Hydride growth mechanism in zircaloy-4: Investigation of the partitioning of alloying elements
The long-term safety of water-based nuclear reactors relies in part on the reliability of zirconium-based nuclear fuel cladding. Yet the progressive ingress of hydrogen during service makes zirconium alloys subject to delayed hydride cracking. Here, we use a combination of electron back-scattered di...
Saved in:
Published in | Materialia Vol. 15; p. 101006 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The long-term safety of water-based nuclear reactors relies in part on the reliability of zirconium-based nuclear fuel cladding. Yet the progressive ingress of hydrogen during service makes zirconium alloys subject to delayed hydride cracking. Here, we use a combination of electron back-scattered diffraction and atom probe tomography to investigate specific microstructural features from the as-received sample and in the blocky-α microstructure, before and after electrochemical charging with hydrogen/deuterium followed by a low temperature heat treatment at 400 °C for 5 h followed by furnace cooling at a rate of 0.5 °C/min. Specimens for atom probe were prepared at cryogenic temperature to avoid the formation of spurious hydrides. We report on the compositional evolution of grains and grain boundaries over the course of the sample's thermal history, as well as the ways the growth of the hydrides modifies locally the composition and the structure of the alloy. We observe a significant amount of deuterium left in the matrix, even after the slow cooling and growth of the hydrides. Stacking faults form ahead of the growth front and the segregation of Sn at the hydride/matrix interface and on these faults. We propose that this segregation may facilitate further growth of the hydride. Our systematic investigation enables us discuss how the solute distribution affects the evolution of the alloy's properties during its service lifetime.
[Display omitted] |
---|---|
AbstractList | The long-term safety of water-based nuclear reactors relies in part on the reliability of zirconium-based nuclear fuel cladding. Yet the progressive ingress of hydrogen during service makes zirconium alloys subject to delayed hydride cracking. Here, we use a combination of electron back-scattered diffraction and atom probe tomography to investigate specific microstructural features from the as-received sample and in the blocky-α microstructure, before and after electrochemical charging with hydrogen/deuterium followed by a low temperature heat treatment at 400 °C for 5 h followed by furnace cooling at a rate of 0.5 °C/min. Specimens for atom probe were prepared at cryogenic temperature to avoid the formation of spurious hydrides. We report on the compositional evolution of grains and grain boundaries over the course of the sample's thermal history, as well as the ways the growth of the hydrides modifies locally the composition and the structure of the alloy. We observe a significant amount of deuterium left in the matrix, even after the slow cooling and growth of the hydrides. Stacking faults form ahead of the growth front and the segregation of Sn at the hydride/matrix interface and on these faults. We propose that this segregation may facilitate further growth of the hydride. Our systematic investigation enables us discuss how the solute distribution affects the evolution of the alloy's properties during its service lifetime.
[Display omitted] |
ArticleNumber | 101006 |
Author | Chang, Yanhong Chakraborty, Poulami Wang, Siyang Ben Britton, T. Gault, Baptiste Mouton, Isabelle Stephenson, Leigh T. |
Author_xml | – sequence: 1 givenname: Isabelle orcidid: 0000-0002-2202-4033 surname: Mouton fullname: Mouton, Isabelle email: isabelle.mouton42@gmail.com organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany – sequence: 2 givenname: Yanhong orcidid: 0000-0003-3950-441X surname: Chang fullname: Chang, Yanhong organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany – sequence: 3 givenname: Poulami surname: Chakraborty fullname: Chakraborty, Poulami organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany – sequence: 4 givenname: Siyang orcidid: 0000-0002-2753-1464 surname: Wang fullname: Wang, Siyang organization: Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, UK – sequence: 5 givenname: Leigh T. orcidid: 0000-0002-7852-2509 surname: Stephenson fullname: Stephenson, Leigh T. organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany – sequence: 6 givenname: T. surname: Ben Britton fullname: Ben Britton, T. organization: Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, UK – sequence: 7 givenname: Baptiste orcidid: 0000-0002-4934-0458 surname: Gault fullname: Gault, Baptiste email: b.gault@mpie.de organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany |
BookMark | eNp9kEFLw0AQhRepYK39A572D6TOJpukES9S1BYKXvTqstlM2inJpuwulfrrTawH8dDTPB7vG2beNRvZziJjtwJmAkR2t5u1odGzGGIxGADZBRvH6byIRBoXoz_6ik293wH0SSnlXI7Zx_JYOaqQb1z3Gba8RbPVlnzLyfIvckY33TGS93xlD-gDbXSgzvKu5mGLfK9doMEguxk83fTpQWODLdrgb9hlrRuP0985Ye_PT2-LZbR-fVktHteRSQBCpDMUYBKcZwnGkMoY8xxllealMaUuE6lLofM0xRpkCaaSRdEntMEC0qJGkUzY_LTXuM57h7UyFH5ODU5TowSooSq1U0NVaqhKnarq0fgfunfUanc8Dz2cIOyfOhA65Q2hNViRQxNU1dE5_Btl-4Zm |
CitedBy_id | crossref_primary_10_1016_j_jnucmat_2024_155343 crossref_primary_10_1016_j_scriptamat_2023_115771 crossref_primary_10_1039_D1TA10050E crossref_primary_10_1093_micmic_ozad020 crossref_primary_10_1016_j_jallcom_2022_164274 crossref_primary_10_1038_s43586_021_00047_w crossref_primary_10_1016_j_jnucmat_2022_153952 crossref_primary_10_1016_j_jnucmat_2024_155116 crossref_primary_10_1093_micmic_ozac005 crossref_primary_10_1093_micmic_ozad029 crossref_primary_10_1016_j_jnucmat_2023_154444 crossref_primary_10_1021_acs_jpcc_4c08027 crossref_primary_10_1093_mam_ozae081 crossref_primary_10_1021_acs_jpcc_2c03661 crossref_primary_10_1103_PhysRevMaterials_8_033605 crossref_primary_10_1088_1367_2630_ac40cd crossref_primary_10_1016_j_cossms_2022_101020 crossref_primary_10_1002_adem_202400776 crossref_primary_10_1016_j_commatsci_2022_111220 crossref_primary_10_1007_s10853_024_10346_8 |
Cites_doi | 10.1016/j.actamat.2003.11.031 10.1016/j.jnucmat.2019.02.042 10.1016/j.actamat.2011.07.054 10.1016/0925-8388(93)90643-2 10.1016/j.scriptamat.2018.06.044 10.1080/18811248.2007.9711563 10.1016/j.actamat.2018.02.064 10.1103/PhysRevLett.112.126103 10.1007/s11085-008-9113-2 10.1016/j.ultramic.2006.06.008 10.1016/j.actamat.2017.03.002 10.1179/imr.1983.28.1.92 10.1016/0022-3115(90)90406-D 10.1016/j.jnucmat.2016.10.020 10.1007/BF02843318 10.1080/14786435.2010.543651 10.1007/s11041-006-0060-8 10.1016/j.matlet.2012.09.059 10.1016/0022-3115(78)90509-3 10.1520/STP37515S 10.1371/journal.pone.0209211 10.1016/0001-6160(78)90006-8 10.1016/j.jnucmat.2012.01.016 10.1021/nn305029b 10.1016/j.jnucmat.2015.07.014 10.1016/j.corsci.2017.09.014 10.1103/PhysRevB.31.5604 10.1016/j.jnucmat.2010.06.005 10.1038/s41467-019-08752-7 10.1016/0022-3115(67)90047-5 10.1016/j.actamat.2016.05.025 10.1016/j.jnucmat.2013.08.055 10.1016/j.jallcom.2015.11.031 10.1016/0022-5088(84)90254-6 10.1016/0022-3115(73)90023-8 10.1088/1367-2630/ab1c3b |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mtla.2021.101006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-1529 |
ExternalDocumentID | 10_1016_j_mtla_2021_101006 S2589152921000090 |
GroupedDBID | AABXZ AACTN AAEDW AAIAV AAKOC AALRI AAXUO ABMAC ACDAQ ACRLP AEBSH AEZYN AFKWA AFRZQ AFTJW AGUBO AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BKOJK EBS EFJIC EFLBG EJD FDB FYGXN M41 ROL SPC SPCBC SSM SSZ T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-a6e10c3e863e20542e77e4d57bccbab34ab1a755ef04b0cd499e77ace9059fe13 |
IEDL.DBID | AIKHN |
ISSN | 2589-1529 |
IngestDate | Tue Jul 01 02:13:39 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Fri Feb 23 02:39:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Zirconium alloy Zirconium hydride Atom probe tomography |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-a6e10c3e863e20542e77e4d57bccbab34ab1a755ef04b0cd499e77ace9059fe13 |
ORCID | 0000-0002-4934-0458 0000-0002-2202-4033 0000-0002-2753-1464 0000-0003-3950-441X 0000-0002-7852-2509 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mtla_2021_101006 crossref_primary_10_1016_j_mtla_2021_101006 elsevier_sciencedirect_doi_10_1016_j_mtla_2021_101006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Materialia |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dong, Motta, Marquis (bib0023) 2013; 442 S. Wang, F. Giuliani, T.B. Britton, Microstructure and formation mechanisms of {\delta}-hydrides in variable grain size Zircaloy-4 studied by electron backscatter diffraction, ArXiv:1811.12442 [Cond-Mat]. (2018). http://arxiv.org/abs/1811.12442 (accessed December 4, 2018). Chang, Mouton, Stephenson, Ashton, Zhang, Szczpaniak, Lu, Ponge, Raabe, Gault (bib0035) 2019; 21 Northwood, Kosasih (bib0004) 1983; 28 Szewc, Pizzagalli, Brochard, Clouet (bib0038) 2016; 114 Bowman, Craft, Cantrell, Venturini (bib0008) 1985; 31 Kim, Tao, Klie, Seidman (bib0034) 2013; 7 Kim, Kim, Yoon (bib0026) 2016; 482 Gault, Felfer, Ivermark, Bergqvist, Cairney, Ringer (bib0024) 2013; 91 Breen, Mouton, Lu, Wang, Szczepaniak, Kontis, Stephenson, Chang, da Silva, Liebscher, Raabe, Britton, Herbig, Gault (bib0030) 2018; 156 Carpenter (bib0041) 1978; 26 Niedźwiedź, Nowak, żogał (bib0009) 1993; 194 Lemaignan, Motta (bib0001) 2006 Qin, Kiran Kumar, Szpunar, Kozinski (bib0020) 2011; 59 Zhong, Macdonald (bib0011) 2012; 423 Howe (bib0016) 1961 Borrelly, Merle, Adami (bib0005) 1990; 170 Carpenter, Watters, Gilbert (bib0037) 1973; 48 Kearns (bib0015) 1967; 22 Zuzek, Abriata, San-Martin, Manchester (bib0010) 1990; 11 R. Birch, S. Wang, V. Tong, T.B. Britton, The effect of cooling rate and grain size on hydride formation in Zircaloy-4, ArXiv:1807.11927 [Cond-Mat]. (2018). http://arxiv.org/abs/1807.11927 (accessed October 10, 2018). Thompson, Lawrence, Larson, Olson, Kelly, Gorman (bib0027) 2007; 107 Bair, Asle Zaeem, Tonks (bib0003) 2015; 466 Annand, Nord, MacLaren, Gass (bib0040) 2017; 128 Chang, Breen, Tarzimoghadam, Kürnsteiner, Gardner, Ackerman, Radecka, Bagot, Lu, Li, Jägle, Herbig, Stephenson, Moody, Rugg, Dye, Ponge, Raabe, Gault (bib0029) 2018; 150 Motta, Capolungo, Chen, Cinbiz, Daymond, Koss, Lacroix, Pastore, Simon, Tonks, Wirth, Zikry (bib0014) 2019; 518 Shmakov, Yan, Eadie (bib0021) 2006; 48 Shinohara, Abe, Iwai, Sekimura, Kido, Yamamoto, Taguchi (bib0042) 2009; 46 K. Kakiuchi, N. Itagaki, T. Furuya, A. Miyazaki, Y. Ishii, S. Suzuki, T. Terai, M. Yamawaki, P. Barberis, K. Kapoor, Y.S. Kim, A. Motta, B. Cox, L. Hallstadius, N. Ramasubramanian, Role of iron for hydrogen absorption mechanism in zirconium alloys, in: 2005: pp. 349–366. Stephenson, Szczepaniak, Mouton, Rusitzka, Breen, Tezins, Sturm, Vogel, Chang, Kontis, Rosenthal, Shepard, Maier, Kelly, Raabe, Gault (bib0033) 2018; 13 Grosse, Steinbrueck, Lehmann, Vontobel (bib0002) 2008; 70 Tong, Britton (bib0017) 2017; 129 Herbig, Raabe, Li, Choi, Zaefferer, Goto (bib0036) 2014; 112 Switendick (bib0007) 1984; 103 Shen, Zu, Chen, Huang, Sun (bib0028) 2016; 659 Marshall, Louthan (bib0012) 1962 Northwood, Gilbert (bib0013) 1978; 78 Kiran Kumar, Szpunar, He (bib0019) 2010; 403 Udagawa, Yamaguchi, Tsuru, Abe, Sekimura (bib0043) 2011; 91 Chang, Lu, Guénolé, Stephenson, Szczpaniak, Kontis, Ackerman, Dear, Mouton, Zhong, Zhang, Dye, Liebscher, Ponge, Korte-Kerzel, Raabe, Gault (bib0032) 2019; 10 Moan, Rudling (bib0039) 2002 Domain, Besson, Legris (bib0044) 2004; 52 McMinn, Darby, Schofield (bib0006) 2000 I. Mouton, A.J. Breen, S. Wang, Y. Chang, A. Szczepaniak, P. Kontis, L.T. Stephenson, D. Raabe, M. Herbig, T.B. Britton, B. Gault, Quantification challenges for atom probe tomography of hydrogen and deuterium in zircaloy-4, Microsc. Microanal. (undefined/ed) 1–8. 10.1017/S143192761801615X. Chang (10.1016/j.mtla.2021.101006_bib0029) 2018; 150 Zhong (10.1016/j.mtla.2021.101006_bib0011) 2012; 423 10.1016/j.mtla.2021.101006_bib0018 Kiran Kumar (10.1016/j.mtla.2021.101006_bib0019) 2010; 403 Marshall (10.1016/j.mtla.2021.101006_bib0012) 1962 Kim (10.1016/j.mtla.2021.101006_bib0026) 2016; 482 Kim (10.1016/j.mtla.2021.101006_bib0034) 2013; 7 Niedźwiedź (10.1016/j.mtla.2021.101006_bib0009) 1993; 194 Bair (10.1016/j.mtla.2021.101006_bib0003) 2015; 466 Kearns (10.1016/j.mtla.2021.101006_bib0015) 1967; 22 Borrelly (10.1016/j.mtla.2021.101006_bib0005) 1990; 170 Breen (10.1016/j.mtla.2021.101006_bib0030) 2018; 156 Herbig (10.1016/j.mtla.2021.101006_bib0036) 2014; 112 Northwood (10.1016/j.mtla.2021.101006_bib0004) 1983; 28 Moan (10.1016/j.mtla.2021.101006_bib0039) 2002 Shinohara (10.1016/j.mtla.2021.101006_bib0042) 2009; 46 Northwood (10.1016/j.mtla.2021.101006_bib0013) 1978; 78 Dong (10.1016/j.mtla.2021.101006_bib0023) 2013; 442 Annand (10.1016/j.mtla.2021.101006_bib0040) 2017; 128 10.1016/j.mtla.2021.101006_bib0022 Shen (10.1016/j.mtla.2021.101006_bib0028) 2016; 659 Chang (10.1016/j.mtla.2021.101006_bib0035) 2019; 21 Lemaignan (10.1016/j.mtla.2021.101006_bib0001) 2006 Domain (10.1016/j.mtla.2021.101006_bib0044) 2004; 52 Stephenson (10.1016/j.mtla.2021.101006_bib0033) 2018; 13 Bowman (10.1016/j.mtla.2021.101006_bib0008) 1985; 31 Gault (10.1016/j.mtla.2021.101006_bib0024) 2013; 91 Zuzek (10.1016/j.mtla.2021.101006_bib0010) 1990; 11 Motta (10.1016/j.mtla.2021.101006_bib0014) 2019; 518 10.1016/j.mtla.2021.101006_bib0025 McMinn (10.1016/j.mtla.2021.101006_bib0006) 2000 Grosse (10.1016/j.mtla.2021.101006_bib0002) 2008; 70 Chang (10.1016/j.mtla.2021.101006_bib0032) 2019; 10 Szewc (10.1016/j.mtla.2021.101006_bib0038) 2016; 114 Thompson (10.1016/j.mtla.2021.101006_bib0027) 2007; 107 Carpenter (10.1016/j.mtla.2021.101006_bib0041) 1978; 26 Tong (10.1016/j.mtla.2021.101006_bib0017) 2017; 129 Udagawa (10.1016/j.mtla.2021.101006_bib0043) 2011; 91 Switendick (10.1016/j.mtla.2021.101006_bib0007) 1984; 103 Carpenter (10.1016/j.mtla.2021.101006_bib0037) 1973; 48 10.1016/j.mtla.2021.101006_bib0031 Qin (10.1016/j.mtla.2021.101006_bib0020) 2011; 59 Shmakov (10.1016/j.mtla.2021.101006_bib0021) 2006; 48 Howe (10.1016/j.mtla.2021.101006_bib0016) 1961 |
References_xml | – volume: 22 start-page: 292 year: 1967 end-page: 303 ident: bib0015 article-title: Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, zircaloy-2 and zircaloy-4 publication-title: J. Nucl. Mater. – volume: 46 start-page: 564 year: 2009 end-page: 571 ident: bib0042 article-title: In situ TEM observation of growth process of zirconium hydride in zircaloy-4 during hydrogen ion implantation publication-title: J. Nucl. Sci. Technol. – volume: 659 start-page: 23 year: 2016 end-page: 30 ident: bib0028 article-title: Direct observation of hydrogenation and dehydrogenation of a zirconium alloy publication-title: J. Alloys Compd. – volume: 114 start-page: 126 year: 2016 end-page: 135 ident: bib0038 article-title: Onset of plasticity in zirconium in relation with hydrides precipitation publication-title: Acta Mater. – volume: 7 start-page: 732 year: 2013 end-page: 739 ident: bib0034 article-title: Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy publication-title: ACS Nano – volume: 13 year: 2018 ident: bib0033 article-title: The Laplace project: an integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions publication-title: PLoS One – volume: 170 start-page: 147 year: 1990 end-page: 156 ident: bib0005 article-title: Study of the solubility of iron in zirconium by thermoelectric power measurements publication-title: J. Nucl. Mater. – volume: 423 start-page: 87 year: 2012 end-page: 92 ident: bib0011 article-title: Thermodynamics of the Zr–H binary system related to nuclear fuel sheathing and pressure tube hydriding publication-title: J. Nucl. Mater. – reference: K. Kakiuchi, N. Itagaki, T. Furuya, A. Miyazaki, Y. Ishii, S. Suzuki, T. Terai, M. Yamawaki, P. Barberis, K. Kapoor, Y.S. Kim, A. Motta, B. Cox, L. Hallstadius, N. Ramasubramanian, Role of iron for hydrogen absorption mechanism in zirconium alloys, in: 2005: pp. 349–366. – year: 1961 ident: bib0016 article-title: THE Effect of Neutron Irradiation, Hydride Precipitate and Hydride Layers on the Impact Properties of Zircaloy-2 – volume: 518 start-page: 440 year: 2019 end-page: 460 ident: bib0014 article-title: Hydrogen in zirconium alloys: a review publication-title: J. Nucl. Mater. – volume: 59 start-page: 7010 year: 2011 end-page: 7021 ident: bib0020 article-title: Intergranular δ-hydride nucleation and orientation in zirconium alloys publication-title: Acta Mater. – reference: I. Mouton, A.J. Breen, S. Wang, Y. Chang, A. Szczepaniak, P. Kontis, L.T. Stephenson, D. Raabe, M. Herbig, T.B. Britton, B. Gault, Quantification challenges for atom probe tomography of hydrogen and deuterium in zircaloy-4, Microsc. Microanal. (undefined/ed) 1–8. 10.1017/S143192761801615X. – volume: 31 start-page: 5604 year: 1985 end-page: 5615 ident: bib0008 article-title: Effects of thermal treatments on the lattice properties and electronic structure of ${\mathrm{ZrH}}_{\mathrm{x}}$ publication-title: Phys. Rev. B – volume: 482 start-page: 88 year: 2016 end-page: 92 ident: bib0026 article-title: Hydride formation on deformation twin in zirconium alloy publication-title: J. Nucl. Mater. – volume: 52 start-page: 1495 year: 2004 end-page: 1502 ident: bib0044 article-title: Atomic-scale ab initio study of the Zr–H system: II. Interaction of H with plane defects and mechanical properties publication-title: Acta Mater. – year: 2000 ident: bib0006 article-title: The terminal solid solubility of hydrogen in zirconium alloys publication-title: Zirconium in the Nuclear Industry: Twelfth International Symposium – volume: 48 start-page: 146 year: 2006 end-page: 149 ident: bib0021 article-title: A theoretical and experimental study of hydrides in zirconium alloys publication-title: Met. Sci. Heat Treat. – volume: 150 start-page: 273 year: 2018 end-page: 280 ident: bib0029 article-title: Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale publication-title: Acta Mater. – reference: S. Wang, F. Giuliani, T.B. Britton, Microstructure and formation mechanisms of {\delta}-hydrides in variable grain size Zircaloy-4 studied by electron backscatter diffraction, ArXiv:1811.12442 [Cond-Mat]. (2018). http://arxiv.org/abs/1811.12442 (accessed December 4, 2018). – volume: 107 start-page: 131 year: 2007 end-page: 139 ident: bib0027 article-title: In situ site-specific specimen preparation for atom probe tomography publication-title: Ultramicroscopy – volume: 403 start-page: 101 year: 2010 end-page: 107 ident: bib0019 article-title: Preferential precipitation of hydrides in textured zircaloy-4 sheets publication-title: J. Nucl. Mater. – volume: 48 start-page: 267 year: 1973 end-page: 276 ident: bib0037 article-title: Dislocations generated by zirconium hydride precipitates in zirconium and some of its alloys publication-title: J. Nucl. Mater. – volume: 128 start-page: 213 year: 2017 end-page: 223 ident: bib0040 article-title: The corrosion of Zr(Fe, Cr)2 and Zr2Fe secondary phase particles in Zircaloy-4 under 350°C pressurised water conditions publication-title: Corros. Sci. – year: 2006 ident: bib0001 article-title: Zirconium alloys in nuclear applications publication-title: Materials Science and Technology – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: bib0032 article-title: Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials publication-title: Nat. Commun. – year: 1962 ident: bib0012 article-title: Tensile Properties Zircaloy with Oriented Hydrides – volume: 129 start-page: 510 year: 2017 end-page: 520 ident: bib0017 article-title: Formation of very large ‘blocky alpha’ grains in Zircaloy-4 publication-title: Acta Mater. – volume: 28 start-page: 92 year: 1983 end-page: 121 ident: bib0004 article-title: Hydrides and delayed hydrogen cracking in zirconium and its alloys publication-title: Int. Met. Rev. – volume: 11 start-page: 385 year: 1990 end-page: 395 ident: bib0010 article-title: The H-Zr (hydrogen-zirconium) system publication-title: Bull. Alloy Phase Diagr. – volume: 442 start-page: 270 year: 2013 end-page: 281 ident: bib0023 article-title: Atom probe tomography study of alloying element distributions in Zr alloys and their oxides publication-title: J. Nucl. Mater. – volume: 103 start-page: 309 year: 1984 end-page: 315 ident: bib0007 article-title: Electronic structure of γ phase zirconium hydride publication-title: J. Less Common Met. – volume: 194 start-page: 47 year: 1993 end-page: 51 ident: bib0009 article-title: 91Zr NMR in non-stoichiometric zirconium hydrides, ZrHx (1.55 x 2) publication-title: J. Alloys Compd. – reference: R. Birch, S. Wang, V. Tong, T.B. Britton, The effect of cooling rate and grain size on hydride formation in Zircaloy-4, ArXiv:1807.11927 [Cond-Mat]. (2018). http://arxiv.org/abs/1807.11927 (accessed October 10, 2018). – volume: 156 start-page: 42 year: 2018 end-page: 46 ident: bib0030 article-title: Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4 publication-title: Scr. Mater. – volume: 112 year: 2014 ident: bib0036 article-title: Atomic-scale quantification of grain boundary segregation in nanocrystalline material publication-title: Phys. Rev. Lett. – volume: 26 start-page: 1225 year: 1978 end-page: 1235 ident: bib0041 article-title: The precipitation of γ-zirconium hydride in zirconium publication-title: Acta Metallur. – volume: 70 start-page: 149 year: 2008 end-page: 162 ident: bib0002 article-title: Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation publication-title: Oxid. Met. – volume: 466 start-page: 12 year: 2015 end-page: 20 ident: bib0003 article-title: A review on hydride precipitation in zirconium alloys publication-title: J. Nucl. Mater. – volume: 21 year: 2019 ident: bib0035 article-title: Quantification of solute deuterium in titanium deuteride by atom probe tomography with both laser pulsing and high-voltage pulsing: influence of the surface electric field publication-title: N. J. Phys. – year: 2002 ident: bib0039 article-title: Zirconium in the Nuclear Industry: Thirteenth International Symposium – volume: 91 start-page: 1665 year: 2011 end-page: 1678 ident: bib0043 article-title: Effect of Sn and Nb on generalized stacking fault energy surfaces in zirconium and gamma hydride habit planes publication-title: Philosop. Mag. – volume: 78 start-page: 112 year: 1978 end-page: 116 ident: bib0013 article-title: Hydrides in zirconium-2.5wt.% niobium alloy pressure tubing publication-title: J. Nucl. Mater. – volume: 91 start-page: 63 year: 2013 end-page: 66 ident: bib0024 article-title: Atom probe microscopy characterization of as quenched Zr–0.8wt% Fe and Zr–0.15wt% Cr binary alloys publication-title: Mater. Lett. – ident: 10.1016/j.mtla.2021.101006_bib0018 – volume: 52 start-page: 1495 year: 2004 ident: 10.1016/j.mtla.2021.101006_bib0044 article-title: Atomic-scale ab initio study of the Zr–H system: II. Interaction of H with plane defects and mechanical properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.11.031 – volume: 518 start-page: 440 year: 2019 ident: 10.1016/j.mtla.2021.101006_bib0014 article-title: Hydrogen in zirconium alloys: a review publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2019.02.042 – volume: 59 start-page: 7010 year: 2011 ident: 10.1016/j.mtla.2021.101006_bib0020 article-title: Intergranular δ-hydride nucleation and orientation in zirconium alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.07.054 – volume: 194 start-page: 47 year: 1993 ident: 10.1016/j.mtla.2021.101006_bib0009 article-title: 91Zr NMR in non-stoichiometric zirconium hydrides, ZrHx (1.55 x 2) publication-title: J. Alloys Compd. doi: 10.1016/0925-8388(93)90643-2 – volume: 156 start-page: 42 year: 2018 ident: 10.1016/j.mtla.2021.101006_bib0030 article-title: Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.06.044 – year: 1962 ident: 10.1016/j.mtla.2021.101006_bib0012 – volume: 46 start-page: 564 year: 2009 ident: 10.1016/j.mtla.2021.101006_bib0042 article-title: In situ TEM observation of growth process of zirconium hydride in zircaloy-4 during hydrogen ion implantation publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2007.9711563 – volume: 150 start-page: 273 year: 2018 ident: 10.1016/j.mtla.2021.101006_bib0029 article-title: Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.02.064 – year: 2006 ident: 10.1016/j.mtla.2021.101006_bib0001 article-title: Zirconium alloys in nuclear applications – volume: 112 year: 2014 ident: 10.1016/j.mtla.2021.101006_bib0036 article-title: Atomic-scale quantification of grain boundary segregation in nanocrystalline material publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.126103 – volume: 70 start-page: 149 year: 2008 ident: 10.1016/j.mtla.2021.101006_bib0002 article-title: Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation publication-title: Oxid. Met. doi: 10.1007/s11085-008-9113-2 – year: 2000 ident: 10.1016/j.mtla.2021.101006_bib0006 article-title: The terminal solid solubility of hydrogen in zirconium alloys – volume: 107 start-page: 131 year: 2007 ident: 10.1016/j.mtla.2021.101006_bib0027 article-title: In situ site-specific specimen preparation for atom probe tomography publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2006.06.008 – ident: 10.1016/j.mtla.2021.101006_bib0031 – volume: 129 start-page: 510 year: 2017 ident: 10.1016/j.mtla.2021.101006_bib0017 article-title: Formation of very large ‘blocky alpha’ grains in Zircaloy-4 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.03.002 – volume: 28 start-page: 92 year: 1983 ident: 10.1016/j.mtla.2021.101006_bib0004 article-title: Hydrides and delayed hydrogen cracking in zirconium and its alloys publication-title: Int. Met. Rev. doi: 10.1179/imr.1983.28.1.92 – volume: 170 start-page: 147 year: 1990 ident: 10.1016/j.mtla.2021.101006_bib0005 article-title: Study of the solubility of iron in zirconium by thermoelectric power measurements publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(90)90406-D – volume: 482 start-page: 88 year: 2016 ident: 10.1016/j.mtla.2021.101006_bib0026 article-title: Hydride formation on deformation twin in zirconium alloy publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2016.10.020 – volume: 11 start-page: 385 year: 1990 ident: 10.1016/j.mtla.2021.101006_bib0010 article-title: The H-Zr (hydrogen-zirconium) system publication-title: Bull. Alloy Phase Diagr. doi: 10.1007/BF02843318 – volume: 91 start-page: 1665 year: 2011 ident: 10.1016/j.mtla.2021.101006_bib0043 article-title: Effect of Sn and Nb on generalized stacking fault energy surfaces in zirconium and gamma hydride habit planes publication-title: Philosop. Mag. doi: 10.1080/14786435.2010.543651 – volume: 48 start-page: 146 year: 2006 ident: 10.1016/j.mtla.2021.101006_bib0021 article-title: A theoretical and experimental study of hydrides in zirconium alloys publication-title: Met. Sci. Heat Treat. doi: 10.1007/s11041-006-0060-8 – volume: 91 start-page: 63 year: 2013 ident: 10.1016/j.mtla.2021.101006_bib0024 article-title: Atom probe microscopy characterization of as quenched Zr–0.8wt% Fe and Zr–0.15wt% Cr binary alloys publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.09.059 – volume: 78 start-page: 112 year: 1978 ident: 10.1016/j.mtla.2021.101006_bib0013 article-title: Hydrides in zirconium-2.5wt.% niobium alloy pressure tubing publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(78)90509-3 – ident: 10.1016/j.mtla.2021.101006_bib0025 doi: 10.1520/STP37515S – volume: 13 year: 2018 ident: 10.1016/j.mtla.2021.101006_bib0033 article-title: The Laplace project: an integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions publication-title: PLoS One doi: 10.1371/journal.pone.0209211 – volume: 26 start-page: 1225 year: 1978 ident: 10.1016/j.mtla.2021.101006_bib0041 article-title: The precipitation of γ-zirconium hydride in zirconium publication-title: Acta Metallur. doi: 10.1016/0001-6160(78)90006-8 – volume: 423 start-page: 87 year: 2012 ident: 10.1016/j.mtla.2021.101006_bib0011 article-title: Thermodynamics of the Zr–H binary system related to nuclear fuel sheathing and pressure tube hydriding publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2012.01.016 – ident: 10.1016/j.mtla.2021.101006_bib0022 – year: 2002 ident: 10.1016/j.mtla.2021.101006_bib0039 – year: 1961 ident: 10.1016/j.mtla.2021.101006_bib0016 – volume: 7 start-page: 732 year: 2013 ident: 10.1016/j.mtla.2021.101006_bib0034 article-title: Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy publication-title: ACS Nano doi: 10.1021/nn305029b – volume: 466 start-page: 12 year: 2015 ident: 10.1016/j.mtla.2021.101006_bib0003 article-title: A review on hydride precipitation in zirconium alloys publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.07.014 – volume: 128 start-page: 213 year: 2017 ident: 10.1016/j.mtla.2021.101006_bib0040 article-title: The corrosion of Zr(Fe, Cr)2 and Zr2Fe secondary phase particles in Zircaloy-4 under 350°C pressurised water conditions publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.09.014 – volume: 31 start-page: 5604 year: 1985 ident: 10.1016/j.mtla.2021.101006_bib0008 article-title: Effects of thermal treatments on the lattice properties and electronic structure of ${\mathrm{ZrH}}_{\mathrm{x}}$ publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.31.5604 – volume: 403 start-page: 101 year: 2010 ident: 10.1016/j.mtla.2021.101006_bib0019 article-title: Preferential precipitation of hydrides in textured zircaloy-4 sheets publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2010.06.005 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.mtla.2021.101006_bib0032 article-title: Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials publication-title: Nat. Commun. doi: 10.1038/s41467-019-08752-7 – volume: 22 start-page: 292 year: 1967 ident: 10.1016/j.mtla.2021.101006_bib0015 article-title: Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, zircaloy-2 and zircaloy-4 publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(67)90047-5 – volume: 114 start-page: 126 year: 2016 ident: 10.1016/j.mtla.2021.101006_bib0038 article-title: Onset of plasticity in zirconium in relation with hydrides precipitation publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.025 – volume: 442 start-page: 270 year: 2013 ident: 10.1016/j.mtla.2021.101006_bib0023 article-title: Atom probe tomography study of alloying element distributions in Zr alloys and their oxides publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2013.08.055 – volume: 659 start-page: 23 year: 2016 ident: 10.1016/j.mtla.2021.101006_bib0028 article-title: Direct observation of hydrogenation and dehydrogenation of a zirconium alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.11.031 – volume: 103 start-page: 309 year: 1984 ident: 10.1016/j.mtla.2021.101006_bib0007 article-title: Electronic structure of γ phase zirconium hydride publication-title: J. Less Common Met. doi: 10.1016/0022-5088(84)90254-6 – volume: 48 start-page: 267 year: 1973 ident: 10.1016/j.mtla.2021.101006_bib0037 article-title: Dislocations generated by zirconium hydride precipitates in zirconium and some of its alloys publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(73)90023-8 – volume: 21 year: 2019 ident: 10.1016/j.mtla.2021.101006_bib0035 article-title: Quantification of solute deuterium in titanium deuteride by atom probe tomography with both laser pulsing and high-voltage pulsing: influence of the surface electric field publication-title: N. J. Phys. doi: 10.1088/1367-2630/ab1c3b |
SSID | ssj0002144484 |
Score | 2.3326495 |
Snippet | The long-term safety of water-based nuclear reactors relies in part on the reliability of zirconium-based nuclear fuel cladding. Yet the progressive ingress of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101006 |
SubjectTerms | Atom probe tomography Zirconium alloy Zirconium hydride |
Title | Hydride growth mechanism in zircaloy-4: Investigation of the partitioning of alloying elements |
URI | https://dx.doi.org/10.1016/j.mtla.2021.101006 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke_Eiior1xR68ydI8dpPGWymWqNCLFnoy7G4mGmnT0sZD_fXuJJtSQXrwmGEHko9lXpn5hpBbZdIImWYhU9L1GQ-CPlMB-MzJINXSD0HpqttiHMQT_jQV0xYZNrMw2FZpbX9t0ytrbSU9i2Zvmee9Fw8X4gkv8qoSdWTy9o5nvKvTJp3B43M83pZakBWMV7uHUYWhjh2fqTu95uUMGYg8FwUO7j76y0XtuJ3RETm08SId1K90TFpQnJC3eINb0YG-myS6_KBzwPndfD2neUG_85XBfbFh_J7usGgsCrrIqAn36BK_z9ZhUYa_3nHYiULdSr4-JZPRw-swZnZRAtO-45RMBuA62od-4INnYjAPwhB4KkKltZLK51K5MhQCMocrR6cmyzEnpIbIBFcZuP4ZaReLAs4JzUQaSJm5Mu1XzDNSSBGkbsRFGmbAeZe4DTaJtiziuMxiljTtYp8J4pkgnkmNZ5fcbXWWNYfG3tOigTz5dRMSY-T36F38U--SHOBT3Vd2Rdrl6guuTaBRqht7kX4A7L7Sbg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QdoALAgFiPHPghqL1kaQbN4SYOh67ABInqjxcKGLdxMph_HriNkMgoR24urHUfrIc27U_E3KiXRqhbJ4wrcKYcSl7TEuIWZCDNSpOQJu622Ik0wd-9SgeV8jFYhYG2yq97298eu2tvaTr0exOi6J7F-FCPBH1o7pE3Xd5exvZqZyZt8-H1-nou9SCrGC83j2MKgx1_PhM0-k1rt6QgSgKURDg7qO_rqgf185gg6z7eJGeN6-0SVag3CJP6Ry3ogN9dkl09ULHgPO7xWxMi5J-Fu8O98mc8TP6g0VjUtJJTl24R6f4fb4OizL89Y7DThSaVvLZNnkYXN5fpMwvSmAmDoKKKQlhYGLoyRgiF4NFkCTArUi0MVrpmCsdqkQIyAOuA2NdluNOKAN9F1zlEMY7pFVOStglNBdWKpWHyvZq5hkllJA27HNhkxw475BwgU1mPIs4LrN4yxbtYq8Z4pkhnlmDZ4ecfutMGw6NpafFAvLslyVkzskv0dv7p94xWU3vb2-ym-Hoep-s4ZOmx-yAtKr3Dzh0QUelj7xRfQH2hNVd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydride+growth+mechanism+in+zircaloy-4%3A+Investigation+of+the+partitioning+of+alloying+elements&rft.jtitle=Materialia&rft.au=Mouton%2C+Isabelle&rft.au=Chang%2C+Yanhong&rft.au=Chakraborty%2C+Poulami&rft.au=Wang%2C+Siyang&rft.date=2021-03-01&rft.issn=2589-1529&rft.eissn=2589-1529&rft.volume=15&rft.spage=101006&rft_id=info:doi/10.1016%2Fj.mtla.2021.101006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtla_2021_101006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-1529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-1529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-1529&client=summon |