011. – start-page: 5514 year: 2018 end-page: 5519 ident: b42 article-title: Prediction of urban PM 2.5 concentration based on wavelet neural network publication-title: 2018 Chinese Control and Decision Conference, CCDC – start-page: 103 year: 2016 end-page: 108 ident: b119 article-title: A comparative study of computational intelligence techniques applied to PM2.5 air pollution forecasting publication-title: 2016 6th International Conference on Computers Communications and Control, ICCCC – volume: 607–608 start-page: 1009 year: 2017 end-page: 1017 ident: b4 article-title: Forecasting PM 2.5 induced male lung cancer morbidity in China using satellite retrieved PM 2.5 and spatial analysis publication-title: Sci. Total Environ. – year: 2019 ident: b140 article-title: Air pollutant concentration prediction based on GRU method publication-title: J. Phys.: Conf. Ser. – start-page: 733 year: 2018 end-page: 738 ident: b135 article-title: Ensemble of deep neural networks for estimating particulate matter from images publication-title: 2018 IEEE 3rd International Conference on Image, Vision and Computing, ICIVC – volume: 314 start-page: 198 year: 2018 end-page: 206 ident: b173 article-title: A deep spatial–temporal ensemble model for air quality prediction publication-title: Neurocomputing – volume: 17 start-page: 1411 year: 2006 end-page: 1423 ident: b124 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Trans. Neural Netw. – volume: 134 start-page: 168 year: 2016 end-page: 180 ident: b144 article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting publication-title: Atmos. Environ. – volume: 580 start-page: 719 year: 2017 end-page: 733 ident: b154 article-title: A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine publication-title: Sci. Total Environ. – reference: Y. Teng, X. Huang, S. Ye, Y. Li, Prediction of particulate matter concentration in Chengdu based on improved differential evolution algorithm and BP neural network model, in: 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis, ICCCBDA, 2018. – volume: 43 start-page: 4050 year: 2009 end-page: 4059 ident: b25 article-title: Testing the capability of the chemistry transport model LOTOS-EUROS to forecast PM10 levels in the Netherlands publication-title: Atmos. Environ. – volume: 85 year: 2019 ident: b1 article-title: A Gaussian process mixture model-based hard-cut iterative learning algorithm for air quality prediction publication-title: Appl. Soft Comput. – volume: 96 start-page: 79 year: 2004 end-page: 87 ident: b78 article-title: Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong publication-title: Environ. Res. – volume: 71 start-page: 783 year: 2018 end-page: 799 ident: b87 article-title: Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China publication-title: Appl. Soft Comput. – volume: 38 start-page: 5059 year: 2010 end-page: 5071 ident: b9 article-title: Measuring welfare loss caused by air pollution in Europe: A CGE analysis publication-title: Energy Policy – volume: 389 start-page: 1907 year: 2017 end-page: 1918 ident: b5 article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study, 2015 publication-title: Lancet – volume: 10 start-page: 1588 year: 2019 end-page: 1600 ident: b53 article-title: Air PM 2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China publication-title: Atmos. Pollut. Res. – start-page: 362 year: 2008 end-page: 370 ident: b94 article-title: A BP neural network prediction model of the urban air quality based on rough set publication-title: 2008 Fourth International Conference on Natural Computation – start-page: 321 year: 2010 end-page: 323 ident: b31 article-title: Study on gray numerical model of air pollution in wuan city publication-title: 2010 International Conference on Challenges in Environmental Science and Computer Engineering – start-page: 236 year: 2017 end-page: 240 ident: b47 article-title: Deep neural network for PM2.5 pollution forecasting based on manifold learning publication-title: 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC – volume: 10 start-page: 223 year: 2019 ident: b166 article-title: A combined model based on feature selection and woa for pm2.5 concentration forecasting publication-title: Atmosphere – volume: 5 start-page: 696 year: 2014 end-page: 708 ident: b92 article-title: Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis publication-title: Atmos. Pollut. Res. – volume: 59 start-page: 693 year: 2005 end-page: 701 ident: b110 article-title: Potential assessment of the support vector machine method in forecasting ambient air pollutant trends publication-title: Chemosphere – volume: 181 start-page: 12 year: 2018 end-page: 19 ident: b69 article-title: Prediction of hourly PM2. 5 using a space–time support vector regression model publication-title: Atmos. Environ. – reference: L. Zheng, S. Yu, M. Yu, Monitoring NOx emissions from coal fired boilers using generalized regression neural network, in: 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008. – volume: 31 start-page: 260 year: 2017 end-page: 263 ident: b16 article-title: Ozone’s threat hits back Mexico City publication-title: Sustain. Cities Soc. – volume: 85 year: 2019 ident: b81 article-title: A clustering-based ensemble approach with improved pigeon-inspired optimization and extreme learning machine for air quality prediction publication-title: Appl. Soft Comput. – volume: 164 start-page: 174 year: 2019 end-page: 192 ident: b146 article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and extenics evaluation publication-title: Knowl.-Based Syst. – volume: 162 start-page: 1095 year: 2017 end-page: 1101 ident: b165 article-title: Factor analysis and forecasting of CO2 emissions in Hebei, using extreme learning machine based on particle swarm optimization publication-title: J. Cleaner Prod. – volume: 29 year: 2019 ident: b60 article-title: Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia publication-title: Urban Clim. – volume: 200 start-page: 264 year: 2019 end-page: 279 ident: b79 article-title: Hybrid algorithm for short-term forecasting of PM2.5 in China publication-title: Atmos. Environ. – volume: 3 start-page: 126 year: 2013 ident: b15 article-title: Forecast urban air pollution in Mexico City by using support vector machines: A kernel performance approach publication-title: Int. J. Intell. Sci. – volume: 31 start-page: 1211 year: 2017 end-page: 1240 ident: b56 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch. Environ. Res. Risk Assess. – volume: 2019 start-page: 9 year: 2019 ident: b131 article-title: A DBN-based deep neural network model with multitask learning for online air quality prediction publication-title: J. Control Sci. Eng. – volume: 25 start-page: 1246 year: 2012 end-page: 1258 ident: b156 article-title: Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors publication-title: Eng. Appl. Artif. Intell. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b121 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 188 start-page: 144 year: 2016 end-page: 152 ident: b175 article-title: Daily PM 2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm publication-title: J. Environ. Manag. – volume: 443 start-page: 511 year: 2013 end-page: 519 ident: b41 article-title: PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization publication-title: Sci. Total Environ. – volume: 16 start-page: 503 year: 2011 end-page: 517 ident: b80 article-title: A wavelet-based neural network model to predict ambient air pollutants’ concentration publication-title: Environ. Model. Assess. – volume: 409 start-page: 5517 year: 2011 end-page: 5523 ident: b30 article-title: Forecasting of daily air quality index in Delhi publication-title: Sci. Total Environ. – volume: 37 start-page: 7986 year: 2010 end-page: 7992 ident: b67 article-title: Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks publication-title: Expert Syst. Appl. – volume: 28 start-page: 357 year: 2011 end-page: 363 ident: b105 article-title: Artificial neural network models for daily PM10 air pollution index prediction in the urban area of Wuhan, China publication-title: Environ. Eng. Sci. – volume: 1 start-page: 1 year: 2011 end-page: 9 ident: b3 article-title: Gaseous pollutants formation and their harmful effects on health and environment publication-title: Innov. Energy Policies – volume: 105 start-page: 71 year: 2019 end-page: 85 ident: b74 article-title: Air pollution terrain nexus: A review considering energy generation and consumption publication-title: Renew. Sustain. Energy Rev. – volume: 41 start-page: 2967 year: 2007 end-page: 2995 ident: b103 article-title: Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy publication-title: Atmos. Environ. – volume: 60 start-page: 632 year: 2012 end-page: 655 ident: b37 article-title: Real-time air quality forecasting, part I: History, techniques, and current status publication-title: Atmos. Environ. – volume: 119 start-page: 285 year: 2019 end-page: 304 ident: b38 article-title: A review of artificial neural network models for ambient air pollution prediction publication-title: Environ. Model. Softw. – volume: 63 year: 2020 ident: b176 article-title: Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city publication-title: Sustain. Cities Soc. – volume: 132 start-page: 824 year: 2018 end-page: 833 ident: b61 article-title: Evolving differential evolution method with random forest for prediction of air pollution publication-title: Procedia Comput. Sci. – volume: 233 start-page: 464 year: 2018 end-page: 473 ident: b68 article-title: Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment publication-title: Environ. Pollut. – start-page: 115 year: 2006 end-page: 119 ident: b39 article-title: Prediction of ambient air quality based on neural network technique publication-title: 2006 4th Student Conference on Research and Development – start-page: 531 year: 2014 end-page: 544 ident: b148 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – volume: 9 start-page: 74 year: 2018 ident: b12 article-title: Spatiotemporal characteristics of air pollutants (PM10, PM2. 5, SO2, NO2, O3, and CO) in the inland basin city of Chengdu, southwest China publication-title: Atmosphere – volume: 63 start-page: 755 year: 2013 end-page: 763 ident: b95 article-title: Evaluation of PM10 forecasting based on the artificial neural network model and intake fraction in an urban area: A case study in Taiyuan City, China publication-title: J. Air Waste Manage. Assoc. – volume: 46 start-page: 75 year: 2014 end-page: 93 ident: b35 article-title: Hybrid model for urban air pollution forecasting: A stochastic spatiotemporal approach publication-title: Math. Geosci. – volume: 68 start-page: 866 year: 2018 end-page: 886 ident: b49 article-title: Forecasting air quality time series using deep learning publication-title: J. Air Waste Manage. Assoc. – volume: 2016 start-page: 13 year: 2016 ident: b27 article-title: Evaluation of air quality model performance for simulating long-range transport and local pollution of PM2.5 in Japan publication-title: Adv. Meteorol. – volume: 17 start-page: 297 year: 2010 end-page: 311 ident: b32 article-title: Responses of terrestrial arthropods to air pollution: a meta-analysis publication-title: Environ. Sci. Pollut. Res. – volume: 313 start-page: 1 year: 2003 end-page: 13 ident: b36 article-title: Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens publication-title: Sci. Total Environ. – start-page: 1 year: 2019 end-page: 15 ident: b48 article-title: A real-time hourly ozone prediction system using deep convolutional neural network publication-title: Neural Comput. Appl. – year: 2020 ident: b170 article-title: Spatial air quality index prediction model based on decomposition, adaptive boosting, and three-stage feature selection: A case study in China publication-title: J. Cleaner Prod. – volume: 231 start-page: 1342 year: 2019 end-page: 1352 ident: b76 article-title: 3D monitoring and modelling of air quality for sustainable urban port planning: Review and perspectives publication-title: J. Cleaner Prod. – volume: 74 start-page: 136 year: 2015 end-page: 143 ident: b13 article-title: A review on the human health impact of airborne particulate matter publication-title: Environ. Int. – volume: 10 start-page: 1482 year: 2019 end-page: 1491 ident: b159 article-title: Meteorological pattern analysis assisted daily PM2. 5 grades prediction using SVM optimized by PSO algorithm publication-title: Atmos. Pollut. Res. – volume: 6 start-page: 99 year: 2015 end-page: 106 ident: b54 article-title: Development of artificial intelligence based NO2 forecasting models at Taj Mahal, Agra publication-title: Atmos. Pollut. Res. – volume: 172 start-page: 743 year: 2018 end-page: 757 ident: b6 article-title: How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities publication-title: J. Cleaner Prod. – volume: 12 year: 2017 ident: b107 article-title: Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang publication-title: PLoS One – volume: 8 start-page: 2570 year: 2018 ident: b51 article-title: Machine learning approaches for outdoor air quality modelling: A systematic review publication-title: Appl. Sci. – volume: 27 start-page: 170 year: 2013 end-page: 177 ident: b99 article-title: Forecasting human exposure to PM10 at the national level using an artificial neural network approach publication-title: J. Chemometr. – start-page: 448 year: 2009 end-page: 455 ident: b133 article-title: Deep boltzmann machines publication-title: Artificial Intelligence and Statistics – volume: 50 year: 2019 ident: b58 article-title: Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network publication-title: Sustain. Cities Soc. – volume: 11 start-page: 4866 year: 2011 end-page: 4874 ident: b101 article-title: Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data publication-title: Appl. Soft Comput. – volume: 7 start-page: 20050 year: 2019 end-page: 20059 ident: b72 article-title: A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration publication-title: IEEE Access – start-page: 169 year: 2017 end-page: 174 ident: b125 article-title: Online sequential learning based on extreme learning machines for particulate matter forecasting publication-title: 2017 Brazilian Conference on Intelligent Systems, BRACIS – volume: 106 start-page: 318 year: 2015 end-page: 328 ident: b23 article-title: Improvement of PM10 prediction in East Asia using inverse modeling publication-title: Atmos. Environ. – volume: 7 start-page: 557 year: 2016 end-page: 566 ident: b55 article-title: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions publication-title: Atmos. Pollut. Res. – volume: 14 start-page: 764 year: 2017 ident: b155 article-title: Day-ahead PM 2.5 concentration forecasting using WT-VMD based decomposition method and back propagation neural network improved by differential evolution publication-title: Int. J. Environ. Res. Publ. Health – volume: 139 start-page: 147 year: 2016 end-page: 156 ident: b7 article-title: Assessment of socioeconomic costs to China’s air pollution publication-title: Atmos. Environ. – volume: 64 start-page: 281 year: 2017 end-page: 291 ident: b28 article-title: Forecasting smog-related health hazard based on social media and physical sensor publication-title: Inf. Syst. – volume: 223 start-page: 435 year: 2017 end-page: 448 ident: b90 article-title: Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China publication-title: Environ. Pollut. – volume: 3 start-page: 203 year: 2010 end-page: 212 ident: b118 article-title: Adaptive neuro-fuzzy modeling for prediction of ambient CO concentration at urban intersections and roadways publication-title: Air Qual. Atmos. Health – volume: 584 start-page: 901 year: 2017 end-page: 910 ident: b11 article-title: Emission factors for PM2. 5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE publication-title: Sci. Total Environ. – start-page: 728 year: 2018 end-page: 733 ident: b139 article-title: An attention-based air quality forecasting method publication-title: 2018 17th IEEE International Conference on Machine Learning and Applications, ICMLA – start-page: 81 year: 2018 end-page: 86 ident: b43 article-title: Multi-model ensemble forecast method of PM2. 5 concentration based on wavelet neural networks publication-title: 2018 1st International Cognitive Cities Conference, IC3 – volume: 231 start-page: 1232 year: 2017 end-page: 1244 ident: b83 article-title: Daily air quality index forecasting with hybrid models: A case in China publication-title: Environ. Pollut. – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: b117 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man Cybern. – volume: 98 start-page: 665 year: 2014 end-page: 675 ident: b62 article-title: Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models publication-title: Atmos. Environ. – volume: 14 start-page: 114 year: 2017 ident: b123 article-title: Prediction of air pollutants concentration based on an extreme learning machine: the case of Hong Kong publication-title: Int. J. Environ. Res. Publ. Health – volume: 188 start-page: 144 year: 2017 end-page: 152 ident: b77 article-title: Daily PM 2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm publication-title: J. Environ. Manage. – volume: 43 start-page: 304 year: 2008 end-page: 314 ident: b104 article-title: Three hours ahead prevision of SO2 pollutant concentration using an elman neural based forecaster publication-title: Build. Environ. – volume: 45 start-page: 2297 year: 2011 end-page: 2309 ident: b17 article-title: Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution publication-title: Atmos. Environ. – volume: 2 start-page: 436 year: 2011 end-page: 444 ident: b33 article-title: Forecasting of air quality in Delhi using principal component regression technique publication-title: Atmos. Pollut. Res. – volume: 132 start-page: 209 year: 2013 end-page: 222 ident: b29 article-title: Air pollution modeling over very complex terrain: an evaluation of WRF-Chem over Switzerland for two 1-year periods publication-title: Atmos. Res. – volume: 222 start-page: 286 year: 2019 end-page: 294 ident: b85 article-title: An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting publication-title: Chemosphere – start-page: 3999 year: 2013 end-page: 4010 ident: b150 article-title: Empirical wavelet transform publication-title: IEEE Trans. Signal Process. – volume: 54 start-page: 1453 year: 2011 end-page: 1466 ident: b108 article-title: Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain) publication-title: Math. Comput. Modelling – volume: 51 start-page: 29 year: 2012 end-page: 38 ident: b10 article-title: Short-term effects of air pollution on lower respiratory diseases and forecasting by the group method of data handling publication-title: Atmos. Environ. – volume: 47 year: 2019 ident: b151 article-title: An intelligent hybrid model for air pollutant concentrations forecasting: Case of Beijing in China publication-title: Sustain. Cities Soc. – volume: 40 start-page: 600 year: 2018 end-page: 610 ident: b177 article-title: Exploiting IoT and big data analytics: Defining smart digital city using real-time urban data publication-title: Sustain. Cities Soc. – volume: 11 start-page: 18 year: 2019 end-page: 24 ident: b138 article-title: Air quality prediction in Visakhapatnam with LSTM based recurrent neural networks publication-title: Int. J. Intell. Syst. Appl. – volume: 626 start-page: 1421 year: 2018 end-page: 1438 ident: b145 article-title: Research and application of a novel hybrid air quality early-warning system: A case study in China publication-title: Sci. Total Environ. – start-page: 297 year: 2016 end-page: 301 ident: b134 article-title: On estimating air pollution from photos using convolutional neural network publication-title: Proceedings of the 24th ACM International Conference on Multimedia – volume: 70 start-page: 472 year: 2018 end-page: 485 ident: b2 article-title: Multiobjective evolutionary optimization of traffic flow and pollution in Montevideo, Uruguay publication-title: Appl. Soft Comput. – start-page: 1287 year: 2013 end-page: 1289 ident: b96 article-title: Study on prediction of atmospheric PM2.5 based on RBF neural network publication-title: 2013 Fourth International Conference on Digital Manufacturing & Automation – volume: 10 start-page: 195 year: 2017 end-page: 211 ident: b126 article-title: Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods publication-title: Air Qual. Atmos. Health – volume: 177 start-page: 156 year: 2013 end-page: 163 ident: b169 article-title: Prediction of N2O emission from local information with Random Forest publication-title: Environ. Pollut. – volume: 103 start-page: 53 year: 2015 end-page: 65 ident: b34 article-title: Real time air quality forecasting using integrated parametric and non-parametric regression techniques publication-title: Atmos. Environ. – volume: 635 start-page: 644 year: 2018 end-page: 658 ident: b65 article-title: Development of a stacked ensemble model for forecasting and analyzing daily average PM2. 5 concentrations in Beijing, China publication-title: Sci. Total Environ. – volume: 24 start-page: 261 year: 2018 end-page: 276 ident: b168 article-title: Air-pollution prediction in smart cities through machine learning methods: A case of study in Murcia, Spain publication-title: J. UCS – year: 1986 ident: b132 article-title: Information Processing in Dynamical Systems: Foundations of Harmony Theory – volume: 39 start-page: 7673 year: 2012 end-page: 7679 ident: b116 article-title: Application of fuzzy time series models for forecasting pollution concentrations publication-title: Expert Syst. Appl. – volume: 221 start-page: 398 year: 2019 end-page: 418 ident: b179 article-title: Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling publication-title: J. Cleaner Prod. – volume: 136 start-page: 264 year: 2020 end-page: 271 ident: b178 article-title: Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices publication-title: Pattern Recognit. Lett. – volume: 612 start-page: 462 year: 2018 end-page: 471 ident: b24 article-title: Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model publication-title: Sci. Total Environ. – volume: 10 start-page: 1326 year: 2019 end-page: 1335 ident: b57 article-title: Two-step-hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting publication-title: Atmos. Pollut. Res. – volume: 231 start-page: 997 year: 2017 end-page: 1004 ident: b137 article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation publication-title: Environ. Pollut. – volume: 2 start-page: 185 year: 2011 ident: b142 article-title: Prediction of daily air pollution using wavelet decomposition and adaptive-network-based fuzzy inference system publication-title: Int. J. Environ. Sci. – volume: 93 year: 2020 ident: b158 article-title: Developing two heuristic algorithms with metaheuristic algorithms to improve solutions of optimization problems with soft and hard constraints: An application to nurse rostering problems publication-title: Appl. Soft Comput. – volume: 683 start-page: 808 year: 2019 end-page: 821 ident: b162 article-title: A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors publication-title: Sci. Total Environ. – volume: 63 start-page: 1575 year: 2006 end-page: 1582 ident: b45 article-title: Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of Zonguldak publication-title: Chemosphere – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b143 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 146 start-page: 57 year: 2019 end-page: 65 ident: b14 article-title: The short-term effects of air pollution on respiratory diseases and lung cancer mortality in hefei: A time-series analysis publication-title: Respir. Med. – volume: 11 start-page: 469 year: 2020 end-page: 481 ident: b128 article-title: Prediction of outdoor PM2.5 concentrations based on a three-stage hybrid neural network model publication-title: Atmos. Pollut. Res. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b167 article-title: Random forests publication-title: Mach. Learn. – volume: 2 start-page: 568 year: 1991 end-page: 576 ident: b97 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. – volume: 22 start-page: 183 year: 2018 end-page: 201 ident: b91 article-title: Heterogeneous space–time artificial neural networks for space–time series prediction publication-title: Trans. GIS – volume: 234 start-page: 54 year: 2019 end-page: 70 ident: b89 article-title: Research and application of the hybrid forecasting model based on secondary denoising and multi-objective optimization for air pollution early warning system publication-title: J. Cleaner Prod. – volume: 12 start-page: 899 year: 2019 end-page: 908 ident: b129 article-title: Air quality modelling using long short-term memory (LSTM) over NCT-delhi, India publication-title: Air Qual. Atmos. Health – start-page: 389 year: 2009 end-page: 395 ident: b127 article-title: Regularized extreme learning machine publication-title: 2009 IEEE Symposium on Computational Intelligence and Data Mining – volume: 463 start-page: 875 year: 2013 end-page: 883 ident: b93 article-title: Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean publication-title: Sci. Total Environ. – volume: 219 start-page: 8923 year: 2013 end-page: 8937 ident: b106 article-title: A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): A case study publication-title: Appl. Math. Comput. – volume: 5 start-page: 515 year: 2019 end-page: 534 ident: b50 article-title: Machine learning algorithms in air quality modeling publication-title: Glob. J. Environ. Sci. Manage. – start-page: 1 year: 2008 ident: b100 article-title: Development and comparison of backpropagation and generalized regression neural network models to predict diurnal and seasonal gas and PM10 concentrations and emissions from swine buildings publication-title: 2008 Providence, Rhode Island, June 29–July 2, 2008 – year: 2010 ident: b20 article-title: Chapter 8, Chemical-Transport Models – volume: 9 start-page: 358 year: 2018 end-page: 368 ident: b64 article-title: Application of computational intelligence techniques to forecast daily PM10 exceedances in Brunei Darussalam publication-title: Atmos. Pollut. Res. – volume: 237 year: 2019 ident: b70 article-title: A temporal-spatial interpolation and extrapolation method based on geographic Long Short-Term Memory neural network for PM2.5 publication-title: J. Cleaner Prod. – volume: 6 start-page: 605 year: 2010 end-page: 616 ident: b46 article-title: Neuro fuzzy modeling scheme for the prediction of air pollution publication-title: J. Am. Sci. – volume: 45 start-page: 6241 year: 2011 end-page: 6250 ident: b22 article-title: Application of WRF/Chem-MADRID for real-time air quality forecasting over the Southeastern United States publication-title: Atmos. Environ. – volume: 73 start-page: 473 year: 2019 end-page: 486 ident: b152 article-title: Improved pollution forecasting hybrid algorithms based on the ensemble method publication-title: Appl. Math. Model. – volume: 15 start-page: 780 year: 2018 ident: b52 article-title: Air pollution forecasts: An overview publication-title: Int. J. Environ. Res. Publ. Health – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: b102 article-title: Finding structure in time publication-title: Cogn. Sci. – volume: 89 year: 2020 ident: b113 article-title: Adaptive LSSVM based iterative prediction method for NOx concentration prediction in coal-fired power plant considering system delay publication-title: Appl. Soft Comput. – volume: 153 start-page: 94 year: 2017 end-page: 108 ident: b21 article-title: Numerical air quality forecasting over eastern China: An operational application of WRF-Chem publication-title: Atmos. Environ. – volume: 654 start-page: 1091 year: 2019 end-page: 1099 ident: b172 article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction publication-title: Sci. Total Environ. – year: 2020 ident: b163 article-title: A novel hybrid model based on multi-objective harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting publication-title: Appl. Soft Comput. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: b112 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 669 year: 2019 ident: b71 article-title: Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China publication-title: Sci. Total Environ. – volume: 86 year: 2020 ident: b120 article-title: Air quality prediction by neuro-fuzzy modeling approach publication-title: Appl. Soft Comput. – start-page: 3486 year: 2018 end-page: 3491 ident: b136 article-title: Research on air pollution gases recognition method based on LSTM recurrent neural network and gas sensors array publication-title: 2018 Chinese Automation Congress, CAC – start-page: 200 year: 2017 end-page: 204 ident: b164 article-title: Prediction of air quality index based on improved neural network publication-title: 2017 International Conference on Computer Systems, Electronics and Control, ICCSEC – volume: 9 start-page: 429 year: 2017 end-page: 438 ident: b8 article-title: Quantifying the effects of air pollution control policies: A case of Shanxi province in China publication-title: Atmos. Pollut. Res. – reference: M. Asgari, M. Farnaghi, Z. Ghaemi, Predictive mapping of urban air pollution using Apache Spark on a Hadoop cluster, in: Proceedings of the 2017 International Conference on Cloud and Big Data Computing, 2017, pp. 89–93. – volume: 651 start-page: 475 year: 2019 end-page: 483 ident: b63 article-title: A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions publication-title: Sci. Total Environ. – volume: 183 start-page: 20 year: 2018 end-page: 32 ident: b86 article-title: PM2. 5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors publication-title: Atmos. Environ. – year: 2017 ident: b109 article-title: Research on air quality of Beijing-Tianjin-Hebei region based on SVM and regression analysis publication-title: 2017 International Conference on Education, Economics and Management Research, ICEEMR 2017 – start-page: 1 year: 2016 end-page: 7 ident: b122 article-title: Air quality forecasting using neural networks publication-title: 2016 IEEE Symposium Series on Computational Intelligence, SSCI – volume: 194 start-page: 3902 year: 2005 end-page: 3933 ident: b157 article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice publication-title: Comput. Methods Appl. Mech. Eng. – year: 2020 ident: b171 article-title: Hourly PM 2.5 concentration forecasting based on mode decomposition-recombination technique and ensemble learning approach in severe haze episodes of China publication-title: J. Cleaner Prod. – start-page: 143 year: 2010 ident: 10.1016/j.asoc.2020.106957_b44 article-title: PM-25 forecasting use reconstruct phase space LS-SVM – volume: 85 year: 2019 ident: 10.1016/j.asoc.2020.106957_b1 article-title: A Gaussian process mixture model-based hard-cut iterative learning algorithm for air quality prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105789 – volume: 153 start-page: 94 year: 2017 ident: 10.1016/j.asoc.2020.106957_b21 article-title: Numerical air quality forecasting over eastern China: An operational application of WRF-Chem publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.01.020 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2020.106957_b48 article-title: A real-time hourly ozone prediction system using deep convolutional neural network publication-title: Neural Comput. Appl. – volume: 68 start-page: 866 year: 2018 ident: 10.1016/j.asoc.2020.106957_b49 article-title: Forecasting air quality time series using deep learning publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10962247.2018.1459956 – volume: 222 start-page: 286 year: 2019 ident: 10.1016/j.asoc.2020.106957_b85 article-title: An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.121 – volume: 38 start-page: 5059 year: 2010 ident: 10.1016/j.asoc.2020.106957_b9 article-title: Measuring welfare loss caused by air pollution in Europe: A CGE analysis publication-title: Energy Policy doi: 10.1016/j.enpol.2010.04.034 – start-page: 3999 year: 2013 ident: 10.1016/j.asoc.2020.106957_b150 article-title: Empirical wavelet transform – volume: 231 start-page: 997 year: 2017 ident: 10.1016/j.asoc.2020.106957_b137 article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.08.114 – volume: 22 start-page: 183 year: 2018 ident: 10.1016/j.asoc.2020.106957_b91 article-title: Heterogeneous space–time artificial neural networks for space–time series prediction publication-title: Trans. GIS doi: 10.1111/tgis.12302 – volume: 14 start-page: 179 year: 1990 ident: 10.1016/j.asoc.2020.106957_b102 article-title: Finding structure in time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – volume: 7 start-page: 15 year: 2016 ident: 10.1016/j.asoc.2020.106957_b73 article-title: Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies publication-title: Atmosphere doi: 10.3390/atmos7020015 – volume: 105 start-page: 71 year: 2019 ident: 10.1016/j.asoc.2020.106957_b74 article-title: Air pollution terrain nexus: A review considering energy generation and consumption publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.049 – volume: 2 start-page: 185 year: 2011 ident: 10.1016/j.asoc.2020.106957_b142 article-title: Prediction of daily air pollution using wavelet decomposition and adaptive-network-based fuzzy inference system publication-title: Int. J. Environ. Sci. – volume: 24 start-page: 261 year: 2018 ident: 10.1016/j.asoc.2020.106957_b168 article-title: Air-pollution prediction in smart cities through machine learning methods: A case of study in Murcia, Spain publication-title: J. UCS – volume: 132 start-page: 824 year: 2018 ident: 10.1016/j.asoc.2020.106957_b61 article-title: Evolving differential evolution method with random forest for prediction of air pollution publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.094 – volume: 231 start-page: 1342 year: 2019 ident: 10.1016/j.asoc.2020.106957_b76 article-title: 3D monitoring and modelling of air quality for sustainable urban port planning: Review and perspectives publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.05.257 – start-page: 531 year: 2014 ident: 10.1016/j.asoc.2020.106957_b148 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 584 start-page: 901 year: 2017 ident: 10.1016/j.asoc.2020.106957_b11 article-title: Emission factors for PM2. 5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.136 – volume: 96 start-page: 79 year: 2004 ident: 10.1016/j.asoc.2020.106957_b78 article-title: Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong publication-title: Environ. Res. doi: 10.1016/j.envres.2003.11.003 – volume: 25 start-page: 1246 year: 2012 ident: 10.1016/j.asoc.2020.106957_b156 article-title: Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2011.10.013 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.asoc.2020.106957_b167 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 9 start-page: 358 year: 2018 ident: 10.1016/j.asoc.2020.106957_b64 article-title: Application of computational intelligence techniques to forecast daily PM10 exceedances in Brunei Darussalam publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2017.11.004 – volume: 223 start-page: 435 year: 2017 ident: 10.1016/j.asoc.2020.106957_b90 article-title: Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.043 – volume: 231 start-page: 1232 year: 2017 ident: 10.1016/j.asoc.2020.106957_b83 article-title: Daily air quality index forecasting with hybrid models: A case in China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.08.069 – volume: 17 start-page: 1411 year: 2006 ident: 10.1016/j.asoc.2020.106957_b124 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.880583 – volume: 54 start-page: 1453 year: 2011 ident: 10.1016/j.asoc.2020.106957_b108 article-title: Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain) publication-title: Math. Comput. Modelling doi: 10.1016/j.mcm.2011.04.017 – volume: 87 year: 2020 ident: 10.1016/j.asoc.2020.106957_b161 article-title: A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105972 – volume: 74 start-page: 729 year: 2019 ident: 10.1016/j.asoc.2020.106957_b149 article-title: The study and application of a novel hybrid system for air quality early-warning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.005 – year: 2010 ident: 10.1016/j.asoc.2020.106957_b20 – volume: 70 start-page: 472 year: 2018 ident: 10.1016/j.asoc.2020.106957_b2 article-title: Multiobjective evolutionary optimization of traffic flow and pollution in Montevideo, Uruguay publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.044 – volume: 9 start-page: 429 year: 2017 ident: 10.1016/j.asoc.2020.106957_b8 article-title: Quantifying the effects of air pollution control policies: A case of Shanxi province in China publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2017.11.010 – volume: 7 start-page: 20050 year: 2019 ident: 10.1016/j.asoc.2020.106957_b72 article-title: A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897028 – volume: 219 start-page: 8923 year: 2013 ident: 10.1016/j.asoc.2020.106957_b106 article-title: A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): A case study publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.03.018 – start-page: 733 year: 2018 ident: 10.1016/j.asoc.2020.106957_b135 article-title: Ensemble of deep neural networks for estimating particulate matter from images – year: 1986 ident: 10.1016/j.asoc.2020.106957_b132 – volume: 10 start-page: 1588 year: 2019 ident: 10.1016/j.asoc.2020.106957_b53 article-title: Air PM 2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2019.05.007 – start-page: 169 year: 2017 ident: 10.1016/j.asoc.2020.106957_b125 article-title: Online sequential learning based on extreme learning machines for particulate matter forecasting – ident: 10.1016/j.asoc.2020.106957_b160 doi: 10.1109/ICCCBDA.2018.8386494 – volume: 409 start-page: 5517 year: 2011 ident: 10.1016/j.asoc.2020.106957_b30 article-title: Forecasting of daily air quality index in Delhi publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.08.069 – volume: 188 start-page: 144 year: 2016 ident: 10.1016/j.asoc.2020.106957_b175 article-title: Daily PM 2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.12.011 – volume: 40 start-page: 600 year: 2018 ident: 10.1016/j.asoc.2020.106957_b177 article-title: Exploiting IoT and big data analytics: Defining smart digital city using real-time urban data publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.12.022 – start-page: 728 year: 2018 ident: 10.1016/j.asoc.2020.106957_b139 article-title: An attention-based air quality forecasting method – volume: 64 start-page: 281 year: 2017 ident: 10.1016/j.asoc.2020.106957_b28 article-title: Forecasting smog-related health hazard based on social media and physical sensor publication-title: Inf. Syst. doi: 10.1016/j.is.2016.03.011 – volume: 183 start-page: 20 year: 2018 ident: 10.1016/j.asoc.2020.106957_b86 article-title: PM2. 5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.04.004 – volume: 17 start-page: 297 year: 2010 ident: 10.1016/j.asoc.2020.106957_b32 article-title: Responses of terrestrial arthropods to air pollution: a meta-analysis publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-009-0138-0 – volume: 39 start-page: 7673 year: 2012 ident: 10.1016/j.asoc.2020.106957_b116 article-title: Application of fuzzy time series models for forecasting pollution concentrations publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.023 – start-page: 81 year: 2018 ident: 10.1016/j.asoc.2020.106957_b43 article-title: Multi-model ensemble forecast method of PM2. 5 concentration based on wavelet neural networks – volume: 159 start-page: 427 year: 2017 ident: 10.1016/j.asoc.2020.106957_b66 article-title: A spatiotemporal prediction model based on support vector machine regression: Ambient Black Carbon in three New England States publication-title: Environ. Res. doi: 10.1016/j.envres.2017.08.039 – volume: 389 start-page: 1907 year: 2017 ident: 10.1016/j.asoc.2020.106957_b5 article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study, 2015 publication-title: Lancet doi: 10.1016/S0140-6736(17)30505-6 – volume: 139 start-page: 147 year: 2016 ident: 10.1016/j.asoc.2020.106957_b7 article-title: Assessment of socioeconomic costs to China’s air pollution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.05.036 – volume: 651 start-page: 475 year: 2019 ident: 10.1016/j.asoc.2020.106957_b63 article-title: A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.196 – volume: 463 start-page: 875 year: 2013 ident: 10.1016/j.asoc.2020.106957_b93 article-title: Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.06.093 – volume: 31 start-page: 1211 year: 2017 ident: 10.1016/j.asoc.2020.106957_b56 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-016-1265-z – volume: 54 start-page: 269 year: 1993 ident: 10.1016/j.asoc.2020.106957_b114 article-title: Fuzzy time series and its models publication-title: Fuzzy Sets Systems doi: 10.1016/0165-0114(93)90372-O – volume: 2019 start-page: 9 year: 2019 ident: 10.1016/j.asoc.2020.106957_b131 article-title: A DBN-based deep neural network model with multitask learning for online air quality prediction publication-title: J. Control Sci. Eng. doi: 10.1155/2019/5304535 – volume: 14 start-page: 764 year: 2017 ident: 10.1016/j.asoc.2020.106957_b155 article-title: Day-ahead PM 2.5 concentration forecasting using WT-VMD based decomposition method and back propagation neural network improved by differential evolution publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph14070764 – volume: 51 start-page: 29 year: 2012 ident: 10.1016/j.asoc.2020.106957_b10 article-title: Short-term effects of air pollution on lower respiratory diseases and forecasting by the group method of data handling publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.01.051 – volume: 12 year: 2017 ident: 10.1016/j.asoc.2020.106957_b107 article-title: Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang publication-title: PLoS One – volume: 89 year: 2020 ident: 10.1016/j.asoc.2020.106957_b113 article-title: Adaptive LSSVM based iterative prediction method for NOx concentration prediction in coal-fired power plant considering system delay publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106070 – start-page: 236 year: 2017 ident: 10.1016/j.asoc.2020.106957_b47 article-title: Deep neural network for PM2.5 pollution forecasting based on manifold learning – volume: 103 start-page: 53 year: 2015 ident: 10.1016/j.asoc.2020.106957_b34 article-title: Real time air quality forecasting using integrated parametric and non-parametric regression techniques publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.12.011 – volume: 6 start-page: 286 year: 2015 ident: 10.1016/j.asoc.2020.106957_b75 article-title: Urban air quality management-A review publication-title: Atmos. Pollut. Res. doi: 10.5094/APR.2015.033 – volume: 5 start-page: 696 year: 2014 ident: 10.1016/j.asoc.2020.106957_b92 article-title: Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis publication-title: Atmos. Pollut. Res. doi: 10.5094/APR.2014.079 – volume: 14 start-page: 114 year: 2017 ident: 10.1016/j.asoc.2020.106957_b123 article-title: Prediction of air pollutants concentration based on an extreme learning machine: the case of Hong Kong publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph14020114 – volume: 200 start-page: 264 year: 2019 ident: 10.1016/j.asoc.2020.106957_b79 article-title: Hybrid algorithm for short-term forecasting of PM2.5 in China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.12.025 – volume: 43 start-page: 4050 year: 2009 ident: 10.1016/j.asoc.2020.106957_b25 article-title: Testing the capability of the chemistry transport model LOTOS-EUROS to forecast PM10 levels in the Netherlands publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.05.006 – volume: 196 start-page: 110 year: 2017 ident: 10.1016/j.asoc.2020.106957_b84 article-title: Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead PM2.5 concentration forecasting publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.02.071 – volume: 43 start-page: 157 year: 2018 ident: 10.1016/j.asoc.2020.106957_b115 article-title: A new fuzzy time series model based on robust clustering for forecasting of air pollution publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2017.12.001 – volume: 11 start-page: 469 year: 2020 ident: 10.1016/j.asoc.2020.106957_b128 article-title: Prediction of outdoor PM2.5 concentrations based on a three-stage hybrid neural network model publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2019.11.019 – volume: 46 start-page: 75 year: 2014 ident: 10.1016/j.asoc.2020.106957_b35 article-title: Hybrid model for urban air pollution forecasting: A stochastic spatiotemporal approach publication-title: Math. Geosci. doi: 10.1007/s11004-013-9483-0 – volume: 37 start-page: 7986 year: 2010 ident: 10.1016/j.asoc.2020.106957_b67 article-title: Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.05.093 – volume: 146 start-page: 41 year: 2019 ident: 10.1016/j.asoc.2020.106957_b59 article-title: A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2019.05.015 – volume: 612 start-page: 462 year: 2018 ident: 10.1016/j.asoc.2020.106957_b24 article-title: Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.272 – volume: 314 start-page: 198 year: 2018 ident: 10.1016/j.asoc.2020.106957_b173 article-title: A deep spatial–temporal ensemble model for air quality prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.049 – volume: 3 start-page: 203 year: 2010 ident: 10.1016/j.asoc.2020.106957_b118 article-title: Adaptive neuro-fuzzy modeling for prediction of ambient CO concentration at urban intersections and roadways publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-010-0073-8 – start-page: 576 year: 2017 ident: 10.1016/j.asoc.2020.106957_b130 article-title: PM10 density forecast model using long short term memory – volume: 28 start-page: 357 year: 2011 ident: 10.1016/j.asoc.2020.106957_b105 article-title: Artificial neural network models for daily PM10 air pollution index prediction in the urban area of Wuhan, China publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2010.0219 – ident: 10.1016/j.asoc.2020.106957_b98 doi: 10.1109/ICBBE.2008.808 – volume: 136 start-page: 264 year: 2020 ident: 10.1016/j.asoc.2020.106957_b178 article-title: Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.04.032 – volume: 146 start-page: 57 year: 2019 ident: 10.1016/j.asoc.2020.106957_b14 article-title: The short-term effects of air pollution on respiratory diseases and lung cancer mortality in hefei: A time-series analysis publication-title: Respir. Med. doi: 10.1016/j.rmed.2018.11.019 – volume: 10 start-page: 1482 year: 2019 ident: 10.1016/j.asoc.2020.106957_b159 article-title: Meteorological pattern analysis assisted daily PM2. 5 grades prediction using SVM optimized by PSO algorithm publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2019.04.005 – volume: 12 start-page: 899 year: 2019 ident: 10.1016/j.asoc.2020.106957_b129 article-title: Air quality modelling using long short-term memory (LSTM) over NCT-delhi, India publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-019-00696-7 – volume: 60 start-page: 632 year: 2012 ident: 10.1016/j.asoc.2020.106957_b37 article-title: Real-time air quality forecasting, part I: History, techniques, and current status publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.06.031 – volume: 85 year: 2019 ident: 10.1016/j.asoc.2020.106957_b81 article-title: A clustering-based ensemble approach with improved pigeon-inspired optimization and extreme learning machine for air quality prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105827 – volume: 221 start-page: 398 year: 2019 ident: 10.1016/j.asoc.2020.106957_b179 article-title: Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.02.179 – volume: 132 start-page: 209 year: 2013 ident: 10.1016/j.asoc.2020.106957_b29 article-title: Air pollution modeling over very complex terrain: an evaluation of WRF-Chem over Switzerland for two 1-year periods publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2013.05.021 – volume: 7 start-page: 557 year: 2016 ident: 10.1016/j.asoc.2020.106957_b55 article-title: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2016.01.004 – volume: 98 start-page: 665 year: 2014 ident: 10.1016/j.asoc.2020.106957_b62 article-title: Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.09.046 – volume: 71 start-page: 783 year: 2018 ident: 10.1016/j.asoc.2020.106957_b87 article-title: Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.030 – volume: 9 start-page: 293 year: 1999 ident: 10.1016/j.asoc.2020.106957_b112 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 16 start-page: 503 year: 2011 ident: 10.1016/j.asoc.2020.106957_b80 article-title: A wavelet-based neural network model to predict ambient air pollutants’ concentration publication-title: Environ. Model. Assess. doi: 10.1007/s10666-011-9270-6 – volume: 181 start-page: 12 year: 2018 ident: 10.1016/j.asoc.2020.106957_b69 article-title: Prediction of hourly PM2. 5 using a space–time support vector regression model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.03.015 – volume: 134 start-page: 168 year: 2016 ident: 10.1016/j.asoc.2020.106957_b144 article-title: A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.03.056 – volume: 63 start-page: 1575 year: 2006 ident: 10.1016/j.asoc.2020.106957_b45 article-title: Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of Zonguldak publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.08.070 – volume: 626 start-page: 1421 year: 2018 ident: 10.1016/j.asoc.2020.106957_b145 article-title: Research and application of a novel hybrid air quality early-warning system: A case study in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.195 – volume: 9 start-page: 3765 year: 2019 ident: 10.1016/j.asoc.2020.106957_b141 article-title: A deep belief network combined with modified grey wolf optimization algorithm for PM2.5 concentration prediction publication-title: Appl. Sci. doi: 10.3390/app9183765 – volume: 23 start-page: 665 year: 1993 ident: 10.1016/j.asoc.2020.106957_b117 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.256541 – start-page: 3486 year: 2018 ident: 10.1016/j.asoc.2020.106957_b136 article-title: Research on air pollution gases recognition method based on LSTM recurrent neural network and gas sensors array – year: 2019 ident: 10.1016/j.asoc.2020.106957_b140 article-title: Air pollutant concentration prediction based on GRU method publication-title: J. Phys.: Conf. Ser. – volume: 9 start-page: 989 year: 2018 ident: 10.1016/j.asoc.2020.106957_b153 article-title: A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2018.03.008 – start-page: 321 year: 2010 ident: 10.1016/j.asoc.2020.106957_b31 article-title: Study on gray numerical model of air pollution in wuan city – volume: 8 start-page: 2570 year: 2018 ident: 10.1016/j.asoc.2020.106957_b51 article-title: Machine learning approaches for outdoor air quality modelling: A systematic review publication-title: Appl. Sci. doi: 10.3390/app8122570 – volume: 119 start-page: 285 year: 2019 ident: 10.1016/j.asoc.2020.106957_b38 article-title: A review of artificial neural network models for ambient air pollution prediction publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.06.014 – start-page: 1287 year: 2013 ident: 10.1016/j.asoc.2020.106957_b96 article-title: Study on prediction of atmospheric PM2.5 based on RBF neural network – volume: 74 start-page: 136 year: 2015 ident: 10.1016/j.asoc.2020.106957_b13 article-title: A review on the human health impact of airborne particulate matter publication-title: Environ. Int. doi: 10.1016/j.envint.2014.10.005 – volume: 234 start-page: 54 year: 2019 ident: 10.1016/j.asoc.2020.106957_b89 article-title: Research and application of the hybrid forecasting model based on secondary denoising and multi-objective optimization for air pollution early warning system publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.06.201 – volume: 580 start-page: 719 year: 2017 ident: 10.1016/j.asoc.2020.106957_b154 article-title: A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.12.018 – year: 2017 ident: 10.1016/j.asoc.2020.106957_b109 article-title: Research on air quality of Beijing-Tianjin-Hebei region based on SVM and regression analysis – volume: 45 start-page: 2297 year: 2011 ident: 10.1016/j.asoc.2020.106957_b17 article-title: Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.01.002 – volume: 63 start-page: 755 year: 2013 ident: 10.1016/j.asoc.2020.106957_b95 article-title: Evaluation of PM10 forecasting based on the artificial neural network model and intake fraction in an urban area: A case study in Taiyuan City, China publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10962247.2012.755940 – volume: 27 start-page: 170 year: 2013 ident: 10.1016/j.asoc.2020.106957_b99 article-title: Forecasting human exposure to PM10 at the national level using an artificial neural network approach publication-title: J. Chemometr. doi: 10.1002/cem.2505 – volume: 6 start-page: 99 year: 2015 ident: 10.1016/j.asoc.2020.106957_b54 article-title: Development of artificial intelligence based NO2 forecasting models at Taj Mahal, Agra publication-title: Atmos. Pollut. Res. doi: 10.5094/APR.2015.012 – volume: 59 start-page: 693 year: 2005 ident: 10.1016/j.asoc.2020.106957_b110 article-title: Potential assessment of the support vector machine method in forecasting ambient air pollutant trends publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.10.032 – start-page: 5514 year: 2018 ident: 10.1016/j.asoc.2020.106957_b42 article-title: Prediction of urban PM 2.5 concentration based on wavelet neural network – volume: 3 start-page: 126 year: 2013 ident: 10.1016/j.asoc.2020.106957_b15 article-title: Forecast urban air pollution in Mexico City by using support vector machines: A kernel performance approach publication-title: Int. J. Intell. Sci. – volume: 5 start-page: 515 year: 2019 ident: 10.1016/j.asoc.2020.106957_b50 article-title: Machine learning algorithms in air quality modeling publication-title: Glob. J. Environ. Sci. Manage. – start-page: 448 year: 2009 ident: 10.1016/j.asoc.2020.106957_b133 article-title: Deep boltzmann machines – ident: 10.1016/j.asoc.2020.106957_b40 doi: 10.22260/ISARC2011/0212 – volume: 2 start-page: 568 year: 1991 ident: 10.1016/j.asoc.2020.106957_b97 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 – start-page: 1 year: 2008 ident: 10.1016/j.asoc.2020.106957_b100 article-title: Development and comparison of backpropagation and generalized regression neural network models to predict diurnal and seasonal gas and PM10 concentrations and emissions from swine buildings – volume: 162 start-page: 1095 year: 2017 ident: 10.1016/j.asoc.2020.106957_b165 article-title: Factor analysis and forecasting of CO2 emissions in Hebei, using extreme learning machine based on particle swarm optimization publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2017.06.016 – volume: 43 start-page: 6425 year: 2009 ident: 10.1016/j.asoc.2020.106957_b19 article-title: Combining deterministic and statistical approaches for PM10 forecasting in Europe publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.06.039 – volume: 2017 year: 2017 ident: 10.1016/j.asoc.2020.106957_b111 article-title: Ambient air quality classification by grey wolf optimizer based support vector machine publication-title: J. Environ. Publ. Health doi: 10.1155/2017/3131083 – volume: 29 year: 2019 ident: 10.1016/j.asoc.2020.106957_b60 article-title: Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia publication-title: Urban Clim. doi: 10.1016/j.uclim.2019.100473 – start-page: 362 year: 2008 ident: 10.1016/j.asoc.2020.106957_b94 article-title: A BP neural network prediction model of the urban air quality based on rough set – start-page: 1 year: 2016 ident: 10.1016/j.asoc.2020.106957_b122 article-title: Air quality forecasting using neural networks – volume: 669 year: 2019 ident: 10.1016/j.asoc.2020.106957_b71 article-title: Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China publication-title: Sci. Total Environ. – volume: 45 start-page: 6241 year: 2011 ident: 10.1016/j.asoc.2020.106957_b22 article-title: Application of WRF/Chem-MADRID for real-time air quality forecasting over the Southeastern United States publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.06.071 – start-page: 389 year: 2009 ident: 10.1016/j.asoc.2020.106957_b127 article-title: Regularized extreme learning machine – volume: 188 start-page: 144 year: 2017 ident: 10.1016/j.asoc.2020.106957_b77 article-title: Daily PM 2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.12.011 – volume: 12 start-page: 785 year: 2019 ident: 10.1016/j.asoc.2020.106957_b82 article-title: A hybrid framework for forecasting PM2.5 concentrations using multi-step deterministic and probabilistic strategy publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-019-00695-8 – volume: 10 start-page: 223 year: 2019 ident: 10.1016/j.asoc.2020.106957_b166 article-title: A combined model based on feature selection and woa for pm2.5 concentration forecasting publication-title: Atmosphere doi: 10.3390/atmos10040223 – volume: 15 start-page: 780 year: 2018 ident: 10.1016/j.asoc.2020.106957_b52 article-title: Air pollution forecasts: An overview publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph15040780 – volume: 11 start-page: 4866 year: 2011 ident: 10.1016/j.asoc.2020.106957_b101 article-title: Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.06.013 – volume: 41 start-page: 2967 year: 2007 ident: 10.1016/j.asoc.2020.106957_b103 article-title: Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.12.013 – volume: 172 start-page: 743 year: 2018 ident: 10.1016/j.asoc.2020.106957_b6 article-title: How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2017.10.195 – volume: 177 start-page: 156 year: 2013 ident: 10.1016/j.asoc.2020.106957_b169 article-title: Prediction of N2O emission from local information with Random Forest publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.02.019 – start-page: 115 year: 2006 ident: 10.1016/j.asoc.2020.106957_b39 article-title: Prediction of ambient air quality based on neural network technique – year: 2020 ident: 10.1016/j.asoc.2020.106957_b170 article-title: Spatial air quality index prediction model based on decomposition, adaptive boosting, and three-stage feature selection: A case study in China publication-title: J. Cleaner Prod. – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.asoc.2020.106957_b143 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 607–608 start-page: 1009 year: 2017 ident: 10.1016/j.asoc.2020.106957_b4 article-title: Forecasting PM 2.5 induced male lung cancer morbidity in China using satellite retrieved PM 2.5 and spatial analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.07.061 – volume: 683 start-page: 808 year: 2019 ident: 10.1016/j.asoc.2020.106957_b162 article-title: A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.05.288 – volume: 664 start-page: 1 year: 2019 ident: 10.1016/j.asoc.2020.106957_b174 article-title: A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.333 – volume: 2016 start-page: 13 year: 2016 ident: 10.1016/j.asoc.2020.106957_b27 article-title: Evaluation of air quality model performance for simulating long-range transport and local pollution of PM2.5 in Japan publication-title: Adv. Meteorol. doi: 10.1155/2016/5694251 – volume: 11 start-page: 18 year: 2019 ident: 10.1016/j.asoc.2020.106957_b138 article-title: Air quality prediction in Visakhapatnam with LSTM based recurrent neural networks publication-title: Int. J. Intell. Syst. Appl. – volume: 13 start-page: 197 year: 2020 ident: 10.1016/j.asoc.2020.106957_b88 article-title: A novel hybrid model for multi-step daily AQI forecasting driven by air pollution big data publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-020-00795-w – volume: 106 start-page: 318 year: 2015 ident: 10.1016/j.asoc.2020.106957_b23 article-title: Improvement of PM10 prediction in East Asia using inverse modeling publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.02.004 – volume: 2 start-page: 436 year: 2011 ident: 10.1016/j.asoc.2020.106957_b33 article-title: Forecasting of air quality in Delhi using principal component regression technique publication-title: Atmos. Pollut. Res. doi: 10.5094/APR.2011.050 – volume: 6 start-page: 605 year: 2010 ident: 10.1016/j.asoc.2020.106957_b46 article-title: Neuro fuzzy modeling scheme for the prediction of air pollution publication-title: J. Am. Sci. – year: 2020 ident: 10.1016/j.asoc.2020.106957_b171 article-title: Hourly PM 2.5 concentration forecasting based on mode decomposition-recombination technique and ensemble learning approach in severe haze episodes of China publication-title: J. Cleaner Prod. – volume: 31 start-page: 260 year: 2017 ident: 10.1016/j.asoc.2020.106957_b16 article-title: Ozone’s threat hits back Mexico City publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2016.12.015 – year: 2020 ident: 10.1016/j.asoc.2020.106957_b163 article-title: A novel hybrid model based on multi-objective harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106620 – volume: 194 start-page: 3902 year: 2005 ident: 10.1016/j.asoc.2020.106957_b157 article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2004.09.007 – volume: 654 start-page: 1091 year: 2019 ident: 10.1016/j.asoc.2020.106957_b172 article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.086 – volume: 1 start-page: 1 year: 2011 ident: 10.1016/j.asoc.2020.106957_b3 article-title: Gaseous pollutants formation and their harmful effects on health and environment publication-title: Innov. Energy Policies doi: 10.4303/iep/E101203 – volume: 73 start-page: 473 year: 2019 ident: 10.1016/j.asoc.2020.106957_b152 article-title: Improved pollution forecasting hybrid algorithms based on the ensemble method publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.04.032 – volume: 10 start-page: 195 year: 2017 ident: 10.1016/j.asoc.2020.106957_b126 article-title: Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-016-0414-3 – ident: 10.1016/j.asoc.2020.106957_b180 doi: 10.1145/3141128.3141131 – volume: 443 start-page: 511 year: 2013 ident: 10.1016/j.asoc.2020.106957_b41 article-title: PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.10.110 – volume: 43 start-page: 304 year: 2008 ident: 10.1016/j.asoc.2020.106957_b104 article-title: Three hours ahead prevision of SO2 pollutant concentration using an elman neural based forecaster publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.05.011 – volume: 107 start-page: 118 year: 2015 ident: 10.1016/j.asoc.2020.106957_b26 article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.02.030 – volume: 70 start-page: 489 year: 2006 ident: 10.1016/j.asoc.2020.106957_b121 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 93 year: 2020 ident: 10.1016/j.asoc.2020.106957_b158 article-title: Developing two heuristic algorithms with metaheuristic algorithms to improve solutions of optimization problems with soft and hard constraints: An application to nurse rostering problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106336 – volume: 233 start-page: 464 year: 2018 ident: 10.1016/j.asoc.2020.106957_b68 article-title: Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.10.029 – volume: 50 year: 2019 ident: 10.1016/j.asoc.2020.106957_b58 article-title: Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101657 – start-page: 297 year: 2016 ident: 10.1016/j.asoc.2020.106957_b134 article-title: On estimating air pollution from photos using convolutional neural network – volume: 164 start-page: 174 year: 2019 ident: 10.1016/j.asoc.2020.106957_b146 article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and extenics evaluation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.10.036 – start-page: 103 year: 2016 ident: 10.1016/j.asoc.2020.106957_b119 article-title: A comparative study of computational intelligence techniques applied to PM2.5 air pollution forecasting – volume: 635 start-page: 644 year: 2018 ident: 10.1016/j.asoc.2020.106957_b65 article-title: Development of a stacked ensemble model for forecasting and analyzing daily average PM2. 5 concentrations in Beijing, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.040 – volume: 86 year: 2020 ident: 10.1016/j.asoc.2020.106957_b120 article-title: Air quality prediction by neuro-fuzzy modeling approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105898 – volume: 10 start-page: 1326 year: 2019 ident: 10.1016/j.asoc.2020.106957_b57 article-title: Two-step-hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2019.03.004 – start-page: 200 year: 2017 ident: 10.1016/j.asoc.2020.106957_b164 article-title: Prediction of air quality index based on improved neural network – volume: 63 year: 2020 ident: 10.1016/j.asoc.2020.106957_b176 article-title: Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102364 – volume: 237 year: 2019 ident: 10.1016/j.asoc.2020.106957_b70 article-title: A temporal-spatial interpolation and extrapolation method based on geographic Long Short-Term Memory neural network for PM2.5 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.117729 – volume: 313 start-page: 1 year: 2003 ident: 10.1016/j.asoc.2020.106957_b36 article-title: Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(03)00335-8 – volume: 709 year: 2020 ident: 10.1016/j.asoc.2020.106957_b147 article-title: A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135934 – volume: 20 start-page: 745 year: 2007 ident: 10.1016/j.asoc.2020.106957_b18 article-title: Forecasting of the daily meteorological pollution using wavelets and support vector machine publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.10.008 – volume: 47 year: 2019 ident: 10.1016/j.asoc.2020.106957_b151 article-title: An intelligent hybrid model for air pollutant concentrations forecasting: Case of Beijing in China publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101471 – volume: 9 start-page: 74 year: 2018 ident: 10.1016/j.asoc.2020.106957_b12 article-title: Spatiotemporal characteristics of air pollutants (PM10, PM2. 5, SO2, NO2, O3, and CO) in the inland basin city of Chengdu, southwest China publication-title: Atmosphere doi: 10.3390/atmos9020074 |
SSID | ssj0016928 |
Score | 2.593118 |
SecondaryResourceType | review_article |
Snippet | In recent years, the deterioration of air quality, the frequent events of the air contaminants, and the health impacts from that have caused continuous... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106957 |
SubjectTerms | Air quality forecasting Hybrid modeling strategies Intelligent predictors |
Title | Intelligent modeling strategies for forecasting air quality time series: A review |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106957 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhXbr0XZo-goZuxY31sC11C6Eh6SP0FchmJFmGlJKGxB269LdXZ8uhhZKhgzGWJRAfp7sTfPcdQudCcvcHeH6UqIAbd-aUojbg7mpAaKYio6F2-H4UD8b8ZhJNGqhX18IArdL7_sqnl97aj3Q8mp35dNp5djcPwSWPKUiuyAg0QTlPwMovv1Y0DxLLsr8qTA5gti-cqTheyiHg7ogUBmIJIeqv4PQj4PR30JbPFHG32swuatjZHtquuzBgfyj30eNwpapZ4LKxjYtGeFnUGhDYpaXwWKOWwHHGarrAVS3lJ4bW8his0C6vcBdXhSwHaNy_fukNAt8oITAsDItACUFywTglmgkttUsylI4ypUD4lxGWhzZTQjEuTRJbmetIkFBHPBfW5U8iY4eoOXuf2SOEibBJoig1RkMmBZ9xog1lecYV1aSFSI1QaryKODSzeEtruthrCqimgGpaodpCF6s180pDY-3sqAY-_WUJqXPya9Yd_3PdCdqkwFMp2TinqFksPuyZSzQK3S4tqY02ur2nuwd4D28Ho29VGdPL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPejFt1ife9CTxHY3m3QjeCg-aH2BaKG3uLvZQEWq2Ij04p_yD7qTbIqC9CD0kEM2mbD5MpkHfDMDsC8ibq8gz49R6XFt_zkpmfG4TQ0oS2SgFdYO39yG7S6_7AW9CnyVtTBIq3S2v7DpubV2K3WHZv2136_f28xD8IiHDFuuRAF3zMorM_qwedvwpHNmP_IBYxfnD6dtz40W8LTfaGSeFIKmwueMKl-oSFm3LFWQSImtcn3qpw2TSCF9HulmaKJUBYI2VMBTYWzEIRLfPncGZrk1Fzg24ehzzCuhYZQPdMXdebg9V6lTkMqkhdwmpQwXwgh94l_e8IeHu1iCBReaklbx9stQMYMVWCzHPhBnBVbhrjNu45mRfJKOdX9kmJVNJ4iNg_EwWg6RVE1k_40UxZsjgrPsCaq9GR6TFikqZ9agOxX41qE6eBmYDSBUmGZTMqa1wtANT8Om0sxPEy6ZojWgJUKxdm3LcXrGc1zy055iRDVGVOMC1RocjmVei6YdE-8OSuDjX6oXW68yQW7zn3J7MNd-uLmOrzu3V1swz5Akk1OBtqGavb2bHRvlZGo31yoCj9NW428m-g1b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+modeling+strategies+for+forecasting+air+quality+time+series%3A+A+review&rft.jtitle=Applied+soft+computing&rft.au=Liu%2C+Hui&rft.au=Yan%2C+Guangxi&rft.au=Duan%2C+Zhu&rft.au=Chen%2C+Chao&rft.date=2021-04-01&rft.issn=1568-4946&rft.volume=102&rft.spage=106957&rft_id=info:doi/10.1016%2Fj.asoc.2020.106957&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |