Molten Borates Fuel Cells — Mathematical modeling and identification of performances

The research presents an overview of the possibilities of using boron-containing compounds as electrolytes for fuel cells. The main assumption here is to develop a molten carbonate fuel cell type power source, where the molten electrolyte is kept by a ceramic matrix between the electrodes. In the ca...

Full description

Saved in:
Bibliographic Details
Published inRenewable & sustainable energy reviews Vol. 190; p. 113949
Main Authors Milewski, Jarosław, Szczęśniak, Arkadiusz, Szabłowski, Łukasz, Martsinchyk, Aliaxandr, Siekierski, Maciej, Dybinski, Olaf, Świrski, Konrad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text
ISSN1364-0321
1879-0690
DOI10.1016/j.rser.2023.113949

Cover

Loading…
Abstract The research presents an overview of the possibilities of using boron-containing compounds as electrolytes for fuel cells. The main assumption here is to develop a molten carbonate fuel cell type power source, where the molten electrolyte is kept by a ceramic matrix between the electrodes. In the cases which are described in this study, attempts were made to develop electrolytes based on borates. Whereas the reported studies contain very little information on this subject, it was possible to identify several promising compounds and to extrapolate their performance to higher temperatures. Reported data on the temperature at eutectic points suggest that the operating range of such electrolytes is at a level like the molten carbonate fuel cell. The study presents a proposal for a mathematical model of a new type of fuel cell based on molten borates. The mathematical model is based on the reduced order model, supplemented with the influence of the ceramic matrix on the resulting ionic conductivity of the electrolyte layer. The model was used to determine potential performances for a few selected borates and a sensitivity analysis of selected geometric parameters was performed for the best of them. The results obtained were compared against the standard molten carbonate fuel cell. •Conductivities of various boron compounds have been investigated and compared.•Application of boron-containing compounds in fuel cells electrolyte has been analyzed.•A model of molten borate fuel cell has been developed.•Borates occurring to have higher potential than carbonates what might result in higher efficiency.
AbstractList The research presents an overview of the possibilities of using boron-containing compounds as electrolytes for fuel cells. The main assumption here is to develop a molten carbonate fuel cell type power source, where the molten electrolyte is kept by a ceramic matrix between the electrodes. In the cases which are described in this study, attempts were made to develop electrolytes based on borates. Whereas the reported studies contain very little information on this subject, it was possible to identify several promising compounds and to extrapolate their performance to higher temperatures. Reported data on the temperature at eutectic points suggest that the operating range of such electrolytes is at a level like the molten carbonate fuel cell. The study presents a proposal for a mathematical model of a new type of fuel cell based on molten borates. The mathematical model is based on the reduced order model, supplemented with the influence of the ceramic matrix on the resulting ionic conductivity of the electrolyte layer. The model was used to determine potential performances for a few selected borates and a sensitivity analysis of selected geometric parameters was performed for the best of them. The results obtained were compared against the standard molten carbonate fuel cell. •Conductivities of various boron compounds have been investigated and compared.•Application of boron-containing compounds in fuel cells electrolyte has been analyzed.•A model of molten borate fuel cell has been developed.•Borates occurring to have higher potential than carbonates what might result in higher efficiency.
ArticleNumber 113949
Author Martsinchyk, Aliaxandr
Milewski, Jarosław
Szabłowski, Łukasz
Dybinski, Olaf
Świrski, Konrad
Szczęśniak, Arkadiusz
Siekierski, Maciej
Author_xml – sequence: 1
  givenname: Jarosław
  orcidid: 0000-0003-1215-1802
  surname: Milewski
  fullname: Milewski, Jarosław
  email: jaroslaw.milewski@pw.edu.pl
  organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland
– sequence: 2
  givenname: Arkadiusz
  surname: Szczęśniak
  fullname: Szczęśniak, Arkadiusz
  organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland
– sequence: 3
  givenname: Łukasz
  orcidid: 0000-0002-6646-2297
  surname: Szabłowski
  fullname: Szabłowski, Łukasz
  organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland
– sequence: 4
  givenname: Aliaxandr
  orcidid: 0000-0003-4342-149X
  surname: Martsinchyk
  fullname: Martsinchyk, Aliaxandr
  organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland
– sequence: 5
  givenname: Maciej
  surname: Siekierski
  fullname: Siekierski, Maciej
  organization: Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664, Warsaw, Poland
– sequence: 6
  givenname: Olaf
  orcidid: 0000-0002-9723-5310
  surname: Dybinski
  fullname: Dybinski, Olaf
  organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland
– sequence: 7
  givenname: Konrad
  surname: Świrski
  fullname: Świrski, Konrad
  organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland
BookMark eNp9kM1KAzEURoNUsK2-gKu8wIz5mUwm4EaLVaHFTXE7pMkdTUknJYmCOx_CJ_RJnFpXLrq6Fz7O5X5ngkZ96AGhS0pKSmh9tSljglgywnhJKVeVOkFj2khVkFqR0bDzuioIZ_QMTVLaEEJFI_kYPS-Dz9Dj2xB1hoTnb-DxDLxP-PvzCy91foWtzs5oj7fBgnf9C9a9xc5Cn103BNmFHocO7yB2IW51byCdo9NO-wQXf3OKVvO71eyhWDzdP85uFoXhhORCC6sIE0wJxaS2XdOsqbDcVGptFLNgRMNqqKRgtZBcgJZaWktAU6jXsuJT1BzOmhhSitC1xuXfh3LUzreUtHs97abd62n3etqDngFl_9BddFsdP45D1wcIhk7vbkiTcTAUti6Cya0N7hj-Axsogpw
CitedBy_id crossref_primary_10_1007_s11581_024_05715_x
crossref_primary_10_1016_j_cscee_2024_100920
crossref_primary_10_3390_en17092097
Cites_doi 10.1063/1.357318
10.1016/j.ijhydene.2020.12.073
10.1063/1.555693
10.1149/2.0771805jes
10.1021/ic701059z
10.1002/adma.200602033
10.1016/j.jpowsour.2004.12.060
10.1016/j.electacta.2009.11.015
10.1016/j.ijhydene.2023.06.116
10.1063/1.359624
10.1016/j.ijhydene.2020.12.024
10.1016/j.ijhydene.2013.06.002
10.1016/S0196-8904(97)10022-X
10.1002/aic.15160
10.1016/S0196-8904(02)00253-4
10.1016/S0009-2509(98)00414-X
10.1016/j.jpowsour.2017.03.091
10.1155/2014/625893
10.1557/PROC-210-633
10.1016/j.applthermaleng.2011.09.023
10.1016/S0009-2509(02)00644-9
10.1109/60.815119
10.1063/1.1505980
10.5796/kogyobutsurikagaku.66.817
10.1002/pssa.2211380102
10.1021/acs.chemmater.7b01831
10.1016/j.ijhydene.2011.05.122
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rser.2023.113949
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0690
ExternalDocumentID 10_1016_j_rser_2023_113949
S1364032123008079
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
Y6R
ZCA
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-a5d9025295927adf88b15d3c49bc92dec5826e475265735ea7a7dd0ea1e6b743
IEDL.DBID .~1
ISSN 1364-0321
IngestDate Tue Jul 01 03:18:28 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
Sat Apr 20 15:58:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Medium temperature fuel cell
Electrolytes
Molten borates
Mathematical modeling
Fuel cells
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a5d9025295927adf88b15d3c49bc92dec5826e475265735ea7a7dd0ea1e6b743
ORCID 0000-0003-4342-149X
0000-0002-6646-2297
0000-0002-9723-5310
0000-0003-1215-1802
ParticipantIDs crossref_citationtrail_10_1016_j_rser_2023_113949
crossref_primary_10_1016_j_rser_2023_113949
elsevier_sciencedirect_doi_10_1016_j_rser_2023_113949
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kupecki, Badyda (bib2) 2011; 32
Noirault, Célérier, Joubert, Caldes, Piffard (bib9) 2007; 19
Audasso, Nam, Arato, Bosio, He, Baranak (bib18) 2018; 35
Davison (bib31) 1978
Audasso, Nam, Arato, Bosio, He, Baranak (bib16) 2018; 35
Ovrum, Dimopoulos (bib26) 2012; 35
Milewski, Wołowicz, Miller, Bernat, RafałBernat (bib28) 2013; 38
Janz, Tomkins (bib7) 1980; 5
Noirault, Célérier, Joubert, Caldes, Piffard (bib8) 2007; 46
Can, Ashrit, Bader, Girouard, Truong (bib34) 1994; 76
Cheng, Guo, Xu, Zhang (bib33) 2014; 2014
Blum, Deja, Peters, Stolten (bib1) 2011; 36
Au, Woudstra, Hemmes, Uchida (bib22) 2003; 44
Can, Truong (bib35) 1995; 78
Milewski, Wejrzanowski, Fung, Szczśniak, Ćwieka, Tsai (bib3) 2021
Heidebrecht, Sundmacher (bib23) 2003; 58
Milewski, Wołowicz, Miller, Bernat (bib19) 2013; 38
Santarelli, Leone, others, Milewski, Swirski, Santarelli (bib27) 2011
Lukas, Lee, Ghezel-Ayagh (bib21) 1999; 14
Joubert (bib11) 2018
Bosio, Costamagna, Parodi (bib14) 1999; 54
Azorín, Furetta, Scacco (bib37) 1993; 138
Li, Liu, Li (bib25) 2010; 55
Doux, Hoang, Joubert, Quarez (bib10) 2017; 29
Mitsushima, Kuroe, Matsuda, Kamo (bib13) 1998; 66
He (bib20) 1998; 39
Janz, Gardner, Krebs, Tomkins (bib6) 1983; 12
Jarosław Milewski, Olaf Dybiński, Arkadiusz Szczęśniak, Aliaksandr Martsinchyk, Karol Ćwieka, Wen Xing ŁS. Identification of oxygen ion conductivity of Ba doped Bi0. 5Na0. 5TiO3 (Ba-BNT) based matrix impregnated by lithium/potassium electrolyte for molten carbonate fuel cells. Int J Hydrogen Energy n.d. https://doi.org
.
Ghezel-Ayagh, Walzak, Patel, Daly, Maru, Sanderson (bib24) 2005; 152
van Duijn, Fehribach (bib12) 1992
Milewski, Santarelli, Świrski, Leo (bib29) 2011; vol. 40
De Silvestri, Stendardo, Della Pietra, Borello (bib17) 2021; 46
Dzwonkowski, Eddrief, Julien, Balkanski (bib36) 1990; 210
Bartram (bib5) 1965
Kim, Kim, Hwang, Kim, Kim (bib38) 2002; 92
Audasso, Nam, Arato, Bosio (bib15) 2017; 352
Stenzel, Pecho, Holzer, Neumann, Schmidt (bib30) 2016; 62
Gao, Selman, Nash (bib32) 2018; 165
Audasso (10.1016/j.rser.2023.113949_bib16) 2018; 35
Milewski (10.1016/j.rser.2023.113949_bib3) 2021
Azorín (10.1016/j.rser.2023.113949_bib37) 1993; 138
Audasso (10.1016/j.rser.2023.113949_bib18) 2018; 35
Cheng (10.1016/j.rser.2023.113949_bib33) 2014; 2014
Mitsushima (10.1016/j.rser.2023.113949_bib13) 1998; 66
Bartram (10.1016/j.rser.2023.113949_bib5) 1965
Audasso (10.1016/j.rser.2023.113949_bib15) 2017; 352
De Silvestri (10.1016/j.rser.2023.113949_bib17) 2021; 46
10.1016/j.rser.2023.113949_bib4
Heidebrecht (10.1016/j.rser.2023.113949_bib23) 2003; 58
Ghezel-Ayagh (10.1016/j.rser.2023.113949_bib24) 2005; 152
Can (10.1016/j.rser.2023.113949_bib35) 1995; 78
van Duijn (10.1016/j.rser.2023.113949_bib12) 1992
He (10.1016/j.rser.2023.113949_bib20) 1998; 39
Can (10.1016/j.rser.2023.113949_bib34) 1994; 76
Milewski (10.1016/j.rser.2023.113949_bib19) 2013; 38
Au (10.1016/j.rser.2023.113949_bib22) 2003; 44
Noirault (10.1016/j.rser.2023.113949_bib9) 2007; 19
Janz (10.1016/j.rser.2023.113949_bib6) 1983; 12
Milewski (10.1016/j.rser.2023.113949_bib29) 2011; vol. 40
Stenzel (10.1016/j.rser.2023.113949_bib30) 2016; 62
Blum (10.1016/j.rser.2023.113949_bib1) 2011; 36
Gao (10.1016/j.rser.2023.113949_bib32) 2018; 165
Kim (10.1016/j.rser.2023.113949_bib38) 2002; 92
Santarelli (10.1016/j.rser.2023.113949_bib27) 2011
Doux (10.1016/j.rser.2023.113949_bib10) 2017; 29
Janz (10.1016/j.rser.2023.113949_bib7) 1980; 5
Noirault (10.1016/j.rser.2023.113949_bib8) 2007; 46
Milewski (10.1016/j.rser.2023.113949_bib28) 2013; 38
Davison (10.1016/j.rser.2023.113949_bib31) 1978
Dzwonkowski (10.1016/j.rser.2023.113949_bib36) 1990; 210
Joubert (10.1016/j.rser.2023.113949_bib11) 2018
Ovrum (10.1016/j.rser.2023.113949_bib26) 2012; 35
Li (10.1016/j.rser.2023.113949_bib25) 2010; 55
Kupecki (10.1016/j.rser.2023.113949_bib2) 2011; 32
Bosio (10.1016/j.rser.2023.113949_bib14) 1999; 54
Lukas (10.1016/j.rser.2023.113949_bib21) 1999; 14
References_xml – volume: 165
  start-page: F324
  year: 2018
  end-page: F333
  ident: bib32
  article-title: Wetting of porous α-LiAlO
  publication-title: J Electrochem Soc
– year: 2021
  ident: bib3
  article-title: Supporting ionic conductivity of Li2CO3/K2C3 molten carbonate electrolyte by using yttria stabilized zirconia matrix
  publication-title: Int J Hydrogen Energy
– start-page: 165
  year: 1965
  end-page: 180
  ident: bib5
  article-title: No title
– volume: 58
  start-page: 1029
  year: 2003
  end-page: 1036
  ident: bib23
  article-title: Molten carbonate fuel cell (MCFC) with internal reforming: model-based analysis of cell dynamics
  publication-title: Chem Eng Sci
– volume: 152
  start-page: 219
  year: 2005
  end-page: 225
  ident: bib24
  article-title: State of direct fuel cell/turbine systems development
  publication-title: J Power Sources
– volume: 138
  start-page: 9
  year: 1993
  end-page: 46
  ident: bib37
  article-title: Preparation and properties of thermoluminescent materials
  publication-title: Phys Status Solidi
– volume: 54
  start-page: 2907
  year: 1999
  end-page: 2916
  ident: bib14
  article-title: Modeling and experimentation of molten carbonate fuel cell reactors in a scale-up process
  publication-title: Chem Eng Sci
– volume: 44
  start-page: 2297
  year: 2003
  end-page: 2307
  ident: bib22
  article-title: Verification of a simple numerical fuel cell model in a flowsheeting program by performance testing of a 110 cm2 molten carbonate fuel cell
  publication-title: Energy Convers Manag
– volume: 38
  start-page: 11565
  year: 2013
  end-page: 11575
  ident: bib28
  article-title: A reduced order model of molten carbonate fuel cell: a proposal
  publication-title: Int J Hydrogen Energy
– reference: Jarosław Milewski, Olaf Dybiński, Arkadiusz Szczęśniak, Aliaksandr Martsinchyk, Karol Ćwieka, Wen Xing ŁS. Identification of oxygen ion conductivity of Ba doped Bi0. 5Na0. 5TiO3 (Ba-BNT) based matrix impregnated by lithium/potassium electrolyte for molten carbonate fuel cells. Int J Hydrogen Energy n.d. https://doi.org/
– volume: 38
  year: 2013
  ident: bib19
  article-title: A reduced order model of Molten Carbonate Fuel Cell: a proposal
  publication-title: Int J Hydrogen Energy
– volume: 55
  start-page: 1958
  year: 2010
  end-page: 1965
  ident: bib25
  article-title: A carbon in molten carbonate anode model for a direct carbon fuel cell
  publication-title: Electrochim Acta
– volume: 36
  start-page: 11056
  year: 2011
  end-page: 11067
  ident: bib1
  article-title: Comparison of efficiencies of low, mean and high temperature fuel cell Systems
  publication-title: Int J Hydrogen Energy
– volume: 29
  start-page: 6425
  year: 2017
  end-page: 6433
  ident: bib10
  article-title: Oxygen ion transport and effects of doping in Ba3Ti3O6(BO3)2
  publication-title: Chem Mater
– volume: 14
  start-page: 1651
  year: 1999
  end-page: 1657
  ident: bib21
  article-title: Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant
  publication-title: IEEE Trans Energy Convers
– volume: 39
  start-page: 775
  year: 1998
  end-page: 783
  ident: bib20
  article-title: Dynamic model for molten carbonate fuel-cell power-generation systems
  publication-title: Energy Convert Manag
– volume: 210
  year: 1990
  ident: bib36
  article-title: Structure and ionic conductivity of lithio-borate thin films
  publication-title: MRS Proc
– volume: 66
  start-page: 817
  year: 1998
  end-page: 823
  ident: bib13
  article-title: Polarization model for molten carbonate fuel cell cathodes
  publication-title: Denki Kagaku
– volume: 2014
  year: 2014
  ident: bib33
  article-title: The optimization of matrix preparation process and performance testing for molten carbonate fuel cell
  publication-title: J Chem
– volume: 46
  start-page: 14988
  year: 2021
  end-page: 15007
  ident: bib17
  article-title: Decarbonizing cement plants via a fully integrated calcium looping-molten carbonate fuel cell process: assessment of a model for fuel cell performance predictions under different operating conditions
  publication-title: Int J Hydrogen Energy
– volume: 62
  start-page: 1834
  year: 2016
  end-page: 1843
  ident: bib30
  article-title: Predicting effective conductivities based on geometric microstructure characteristics
  publication-title: AIChE J
– volume: 35
  start-page: 791
  year: 2018
  end-page: 803
  ident: bib16
  article-title: A model predictive functional control based on proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) using extended non-minimal state space: application to a molten carbonate fuel cell process
  publication-title: Kor J Chem Eng
– volume: 5
  year: 1980
  ident: bib7
  publication-title: Molten Salts
– volume: 46
  start-page: 9961
  year: 2007
  end-page: 9967
  ident: bib8
  article-title: Effects of water uptake on the inherently oxygen-deficient compounds Ln26O27□(BO3)8 (Ln = La, Nd)
  publication-title: Inorg Chem
– volume: 19
  start-page: 867
  year: 2007
  end-page: 870
  ident: bib9
  article-title: Incorporation of water and fast proton conduction in the inherently oxygen-deficient compound la26O27□(BO 3)8
  publication-title: Adv Mater
– volume: 35
  start-page: 15
  year: 2012
  end-page: 28
  ident: bib26
  article-title: A validated dynamic model of the first marine molten carbonate fuel cell
  publication-title: Appl Therm Eng
– volume: 12
  year: 1983
  ident: bib6
  article-title: Molten salts: volume 5, Part 2. Additional single and multi-component salt systems. Electrical conductance, density, viscosity and surface tension data
  publication-title: J Phys Chem Ref Data
– year: 1978
  ident: bib31
  article-title: A feasibility study of inorganic oxide-fluoride compositions for themrl energy storage applications
– volume: 92
  start-page: 4644
  year: 2002
  end-page: 4648
  ident: bib38
  article-title: Electrical properties of Li 2B 4O 7 single crystals in the [001] direction: comparison between crystals grown from Li 2CO 3 and B 2O 3 mixed powder and from Li 2B 4O 7 powder
  publication-title: J Appl Phys
– reference: .
– start-page: 63
  year: 2018
  end-page: 64
  ident: bib11
  article-title: Promising oxy borates for solid-oxide fuel cell applications
  publication-title: 20th Int. Conf. Adv. Energy Mater. Res.
– volume: 76
  start-page: 4327
  year: 1994
  end-page: 4331
  ident: bib34
  article-title: Electrical and optical properties of Li-doped LiBO2 and LiNbO3 films
  publication-title: J Appl Phys
– volume: 78
  start-page: 5675
  year: 1995
  end-page: 5679
  ident: bib35
  article-title: Electrical and optical properties of thermally evaporated LiBO 2-LiF composite films
  publication-title: J Appl Phys
– volume: 32
  start-page: 33
  year: 2011
  end-page: 43
  ident: bib2
  article-title: {SOFC}-based micro-{CHP} system as an example of efficient power generation unit
  publication-title: Arch Therm
– year: 2011
  ident: bib27
  article-title: Advanced methods of solid oxide fuel cell modeling
  publication-title: Springer Sci Bus Media
– volume: vol. 40
  year: 2011
  ident: bib29
  publication-title: Advanced methods of solid oxide fuel cell modeling
– volume: 352
  start-page: 216
  year: 2017
  end-page: 225
  ident: bib15
  article-title: Preliminary model and validation of molten carbonate fuel cell kinetics under sulphur poisoning
  publication-title: J Power Sources
– year: 1992
  ident: bib12
  article-title: Analysis of planar model for the molten carbonate fuel cell
– volume: 35
  start-page: 1958
  year: 2018
  end-page: 1965
  ident: bib18
  article-title: Model-based control of a molten carbonate fuel cell (MCFC) process
  publication-title: Kor J Chem Eng
– volume: 76
  start-page: 4327
  year: 1994
  ident: 10.1016/j.rser.2023.113949_bib34
  article-title: Electrical and optical properties of Li-doped LiBO2 and LiNbO3 films
  publication-title: J Appl Phys
  doi: 10.1063/1.357318
– volume: 35
  start-page: 1958
  year: 2018
  ident: 10.1016/j.rser.2023.113949_bib18
  article-title: Model-based control of a molten carbonate fuel cell (MCFC) process
  publication-title: Kor J Chem Eng
– year: 2021
  ident: 10.1016/j.rser.2023.113949_bib3
  article-title: Supporting ionic conductivity of Li2CO3/K2C3 molten carbonate electrolyte by using yttria stabilized zirconia matrix
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.073
– volume: 12
  year: 1983
  ident: 10.1016/j.rser.2023.113949_bib6
  article-title: Molten salts: volume 5, Part 2. Additional single and multi-component salt systems. Electrical conductance, density, viscosity and surface tension data
  publication-title: J Phys Chem Ref Data
  doi: 10.1063/1.555693
– year: 2011
  ident: 10.1016/j.rser.2023.113949_bib27
  article-title: Advanced methods of solid oxide fuel cell modeling
  publication-title: Springer Sci Bus Media
– volume: 165
  start-page: F324
  year: 2018
  ident: 10.1016/j.rser.2023.113949_bib32
  article-title: Wetting of porous α-LiAlO 2 by molten carbonate
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0771805jes
– volume: 46
  start-page: 9961
  year: 2007
  ident: 10.1016/j.rser.2023.113949_bib8
  article-title: Effects of water uptake on the inherently oxygen-deficient compounds Ln26O27□(BO3)8 (Ln = La, Nd)
  publication-title: Inorg Chem
  doi: 10.1021/ic701059z
– volume: 19
  start-page: 867
  year: 2007
  ident: 10.1016/j.rser.2023.113949_bib9
  article-title: Incorporation of water and fast proton conduction in the inherently oxygen-deficient compound la26O27□(BO 3)8
  publication-title: Adv Mater
  doi: 10.1002/adma.200602033
– year: 1992
  ident: 10.1016/j.rser.2023.113949_bib12
– volume: 152
  start-page: 219
  year: 2005
  ident: 10.1016/j.rser.2023.113949_bib24
  article-title: State of direct fuel cell/turbine systems development
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.12.060
– volume: 55
  start-page: 1958
  year: 2010
  ident: 10.1016/j.rser.2023.113949_bib25
  article-title: A carbon in molten carbonate anode model for a direct carbon fuel cell
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2009.11.015
– ident: 10.1016/j.rser.2023.113949_bib4
  doi: 10.1016/j.ijhydene.2023.06.116
– volume: 5
  year: 1980
  ident: 10.1016/j.rser.2023.113949_bib7
  publication-title: Molten Salts
– volume: 78
  start-page: 5675
  year: 1995
  ident: 10.1016/j.rser.2023.113949_bib35
  article-title: Electrical and optical properties of thermally evaporated LiBO 2-LiF composite films
  publication-title: J Appl Phys
  doi: 10.1063/1.359624
– volume: 32
  start-page: 33
  year: 2011
  ident: 10.1016/j.rser.2023.113949_bib2
  article-title: {SOFC}-based micro-{CHP} system as an example of efficient power generation unit
  publication-title: Arch Therm
– volume: 46
  start-page: 14988
  year: 2021
  ident: 10.1016/j.rser.2023.113949_bib17
  article-title: Decarbonizing cement plants via a fully integrated calcium looping-molten carbonate fuel cell process: assessment of a model for fuel cell performance predictions under different operating conditions
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.024
– volume: 38
  year: 2013
  ident: 10.1016/j.rser.2023.113949_bib19
  article-title: A reduced order model of Molten Carbonate Fuel Cell: a proposal
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.06.002
– volume: 39
  start-page: 775
  year: 1998
  ident: 10.1016/j.rser.2023.113949_bib20
  article-title: Dynamic model for molten carbonate fuel-cell power-generation systems
  publication-title: Energy Convert Manag
  doi: 10.1016/S0196-8904(97)10022-X
– volume: 62
  start-page: 1834
  year: 2016
  ident: 10.1016/j.rser.2023.113949_bib30
  article-title: Predicting effective conductivities based on geometric microstructure characteristics
  publication-title: AIChE J
  doi: 10.1002/aic.15160
– volume: 44
  start-page: 2297
  year: 2003
  ident: 10.1016/j.rser.2023.113949_bib22
  article-title: Verification of a simple numerical fuel cell model in a flowsheeting program by performance testing of a 110 cm2 molten carbonate fuel cell
  publication-title: Energy Convers Manag
  doi: 10.1016/S0196-8904(02)00253-4
– volume: 54
  start-page: 2907
  year: 1999
  ident: 10.1016/j.rser.2023.113949_bib14
  article-title: Modeling and experimentation of molten carbonate fuel cell reactors in a scale-up process
  publication-title: Chem Eng Sci
  doi: 10.1016/S0009-2509(98)00414-X
– volume: 352
  start-page: 216
  year: 2017
  ident: 10.1016/j.rser.2023.113949_bib15
  article-title: Preliminary model and validation of molten carbonate fuel cell kinetics under sulphur poisoning
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.03.091
– volume: 2014
  year: 2014
  ident: 10.1016/j.rser.2023.113949_bib33
  article-title: The optimization of matrix preparation process and performance testing for molten carbonate fuel cell
  publication-title: J Chem
  doi: 10.1155/2014/625893
– volume: 210
  year: 1990
  ident: 10.1016/j.rser.2023.113949_bib36
  article-title: Structure and ionic conductivity of lithio-borate thin films
  publication-title: MRS Proc
  doi: 10.1557/PROC-210-633
– volume: 35
  start-page: 15
  year: 2012
  ident: 10.1016/j.rser.2023.113949_bib26
  article-title: A validated dynamic model of the first marine molten carbonate fuel cell
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.09.023
– start-page: 63
  year: 2018
  ident: 10.1016/j.rser.2023.113949_bib11
  article-title: Promising oxy borates for solid-oxide fuel cell applications
– start-page: 165
  year: 1965
  ident: 10.1016/j.rser.2023.113949_bib5
– volume: 58
  start-page: 1029
  year: 2003
  ident: 10.1016/j.rser.2023.113949_bib23
  article-title: Molten carbonate fuel cell (MCFC) with internal reforming: model-based analysis of cell dynamics
  publication-title: Chem Eng Sci
  doi: 10.1016/S0009-2509(02)00644-9
– volume: vol. 40
  year: 2011
  ident: 10.1016/j.rser.2023.113949_bib29
– year: 1978
  ident: 10.1016/j.rser.2023.113949_bib31
– volume: 14
  start-page: 1651
  year: 1999
  ident: 10.1016/j.rser.2023.113949_bib21
  article-title: Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/60.815119
– volume: 92
  start-page: 4644
  year: 2002
  ident: 10.1016/j.rser.2023.113949_bib38
  article-title: Electrical properties of Li 2B 4O 7 single crystals in the [001] direction: comparison between crystals grown from Li 2CO 3 and B 2O 3 mixed powder and from Li 2B 4O 7 powder
  publication-title: J Appl Phys
  doi: 10.1063/1.1505980
– volume: 66
  start-page: 817
  year: 1998
  ident: 10.1016/j.rser.2023.113949_bib13
  article-title: Polarization model for molten carbonate fuel cell cathodes
  publication-title: Denki Kagaku
  doi: 10.5796/kogyobutsurikagaku.66.817
– volume: 35
  start-page: 791
  year: 2018
  ident: 10.1016/j.rser.2023.113949_bib16
  article-title: A model predictive functional control based on proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) using extended non-minimal state space: application to a molten carbonate fuel cell process
  publication-title: Kor J Chem Eng
– volume: 138
  start-page: 9
  year: 1993
  ident: 10.1016/j.rser.2023.113949_bib37
  article-title: Preparation and properties of thermoluminescent materials
  publication-title: Phys Status Solidi
  doi: 10.1002/pssa.2211380102
– volume: 29
  start-page: 6425
  year: 2017
  ident: 10.1016/j.rser.2023.113949_bib10
  article-title: Oxygen ion transport and effects of doping in Ba3Ti3O6(BO3)2
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b01831
– volume: 36
  start-page: 11056
  year: 2011
  ident: 10.1016/j.rser.2023.113949_bib1
  article-title: Comparison of efficiencies of low, mean and high temperature fuel cell Systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.122
– volume: 38
  start-page: 11565
  year: 2013
  ident: 10.1016/j.rser.2023.113949_bib28
  article-title: A reduced order model of molten carbonate fuel cell: a proposal
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.06.002
SSID ssj0015873
Score 2.440714
Snippet The research presents an overview of the possibilities of using boron-containing compounds as electrolytes for fuel cells. The main assumption here is to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113949
SubjectTerms Electrolytes
Fuel cells
Mathematical modeling
Medium temperature fuel cell
Molten borates
Title Molten Borates Fuel Cells — Mathematical modeling and identification of performances
URI https://dx.doi.org/10.1016/j.rser.2023.113949
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k22bZDebHGuw1EeLaJXewr4KlZCWPq7ij_AX-kvcyaNWkB48hYSZkJ0ZZifsN98gdDlSzOVGaiId6RFqQkqkCgxxBVWu52vgpAK0Rd_vvtC7IRtWUFT2wgCsssj9eU7PsnXxpFlYszkdj5vPjufTlgepF8oeDk18lHKI8sb7CubhsCA7ZQZhAtJF40yO8ZpZNzdggDiMNgmBT_OvzWltw-nsod2iUsTt_GP2UcWkB2hnjT_wEL32JomtefE1-NHMcWdpEhyZJJnjr49P3FtRstr3ZCNvrBYWqcZjXYCEMr_gyQhPfxoI5kdo0LkZRF1SDEogyq59QQTTcFrohix0udCjIJAO056ioVShq41i9ifCUA5U-NxjRnDBtW4Z4Rhf2hLiGFXTSWpOEDahLYfcUPnaGVFBteQ-DVwFLG7CbuatGnJKA8WqIBGHWRZJXKLF3mIwagxGjXOj1tDVSmeaU2hslGal3eNfgRDbHL9B7_Sfemdo297RHIh9jqqL2dJc2DpjIetZINXRVjt6eniE6-19t_8NaVPUDQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oHNSD8Rnf7sGbqdDtbts9KpGAAhfRcGv2RYJpgAje_RH-Qn-JO3RBTAwHr-1O036zmfmanfkG4KqvOU2sMoEKVRQwK1igdGoDKpmmUWxQkwqrLTpx45k99HhvDWrzXhgsq_Sxv4jps2jtr1Q8mpXxYFB5CqOYVSMMvUh7ErEOZVSn4iUo3zYfG53FYQJPZwfNuD5AA987U5R5vTlP3-AMcZxuIlBS86_8tJRz6juw7ckiuS3eZxfW7HAPtpYkBPfhpT3KHe0ld-hKOyH1d5uTms3zCfn6-CTthSqre85s6o2zInJoyMD4OqGZa8ioT8Y_PQSTA-jW77u1RuBnJQTaff40kNzggSEVXNBEmn6aqpCbSDOhtKDGau7-I6xDh8Y8ibiViUyMqVoZ2lg5FnEIpeFoaI-AWOEYERU6NmGfSWZUErOUahRyky6fV48hnAOUaa8jjuMs8mxeMPaaIagZgpoVoB7D9cJmXKhorFzN57hnv_ZC5sL8CruTf9pdwkaj225lrWbn8RQ23R1W1GWfQWn69m7PHe2Yqgu_rb4BFmbVKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molten+Borates+Fuel+Cells+%E2%80%94+Mathematical+modeling+and+identification+of+performances&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Milewski%2C+Jaros%C5%82aw&rft.au=Szcz%C4%99%C5%9Bniak%2C+Arkadiusz&rft.au=Szab%C5%82owski%2C+%C5%81ukasz&rft.au=Martsinchyk%2C+Aliaxandr&rft.date=2024-02-01&rft.issn=1364-0321&rft.volume=190&rft.spage=113949&rft_id=info:doi/10.1016%2Fj.rser.2023.113949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rser_2023_113949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon