Optimal path planning approach based on Q-learning algorithm for mobile robots

In fact, optimizing path within short computation time still remains a major challenge for mobile robotics applications. In path planning and obstacles avoidance, Q-Learning (QL) algorithm has been widely used as a computational method of learning through environment interaction. However, less empha...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 97; p. 106796
Main Authors Maoudj, Abderraouf, Hentout, Abdelfetah
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2020.106796

Cover

Loading…
Abstract In fact, optimizing path within short computation time still remains a major challenge for mobile robotics applications. In path planning and obstacles avoidance, Q-Learning (QL) algorithm has been widely used as a computational method of learning through environment interaction. However, less emphasis is placed on path optimization using QL because of its slow and weak convergence toward optimal solutions. Therefore, this paper proposes an Efficient Q-Learning (EQL) algorithm to overcome these limitations and ensure an optimal collision-free path in less possible time. In the QL algorithm, successful learning is closely dependent on the design of an effective reward function and an efficient selection strategy for an optimal action that ensures exploration and exploitation. In this regard, a new reward function is proposed to initialize the Q-table and provide the robot with prior knowledge of the environment, followed by a new efficient selection strategy proposal to accelerate the learning process through search space reduction while ensuring a rapid convergence toward an optimized solution. The main idea is to intensify research at each learning stage, around the straight-line segment linking the current position of the robot to Target (optimal path in terms of length). During the learning process, the proposed strategy favors promising actions that not only lead to an optimized path but also accelerate the convergence of the learning process. The proposed EQL algorithm is first validated using benchmarks from the literature, followed by a comparison with other existing QL-based algorithms. The achieved results showed that the proposed EQL gained good learning proficiency; besides, the training performance is significantly improved compared to the state-of-the-art. Concluded, EQL improves the quality of the paths in terms of length, computation time and robot safety, furthermore outperforms other optimization algorithms. •The mobile robot path optimization problem is handled and modeled.•An Efficient Q-Learning (EQL) algorithm is proposed.•In EQL, a new definition of states space and actions space is proposed.•New reward function is proposed to initialize Q-table.•Learning process is sped up by exploiting a new efficient selection strategy.•Results on benchmarks from literature demonstrate EQL efficiency and superiority.
AbstractList In fact, optimizing path within short computation time still remains a major challenge for mobile robotics applications. In path planning and obstacles avoidance, Q-Learning (QL) algorithm has been widely used as a computational method of learning through environment interaction. However, less emphasis is placed on path optimization using QL because of its slow and weak convergence toward optimal solutions. Therefore, this paper proposes an Efficient Q-Learning (EQL) algorithm to overcome these limitations and ensure an optimal collision-free path in less possible time. In the QL algorithm, successful learning is closely dependent on the design of an effective reward function and an efficient selection strategy for an optimal action that ensures exploration and exploitation. In this regard, a new reward function is proposed to initialize the Q-table and provide the robot with prior knowledge of the environment, followed by a new efficient selection strategy proposal to accelerate the learning process through search space reduction while ensuring a rapid convergence toward an optimized solution. The main idea is to intensify research at each learning stage, around the straight-line segment linking the current position of the robot to Target (optimal path in terms of length). During the learning process, the proposed strategy favors promising actions that not only lead to an optimized path but also accelerate the convergence of the learning process. The proposed EQL algorithm is first validated using benchmarks from the literature, followed by a comparison with other existing QL-based algorithms. The achieved results showed that the proposed EQL gained good learning proficiency; besides, the training performance is significantly improved compared to the state-of-the-art. Concluded, EQL improves the quality of the paths in terms of length, computation time and robot safety, furthermore outperforms other optimization algorithms. •The mobile robot path optimization problem is handled and modeled.•An Efficient Q-Learning (EQL) algorithm is proposed.•In EQL, a new definition of states space and actions space is proposed.•New reward function is proposed to initialize Q-table.•Learning process is sped up by exploiting a new efficient selection strategy.•Results on benchmarks from literature demonstrate EQL efficiency and superiority.
ArticleNumber 106796
Author Hentout, Abdelfetah
Maoudj, Abderraouf
Author_xml – sequence: 1
  givenname: Abderraouf
  surname: Maoudj
  fullname: Maoudj, Abderraouf
  email: amaoudj@cdta.dz
– sequence: 2
  givenname: Abdelfetah
  surname: Hentout
  fullname: Hentout, Abdelfetah
  email: ahentout@cdta.dz
BookMark eNp9kE1LAzEQhoNUsFb_gKf8ga352uwGvEjxC4pF0HNIskmbsk2WJAj-e3dZTx56mmGGZ5j3uQaLEIMF4A6jNUaY3x_XKkezJohMA94IfgGWuG1IJXiLF2Nf87ZigvErcJ3zEY2QIO0SvO-G4k-qh4MqBzj0KgQf9lANQ4rKHKBW2XYwBvhR9ValednvY_LlcIIuJniK2vcWpqhjyTfg0qk-29u_ugJfz0-fm9dqu3t52zxuK0MRKpXiHRrfxEwjbJrpXcKwqrWmGNG6togIXFMjLHKO6tZZQZ0iojGMMSo0pitA5rsmxZyTdXJIY4z0IzGSkxF5lJMRORmRs5ERav9BxhdVfAwlKd-fRx9m1I6hvr1NMhtvg7GdT9YU2UV_Dv8FArl98A
CitedBy_id crossref_primary_10_1038_s41598_024_84821_2
crossref_primary_10_1109_ACCESS_2021_3053351
crossref_primary_10_1142_S0218126622501444
crossref_primary_10_3390_math13010050
crossref_primary_10_1109_ACCESS_2021_3123622
crossref_primary_10_34133_space_0086
crossref_primary_10_1016_j_eswa_2024_123539
crossref_primary_10_1016_j_engappai_2024_108821
crossref_primary_10_1109_TVT_2022_3223727
crossref_primary_10_1155_jece_3110053
crossref_primary_10_1016_j_entcom_2024_100829
crossref_primary_10_1002_aisy_202300783
crossref_primary_10_3390_biomimetics8060481
crossref_primary_10_54097_hset_v63i_10881
crossref_primary_10_54097_hset_v63i_10880
crossref_primary_10_1016_j_iswa_2025_200485
crossref_primary_10_1051_shsconf_202214402019
crossref_primary_10_1016_j_eswa_2024_125388
crossref_primary_10_3390_s22093579
crossref_primary_10_1109_ACCESS_2022_3197628
crossref_primary_10_3390_en16031512
crossref_primary_10_1016_j_dajour_2023_100314
crossref_primary_10_3390_jmse11050970
crossref_primary_10_1016_j_procir_2023_02_115
crossref_primary_10_28978_nesciences_1569561
crossref_primary_10_1016_j_eswa_2022_116875
crossref_primary_10_3390_sym13122417
crossref_primary_10_1109_ACCESS_2023_3265207
crossref_primary_10_1109_ACCESS_2023_3262450
crossref_primary_10_1109_ACCESS_2024_3457957
crossref_primary_10_1016_j_asoc_2022_109001
crossref_primary_10_2139_ssrn_4057871
crossref_primary_10_1142_S0218001424560123
crossref_primary_10_3390_s22155910
crossref_primary_10_1016_j_matcom_2022_01_010
crossref_primary_10_32604_cmc_2022_028165
crossref_primary_10_1002_oca_2781
crossref_primary_10_1007_s42979_024_02650_6
crossref_primary_10_1007_s40430_022_03399_w
crossref_primary_10_3390_s23177510
crossref_primary_10_3390_s22062367
crossref_primary_10_3390_app14072765
crossref_primary_10_1007_s10489_024_06149_8
crossref_primary_10_1108_ACI_12_2023_0195
crossref_primary_10_1007_s42979_023_01876_0
crossref_primary_10_3390_aerospace9080417
crossref_primary_10_1016_j_compbiomed_2022_105560
crossref_primary_10_1016_j_jksuci_2024_102254
crossref_primary_10_3390_app11010285
crossref_primary_10_1016_j_isatra_2023_02_029
crossref_primary_10_3390_math12020339
crossref_primary_10_3390_ai5010003
crossref_primary_10_1007_s11128_025_04648_2
crossref_primary_10_1080_03155986_2023_2235223
crossref_primary_10_3390_s24175667
crossref_primary_10_1007_s00500_022_07300_8
crossref_primary_10_1016_j_cie_2023_109338
crossref_primary_10_3390_s21020642
crossref_primary_10_1109_TIV_2022_3153352
crossref_primary_10_1109_ACCESS_2023_3273164
crossref_primary_10_1109_ACCESS_2024_3463732
crossref_primary_10_1007_s10462_022_10257_7
crossref_primary_10_1088_1742_6596_2504_1_012003
crossref_primary_10_1016_j_asoc_2023_110543
crossref_primary_10_1109_ACCESS_2024_3507016
crossref_primary_10_1109_TTE_2022_3142150
crossref_primary_10_1049_itr2_12191
crossref_primary_10_1016_j_asoc_2022_109621
crossref_primary_10_1016_j_ins_2024_120996
crossref_primary_10_59277_ROMJIST_2024_1_02
crossref_primary_10_1155_2021_4294841
crossref_primary_10_3390_app14177654
Cites_doi 10.5755/j01.itc.48.2.21390
10.1613/jair.2994
10.1016/j.asoc.2020.106076
10.1016/j.compeleceng.2014.12.014
10.1016/j.asoc.2019.01.036
10.1016/j.rcim.2010.06.019
10.1109/CVPR.2016.91
10.1016/j.asoc.2020.106099
10.1007/s13748-018-00168-6
10.1016/j.robot.2016.12.008
10.3233/JIFS-161822
10.1016/j.robot.2019.02.013
10.1016/j.engappai.2013.06.016
10.1109/CVPR.2017.690
10.1007/BF00992698
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106796
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106796
S1568494620307341
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-a6d010614b01c76796241a5bb310355e029153c9e0ff3b8fe93fa297c44439b13
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:00:43 EDT 2025
Tue Jul 01 01:50:07 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Path optimization
Efficient Q-Learning
Training performances
Efficient selection strategy
Convergence speed
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a6d010614b01c76796241a5bb310355e029153c9e0ff3b8fe93fa297c44439b13
ParticipantIDs crossref_primary_10_1016_j_asoc_2020_106796
crossref_citationtrail_10_1016_j_asoc_2020_106796
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Wang, He, Jaffrès-Runser, Xu, Li, Xu (b14) 2019
Luviano, Yu (b16) 2017; 33
Karami, Hasanzadeh (b8) 2015; 43
Ganapathy, Yun, Joe (b20) 2009
Watkins, Dayan (b18) 1992; 8
Wang, Li, Lin (b23) 2013; 26
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
Maoudj, Bouzouia, Hentout, Kouider, Toumi (b1) 2016
Hentout, Maoudj, Bouzouia (b3) 2016
J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7263–7271.
Dorigo, Stützle (b11) 2019
Cheng, Chao, Kuo (b13) 2019; 46
Low, Ong, Cheah (b15) 2019; 115
Daniel, Nash, Koenig, Felner (b7) 2010; 39
Bakdi, Hentout, Boutamai, Maoudj, Hachour, Bouzouia (b5) 2017; 89
Hentout, Maoudj, Guir, Saighi, Aures Harkat, Hammouche, Bakdi (b6) 2019; 19
Qu, Gai, Zhong, Zhang (b17) 2020; 89
Jaradat, Al-Rousan, Quadan (b19) 2011; 27
Qin, Sun, Li, Cen (b9) 2004
Brand, Masuda, Wehner, Yu (b12) 2010
Goswami, Das, Konar, Janarthanan (b25) 2010
Oh, Nakashima, Ishibuchi (b21) 1998
Simsek, Czylwik, Galindo-Serrano, Giupponi (b28) 2011
Ajeil, Ibraheem, Sahib, Humaidi (b4) 2020; 89
Orozco-Rosas, Montiel, Sepúlveda (b10) 2019; 77
Jiang, Xin (b22) 2019; 8
Das, Mandhata, Behera, Patro (b24) 2012; 51
Ayawli, Mei, Shen, Appiah, Kyeremeh (b2) 2019; 48
Luviano (10.1016/j.asoc.2020.106796_b16) 2017; 33
Simsek (10.1016/j.asoc.2020.106796_b28) 2011
Wang (10.1016/j.asoc.2020.106796_b23) 2013; 26
Ayawli (10.1016/j.asoc.2020.106796_b2) 2019; 48
Hentout (10.1016/j.asoc.2020.106796_b3) 2016
Ganapathy (10.1016/j.asoc.2020.106796_b20) 2009
Qu (10.1016/j.asoc.2020.106796_b17) 2020; 89
Watkins (10.1016/j.asoc.2020.106796_b18) 1992; 8
Oh (10.1016/j.asoc.2020.106796_b21) 1998
Karami (10.1016/j.asoc.2020.106796_b8) 2015; 43
10.1016/j.asoc.2020.106796_b26
10.1016/j.asoc.2020.106796_b27
Maoudj (10.1016/j.asoc.2020.106796_b1) 2016
Jaradat (10.1016/j.asoc.2020.106796_b19) 2011; 27
Orozco-Rosas (10.1016/j.asoc.2020.106796_b10) 2019; 77
Goswami (10.1016/j.asoc.2020.106796_b25) 2010
Das (10.1016/j.asoc.2020.106796_b24) 2012; 51
Hentout (10.1016/j.asoc.2020.106796_b6) 2019; 19
Brand (10.1016/j.asoc.2020.106796_b12) 2010
Jiang (10.1016/j.asoc.2020.106796_b22) 2019; 8
Bakdi (10.1016/j.asoc.2020.106796_b5) 2017; 89
Cheng (10.1016/j.asoc.2020.106796_b13) 2019; 46
Liu (10.1016/j.asoc.2020.106796_b14) 2019
Daniel (10.1016/j.asoc.2020.106796_b7) 2010; 39
Qin (10.1016/j.asoc.2020.106796_b9) 2004
Low (10.1016/j.asoc.2020.106796_b15) 2019; 115
Ajeil (10.1016/j.asoc.2020.106796_b4) 2020; 89
Dorigo (10.1016/j.asoc.2020.106796_b11) 2019
References_xml – volume: 89
  year: 2020
  ident: b4
  article-title: Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm
  publication-title: Appl. Soft Comput.
– start-page: 379
  year: 2010
  end-page: 383
  ident: b25
  article-title: Extended Q-learning algorithm for path-planning of a mobile robot
  publication-title: Asia-Pacific Conference on Simulated Evolution and Learning
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  ident: b18
  article-title: Q-learning
  publication-title: Mach. Learn.
– volume: 89
  year: 2020
  ident: b17
  article-title: A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning
  publication-title: Appl. Soft Comput.
– volume: 27
  start-page: 135
  year: 2011
  end-page: 149
  ident: b19
  article-title: Reinforcement based mobile robot navigation in dynamic environment
  publication-title: Robot. Comput.-Integr. Manuf.
– start-page: 863
  year: 2009
  end-page: 868
  ident: b20
  article-title: Neural Q-learning controller for mobile robot
  publication-title: 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
– volume: 39
  start-page: 533
  year: 2010
  end-page: 579
  ident: b7
  article-title: Theta*: Any-angle path planning on grids
  publication-title: J. Artificial Intelligence Res.
– start-page: 2051
  year: 1998
  end-page: 2056
  ident: b21
  article-title: Initialization of Q-values by fuzzy rules for accelerating Q-learning
  publication-title: 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36227), Vol. 3
– volume: 8
  start-page: 133
  year: 2019
  end-page: 142
  ident: b22
  article-title: Path planning of a mobile robot in a free-space environment using Q-learning
  publication-title: Prog. Artif. Intell.
– volume: 26
  start-page: 2184
  year: 2013
  end-page: 2193
  ident: b23
  article-title: Backward Q-learning: The combination of sarsa algorithm and Q-learning
  publication-title: Eng. Appl. Artif. Intell.
– reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
– start-page: 692
  year: 2016
  end-page: 697
  ident: b1
  article-title: Distributed multi-agent approach based on priority rules and genetic algorithm for tasks scheduling in multi-robot cells
  publication-title: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society
– volume: 43
  start-page: 317
  year: 2015
  end-page: 329
  ident: b8
  article-title: An adaptive genetic algorithm for robot motion planning in 2D complex environments
  publication-title: Comput. Electr. Eng.
– reference: J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7263–7271.
– year: 2019
  ident: b14
  article-title: QMR: Q-learning based multi-objective optimization routing protocol for Flying Ad Hoc Networks
  publication-title: Comput. Commun.
– volume: 115
  start-page: 143
  year: 2019
  end-page: 161
  ident: b15
  article-title: Solving the optimal path planning of a mobile robot using improved Q-learning
  publication-title: Robot. Auton. Syst.
– volume: 77
  start-page: 236
  year: 2019
  end-page: 251
  ident: b10
  article-title: Mobile robot path planning using membrane evolutionary artificial potential field
  publication-title: Appl. Soft Comput.
– volume: 48
  start-page: 179
  year: 2019
  end-page: 194
  ident: b2
  article-title: Optimized RRT-A* path planning Method for mobile Robots in partially known Environment
  publication-title: Inf. Technol. Control
– start-page: 138
  year: 2011
  end-page: 143
  ident: b28
  article-title: Improved decentralized Q-learning algorithm for interference reduction in LTE-femtocells
  publication-title: 2011 Wireless Advanced
– start-page: V3
  year: 2010
  end-page: 436
  ident: b12
  article-title: Ant colony optimization algorithm for robot path planning
  publication-title: 2010 International Conference on Computer Design and Applications, Vol. 3
– volume: 46
  year: 2019
  ident: b13
  article-title: Mobile robot path planning using a Teaching-Learning-Interactive Learning-based Optimization
  publication-title: IAENG Int. J. Comput. Sci.
– start-page: 311
  year: 2019
  end-page: 351
  ident: b11
  article-title: Ant colony optimization: overview and recent advances
  publication-title: Handbook of Metaheuristics
– volume: 19
  start-page: 74
  year: 2019
  end-page: 94
  ident: b6
  article-title: Collision-free path planning for indoor mobile robots based on Rapidly-exploring Random Trees and Piecewise Cubic Hermite Interpolating Polynomial
  publication-title: Int. J. Imaging Robot.
– volume: 33
  start-page: 491
  year: 2017
  end-page: 501
  ident: b16
  article-title: Continuous-time path planning for multi-agents with fuzzy reinforcement learning
  publication-title: J. Intell. Fuzzy Systems
– start-page: 2473
  year: 2004
  end-page: 2478
  ident: b9
  article-title: Path planning for mobile robot using the particle swarm optimization with mutation operator
  publication-title: Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), Vol. 4
– start-page: 67
  year: 2016
  end-page: 72
  ident: b3
  article-title: A survey of development frameworks for robotics
  publication-title: 2016 8th International Conference on Modelling, Identification and Control (ICMIC)
– volume: 89
  start-page: 95
  year: 2017
  end-page: 109
  ident: b5
  article-title: Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control
  publication-title: Robot. Auton. Syst.
– volume: 51
  year: 2012
  ident: b24
  article-title: An improved Q-learning algorithm for path-planning of a mobile robot
  publication-title: Int. J. Comput. Appl.
– start-page: V3
  year: 2010
  ident: 10.1016/j.asoc.2020.106796_b12
  article-title: Ant colony optimization algorithm for robot path planning
– volume: 48
  start-page: 179
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2020.106796_b2
  article-title: Optimized RRT-A* path planning Method for mobile Robots in partially known Environment
  publication-title: Inf. Technol. Control
  doi: 10.5755/j01.itc.48.2.21390
– volume: 39
  start-page: 533
  year: 2010
  ident: 10.1016/j.asoc.2020.106796_b7
  article-title: Theta*: Any-angle path planning on grids
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.2994
– start-page: 2051
  year: 1998
  ident: 10.1016/j.asoc.2020.106796_b21
  article-title: Initialization of Q-values by fuzzy rules for accelerating Q-learning
– start-page: 138
  year: 2011
  ident: 10.1016/j.asoc.2020.106796_b28
  article-title: Improved decentralized Q-learning algorithm for interference reduction in LTE-femtocells
– volume: 89
  year: 2020
  ident: 10.1016/j.asoc.2020.106796_b4
  article-title: Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106076
– volume: 43
  start-page: 317
  year: 2015
  ident: 10.1016/j.asoc.2020.106796_b8
  article-title: An adaptive genetic algorithm for robot motion planning in 2D complex environments
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2014.12.014
– volume: 77
  start-page: 236
  year: 2019
  ident: 10.1016/j.asoc.2020.106796_b10
  article-title: Mobile robot path planning using membrane evolutionary artificial potential field
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.01.036
– volume: 27
  start-page: 135
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2020.106796_b19
  article-title: Reinforcement based mobile robot navigation in dynamic environment
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2010.06.019
– start-page: 311
  year: 2019
  ident: 10.1016/j.asoc.2020.106796_b11
  article-title: Ant colony optimization: overview and recent advances
– volume: 46
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2020.106796_b13
  article-title: Mobile robot path planning using a Teaching-Learning-Interactive Learning-based Optimization
  publication-title: IAENG Int. J. Comput. Sci.
– year: 2019
  ident: 10.1016/j.asoc.2020.106796_b14
  article-title: QMR: Q-learning based multi-objective optimization routing protocol for Flying Ad Hoc Networks
  publication-title: Comput. Commun.
– volume: 51
  issue: 9
  year: 2012
  ident: 10.1016/j.asoc.2020.106796_b24
  article-title: An improved Q-learning algorithm for path-planning of a mobile robot
  publication-title: Int. J. Comput. Appl.
– ident: 10.1016/j.asoc.2020.106796_b26
  doi: 10.1109/CVPR.2016.91
– volume: 89
  year: 2020
  ident: 10.1016/j.asoc.2020.106796_b17
  article-title: A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106099
– volume: 8
  start-page: 133
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106796_b22
  article-title: Path planning of a mobile robot in a free-space environment using Q-learning
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-018-00168-6
– start-page: 379
  year: 2010
  ident: 10.1016/j.asoc.2020.106796_b25
  article-title: Extended Q-learning algorithm for path-planning of a mobile robot
– volume: 89
  start-page: 95
  year: 2017
  ident: 10.1016/j.asoc.2020.106796_b5
  article-title: Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2016.12.008
– start-page: 67
  year: 2016
  ident: 10.1016/j.asoc.2020.106796_b3
  article-title: A survey of development frameworks for robotics
– volume: 33
  start-page: 491
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106796_b16
  article-title: Continuous-time path planning for multi-agents with fuzzy reinforcement learning
  publication-title: J. Intell. Fuzzy Systems
  doi: 10.3233/JIFS-161822
– start-page: 692
  year: 2016
  ident: 10.1016/j.asoc.2020.106796_b1
  article-title: Distributed multi-agent approach based on priority rules and genetic algorithm for tasks scheduling in multi-robot cells
– start-page: 863
  year: 2009
  ident: 10.1016/j.asoc.2020.106796_b20
  article-title: Neural Q-learning controller for mobile robot
– volume: 19
  start-page: 74
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2020.106796_b6
  article-title: Collision-free path planning for indoor mobile robots based on Rapidly-exploring Random Trees and Piecewise Cubic Hermite Interpolating Polynomial
  publication-title: Int. J. Imaging Robot.
– volume: 115
  start-page: 143
  year: 2019
  ident: 10.1016/j.asoc.2020.106796_b15
  article-title: Solving the optimal path planning of a mobile robot using improved Q-learning
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2019.02.013
– volume: 26
  start-page: 2184
  issue: 9
  year: 2013
  ident: 10.1016/j.asoc.2020.106796_b23
  article-title: Backward Q-learning: The combination of sarsa algorithm and Q-learning
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.06.016
– ident: 10.1016/j.asoc.2020.106796_b27
  doi: 10.1109/CVPR.2017.690
– start-page: 2473
  year: 2004
  ident: 10.1016/j.asoc.2020.106796_b9
  article-title: Path planning for mobile robot using the particle swarm optimization with mutation operator
– volume: 8
  start-page: 279
  issue: 3–4
  year: 1992
  ident: 10.1016/j.asoc.2020.106796_b18
  article-title: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
SSID ssj0016928
Score 2.5640764
Snippet In fact, optimizing path within short computation time still remains a major challenge for mobile robotics applications. In path planning and obstacles...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106796
SubjectTerms Convergence speed
Efficient Q-Learning
Efficient selection strategy
Path optimization
Training performances
Title Optimal path planning approach based on Q-learning algorithm for mobile robots
URI https://dx.doi.org/10.1016/j.asoc.2020.106796
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENmTqJ8_BYVVTlVZ6VukV2YtOiNqlKWPnt-BKnAgl1YIrinKPk0_nubN3dh9C5DBMw_BHxtUcJCwNOhNSCeK6TMqqV0BTqne-HwWDEbsb-uIF6dS0MpFVa21_Z9NJa25GORbOzmE47L2bnETHOArfU07J4HbrXGZ2-_FqleTgBL_lVQZiAtC2cqXK8hEHA7BFdGIADlb-d0w-H099BWzZSxN3qY3ZRQ2V7aLtmYcB2Ue6j4YNZ9XMjCeTCeGFJiHDdLByDn0pxnuEnYikizMPZW76cFpM5NjErnufS2Aa8zGVefBygUf_qtTcgliWBJB6lBRFBWu3rJHWSEP7COGXhSwkMYr6vqMuNVUu4olp7MtKKe1q4PEwYM8GIdLxD1MzyTB0hLFOttaODKBWKUQm9yMzLmA5VxEXoixZyanjixLYQByaLWVznir3HAGkMkMYVpC10sZqzqBporJX2a9TjX2oQGwu_Zt7xP-edoE24q_JTTlGzWH6qMxNlFLJdqlEbbXR7z3ePcL2-HQy_ARxn0ek
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHPTitxE_e_BmGrqt-zoSIhkCM0ZIuC3t1ioGNoLz_7ePdUQTw8Hr2rdsv7S_97q9934I3Qs_BeIPiKscSpjvhYQLxYljWxmjSnJFod55HHvRlD3N3FkD9epaGEirNNxfcfqGrc2VjkGzs5rPO6_65BGwkHn2Zp1C8XoLulOxJmp1B8Mo3v5M8MKNxCrMJ2BgameqNC-uQdDHRBsuwDeVv_3TD5_TP0IHJljE3ep5jlFD5ifosBZiwGZfnqL4WW_8pZ4J-sJ4ZXSIcN0vHIOrynCR4xdiVCL04OKtWM_L9yXWYSteFkLTA14Xoig_z9C0_zjpRcQIJZDUobQk3Muqo52gVurDW2i_zF0hQETMdSW1Q01saSipUo4IlAwdxe3QTxnT8YiwnHPUzItcXiAsMqWUpbwg45JRAe3I9M2Y8mUQct_lbWTV8CSp6SIOYhaLpE4X-0gA0gQgTSpI2-hha7OqemjsnO3WqCe_VkKiSX6H3eU_7e7QXjQZj5LRIB5eoX0YqdJVrlGzXH_JGx10lOLWLKpvy9PTBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+path+planning+approach+based+on+Q-learning+algorithm+for+mobile+robots&rft.jtitle=Applied+soft+computing&rft.au=Maoudj%2C+Abderraouf&rft.au=Hentout%2C+Abdelfetah&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=97&rft_id=info:doi/10.1016%2Fj.asoc.2020.106796&rft.externalDocID=S1568494620307341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon