Hydride growth mechanism in zircaloy-4: Investigation of the partitioning of alloying elements

The long-term safety of water-based nuclear reactors relies in part on the reliability of zirconium-based nuclear fuel cladding. Yet the progressive ingress of hydrogen during service makes zirconium alloys subject to delayed hydride cracking. Here, we use a combination of electron back-scattered di...

Full description

Saved in:
Bibliographic Details
Published inMaterialia Vol. 15; p. 101006
Main Authors Mouton, Isabelle, Chang, Yanhong, Chakraborty, Poulami, Wang, Siyang, Stephenson, Leigh T., Ben Britton, T., Gault, Baptiste
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The long-term safety of water-based nuclear reactors relies in part on the reliability of zirconium-based nuclear fuel cladding. Yet the progressive ingress of hydrogen during service makes zirconium alloys subject to delayed hydride cracking. Here, we use a combination of electron back-scattered diffraction and atom probe tomography to investigate specific microstructural features from the as-received sample and in the blocky-α microstructure, before and after electrochemical charging with hydrogen/deuterium followed by a low temperature heat treatment at 400 °C for 5 h followed by furnace cooling at a rate of 0.5 °C/min. Specimens for atom probe were prepared at cryogenic temperature to avoid the formation of spurious hydrides. We report on the compositional evolution of grains and grain boundaries over the course of the sample's thermal history, as well as the ways the growth of the hydrides modifies locally the composition and the structure of the alloy. We observe a significant amount of deuterium left in the matrix, even after the slow cooling and growth of the hydrides. Stacking faults form ahead of the growth front and the segregation of Sn at the hydride/matrix interface and on these faults. We propose that this segregation may facilitate further growth of the hydride. Our systematic investigation enables us discuss how the solute distribution affects the evolution of the alloy's properties during its service lifetime. [Display omitted]
AbstractList The long-term safety of water-based nuclear reactors relies in part on the reliability of zirconium-based nuclear fuel cladding. Yet the progressive ingress of hydrogen during service makes zirconium alloys subject to delayed hydride cracking. Here, we use a combination of electron back-scattered diffraction and atom probe tomography to investigate specific microstructural features from the as-received sample and in the blocky-α microstructure, before and after electrochemical charging with hydrogen/deuterium followed by a low temperature heat treatment at 400 °C for 5 h followed by furnace cooling at a rate of 0.5 °C/min. Specimens for atom probe were prepared at cryogenic temperature to avoid the formation of spurious hydrides. We report on the compositional evolution of grains and grain boundaries over the course of the sample's thermal history, as well as the ways the growth of the hydrides modifies locally the composition and the structure of the alloy. We observe a significant amount of deuterium left in the matrix, even after the slow cooling and growth of the hydrides. Stacking faults form ahead of the growth front and the segregation of Sn at the hydride/matrix interface and on these faults. We propose that this segregation may facilitate further growth of the hydride. Our systematic investigation enables us discuss how the solute distribution affects the evolution of the alloy's properties during its service lifetime. [Display omitted]
ArticleNumber 101006
Author Chang, Yanhong
Chakraborty, Poulami
Wang, Siyang
Ben Britton, T.
Gault, Baptiste
Mouton, Isabelle
Stephenson, Leigh T.
Author_xml – sequence: 1
  givenname: Isabelle
  orcidid: 0000-0002-2202-4033
  surname: Mouton
  fullname: Mouton, Isabelle
  email: isabelle.mouton42@gmail.com
  organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
– sequence: 2
  givenname: Yanhong
  orcidid: 0000-0003-3950-441X
  surname: Chang
  fullname: Chang, Yanhong
  organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
– sequence: 3
  givenname: Poulami
  surname: Chakraborty
  fullname: Chakraborty, Poulami
  organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
– sequence: 4
  givenname: Siyang
  orcidid: 0000-0002-2753-1464
  surname: Wang
  fullname: Wang, Siyang
  organization: Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, UK
– sequence: 5
  givenname: Leigh T.
  orcidid: 0000-0002-7852-2509
  surname: Stephenson
  fullname: Stephenson, Leigh T.
  organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
– sequence: 6
  givenname: T.
  surname: Ben Britton
  fullname: Ben Britton, T.
  organization: Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, UK
– sequence: 7
  givenname: Baptiste
  orcidid: 0000-0002-4934-0458
  surname: Gault
  fullname: Gault, Baptiste
  email: b.gault@mpie.de
  organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
BookMark eNp9kEFLw0AQhRepYK39A572D6TOJpukES9S1BYKXvTqstlM2inJpuwulfrrTawH8dDTPB7vG2beNRvZziJjtwJmAkR2t5u1odGzGGIxGADZBRvH6byIRBoXoz_6ik293wH0SSnlXI7Zx_JYOaqQb1z3Gba8RbPVlnzLyfIvckY33TGS93xlD-gDbXSgzvKu5mGLfK9doMEguxk83fTpQWODLdrgb9hlrRuP0985Ye_PT2-LZbR-fVktHteRSQBCpDMUYBKcZwnGkMoY8xxllealMaUuE6lLofM0xRpkCaaSRdEntMEC0qJGkUzY_LTXuM57h7UyFH5ODU5TowSooSq1U0NVaqhKnarq0fgfunfUanc8Dz2cIOyfOhA65Q2hNViRQxNU1dE5_Btl-4Zm
CitedBy_id crossref_primary_10_1016_j_jnucmat_2024_155343
crossref_primary_10_1016_j_scriptamat_2023_115771
crossref_primary_10_1039_D1TA10050E
crossref_primary_10_1093_micmic_ozad020
crossref_primary_10_1016_j_jallcom_2022_164274
crossref_primary_10_1038_s43586_021_00047_w
crossref_primary_10_1016_j_jnucmat_2022_153952
crossref_primary_10_1016_j_jnucmat_2024_155116
crossref_primary_10_1093_micmic_ozac005
crossref_primary_10_1093_micmic_ozad029
crossref_primary_10_1016_j_jnucmat_2023_154444
crossref_primary_10_1021_acs_jpcc_4c08027
crossref_primary_10_1093_mam_ozae081
crossref_primary_10_1021_acs_jpcc_2c03661
crossref_primary_10_1103_PhysRevMaterials_8_033605
crossref_primary_10_1088_1367_2630_ac40cd
crossref_primary_10_1016_j_cossms_2022_101020
crossref_primary_10_1002_adem_202400776
crossref_primary_10_1016_j_commatsci_2022_111220
crossref_primary_10_1007_s10853_024_10346_8
Cites_doi 10.1016/j.actamat.2003.11.031
10.1016/j.jnucmat.2019.02.042
10.1016/j.actamat.2011.07.054
10.1016/0925-8388(93)90643-2
10.1016/j.scriptamat.2018.06.044
10.1080/18811248.2007.9711563
10.1016/j.actamat.2018.02.064
10.1103/PhysRevLett.112.126103
10.1007/s11085-008-9113-2
10.1016/j.ultramic.2006.06.008
10.1016/j.actamat.2017.03.002
10.1179/imr.1983.28.1.92
10.1016/0022-3115(90)90406-D
10.1016/j.jnucmat.2016.10.020
10.1007/BF02843318
10.1080/14786435.2010.543651
10.1007/s11041-006-0060-8
10.1016/j.matlet.2012.09.059
10.1016/0022-3115(78)90509-3
10.1520/STP37515S
10.1371/journal.pone.0209211
10.1016/0001-6160(78)90006-8
10.1016/j.jnucmat.2012.01.016
10.1021/nn305029b
10.1016/j.jnucmat.2015.07.014
10.1016/j.corsci.2017.09.014
10.1103/PhysRevB.31.5604
10.1016/j.jnucmat.2010.06.005
10.1038/s41467-019-08752-7
10.1016/0022-3115(67)90047-5
10.1016/j.actamat.2016.05.025
10.1016/j.jnucmat.2013.08.055
10.1016/j.jallcom.2015.11.031
10.1016/0022-5088(84)90254-6
10.1016/0022-3115(73)90023-8
10.1088/1367-2630/ab1c3b
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.mtla.2021.101006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2589-1529
ExternalDocumentID 10_1016_j_mtla_2021_101006
S2589152921000090
GroupedDBID AABXZ
AACTN
AAEDW
AAIAV
AAKOC
AALRI
AAXUO
ABMAC
ACDAQ
ACRLP
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AXJTR
BKOJK
EBS
EFJIC
EFLBG
EJD
FDB
FYGXN
M41
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-a6e10c3e863e20542e77e4d57bccbab34ab1a755ef04b0cd499e77ace9059fe13
IEDL.DBID AIKHN
ISSN 2589-1529
IngestDate Tue Jul 01 02:13:39 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Fri Feb 23 02:39:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Zirconium alloy
Zirconium hydride
Atom probe tomography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a6e10c3e863e20542e77e4d57bccbab34ab1a755ef04b0cd499e77ace9059fe13
ORCID 0000-0002-4934-0458
0000-0002-2202-4033
0000-0002-2753-1464
0000-0003-3950-441X
0000-0002-7852-2509
ParticipantIDs crossref_citationtrail_10_1016_j_mtla_2021_101006
crossref_primary_10_1016_j_mtla_2021_101006
elsevier_sciencedirect_doi_10_1016_j_mtla_2021_101006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Materialia
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dong, Motta, Marquis (bib0023) 2013; 442
S. Wang, F. Giuliani, T.B. Britton, Microstructure and formation mechanisms of {\delta}-hydrides in variable grain size Zircaloy-4 studied by electron backscatter diffraction, ArXiv:1811.12442 [Cond-Mat]. (2018). http://arxiv.org/abs/1811.12442 (accessed December 4, 2018).
Chang, Mouton, Stephenson, Ashton, Zhang, Szczpaniak, Lu, Ponge, Raabe, Gault (bib0035) 2019; 21
Northwood, Kosasih (bib0004) 1983; 28
Szewc, Pizzagalli, Brochard, Clouet (bib0038) 2016; 114
Bowman, Craft, Cantrell, Venturini (bib0008) 1985; 31
Kim, Tao, Klie, Seidman (bib0034) 2013; 7
Kim, Kim, Yoon (bib0026) 2016; 482
Gault, Felfer, Ivermark, Bergqvist, Cairney, Ringer (bib0024) 2013; 91
Breen, Mouton, Lu, Wang, Szczepaniak, Kontis, Stephenson, Chang, da Silva, Liebscher, Raabe, Britton, Herbig, Gault (bib0030) 2018; 156
Carpenter (bib0041) 1978; 26
Niedźwiedź, Nowak, żogał (bib0009) 1993; 194
Lemaignan, Motta (bib0001) 2006
Qin, Kiran Kumar, Szpunar, Kozinski (bib0020) 2011; 59
Zhong, Macdonald (bib0011) 2012; 423
Howe (bib0016) 1961
Borrelly, Merle, Adami (bib0005) 1990; 170
Carpenter, Watters, Gilbert (bib0037) 1973; 48
Kearns (bib0015) 1967; 22
Zuzek, Abriata, San-Martin, Manchester (bib0010) 1990; 11
R. Birch, S. Wang, V. Tong, T.B. Britton, The effect of cooling rate and grain size on hydride formation in Zircaloy-4, ArXiv:1807.11927 [Cond-Mat]. (2018). http://arxiv.org/abs/1807.11927 (accessed October 10, 2018).
Thompson, Lawrence, Larson, Olson, Kelly, Gorman (bib0027) 2007; 107
Bair, Asle Zaeem, Tonks (bib0003) 2015; 466
Annand, Nord, MacLaren, Gass (bib0040) 2017; 128
Chang, Breen, Tarzimoghadam, Kürnsteiner, Gardner, Ackerman, Radecka, Bagot, Lu, Li, Jägle, Herbig, Stephenson, Moody, Rugg, Dye, Ponge, Raabe, Gault (bib0029) 2018; 150
Motta, Capolungo, Chen, Cinbiz, Daymond, Koss, Lacroix, Pastore, Simon, Tonks, Wirth, Zikry (bib0014) 2019; 518
Shmakov, Yan, Eadie (bib0021) 2006; 48
Shinohara, Abe, Iwai, Sekimura, Kido, Yamamoto, Taguchi (bib0042) 2009; 46
K. Kakiuchi, N. Itagaki, T. Furuya, A. Miyazaki, Y. Ishii, S. Suzuki, T. Terai, M. Yamawaki, P. Barberis, K. Kapoor, Y.S. Kim, A. Motta, B. Cox, L. Hallstadius, N. Ramasubramanian, Role of iron for hydrogen absorption mechanism in zirconium alloys, in: 2005: pp. 349–366.
Stephenson, Szczepaniak, Mouton, Rusitzka, Breen, Tezins, Sturm, Vogel, Chang, Kontis, Rosenthal, Shepard, Maier, Kelly, Raabe, Gault (bib0033) 2018; 13
Grosse, Steinbrueck, Lehmann, Vontobel (bib0002) 2008; 70
Tong, Britton (bib0017) 2017; 129
Herbig, Raabe, Li, Choi, Zaefferer, Goto (bib0036) 2014; 112
Switendick (bib0007) 1984; 103
Shen, Zu, Chen, Huang, Sun (bib0028) 2016; 659
Marshall, Louthan (bib0012) 1962
Northwood, Gilbert (bib0013) 1978; 78
Kiran Kumar, Szpunar, He (bib0019) 2010; 403
Udagawa, Yamaguchi, Tsuru, Abe, Sekimura (bib0043) 2011; 91
Chang, Lu, Guénolé, Stephenson, Szczpaniak, Kontis, Ackerman, Dear, Mouton, Zhong, Zhang, Dye, Liebscher, Ponge, Korte-Kerzel, Raabe, Gault (bib0032) 2019; 10
Moan, Rudling (bib0039) 2002
Domain, Besson, Legris (bib0044) 2004; 52
McMinn, Darby, Schofield (bib0006) 2000
I. Mouton, A.J. Breen, S. Wang, Y. Chang, A. Szczepaniak, P. Kontis, L.T. Stephenson, D. Raabe, M. Herbig, T.B. Britton, B. Gault, Quantification challenges for atom probe tomography of hydrogen and deuterium in zircaloy-4, Microsc. Microanal. (undefined/ed) 1–8. 10.1017/S143192761801615X.
Chang (10.1016/j.mtla.2021.101006_bib0029) 2018; 150
Zhong (10.1016/j.mtla.2021.101006_bib0011) 2012; 423
10.1016/j.mtla.2021.101006_bib0018
Kiran Kumar (10.1016/j.mtla.2021.101006_bib0019) 2010; 403
Marshall (10.1016/j.mtla.2021.101006_bib0012) 1962
Kim (10.1016/j.mtla.2021.101006_bib0026) 2016; 482
Kim (10.1016/j.mtla.2021.101006_bib0034) 2013; 7
Niedźwiedź (10.1016/j.mtla.2021.101006_bib0009) 1993; 194
Bair (10.1016/j.mtla.2021.101006_bib0003) 2015; 466
Kearns (10.1016/j.mtla.2021.101006_bib0015) 1967; 22
Borrelly (10.1016/j.mtla.2021.101006_bib0005) 1990; 170
Breen (10.1016/j.mtla.2021.101006_bib0030) 2018; 156
Herbig (10.1016/j.mtla.2021.101006_bib0036) 2014; 112
Northwood (10.1016/j.mtla.2021.101006_bib0004) 1983; 28
Moan (10.1016/j.mtla.2021.101006_bib0039) 2002
Shinohara (10.1016/j.mtla.2021.101006_bib0042) 2009; 46
Northwood (10.1016/j.mtla.2021.101006_bib0013) 1978; 78
Dong (10.1016/j.mtla.2021.101006_bib0023) 2013; 442
Annand (10.1016/j.mtla.2021.101006_bib0040) 2017; 128
10.1016/j.mtla.2021.101006_bib0022
Shen (10.1016/j.mtla.2021.101006_bib0028) 2016; 659
Chang (10.1016/j.mtla.2021.101006_bib0035) 2019; 21
Lemaignan (10.1016/j.mtla.2021.101006_bib0001) 2006
Domain (10.1016/j.mtla.2021.101006_bib0044) 2004; 52
Stephenson (10.1016/j.mtla.2021.101006_bib0033) 2018; 13
Bowman (10.1016/j.mtla.2021.101006_bib0008) 1985; 31
Gault (10.1016/j.mtla.2021.101006_bib0024) 2013; 91
Zuzek (10.1016/j.mtla.2021.101006_bib0010) 1990; 11
Motta (10.1016/j.mtla.2021.101006_bib0014) 2019; 518
10.1016/j.mtla.2021.101006_bib0025
McMinn (10.1016/j.mtla.2021.101006_bib0006) 2000
Grosse (10.1016/j.mtla.2021.101006_bib0002) 2008; 70
Chang (10.1016/j.mtla.2021.101006_bib0032) 2019; 10
Szewc (10.1016/j.mtla.2021.101006_bib0038) 2016; 114
Thompson (10.1016/j.mtla.2021.101006_bib0027) 2007; 107
Carpenter (10.1016/j.mtla.2021.101006_bib0041) 1978; 26
Tong (10.1016/j.mtla.2021.101006_bib0017) 2017; 129
Udagawa (10.1016/j.mtla.2021.101006_bib0043) 2011; 91
Switendick (10.1016/j.mtla.2021.101006_bib0007) 1984; 103
Carpenter (10.1016/j.mtla.2021.101006_bib0037) 1973; 48
10.1016/j.mtla.2021.101006_bib0031
Qin (10.1016/j.mtla.2021.101006_bib0020) 2011; 59
Shmakov (10.1016/j.mtla.2021.101006_bib0021) 2006; 48
Howe (10.1016/j.mtla.2021.101006_bib0016) 1961
References_xml – volume: 22
  start-page: 292
  year: 1967
  end-page: 303
  ident: bib0015
  article-title: Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, zircaloy-2 and zircaloy-4
  publication-title: J. Nucl. Mater.
– volume: 46
  start-page: 564
  year: 2009
  end-page: 571
  ident: bib0042
  article-title: In situ TEM observation of growth process of zirconium hydride in zircaloy-4 during hydrogen ion implantation
  publication-title: J. Nucl. Sci. Technol.
– volume: 659
  start-page: 23
  year: 2016
  end-page: 30
  ident: bib0028
  article-title: Direct observation of hydrogenation and dehydrogenation of a zirconium alloy
  publication-title: J. Alloys Compd.
– volume: 114
  start-page: 126
  year: 2016
  end-page: 135
  ident: bib0038
  article-title: Onset of plasticity in zirconium in relation with hydrides precipitation
  publication-title: Acta Mater.
– volume: 7
  start-page: 732
  year: 2013
  end-page: 739
  ident: bib0034
  article-title: Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy
  publication-title: ACS Nano
– volume: 13
  year: 2018
  ident: bib0033
  article-title: The Laplace project: an integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions
  publication-title: PLoS One
– volume: 170
  start-page: 147
  year: 1990
  end-page: 156
  ident: bib0005
  article-title: Study of the solubility of iron in zirconium by thermoelectric power measurements
  publication-title: J. Nucl. Mater.
– volume: 423
  start-page: 87
  year: 2012
  end-page: 92
  ident: bib0011
  article-title: Thermodynamics of the Zr–H binary system related to nuclear fuel sheathing and pressure tube hydriding
  publication-title: J. Nucl. Mater.
– reference: K. Kakiuchi, N. Itagaki, T. Furuya, A. Miyazaki, Y. Ishii, S. Suzuki, T. Terai, M. Yamawaki, P. Barberis, K. Kapoor, Y.S. Kim, A. Motta, B. Cox, L. Hallstadius, N. Ramasubramanian, Role of iron for hydrogen absorption mechanism in zirconium alloys, in: 2005: pp. 349–366.
– year: 1961
  ident: bib0016
  article-title: THE Effect of Neutron Irradiation, Hydride Precipitate and Hydride Layers on the Impact Properties of Zircaloy-2
– volume: 518
  start-page: 440
  year: 2019
  end-page: 460
  ident: bib0014
  article-title: Hydrogen in zirconium alloys: a review
  publication-title: J. Nucl. Mater.
– volume: 59
  start-page: 7010
  year: 2011
  end-page: 7021
  ident: bib0020
  article-title: Intergranular δ-hydride nucleation and orientation in zirconium alloys
  publication-title: Acta Mater.
– reference: I. Mouton, A.J. Breen, S. Wang, Y. Chang, A. Szczepaniak, P. Kontis, L.T. Stephenson, D. Raabe, M. Herbig, T.B. Britton, B. Gault, Quantification challenges for atom probe tomography of hydrogen and deuterium in zircaloy-4, Microsc. Microanal. (undefined/ed) 1–8. 10.1017/S143192761801615X.
– volume: 31
  start-page: 5604
  year: 1985
  end-page: 5615
  ident: bib0008
  article-title: Effects of thermal treatments on the lattice properties and electronic structure of ${\mathrm{ZrH}}_{\mathrm{x}}$
  publication-title: Phys. Rev. B
– volume: 482
  start-page: 88
  year: 2016
  end-page: 92
  ident: bib0026
  article-title: Hydride formation on deformation twin in zirconium alloy
  publication-title: J. Nucl. Mater.
– volume: 52
  start-page: 1495
  year: 2004
  end-page: 1502
  ident: bib0044
  article-title: Atomic-scale ab initio study of the Zr–H system: II. Interaction of H with plane defects and mechanical properties
  publication-title: Acta Mater.
– year: 2000
  ident: bib0006
  article-title: The terminal solid solubility of hydrogen in zirconium alloys
  publication-title: Zirconium in the Nuclear Industry: Twelfth International Symposium
– volume: 48
  start-page: 146
  year: 2006
  end-page: 149
  ident: bib0021
  article-title: A theoretical and experimental study of hydrides in zirconium alloys
  publication-title: Met. Sci. Heat Treat.
– volume: 150
  start-page: 273
  year: 2018
  end-page: 280
  ident: bib0029
  article-title: Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale
  publication-title: Acta Mater.
– reference: S. Wang, F. Giuliani, T.B. Britton, Microstructure and formation mechanisms of {\delta}-hydrides in variable grain size Zircaloy-4 studied by electron backscatter diffraction, ArXiv:1811.12442 [Cond-Mat]. (2018). http://arxiv.org/abs/1811.12442 (accessed December 4, 2018).
– volume: 107
  start-page: 131
  year: 2007
  end-page: 139
  ident: bib0027
  article-title: In situ site-specific specimen preparation for atom probe tomography
  publication-title: Ultramicroscopy
– volume: 403
  start-page: 101
  year: 2010
  end-page: 107
  ident: bib0019
  article-title: Preferential precipitation of hydrides in textured zircaloy-4 sheets
  publication-title: J. Nucl. Mater.
– volume: 48
  start-page: 267
  year: 1973
  end-page: 276
  ident: bib0037
  article-title: Dislocations generated by zirconium hydride precipitates in zirconium and some of its alloys
  publication-title: J. Nucl. Mater.
– volume: 128
  start-page: 213
  year: 2017
  end-page: 223
  ident: bib0040
  article-title: The corrosion of Zr(Fe, Cr)2 and Zr2Fe secondary phase particles in Zircaloy-4 under 350°C pressurised water conditions
  publication-title: Corros. Sci.
– year: 2006
  ident: bib0001
  article-title: Zirconium alloys in nuclear applications
  publication-title: Materials Science and Technology
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0032
  article-title: Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials
  publication-title: Nat. Commun.
– year: 1962
  ident: bib0012
  article-title: Tensile Properties Zircaloy with Oriented Hydrides
– volume: 129
  start-page: 510
  year: 2017
  end-page: 520
  ident: bib0017
  article-title: Formation of very large ‘blocky alpha’ grains in Zircaloy-4
  publication-title: Acta Mater.
– volume: 28
  start-page: 92
  year: 1983
  end-page: 121
  ident: bib0004
  article-title: Hydrides and delayed hydrogen cracking in zirconium and its alloys
  publication-title: Int. Met. Rev.
– volume: 11
  start-page: 385
  year: 1990
  end-page: 395
  ident: bib0010
  article-title: The H-Zr (hydrogen-zirconium) system
  publication-title: Bull. Alloy Phase Diagr.
– volume: 442
  start-page: 270
  year: 2013
  end-page: 281
  ident: bib0023
  article-title: Atom probe tomography study of alloying element distributions in Zr alloys and their oxides
  publication-title: J. Nucl. Mater.
– volume: 103
  start-page: 309
  year: 1984
  end-page: 315
  ident: bib0007
  article-title: Electronic structure of γ phase zirconium hydride
  publication-title: J. Less Common Met.
– volume: 194
  start-page: 47
  year: 1993
  end-page: 51
  ident: bib0009
  article-title: 91Zr NMR in non-stoichiometric zirconium hydrides, ZrHx (1.55 x 2)
  publication-title: J. Alloys Compd.
– reference: R. Birch, S. Wang, V. Tong, T.B. Britton, The effect of cooling rate and grain size on hydride formation in Zircaloy-4, ArXiv:1807.11927 [Cond-Mat]. (2018). http://arxiv.org/abs/1807.11927 (accessed October 10, 2018).
– volume: 156
  start-page: 42
  year: 2018
  end-page: 46
  ident: bib0030
  article-title: Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4
  publication-title: Scr. Mater.
– volume: 112
  year: 2014
  ident: bib0036
  article-title: Atomic-scale quantification of grain boundary segregation in nanocrystalline material
  publication-title: Phys. Rev. Lett.
– volume: 26
  start-page: 1225
  year: 1978
  end-page: 1235
  ident: bib0041
  article-title: The precipitation of γ-zirconium hydride in zirconium
  publication-title: Acta Metallur.
– volume: 70
  start-page: 149
  year: 2008
  end-page: 162
  ident: bib0002
  article-title: Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation
  publication-title: Oxid. Met.
– volume: 466
  start-page: 12
  year: 2015
  end-page: 20
  ident: bib0003
  article-title: A review on hydride precipitation in zirconium alloys
  publication-title: J. Nucl. Mater.
– volume: 21
  year: 2019
  ident: bib0035
  article-title: Quantification of solute deuterium in titanium deuteride by atom probe tomography with both laser pulsing and high-voltage pulsing: influence of the surface electric field
  publication-title: N. J. Phys.
– year: 2002
  ident: bib0039
  article-title: Zirconium in the Nuclear Industry: Thirteenth International Symposium
– volume: 91
  start-page: 1665
  year: 2011
  end-page: 1678
  ident: bib0043
  article-title: Effect of Sn and Nb on generalized stacking fault energy surfaces in zirconium and gamma hydride habit planes
  publication-title: Philosop. Mag.
– volume: 78
  start-page: 112
  year: 1978
  end-page: 116
  ident: bib0013
  article-title: Hydrides in zirconium-2.5wt.% niobium alloy pressure tubing
  publication-title: J. Nucl. Mater.
– volume: 91
  start-page: 63
  year: 2013
  end-page: 66
  ident: bib0024
  article-title: Atom probe microscopy characterization of as quenched Zr–0.8wt% Fe and Zr–0.15wt% Cr binary alloys
  publication-title: Mater. Lett.
– ident: 10.1016/j.mtla.2021.101006_bib0018
– volume: 52
  start-page: 1495
  year: 2004
  ident: 10.1016/j.mtla.2021.101006_bib0044
  article-title: Atomic-scale ab initio study of the Zr–H system: II. Interaction of H with plane defects and mechanical properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2003.11.031
– volume: 518
  start-page: 440
  year: 2019
  ident: 10.1016/j.mtla.2021.101006_bib0014
  article-title: Hydrogen in zirconium alloys: a review
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2019.02.042
– volume: 59
  start-page: 7010
  year: 2011
  ident: 10.1016/j.mtla.2021.101006_bib0020
  article-title: Intergranular δ-hydride nucleation and orientation in zirconium alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.07.054
– volume: 194
  start-page: 47
  year: 1993
  ident: 10.1016/j.mtla.2021.101006_bib0009
  article-title: 91Zr NMR in non-stoichiometric zirconium hydrides, ZrHx (1.55 x 2)
  publication-title: J. Alloys Compd.
  doi: 10.1016/0925-8388(93)90643-2
– volume: 156
  start-page: 42
  year: 2018
  ident: 10.1016/j.mtla.2021.101006_bib0030
  article-title: Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.06.044
– year: 1962
  ident: 10.1016/j.mtla.2021.101006_bib0012
– volume: 46
  start-page: 564
  year: 2009
  ident: 10.1016/j.mtla.2021.101006_bib0042
  article-title: In situ TEM observation of growth process of zirconium hydride in zircaloy-4 during hydrogen ion implantation
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2007.9711563
– volume: 150
  start-page: 273
  year: 2018
  ident: 10.1016/j.mtla.2021.101006_bib0029
  article-title: Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.02.064
– year: 2006
  ident: 10.1016/j.mtla.2021.101006_bib0001
  article-title: Zirconium alloys in nuclear applications
– volume: 112
  year: 2014
  ident: 10.1016/j.mtla.2021.101006_bib0036
  article-title: Atomic-scale quantification of grain boundary segregation in nanocrystalline material
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.126103
– volume: 70
  start-page: 149
  year: 2008
  ident: 10.1016/j.mtla.2021.101006_bib0002
  article-title: Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation
  publication-title: Oxid. Met.
  doi: 10.1007/s11085-008-9113-2
– year: 2000
  ident: 10.1016/j.mtla.2021.101006_bib0006
  article-title: The terminal solid solubility of hydrogen in zirconium alloys
– volume: 107
  start-page: 131
  year: 2007
  ident: 10.1016/j.mtla.2021.101006_bib0027
  article-title: In situ site-specific specimen preparation for atom probe tomography
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2006.06.008
– ident: 10.1016/j.mtla.2021.101006_bib0031
– volume: 129
  start-page: 510
  year: 2017
  ident: 10.1016/j.mtla.2021.101006_bib0017
  article-title: Formation of very large ‘blocky alpha’ grains in Zircaloy-4
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.03.002
– volume: 28
  start-page: 92
  year: 1983
  ident: 10.1016/j.mtla.2021.101006_bib0004
  article-title: Hydrides and delayed hydrogen cracking in zirconium and its alloys
  publication-title: Int. Met. Rev.
  doi: 10.1179/imr.1983.28.1.92
– volume: 170
  start-page: 147
  year: 1990
  ident: 10.1016/j.mtla.2021.101006_bib0005
  article-title: Study of the solubility of iron in zirconium by thermoelectric power measurements
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(90)90406-D
– volume: 482
  start-page: 88
  year: 2016
  ident: 10.1016/j.mtla.2021.101006_bib0026
  article-title: Hydride formation on deformation twin in zirconium alloy
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2016.10.020
– volume: 11
  start-page: 385
  year: 1990
  ident: 10.1016/j.mtla.2021.101006_bib0010
  article-title: The H-Zr (hydrogen-zirconium) system
  publication-title: Bull. Alloy Phase Diagr.
  doi: 10.1007/BF02843318
– volume: 91
  start-page: 1665
  year: 2011
  ident: 10.1016/j.mtla.2021.101006_bib0043
  article-title: Effect of Sn and Nb on generalized stacking fault energy surfaces in zirconium and gamma hydride habit planes
  publication-title: Philosop. Mag.
  doi: 10.1080/14786435.2010.543651
– volume: 48
  start-page: 146
  year: 2006
  ident: 10.1016/j.mtla.2021.101006_bib0021
  article-title: A theoretical and experimental study of hydrides in zirconium alloys
  publication-title: Met. Sci. Heat Treat.
  doi: 10.1007/s11041-006-0060-8
– volume: 91
  start-page: 63
  year: 2013
  ident: 10.1016/j.mtla.2021.101006_bib0024
  article-title: Atom probe microscopy characterization of as quenched Zr–0.8wt% Fe and Zr–0.15wt% Cr binary alloys
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.09.059
– volume: 78
  start-page: 112
  year: 1978
  ident: 10.1016/j.mtla.2021.101006_bib0013
  article-title: Hydrides in zirconium-2.5wt.% niobium alloy pressure tubing
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(78)90509-3
– ident: 10.1016/j.mtla.2021.101006_bib0025
  doi: 10.1520/STP37515S
– volume: 13
  year: 2018
  ident: 10.1016/j.mtla.2021.101006_bib0033
  article-title: The Laplace project: an integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0209211
– volume: 26
  start-page: 1225
  year: 1978
  ident: 10.1016/j.mtla.2021.101006_bib0041
  article-title: The precipitation of γ-zirconium hydride in zirconium
  publication-title: Acta Metallur.
  doi: 10.1016/0001-6160(78)90006-8
– volume: 423
  start-page: 87
  year: 2012
  ident: 10.1016/j.mtla.2021.101006_bib0011
  article-title: Thermodynamics of the Zr–H binary system related to nuclear fuel sheathing and pressure tube hydriding
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2012.01.016
– ident: 10.1016/j.mtla.2021.101006_bib0022
– year: 2002
  ident: 10.1016/j.mtla.2021.101006_bib0039
– year: 1961
  ident: 10.1016/j.mtla.2021.101006_bib0016
– volume: 7
  start-page: 732
  year: 2013
  ident: 10.1016/j.mtla.2021.101006_bib0034
  article-title: Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy
  publication-title: ACS Nano
  doi: 10.1021/nn305029b
– volume: 466
  start-page: 12
  year: 2015
  ident: 10.1016/j.mtla.2021.101006_bib0003
  article-title: A review on hydride precipitation in zirconium alloys
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.07.014
– volume: 128
  start-page: 213
  year: 2017
  ident: 10.1016/j.mtla.2021.101006_bib0040
  article-title: The corrosion of Zr(Fe, Cr)2 and Zr2Fe secondary phase particles in Zircaloy-4 under 350°C pressurised water conditions
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2017.09.014
– volume: 31
  start-page: 5604
  year: 1985
  ident: 10.1016/j.mtla.2021.101006_bib0008
  article-title: Effects of thermal treatments on the lattice properties and electronic structure of ${\mathrm{ZrH}}_{\mathrm{x}}$
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.31.5604
– volume: 403
  start-page: 101
  year: 2010
  ident: 10.1016/j.mtla.2021.101006_bib0019
  article-title: Preferential precipitation of hydrides in textured zircaloy-4 sheets
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2010.06.005
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.mtla.2021.101006_bib0032
  article-title: Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08752-7
– volume: 22
  start-page: 292
  year: 1967
  ident: 10.1016/j.mtla.2021.101006_bib0015
  article-title: Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, zircaloy-2 and zircaloy-4
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(67)90047-5
– volume: 114
  start-page: 126
  year: 2016
  ident: 10.1016/j.mtla.2021.101006_bib0038
  article-title: Onset of plasticity in zirconium in relation with hydrides precipitation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.025
– volume: 442
  start-page: 270
  year: 2013
  ident: 10.1016/j.mtla.2021.101006_bib0023
  article-title: Atom probe tomography study of alloying element distributions in Zr alloys and their oxides
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2013.08.055
– volume: 659
  start-page: 23
  year: 2016
  ident: 10.1016/j.mtla.2021.101006_bib0028
  article-title: Direct observation of hydrogenation and dehydrogenation of a zirconium alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.11.031
– volume: 103
  start-page: 309
  year: 1984
  ident: 10.1016/j.mtla.2021.101006_bib0007
  article-title: Electronic structure of γ phase zirconium hydride
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(84)90254-6
– volume: 48
  start-page: 267
  year: 1973
  ident: 10.1016/j.mtla.2021.101006_bib0037
  article-title: Dislocations generated by zirconium hydride precipitates in zirconium and some of its alloys
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(73)90023-8
– volume: 21
  year: 2019
  ident: 10.1016/j.mtla.2021.101006_bib0035
  article-title: Quantification of solute deuterium in titanium deuteride by atom probe tomography with both laser pulsing and high-voltage pulsing: influence of the surface electric field
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/ab1c3b
SSID ssj0002144484
Score 2.3326495
Snippet The long-term safety of water-based nuclear reactors relies in part on the reliability of zirconium-based nuclear fuel cladding. Yet the progressive ingress of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101006
SubjectTerms Atom probe tomography
Zirconium alloy
Zirconium hydride
Title Hydride growth mechanism in zircaloy-4: Investigation of the partitioning of alloying elements
URI https://dx.doi.org/10.1016/j.mtla.2021.101006
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke_Eiior1xR68ydI8dpPGWymWqNCLFnoy7G4mGmnT0sZD_fXuJJtSQXrwmGEHko9lXpn5hpBbZdIImWYhU9L1GQ-CPlMB-MzJINXSD0HpqttiHMQT_jQV0xYZNrMw2FZpbX9t0ytrbSU9i2Zvmee9Fw8X4gkv8qoSdWTy9o5nvKvTJp3B43M83pZakBWMV7uHUYWhjh2fqTu95uUMGYg8FwUO7j76y0XtuJ3RETm08SId1K90TFpQnJC3eINb0YG-myS6_KBzwPndfD2neUG_85XBfbFh_J7usGgsCrrIqAn36BK_z9ZhUYa_3nHYiULdSr4-JZPRw-swZnZRAtO-45RMBuA62od-4INnYjAPwhB4KkKltZLK51K5MhQCMocrR6cmyzEnpIbIBFcZuP4ZaReLAs4JzUQaSJm5Mu1XzDNSSBGkbsRFGmbAeZe4DTaJtiziuMxiljTtYp8J4pkgnkmNZ5fcbXWWNYfG3tOigTz5dRMSY-T36F38U--SHOBT3Vd2Rdrl6guuTaBRqht7kX4A7L7Sbg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QdoALAgFiPHPghqL1kaQbN4SYOh67ABInqjxcKGLdxMph_HriNkMgoR24urHUfrIc27U_E3KiXRqhbJ4wrcKYcSl7TEuIWZCDNSpOQJu622Ik0wd-9SgeV8jFYhYG2yq97298eu2tvaTr0exOi6J7F-FCPBH1o7pE3Xd5exvZqZyZt8-H1-nou9SCrGC83j2MKgx1_PhM0-k1rt6QgSgKURDg7qO_rqgf185gg6z7eJGeN6-0SVag3CJP6Ry3ogN9dkl09ULHgPO7xWxMi5J-Fu8O98mc8TP6g0VjUtJJTl24R6f4fb4OizL89Y7DThSaVvLZNnkYXN5fpMwvSmAmDoKKKQlhYGLoyRgiF4NFkCTArUi0MVrpmCsdqkQIyAOuA2NdluNOKAN9F1zlEMY7pFVOStglNBdWKpWHyvZq5hkllJA27HNhkxw475BwgU1mPIs4LrN4yxbtYq8Z4pkhnlmDZ4ecfutMGw6NpafFAvLslyVkzskv0dv7p94xWU3vb2-ym-Hoep-s4ZOmx-yAtKr3Dzh0QUelj7xRfQH2hNVd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydride+growth+mechanism+in+zircaloy-4%3A+Investigation+of+the+partitioning+of+alloying+elements&rft.jtitle=Materialia&rft.au=Mouton%2C+Isabelle&rft.au=Chang%2C+Yanhong&rft.au=Chakraborty%2C+Poulami&rft.au=Wang%2C+Siyang&rft.date=2021-03-01&rft.issn=2589-1529&rft.eissn=2589-1529&rft.volume=15&rft.spage=101006&rft_id=info:doi/10.1016%2Fj.mtla.2021.101006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtla_2021_101006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-1529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-1529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-1529&client=summon