Optimal path planning approach based on Q-learning algorithm for mobile robots
In fact, optimizing path within short computation time still remains a major challenge for mobile robotics applications. In path planning and obstacles avoidance, Q-Learning (QL) algorithm has been widely used as a computational method of learning through environment interaction. However, less empha...
Saved in:
Published in | Applied soft computing Vol. 97; p. 106796 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2020.106796 |
Cover
Loading…
Abstract | In fact, optimizing path within short computation time still remains a major challenge for mobile robotics applications. In path planning and obstacles avoidance, Q-Learning (QL) algorithm has been widely used as a computational method of learning through environment interaction. However, less emphasis is placed on path optimization using QL because of its slow and weak convergence toward optimal solutions. Therefore, this paper proposes an Efficient Q-Learning (EQL) algorithm to overcome these limitations and ensure an optimal collision-free path in less possible time. In the QL algorithm, successful learning is closely dependent on the design of an effective reward function and an efficient selection strategy for an optimal action that ensures exploration and exploitation. In this regard, a new reward function is proposed to initialize the Q-table and provide the robot with prior knowledge of the environment, followed by a new efficient selection strategy proposal to accelerate the learning process through search space reduction while ensuring a rapid convergence toward an optimized solution. The main idea is to intensify research at each learning stage, around the straight-line segment linking the current position of the robot to Target (optimal path in terms of length). During the learning process, the proposed strategy favors promising actions that not only lead to an optimized path but also accelerate the convergence of the learning process. The proposed EQL algorithm is first validated using benchmarks from the literature, followed by a comparison with other existing QL-based algorithms. The achieved results showed that the proposed EQL gained good learning proficiency; besides, the training performance is significantly improved compared to the state-of-the-art. Concluded, EQL improves the quality of the paths in terms of length, computation time and robot safety, furthermore outperforms other optimization algorithms.
•The mobile robot path optimization problem is handled and modeled.•An Efficient Q-Learning (EQL) algorithm is proposed.•In EQL, a new definition of states space and actions space is proposed.•New reward function is proposed to initialize Q-table.•Learning process is sped up by exploiting a new efficient selection strategy.•Results on benchmarks from literature demonstrate EQL efficiency and superiority. |
---|---|
AbstractList | In fact, optimizing path within short computation time still remains a major challenge for mobile robotics applications. In path planning and obstacles avoidance, Q-Learning (QL) algorithm has been widely used as a computational method of learning through environment interaction. However, less emphasis is placed on path optimization using QL because of its slow and weak convergence toward optimal solutions. Therefore, this paper proposes an Efficient Q-Learning (EQL) algorithm to overcome these limitations and ensure an optimal collision-free path in less possible time. In the QL algorithm, successful learning is closely dependent on the design of an effective reward function and an efficient selection strategy for an optimal action that ensures exploration and exploitation. In this regard, a new reward function is proposed to initialize the Q-table and provide the robot with prior knowledge of the environment, followed by a new efficient selection strategy proposal to accelerate the learning process through search space reduction while ensuring a rapid convergence toward an optimized solution. The main idea is to intensify research at each learning stage, around the straight-line segment linking the current position of the robot to Target (optimal path in terms of length). During the learning process, the proposed strategy favors promising actions that not only lead to an optimized path but also accelerate the convergence of the learning process. The proposed EQL algorithm is first validated using benchmarks from the literature, followed by a comparison with other existing QL-based algorithms. The achieved results showed that the proposed EQL gained good learning proficiency; besides, the training performance is significantly improved compared to the state-of-the-art. Concluded, EQL improves the quality of the paths in terms of length, computation time and robot safety, furthermore outperforms other optimization algorithms.
•The mobile robot path optimization problem is handled and modeled.•An Efficient Q-Learning (EQL) algorithm is proposed.•In EQL, a new definition of states space and actions space is proposed.•New reward function is proposed to initialize Q-table.•Learning process is sped up by exploiting a new efficient selection strategy.•Results on benchmarks from literature demonstrate EQL efficiency and superiority. |
ArticleNumber | 106796 |
Author | Hentout, Abdelfetah Maoudj, Abderraouf |
Author_xml | – sequence: 1 givenname: Abderraouf surname: Maoudj fullname: Maoudj, Abderraouf email: amaoudj@cdta.dz – sequence: 2 givenname: Abdelfetah surname: Hentout fullname: Hentout, Abdelfetah email: ahentout@cdta.dz |
BookMark | eNp9kE1LAzEQhoNUsFb_gKf8ga352uwGvEjxC4pF0HNIskmbsk2WJAj-e3dZTx56mmGGZ5j3uQaLEIMF4A6jNUaY3x_XKkezJohMA94IfgGWuG1IJXiLF2Nf87ZigvErcJ3zEY2QIO0SvO-G4k-qh4MqBzj0KgQf9lANQ4rKHKBW2XYwBvhR9ValednvY_LlcIIuJniK2vcWpqhjyTfg0qk-29u_ugJfz0-fm9dqu3t52zxuK0MRKpXiHRrfxEwjbJrpXcKwqrWmGNG6togIXFMjLHKO6tZZQZ0iojGMMSo0pitA5rsmxZyTdXJIY4z0IzGSkxF5lJMRORmRs5ERav9BxhdVfAwlKd-fRx9m1I6hvr1NMhtvg7GdT9YU2UV_Dv8FArl98A |
CitedBy_id | crossref_primary_10_1038_s41598_024_84821_2 crossref_primary_10_1109_ACCESS_2021_3053351 crossref_primary_10_1142_S0218126622501444 crossref_primary_10_3390_math13010050 crossref_primary_10_1109_ACCESS_2021_3123622 crossref_primary_10_34133_space_0086 crossref_primary_10_1016_j_eswa_2024_123539 crossref_primary_10_1016_j_engappai_2024_108821 crossref_primary_10_1109_TVT_2022_3223727 crossref_primary_10_1155_jece_3110053 crossref_primary_10_1016_j_entcom_2024_100829 crossref_primary_10_1002_aisy_202300783 crossref_primary_10_3390_biomimetics8060481 crossref_primary_10_54097_hset_v63i_10881 crossref_primary_10_54097_hset_v63i_10880 crossref_primary_10_1016_j_iswa_2025_200485 crossref_primary_10_1051_shsconf_202214402019 crossref_primary_10_1016_j_eswa_2024_125388 crossref_primary_10_3390_s22093579 crossref_primary_10_1109_ACCESS_2022_3197628 crossref_primary_10_3390_en16031512 crossref_primary_10_1016_j_dajour_2023_100314 crossref_primary_10_3390_jmse11050970 crossref_primary_10_1016_j_procir_2023_02_115 crossref_primary_10_28978_nesciences_1569561 crossref_primary_10_1016_j_eswa_2022_116875 crossref_primary_10_3390_sym13122417 crossref_primary_10_1109_ACCESS_2023_3265207 crossref_primary_10_1109_ACCESS_2023_3262450 crossref_primary_10_1109_ACCESS_2024_3457957 crossref_primary_10_1016_j_asoc_2022_109001 crossref_primary_10_2139_ssrn_4057871 crossref_primary_10_1142_S0218001424560123 crossref_primary_10_3390_s22155910 crossref_primary_10_1016_j_matcom_2022_01_010 crossref_primary_10_32604_cmc_2022_028165 crossref_primary_10_1002_oca_2781 crossref_primary_10_1007_s42979_024_02650_6 crossref_primary_10_1007_s40430_022_03399_w crossref_primary_10_3390_s23177510 crossref_primary_10_3390_s22062367 crossref_primary_10_3390_app14072765 crossref_primary_10_1007_s10489_024_06149_8 crossref_primary_10_1108_ACI_12_2023_0195 crossref_primary_10_1007_s42979_023_01876_0 crossref_primary_10_3390_aerospace9080417 crossref_primary_10_1016_j_compbiomed_2022_105560 crossref_primary_10_1016_j_jksuci_2024_102254 crossref_primary_10_3390_app11010285 crossref_primary_10_1016_j_isatra_2023_02_029 crossref_primary_10_3390_math12020339 crossref_primary_10_3390_ai5010003 crossref_primary_10_1007_s11128_025_04648_2 crossref_primary_10_1080_03155986_2023_2235223 crossref_primary_10_3390_s24175667 crossref_primary_10_1007_s00500_022_07300_8 crossref_primary_10_1016_j_cie_2023_109338 crossref_primary_10_3390_s21020642 crossref_primary_10_1109_TIV_2022_3153352 crossref_primary_10_1109_ACCESS_2023_3273164 crossref_primary_10_1109_ACCESS_2024_3463732 crossref_primary_10_1007_s10462_022_10257_7 crossref_primary_10_1088_1742_6596_2504_1_012003 crossref_primary_10_1016_j_asoc_2023_110543 crossref_primary_10_1109_ACCESS_2024_3507016 crossref_primary_10_1109_TTE_2022_3142150 crossref_primary_10_1049_itr2_12191 crossref_primary_10_1016_j_asoc_2022_109621 crossref_primary_10_1016_j_ins_2024_120996 crossref_primary_10_59277_ROMJIST_2024_1_02 crossref_primary_10_1155_2021_4294841 crossref_primary_10_3390_app14177654 |
Cites_doi | 10.5755/j01.itc.48.2.21390 10.1613/jair.2994 10.1016/j.asoc.2020.106076 10.1016/j.compeleceng.2014.12.014 10.1016/j.asoc.2019.01.036 10.1016/j.rcim.2010.06.019 10.1109/CVPR.2016.91 10.1016/j.asoc.2020.106099 10.1007/s13748-018-00168-6 10.1016/j.robot.2016.12.008 10.3233/JIFS-161822 10.1016/j.robot.2019.02.013 10.1016/j.engappai.2013.06.016 10.1109/CVPR.2017.690 10.1007/BF00992698 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106796 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106796 S1568494620307341 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-a6d010614b01c76796241a5bb310355e029153c9e0ff3b8fe93fa297c44439b13 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:00:43 EDT 2025 Tue Jul 01 01:50:07 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Path optimization Efficient Q-Learning Training performances Efficient selection strategy Convergence speed |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-a6d010614b01c76796241a5bb310355e029153c9e0ff3b8fe93fa297c44439b13 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2020_106796 crossref_citationtrail_10_1016_j_asoc_2020_106796 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Wang, He, Jaffrès-Runser, Xu, Li, Xu (b14) 2019 Luviano, Yu (b16) 2017; 33 Karami, Hasanzadeh (b8) 2015; 43 Ganapathy, Yun, Joe (b20) 2009 Watkins, Dayan (b18) 1992; 8 Wang, Li, Lin (b23) 2013; 26 J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. Maoudj, Bouzouia, Hentout, Kouider, Toumi (b1) 2016 Hentout, Maoudj, Bouzouia (b3) 2016 J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7263–7271. Dorigo, Stützle (b11) 2019 Cheng, Chao, Kuo (b13) 2019; 46 Low, Ong, Cheah (b15) 2019; 115 Daniel, Nash, Koenig, Felner (b7) 2010; 39 Bakdi, Hentout, Boutamai, Maoudj, Hachour, Bouzouia (b5) 2017; 89 Hentout, Maoudj, Guir, Saighi, Aures Harkat, Hammouche, Bakdi (b6) 2019; 19 Qu, Gai, Zhong, Zhang (b17) 2020; 89 Jaradat, Al-Rousan, Quadan (b19) 2011; 27 Qin, Sun, Li, Cen (b9) 2004 Brand, Masuda, Wehner, Yu (b12) 2010 Goswami, Das, Konar, Janarthanan (b25) 2010 Oh, Nakashima, Ishibuchi (b21) 1998 Simsek, Czylwik, Galindo-Serrano, Giupponi (b28) 2011 Ajeil, Ibraheem, Sahib, Humaidi (b4) 2020; 89 Orozco-Rosas, Montiel, Sepúlveda (b10) 2019; 77 Jiang, Xin (b22) 2019; 8 Das, Mandhata, Behera, Patro (b24) 2012; 51 Ayawli, Mei, Shen, Appiah, Kyeremeh (b2) 2019; 48 Luviano (10.1016/j.asoc.2020.106796_b16) 2017; 33 Simsek (10.1016/j.asoc.2020.106796_b28) 2011 Wang (10.1016/j.asoc.2020.106796_b23) 2013; 26 Ayawli (10.1016/j.asoc.2020.106796_b2) 2019; 48 Hentout (10.1016/j.asoc.2020.106796_b3) 2016 Ganapathy (10.1016/j.asoc.2020.106796_b20) 2009 Qu (10.1016/j.asoc.2020.106796_b17) 2020; 89 Watkins (10.1016/j.asoc.2020.106796_b18) 1992; 8 Oh (10.1016/j.asoc.2020.106796_b21) 1998 Karami (10.1016/j.asoc.2020.106796_b8) 2015; 43 10.1016/j.asoc.2020.106796_b26 10.1016/j.asoc.2020.106796_b27 Maoudj (10.1016/j.asoc.2020.106796_b1) 2016 Jaradat (10.1016/j.asoc.2020.106796_b19) 2011; 27 Orozco-Rosas (10.1016/j.asoc.2020.106796_b10) 2019; 77 Goswami (10.1016/j.asoc.2020.106796_b25) 2010 Das (10.1016/j.asoc.2020.106796_b24) 2012; 51 Hentout (10.1016/j.asoc.2020.106796_b6) 2019; 19 Brand (10.1016/j.asoc.2020.106796_b12) 2010 Jiang (10.1016/j.asoc.2020.106796_b22) 2019; 8 Bakdi (10.1016/j.asoc.2020.106796_b5) 2017; 89 Cheng (10.1016/j.asoc.2020.106796_b13) 2019; 46 Liu (10.1016/j.asoc.2020.106796_b14) 2019 Daniel (10.1016/j.asoc.2020.106796_b7) 2010; 39 Qin (10.1016/j.asoc.2020.106796_b9) 2004 Low (10.1016/j.asoc.2020.106796_b15) 2019; 115 Ajeil (10.1016/j.asoc.2020.106796_b4) 2020; 89 Dorigo (10.1016/j.asoc.2020.106796_b11) 2019 |
References_xml | – volume: 89 year: 2020 ident: b4 article-title: Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm publication-title: Appl. Soft Comput. – start-page: 379 year: 2010 end-page: 383 ident: b25 article-title: Extended Q-learning algorithm for path-planning of a mobile robot publication-title: Asia-Pacific Conference on Simulated Evolution and Learning – volume: 8 start-page: 279 year: 1992 end-page: 292 ident: b18 article-title: Q-learning publication-title: Mach. Learn. – volume: 89 year: 2020 ident: b17 article-title: A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning publication-title: Appl. Soft Comput. – volume: 27 start-page: 135 year: 2011 end-page: 149 ident: b19 article-title: Reinforcement based mobile robot navigation in dynamic environment publication-title: Robot. Comput.-Integr. Manuf. – start-page: 863 year: 2009 end-page: 868 ident: b20 article-title: Neural Q-learning controller for mobile robot publication-title: 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics – volume: 39 start-page: 533 year: 2010 end-page: 579 ident: b7 article-title: Theta*: Any-angle path planning on grids publication-title: J. Artificial Intelligence Res. – start-page: 2051 year: 1998 end-page: 2056 ident: b21 article-title: Initialization of Q-values by fuzzy rules for accelerating Q-learning publication-title: 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36227), Vol. 3 – volume: 8 start-page: 133 year: 2019 end-page: 142 ident: b22 article-title: Path planning of a mobile robot in a free-space environment using Q-learning publication-title: Prog. Artif. Intell. – volume: 26 start-page: 2184 year: 2013 end-page: 2193 ident: b23 article-title: Backward Q-learning: The combination of sarsa algorithm and Q-learning publication-title: Eng. Appl. Artif. Intell. – reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. – start-page: 692 year: 2016 end-page: 697 ident: b1 article-title: Distributed multi-agent approach based on priority rules and genetic algorithm for tasks scheduling in multi-robot cells publication-title: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society – volume: 43 start-page: 317 year: 2015 end-page: 329 ident: b8 article-title: An adaptive genetic algorithm for robot motion planning in 2D complex environments publication-title: Comput. Electr. Eng. – reference: J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7263–7271. – year: 2019 ident: b14 article-title: QMR: Q-learning based multi-objective optimization routing protocol for Flying Ad Hoc Networks publication-title: Comput. Commun. – volume: 115 start-page: 143 year: 2019 end-page: 161 ident: b15 article-title: Solving the optimal path planning of a mobile robot using improved Q-learning publication-title: Robot. Auton. Syst. – volume: 77 start-page: 236 year: 2019 end-page: 251 ident: b10 article-title: Mobile robot path planning using membrane evolutionary artificial potential field publication-title: Appl. Soft Comput. – volume: 48 start-page: 179 year: 2019 end-page: 194 ident: b2 article-title: Optimized RRT-A* path planning Method for mobile Robots in partially known Environment publication-title: Inf. Technol. Control – start-page: 138 year: 2011 end-page: 143 ident: b28 article-title: Improved decentralized Q-learning algorithm for interference reduction in LTE-femtocells publication-title: 2011 Wireless Advanced – start-page: V3 year: 2010 end-page: 436 ident: b12 article-title: Ant colony optimization algorithm for robot path planning publication-title: 2010 International Conference on Computer Design and Applications, Vol. 3 – volume: 46 year: 2019 ident: b13 article-title: Mobile robot path planning using a Teaching-Learning-Interactive Learning-based Optimization publication-title: IAENG Int. J. Comput. Sci. – start-page: 311 year: 2019 end-page: 351 ident: b11 article-title: Ant colony optimization: overview and recent advances publication-title: Handbook of Metaheuristics – volume: 19 start-page: 74 year: 2019 end-page: 94 ident: b6 article-title: Collision-free path planning for indoor mobile robots based on Rapidly-exploring Random Trees and Piecewise Cubic Hermite Interpolating Polynomial publication-title: Int. J. Imaging Robot. – volume: 33 start-page: 491 year: 2017 end-page: 501 ident: b16 article-title: Continuous-time path planning for multi-agents with fuzzy reinforcement learning publication-title: J. Intell. Fuzzy Systems – start-page: 2473 year: 2004 end-page: 2478 ident: b9 article-title: Path planning for mobile robot using the particle swarm optimization with mutation operator publication-title: Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), Vol. 4 – start-page: 67 year: 2016 end-page: 72 ident: b3 article-title: A survey of development frameworks for robotics publication-title: 2016 8th International Conference on Modelling, Identification and Control (ICMIC) – volume: 89 start-page: 95 year: 2017 end-page: 109 ident: b5 article-title: Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control publication-title: Robot. Auton. Syst. – volume: 51 year: 2012 ident: b24 article-title: An improved Q-learning algorithm for path-planning of a mobile robot publication-title: Int. J. Comput. Appl. – start-page: V3 year: 2010 ident: 10.1016/j.asoc.2020.106796_b12 article-title: Ant colony optimization algorithm for robot path planning – volume: 48 start-page: 179 issue: 2 year: 2019 ident: 10.1016/j.asoc.2020.106796_b2 article-title: Optimized RRT-A* path planning Method for mobile Robots in partially known Environment publication-title: Inf. Technol. Control doi: 10.5755/j01.itc.48.2.21390 – volume: 39 start-page: 533 year: 2010 ident: 10.1016/j.asoc.2020.106796_b7 article-title: Theta*: Any-angle path planning on grids publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.2994 – start-page: 2051 year: 1998 ident: 10.1016/j.asoc.2020.106796_b21 article-title: Initialization of Q-values by fuzzy rules for accelerating Q-learning – start-page: 138 year: 2011 ident: 10.1016/j.asoc.2020.106796_b28 article-title: Improved decentralized Q-learning algorithm for interference reduction in LTE-femtocells – volume: 89 year: 2020 ident: 10.1016/j.asoc.2020.106796_b4 article-title: Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106076 – volume: 43 start-page: 317 year: 2015 ident: 10.1016/j.asoc.2020.106796_b8 article-title: An adaptive genetic algorithm for robot motion planning in 2D complex environments publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2014.12.014 – volume: 77 start-page: 236 year: 2019 ident: 10.1016/j.asoc.2020.106796_b10 article-title: Mobile robot path planning using membrane evolutionary artificial potential field publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.01.036 – volume: 27 start-page: 135 issue: 1 year: 2011 ident: 10.1016/j.asoc.2020.106796_b19 article-title: Reinforcement based mobile robot navigation in dynamic environment publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2010.06.019 – start-page: 311 year: 2019 ident: 10.1016/j.asoc.2020.106796_b11 article-title: Ant colony optimization: overview and recent advances – volume: 46 issue: 2 year: 2019 ident: 10.1016/j.asoc.2020.106796_b13 article-title: Mobile robot path planning using a Teaching-Learning-Interactive Learning-based Optimization publication-title: IAENG Int. J. Comput. Sci. – year: 2019 ident: 10.1016/j.asoc.2020.106796_b14 article-title: QMR: Q-learning based multi-objective optimization routing protocol for Flying Ad Hoc Networks publication-title: Comput. Commun. – volume: 51 issue: 9 year: 2012 ident: 10.1016/j.asoc.2020.106796_b24 article-title: An improved Q-learning algorithm for path-planning of a mobile robot publication-title: Int. J. Comput. Appl. – ident: 10.1016/j.asoc.2020.106796_b26 doi: 10.1109/CVPR.2016.91 – volume: 89 year: 2020 ident: 10.1016/j.asoc.2020.106796_b17 article-title: A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106099 – volume: 8 start-page: 133 issue: 1 year: 2019 ident: 10.1016/j.asoc.2020.106796_b22 article-title: Path planning of a mobile robot in a free-space environment using Q-learning publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-018-00168-6 – start-page: 379 year: 2010 ident: 10.1016/j.asoc.2020.106796_b25 article-title: Extended Q-learning algorithm for path-planning of a mobile robot – volume: 89 start-page: 95 year: 2017 ident: 10.1016/j.asoc.2020.106796_b5 article-title: Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.12.008 – start-page: 67 year: 2016 ident: 10.1016/j.asoc.2020.106796_b3 article-title: A survey of development frameworks for robotics – volume: 33 start-page: 491 issue: 1 year: 2017 ident: 10.1016/j.asoc.2020.106796_b16 article-title: Continuous-time path planning for multi-agents with fuzzy reinforcement learning publication-title: J. Intell. Fuzzy Systems doi: 10.3233/JIFS-161822 – start-page: 692 year: 2016 ident: 10.1016/j.asoc.2020.106796_b1 article-title: Distributed multi-agent approach based on priority rules and genetic algorithm for tasks scheduling in multi-robot cells – start-page: 863 year: 2009 ident: 10.1016/j.asoc.2020.106796_b20 article-title: Neural Q-learning controller for mobile robot – volume: 19 start-page: 74 issue: 3 year: 2019 ident: 10.1016/j.asoc.2020.106796_b6 article-title: Collision-free path planning for indoor mobile robots based on Rapidly-exploring Random Trees and Piecewise Cubic Hermite Interpolating Polynomial publication-title: Int. J. Imaging Robot. – volume: 115 start-page: 143 year: 2019 ident: 10.1016/j.asoc.2020.106796_b15 article-title: Solving the optimal path planning of a mobile robot using improved Q-learning publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2019.02.013 – volume: 26 start-page: 2184 issue: 9 year: 2013 ident: 10.1016/j.asoc.2020.106796_b23 article-title: Backward Q-learning: The combination of sarsa algorithm and Q-learning publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.06.016 – ident: 10.1016/j.asoc.2020.106796_b27 doi: 10.1109/CVPR.2017.690 – start-page: 2473 year: 2004 ident: 10.1016/j.asoc.2020.106796_b9 article-title: Path planning for mobile robot using the particle swarm optimization with mutation operator – volume: 8 start-page: 279 issue: 3–4 year: 1992 ident: 10.1016/j.asoc.2020.106796_b18 article-title: Q-learning publication-title: Mach. Learn. doi: 10.1007/BF00992698 |
SSID | ssj0016928 |
Score | 2.5640764 |
Snippet | In fact, optimizing path within short computation time still remains a major challenge for mobile robotics applications. In path planning and obstacles... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106796 |
SubjectTerms | Convergence speed Efficient Q-Learning Efficient selection strategy Path optimization Training performances |
Title | Optimal path planning approach based on Q-learning algorithm for mobile robots |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106796 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENmTqJ8_BYVVTlVZ6VukV2YtOiNqlKWPnt-BKnAgl1YIrinKPk0_nubN3dh9C5DBMw_BHxtUcJCwNOhNSCeK6TMqqV0BTqne-HwWDEbsb-uIF6dS0MpFVa21_Z9NJa25GORbOzmE47L2bnETHOArfU07J4HbrXGZ2-_FqleTgBL_lVQZiAtC2cqXK8hEHA7BFdGIADlb-d0w-H099BWzZSxN3qY3ZRQ2V7aLtmYcB2Ue6j4YNZ9XMjCeTCeGFJiHDdLByDn0pxnuEnYikizMPZW76cFpM5NjErnufS2Aa8zGVefBygUf_qtTcgliWBJB6lBRFBWu3rJHWSEP7COGXhSwkMYr6vqMuNVUu4olp7MtKKe1q4PEwYM8GIdLxD1MzyTB0hLFOttaODKBWKUQm9yMzLmA5VxEXoixZyanjixLYQByaLWVznir3HAGkMkMYVpC10sZqzqBporJX2a9TjX2oQGwu_Zt7xP-edoE24q_JTTlGzWH6qMxNlFLJdqlEbbXR7z3ePcL2-HQy_ARxn0ek |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHPTitxE_e_BmGrqt-zoSIhkCM0ZIuC3t1ioGNoLz_7ePdUQTw8Hr2rdsv7S_97q9934I3Qs_BeIPiKscSpjvhYQLxYljWxmjSnJFod55HHvRlD3N3FkD9epaGEirNNxfcfqGrc2VjkGzs5rPO6_65BGwkHn2Zp1C8XoLulOxJmp1B8Mo3v5M8MKNxCrMJ2BgameqNC-uQdDHRBsuwDeVv_3TD5_TP0IHJljE3ep5jlFD5ifosBZiwGZfnqL4WW_8pZ4J-sJ4ZXSIcN0vHIOrynCR4xdiVCL04OKtWM_L9yXWYSteFkLTA14Xoig_z9C0_zjpRcQIJZDUobQk3Muqo52gVurDW2i_zF0hQETMdSW1Q01saSipUo4IlAwdxe3QTxnT8YiwnHPUzItcXiAsMqWUpbwg45JRAe3I9M2Y8mUQct_lbWTV8CSp6SIOYhaLpE4X-0gA0gQgTSpI2-hha7OqemjsnO3WqCe_VkKiSX6H3eU_7e7QXjQZj5LRIB5eoX0YqdJVrlGzXH_JGx10lOLWLKpvy9PTBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+path+planning+approach+based+on+Q-learning+algorithm+for+mobile+robots&rft.jtitle=Applied+soft+computing&rft.au=Maoudj%2C+Abderraouf&rft.au=Hentout%2C+Abdelfetah&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=97&rft_id=info:doi/10.1016%2Fj.asoc.2020.106796&rft.externalDocID=S1568494620307341 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |