Molten Borates Fuel Cells — Mathematical modeling and identification of performances
The research presents an overview of the possibilities of using boron-containing compounds as electrolytes for fuel cells. The main assumption here is to develop a molten carbonate fuel cell type power source, where the molten electrolyte is kept by a ceramic matrix between the electrodes. In the ca...
Saved in:
Published in | Renewable & sustainable energy reviews Vol. 190; p. 113949 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1364-0321 1879-0690 |
DOI | 10.1016/j.rser.2023.113949 |
Cover
Loading…
Abstract | The research presents an overview of the possibilities of using boron-containing compounds as electrolytes for fuel cells. The main assumption here is to develop a molten carbonate fuel cell type power source, where the molten electrolyte is kept by a ceramic matrix between the electrodes. In the cases which are described in this study, attempts were made to develop electrolytes based on borates. Whereas the reported studies contain very little information on this subject, it was possible to identify several promising compounds and to extrapolate their performance to higher temperatures. Reported data on the temperature at eutectic points suggest that the operating range of such electrolytes is at a level like the molten carbonate fuel cell. The study presents a proposal for a mathematical model of a new type of fuel cell based on molten borates. The mathematical model is based on the reduced order model, supplemented with the influence of the ceramic matrix on the resulting ionic conductivity of the electrolyte layer. The model was used to determine potential performances for a few selected borates and a sensitivity analysis of selected geometric parameters was performed for the best of them. The results obtained were compared against the standard molten carbonate fuel cell.
•Conductivities of various boron compounds have been investigated and compared.•Application of boron-containing compounds in fuel cells electrolyte has been analyzed.•A model of molten borate fuel cell has been developed.•Borates occurring to have higher potential than carbonates what might result in higher efficiency. |
---|---|
AbstractList | The research presents an overview of the possibilities of using boron-containing compounds as electrolytes for fuel cells. The main assumption here is to develop a molten carbonate fuel cell type power source, where the molten electrolyte is kept by a ceramic matrix between the electrodes. In the cases which are described in this study, attempts were made to develop electrolytes based on borates. Whereas the reported studies contain very little information on this subject, it was possible to identify several promising compounds and to extrapolate their performance to higher temperatures. Reported data on the temperature at eutectic points suggest that the operating range of such electrolytes is at a level like the molten carbonate fuel cell. The study presents a proposal for a mathematical model of a new type of fuel cell based on molten borates. The mathematical model is based on the reduced order model, supplemented with the influence of the ceramic matrix on the resulting ionic conductivity of the electrolyte layer. The model was used to determine potential performances for a few selected borates and a sensitivity analysis of selected geometric parameters was performed for the best of them. The results obtained were compared against the standard molten carbonate fuel cell.
•Conductivities of various boron compounds have been investigated and compared.•Application of boron-containing compounds in fuel cells electrolyte has been analyzed.•A model of molten borate fuel cell has been developed.•Borates occurring to have higher potential than carbonates what might result in higher efficiency. |
ArticleNumber | 113949 |
Author | Martsinchyk, Aliaxandr Milewski, Jarosław Szabłowski, Łukasz Dybinski, Olaf Świrski, Konrad Szczęśniak, Arkadiusz Siekierski, Maciej |
Author_xml | – sequence: 1 givenname: Jarosław orcidid: 0000-0003-1215-1802 surname: Milewski fullname: Milewski, Jarosław email: jaroslaw.milewski@pw.edu.pl organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland – sequence: 2 givenname: Arkadiusz surname: Szczęśniak fullname: Szczęśniak, Arkadiusz organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland – sequence: 3 givenname: Łukasz orcidid: 0000-0002-6646-2297 surname: Szabłowski fullname: Szabłowski, Łukasz organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland – sequence: 4 givenname: Aliaxandr orcidid: 0000-0003-4342-149X surname: Martsinchyk fullname: Martsinchyk, Aliaxandr organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland – sequence: 5 givenname: Maciej surname: Siekierski fullname: Siekierski, Maciej organization: Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664, Warsaw, Poland – sequence: 6 givenname: Olaf orcidid: 0000-0002-9723-5310 surname: Dybinski fullname: Dybinski, Olaf organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland – sequence: 7 givenname: Konrad surname: Świrski fullname: Świrski, Konrad organization: Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665, Warsaw, Poland |
BookMark | eNp9kM1KAzEURoNUsK2-gKu8wIz5mUwm4EaLVaHFTXE7pMkdTUknJYmCOx_CJ_RJnFpXLrq6Fz7O5X5ngkZ96AGhS0pKSmh9tSljglgywnhJKVeVOkFj2khVkFqR0bDzuioIZ_QMTVLaEEJFI_kYPS-Dz9Dj2xB1hoTnb-DxDLxP-PvzCy91foWtzs5oj7fBgnf9C9a9xc5Cn103BNmFHocO7yB2IW51byCdo9NO-wQXf3OKVvO71eyhWDzdP85uFoXhhORCC6sIE0wJxaS2XdOsqbDcVGptFLNgRMNqqKRgtZBcgJZaWktAU6jXsuJT1BzOmhhSitC1xuXfh3LUzreUtHs97abd62n3etqDngFl_9BddFsdP45D1wcIhk7vbkiTcTAUti6Cya0N7hj-Axsogpw |
CitedBy_id | crossref_primary_10_1007_s11581_024_05715_x crossref_primary_10_1016_j_cscee_2024_100920 crossref_primary_10_3390_en17092097 |
Cites_doi | 10.1063/1.357318 10.1016/j.ijhydene.2020.12.073 10.1063/1.555693 10.1149/2.0771805jes 10.1021/ic701059z 10.1002/adma.200602033 10.1016/j.jpowsour.2004.12.060 10.1016/j.electacta.2009.11.015 10.1016/j.ijhydene.2023.06.116 10.1063/1.359624 10.1016/j.ijhydene.2020.12.024 10.1016/j.ijhydene.2013.06.002 10.1016/S0196-8904(97)10022-X 10.1002/aic.15160 10.1016/S0196-8904(02)00253-4 10.1016/S0009-2509(98)00414-X 10.1016/j.jpowsour.2017.03.091 10.1155/2014/625893 10.1557/PROC-210-633 10.1016/j.applthermaleng.2011.09.023 10.1016/S0009-2509(02)00644-9 10.1109/60.815119 10.1063/1.1505980 10.5796/kogyobutsurikagaku.66.817 10.1002/pssa.2211380102 10.1021/acs.chemmater.7b01831 10.1016/j.ijhydene.2011.05.122 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rser.2023.113949 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0690 |
ExternalDocumentID | 10_1016_j_rser_2023_113949 S1364032123008079 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SSZ T5K Y6R ZCA ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-a5d9025295927adf88b15d3c49bc92dec5826e475265735ea7a7dd0ea1e6b743 |
IEDL.DBID | .~1 |
ISSN | 1364-0321 |
IngestDate | Tue Jul 01 03:18:28 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 Sat Apr 20 15:58:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Medium temperature fuel cell Electrolytes Molten borates Mathematical modeling Fuel cells |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-a5d9025295927adf88b15d3c49bc92dec5826e475265735ea7a7dd0ea1e6b743 |
ORCID | 0000-0003-4342-149X 0000-0002-6646-2297 0000-0002-9723-5310 0000-0003-1215-1802 |
ParticipantIDs | crossref_citationtrail_10_1016_j_rser_2023_113949 crossref_primary_10_1016_j_rser_2023_113949 elsevier_sciencedirect_doi_10_1016_j_rser_2023_113949 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Renewable & sustainable energy reviews |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kupecki, Badyda (bib2) 2011; 32 Noirault, Célérier, Joubert, Caldes, Piffard (bib9) 2007; 19 Audasso, Nam, Arato, Bosio, He, Baranak (bib18) 2018; 35 Davison (bib31) 1978 Audasso, Nam, Arato, Bosio, He, Baranak (bib16) 2018; 35 Ovrum, Dimopoulos (bib26) 2012; 35 Milewski, Wołowicz, Miller, Bernat, RafałBernat (bib28) 2013; 38 Janz, Tomkins (bib7) 1980; 5 Noirault, Célérier, Joubert, Caldes, Piffard (bib8) 2007; 46 Can, Ashrit, Bader, Girouard, Truong (bib34) 1994; 76 Cheng, Guo, Xu, Zhang (bib33) 2014; 2014 Blum, Deja, Peters, Stolten (bib1) 2011; 36 Au, Woudstra, Hemmes, Uchida (bib22) 2003; 44 Can, Truong (bib35) 1995; 78 Milewski, Wejrzanowski, Fung, Szczśniak, Ćwieka, Tsai (bib3) 2021 Heidebrecht, Sundmacher (bib23) 2003; 58 Milewski, Wołowicz, Miller, Bernat (bib19) 2013; 38 Santarelli, Leone, others, Milewski, Swirski, Santarelli (bib27) 2011 Lukas, Lee, Ghezel-Ayagh (bib21) 1999; 14 Joubert (bib11) 2018 Bosio, Costamagna, Parodi (bib14) 1999; 54 Azorín, Furetta, Scacco (bib37) 1993; 138 Li, Liu, Li (bib25) 2010; 55 Doux, Hoang, Joubert, Quarez (bib10) 2017; 29 Mitsushima, Kuroe, Matsuda, Kamo (bib13) 1998; 66 He (bib20) 1998; 39 Janz, Gardner, Krebs, Tomkins (bib6) 1983; 12 Jarosław Milewski, Olaf Dybiński, Arkadiusz Szczęśniak, Aliaksandr Martsinchyk, Karol Ćwieka, Wen Xing ŁS. Identification of oxygen ion conductivity of Ba doped Bi0. 5Na0. 5TiO3 (Ba-BNT) based matrix impregnated by lithium/potassium electrolyte for molten carbonate fuel cells. Int J Hydrogen Energy n.d. https://doi.org . Ghezel-Ayagh, Walzak, Patel, Daly, Maru, Sanderson (bib24) 2005; 152 van Duijn, Fehribach (bib12) 1992 Milewski, Santarelli, Świrski, Leo (bib29) 2011; vol. 40 De Silvestri, Stendardo, Della Pietra, Borello (bib17) 2021; 46 Dzwonkowski, Eddrief, Julien, Balkanski (bib36) 1990; 210 Bartram (bib5) 1965 Kim, Kim, Hwang, Kim, Kim (bib38) 2002; 92 Audasso, Nam, Arato, Bosio (bib15) 2017; 352 Stenzel, Pecho, Holzer, Neumann, Schmidt (bib30) 2016; 62 Gao, Selman, Nash (bib32) 2018; 165 Audasso (10.1016/j.rser.2023.113949_bib16) 2018; 35 Milewski (10.1016/j.rser.2023.113949_bib3) 2021 Azorín (10.1016/j.rser.2023.113949_bib37) 1993; 138 Audasso (10.1016/j.rser.2023.113949_bib18) 2018; 35 Cheng (10.1016/j.rser.2023.113949_bib33) 2014; 2014 Mitsushima (10.1016/j.rser.2023.113949_bib13) 1998; 66 Bartram (10.1016/j.rser.2023.113949_bib5) 1965 Audasso (10.1016/j.rser.2023.113949_bib15) 2017; 352 De Silvestri (10.1016/j.rser.2023.113949_bib17) 2021; 46 10.1016/j.rser.2023.113949_bib4 Heidebrecht (10.1016/j.rser.2023.113949_bib23) 2003; 58 Ghezel-Ayagh (10.1016/j.rser.2023.113949_bib24) 2005; 152 Can (10.1016/j.rser.2023.113949_bib35) 1995; 78 van Duijn (10.1016/j.rser.2023.113949_bib12) 1992 He (10.1016/j.rser.2023.113949_bib20) 1998; 39 Can (10.1016/j.rser.2023.113949_bib34) 1994; 76 Milewski (10.1016/j.rser.2023.113949_bib19) 2013; 38 Au (10.1016/j.rser.2023.113949_bib22) 2003; 44 Noirault (10.1016/j.rser.2023.113949_bib9) 2007; 19 Janz (10.1016/j.rser.2023.113949_bib6) 1983; 12 Milewski (10.1016/j.rser.2023.113949_bib29) 2011; vol. 40 Stenzel (10.1016/j.rser.2023.113949_bib30) 2016; 62 Blum (10.1016/j.rser.2023.113949_bib1) 2011; 36 Gao (10.1016/j.rser.2023.113949_bib32) 2018; 165 Kim (10.1016/j.rser.2023.113949_bib38) 2002; 92 Santarelli (10.1016/j.rser.2023.113949_bib27) 2011 Doux (10.1016/j.rser.2023.113949_bib10) 2017; 29 Janz (10.1016/j.rser.2023.113949_bib7) 1980; 5 Noirault (10.1016/j.rser.2023.113949_bib8) 2007; 46 Milewski (10.1016/j.rser.2023.113949_bib28) 2013; 38 Davison (10.1016/j.rser.2023.113949_bib31) 1978 Dzwonkowski (10.1016/j.rser.2023.113949_bib36) 1990; 210 Joubert (10.1016/j.rser.2023.113949_bib11) 2018 Ovrum (10.1016/j.rser.2023.113949_bib26) 2012; 35 Li (10.1016/j.rser.2023.113949_bib25) 2010; 55 Kupecki (10.1016/j.rser.2023.113949_bib2) 2011; 32 Bosio (10.1016/j.rser.2023.113949_bib14) 1999; 54 Lukas (10.1016/j.rser.2023.113949_bib21) 1999; 14 |
References_xml | – volume: 165 start-page: F324 year: 2018 end-page: F333 ident: bib32 article-title: Wetting of porous α-LiAlO publication-title: J Electrochem Soc – year: 2021 ident: bib3 article-title: Supporting ionic conductivity of Li2CO3/K2C3 molten carbonate electrolyte by using yttria stabilized zirconia matrix publication-title: Int J Hydrogen Energy – start-page: 165 year: 1965 end-page: 180 ident: bib5 article-title: No title – volume: 58 start-page: 1029 year: 2003 end-page: 1036 ident: bib23 article-title: Molten carbonate fuel cell (MCFC) with internal reforming: model-based analysis of cell dynamics publication-title: Chem Eng Sci – volume: 152 start-page: 219 year: 2005 end-page: 225 ident: bib24 article-title: State of direct fuel cell/turbine systems development publication-title: J Power Sources – volume: 138 start-page: 9 year: 1993 end-page: 46 ident: bib37 article-title: Preparation and properties of thermoluminescent materials publication-title: Phys Status Solidi – volume: 54 start-page: 2907 year: 1999 end-page: 2916 ident: bib14 article-title: Modeling and experimentation of molten carbonate fuel cell reactors in a scale-up process publication-title: Chem Eng Sci – volume: 44 start-page: 2297 year: 2003 end-page: 2307 ident: bib22 article-title: Verification of a simple numerical fuel cell model in a flowsheeting program by performance testing of a 110 cm2 molten carbonate fuel cell publication-title: Energy Convers Manag – volume: 38 start-page: 11565 year: 2013 end-page: 11575 ident: bib28 article-title: A reduced order model of molten carbonate fuel cell: a proposal publication-title: Int J Hydrogen Energy – reference: Jarosław Milewski, Olaf Dybiński, Arkadiusz Szczęśniak, Aliaksandr Martsinchyk, Karol Ćwieka, Wen Xing ŁS. Identification of oxygen ion conductivity of Ba doped Bi0. 5Na0. 5TiO3 (Ba-BNT) based matrix impregnated by lithium/potassium electrolyte for molten carbonate fuel cells. Int J Hydrogen Energy n.d. https://doi.org/ – volume: 38 year: 2013 ident: bib19 article-title: A reduced order model of Molten Carbonate Fuel Cell: a proposal publication-title: Int J Hydrogen Energy – volume: 55 start-page: 1958 year: 2010 end-page: 1965 ident: bib25 article-title: A carbon in molten carbonate anode model for a direct carbon fuel cell publication-title: Electrochim Acta – volume: 36 start-page: 11056 year: 2011 end-page: 11067 ident: bib1 article-title: Comparison of efficiencies of low, mean and high temperature fuel cell Systems publication-title: Int J Hydrogen Energy – volume: 29 start-page: 6425 year: 2017 end-page: 6433 ident: bib10 article-title: Oxygen ion transport and effects of doping in Ba3Ti3O6(BO3)2 publication-title: Chem Mater – volume: 14 start-page: 1651 year: 1999 end-page: 1657 ident: bib21 article-title: Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant publication-title: IEEE Trans Energy Convers – volume: 39 start-page: 775 year: 1998 end-page: 783 ident: bib20 article-title: Dynamic model for molten carbonate fuel-cell power-generation systems publication-title: Energy Convert Manag – volume: 210 year: 1990 ident: bib36 article-title: Structure and ionic conductivity of lithio-borate thin films publication-title: MRS Proc – volume: 66 start-page: 817 year: 1998 end-page: 823 ident: bib13 article-title: Polarization model for molten carbonate fuel cell cathodes publication-title: Denki Kagaku – volume: 2014 year: 2014 ident: bib33 article-title: The optimization of matrix preparation process and performance testing for molten carbonate fuel cell publication-title: J Chem – volume: 46 start-page: 14988 year: 2021 end-page: 15007 ident: bib17 article-title: Decarbonizing cement plants via a fully integrated calcium looping-molten carbonate fuel cell process: assessment of a model for fuel cell performance predictions under different operating conditions publication-title: Int J Hydrogen Energy – volume: 62 start-page: 1834 year: 2016 end-page: 1843 ident: bib30 article-title: Predicting effective conductivities based on geometric microstructure characteristics publication-title: AIChE J – volume: 35 start-page: 791 year: 2018 end-page: 803 ident: bib16 article-title: A model predictive functional control based on proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) using extended non-minimal state space: application to a molten carbonate fuel cell process publication-title: Kor J Chem Eng – volume: 5 year: 1980 ident: bib7 publication-title: Molten Salts – volume: 46 start-page: 9961 year: 2007 end-page: 9967 ident: bib8 article-title: Effects of water uptake on the inherently oxygen-deficient compounds Ln26O27□(BO3)8 (Ln = La, Nd) publication-title: Inorg Chem – volume: 19 start-page: 867 year: 2007 end-page: 870 ident: bib9 article-title: Incorporation of water and fast proton conduction in the inherently oxygen-deficient compound la26O27□(BO 3)8 publication-title: Adv Mater – volume: 35 start-page: 15 year: 2012 end-page: 28 ident: bib26 article-title: A validated dynamic model of the first marine molten carbonate fuel cell publication-title: Appl Therm Eng – volume: 12 year: 1983 ident: bib6 article-title: Molten salts: volume 5, Part 2. Additional single and multi-component salt systems. Electrical conductance, density, viscosity and surface tension data publication-title: J Phys Chem Ref Data – year: 1978 ident: bib31 article-title: A feasibility study of inorganic oxide-fluoride compositions for themrl energy storage applications – volume: 92 start-page: 4644 year: 2002 end-page: 4648 ident: bib38 article-title: Electrical properties of Li 2B 4O 7 single crystals in the [001] direction: comparison between crystals grown from Li 2CO 3 and B 2O 3 mixed powder and from Li 2B 4O 7 powder publication-title: J Appl Phys – reference: . – start-page: 63 year: 2018 end-page: 64 ident: bib11 article-title: Promising oxy borates for solid-oxide fuel cell applications publication-title: 20th Int. Conf. Adv. Energy Mater. Res. – volume: 76 start-page: 4327 year: 1994 end-page: 4331 ident: bib34 article-title: Electrical and optical properties of Li-doped LiBO2 and LiNbO3 films publication-title: J Appl Phys – volume: 78 start-page: 5675 year: 1995 end-page: 5679 ident: bib35 article-title: Electrical and optical properties of thermally evaporated LiBO 2-LiF composite films publication-title: J Appl Phys – volume: 32 start-page: 33 year: 2011 end-page: 43 ident: bib2 article-title: {SOFC}-based micro-{CHP} system as an example of efficient power generation unit publication-title: Arch Therm – year: 2011 ident: bib27 article-title: Advanced methods of solid oxide fuel cell modeling publication-title: Springer Sci Bus Media – volume: vol. 40 year: 2011 ident: bib29 publication-title: Advanced methods of solid oxide fuel cell modeling – volume: 352 start-page: 216 year: 2017 end-page: 225 ident: bib15 article-title: Preliminary model and validation of molten carbonate fuel cell kinetics under sulphur poisoning publication-title: J Power Sources – year: 1992 ident: bib12 article-title: Analysis of planar model for the molten carbonate fuel cell – volume: 35 start-page: 1958 year: 2018 end-page: 1965 ident: bib18 article-title: Model-based control of a molten carbonate fuel cell (MCFC) process publication-title: Kor J Chem Eng – volume: 76 start-page: 4327 year: 1994 ident: 10.1016/j.rser.2023.113949_bib34 article-title: Electrical and optical properties of Li-doped LiBO2 and LiNbO3 films publication-title: J Appl Phys doi: 10.1063/1.357318 – volume: 35 start-page: 1958 year: 2018 ident: 10.1016/j.rser.2023.113949_bib18 article-title: Model-based control of a molten carbonate fuel cell (MCFC) process publication-title: Kor J Chem Eng – year: 2021 ident: 10.1016/j.rser.2023.113949_bib3 article-title: Supporting ionic conductivity of Li2CO3/K2C3 molten carbonate electrolyte by using yttria stabilized zirconia matrix publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.073 – volume: 12 year: 1983 ident: 10.1016/j.rser.2023.113949_bib6 article-title: Molten salts: volume 5, Part 2. Additional single and multi-component salt systems. Electrical conductance, density, viscosity and surface tension data publication-title: J Phys Chem Ref Data doi: 10.1063/1.555693 – year: 2011 ident: 10.1016/j.rser.2023.113949_bib27 article-title: Advanced methods of solid oxide fuel cell modeling publication-title: Springer Sci Bus Media – volume: 165 start-page: F324 year: 2018 ident: 10.1016/j.rser.2023.113949_bib32 article-title: Wetting of porous α-LiAlO 2 by molten carbonate publication-title: J Electrochem Soc doi: 10.1149/2.0771805jes – volume: 46 start-page: 9961 year: 2007 ident: 10.1016/j.rser.2023.113949_bib8 article-title: Effects of water uptake on the inherently oxygen-deficient compounds Ln26O27□(BO3)8 (Ln = La, Nd) publication-title: Inorg Chem doi: 10.1021/ic701059z – volume: 19 start-page: 867 year: 2007 ident: 10.1016/j.rser.2023.113949_bib9 article-title: Incorporation of water and fast proton conduction in the inherently oxygen-deficient compound la26O27□(BO 3)8 publication-title: Adv Mater doi: 10.1002/adma.200602033 – year: 1992 ident: 10.1016/j.rser.2023.113949_bib12 – volume: 152 start-page: 219 year: 2005 ident: 10.1016/j.rser.2023.113949_bib24 article-title: State of direct fuel cell/turbine systems development publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.12.060 – volume: 55 start-page: 1958 year: 2010 ident: 10.1016/j.rser.2023.113949_bib25 article-title: A carbon in molten carbonate anode model for a direct carbon fuel cell publication-title: Electrochim Acta doi: 10.1016/j.electacta.2009.11.015 – ident: 10.1016/j.rser.2023.113949_bib4 doi: 10.1016/j.ijhydene.2023.06.116 – volume: 5 year: 1980 ident: 10.1016/j.rser.2023.113949_bib7 publication-title: Molten Salts – volume: 78 start-page: 5675 year: 1995 ident: 10.1016/j.rser.2023.113949_bib35 article-title: Electrical and optical properties of thermally evaporated LiBO 2-LiF composite films publication-title: J Appl Phys doi: 10.1063/1.359624 – volume: 32 start-page: 33 year: 2011 ident: 10.1016/j.rser.2023.113949_bib2 article-title: {SOFC}-based micro-{CHP} system as an example of efficient power generation unit publication-title: Arch Therm – volume: 46 start-page: 14988 year: 2021 ident: 10.1016/j.rser.2023.113949_bib17 article-title: Decarbonizing cement plants via a fully integrated calcium looping-molten carbonate fuel cell process: assessment of a model for fuel cell performance predictions under different operating conditions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.024 – volume: 38 year: 2013 ident: 10.1016/j.rser.2023.113949_bib19 article-title: A reduced order model of Molten Carbonate Fuel Cell: a proposal publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.06.002 – volume: 39 start-page: 775 year: 1998 ident: 10.1016/j.rser.2023.113949_bib20 article-title: Dynamic model for molten carbonate fuel-cell power-generation systems publication-title: Energy Convert Manag doi: 10.1016/S0196-8904(97)10022-X – volume: 62 start-page: 1834 year: 2016 ident: 10.1016/j.rser.2023.113949_bib30 article-title: Predicting effective conductivities based on geometric microstructure characteristics publication-title: AIChE J doi: 10.1002/aic.15160 – volume: 44 start-page: 2297 year: 2003 ident: 10.1016/j.rser.2023.113949_bib22 article-title: Verification of a simple numerical fuel cell model in a flowsheeting program by performance testing of a 110 cm2 molten carbonate fuel cell publication-title: Energy Convers Manag doi: 10.1016/S0196-8904(02)00253-4 – volume: 54 start-page: 2907 year: 1999 ident: 10.1016/j.rser.2023.113949_bib14 article-title: Modeling and experimentation of molten carbonate fuel cell reactors in a scale-up process publication-title: Chem Eng Sci doi: 10.1016/S0009-2509(98)00414-X – volume: 352 start-page: 216 year: 2017 ident: 10.1016/j.rser.2023.113949_bib15 article-title: Preliminary model and validation of molten carbonate fuel cell kinetics under sulphur poisoning publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.03.091 – volume: 2014 year: 2014 ident: 10.1016/j.rser.2023.113949_bib33 article-title: The optimization of matrix preparation process and performance testing for molten carbonate fuel cell publication-title: J Chem doi: 10.1155/2014/625893 – volume: 210 year: 1990 ident: 10.1016/j.rser.2023.113949_bib36 article-title: Structure and ionic conductivity of lithio-borate thin films publication-title: MRS Proc doi: 10.1557/PROC-210-633 – volume: 35 start-page: 15 year: 2012 ident: 10.1016/j.rser.2023.113949_bib26 article-title: A validated dynamic model of the first marine molten carbonate fuel cell publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.09.023 – start-page: 63 year: 2018 ident: 10.1016/j.rser.2023.113949_bib11 article-title: Promising oxy borates for solid-oxide fuel cell applications – start-page: 165 year: 1965 ident: 10.1016/j.rser.2023.113949_bib5 – volume: 58 start-page: 1029 year: 2003 ident: 10.1016/j.rser.2023.113949_bib23 article-title: Molten carbonate fuel cell (MCFC) with internal reforming: model-based analysis of cell dynamics publication-title: Chem Eng Sci doi: 10.1016/S0009-2509(02)00644-9 – volume: vol. 40 year: 2011 ident: 10.1016/j.rser.2023.113949_bib29 – year: 1978 ident: 10.1016/j.rser.2023.113949_bib31 – volume: 14 start-page: 1651 year: 1999 ident: 10.1016/j.rser.2023.113949_bib21 article-title: Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant publication-title: IEEE Trans Energy Convers doi: 10.1109/60.815119 – volume: 92 start-page: 4644 year: 2002 ident: 10.1016/j.rser.2023.113949_bib38 article-title: Electrical properties of Li 2B 4O 7 single crystals in the [001] direction: comparison between crystals grown from Li 2CO 3 and B 2O 3 mixed powder and from Li 2B 4O 7 powder publication-title: J Appl Phys doi: 10.1063/1.1505980 – volume: 66 start-page: 817 year: 1998 ident: 10.1016/j.rser.2023.113949_bib13 article-title: Polarization model for molten carbonate fuel cell cathodes publication-title: Denki Kagaku doi: 10.5796/kogyobutsurikagaku.66.817 – volume: 35 start-page: 791 year: 2018 ident: 10.1016/j.rser.2023.113949_bib16 article-title: A model predictive functional control based on proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) using extended non-minimal state space: application to a molten carbonate fuel cell process publication-title: Kor J Chem Eng – volume: 138 start-page: 9 year: 1993 ident: 10.1016/j.rser.2023.113949_bib37 article-title: Preparation and properties of thermoluminescent materials publication-title: Phys Status Solidi doi: 10.1002/pssa.2211380102 – volume: 29 start-page: 6425 year: 2017 ident: 10.1016/j.rser.2023.113949_bib10 article-title: Oxygen ion transport and effects of doping in Ba3Ti3O6(BO3)2 publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b01831 – volume: 36 start-page: 11056 year: 2011 ident: 10.1016/j.rser.2023.113949_bib1 article-title: Comparison of efficiencies of low, mean and high temperature fuel cell Systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.122 – volume: 38 start-page: 11565 year: 2013 ident: 10.1016/j.rser.2023.113949_bib28 article-title: A reduced order model of molten carbonate fuel cell: a proposal publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.06.002 |
SSID | ssj0015873 |
Score | 2.440714 |
Snippet | The research presents an overview of the possibilities of using boron-containing compounds as electrolytes for fuel cells. The main assumption here is to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113949 |
SubjectTerms | Electrolytes Fuel cells Mathematical modeling Medium temperature fuel cell Molten borates |
Title | Molten Borates Fuel Cells — Mathematical modeling and identification of performances |
URI | https://dx.doi.org/10.1016/j.rser.2023.113949 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k22bZDebHGuw1EeLaJXewr4KlZCWPq7ij_AX-kvcyaNWkB48hYSZkJ0ZZifsN98gdDlSzOVGaiId6RFqQkqkCgxxBVWu52vgpAK0Rd_vvtC7IRtWUFT2wgCsssj9eU7PsnXxpFlYszkdj5vPjufTlgepF8oeDk18lHKI8sb7CubhsCA7ZQZhAtJF40yO8ZpZNzdggDiMNgmBT_OvzWltw-nsod2iUsTt_GP2UcWkB2hnjT_wEL32JomtefE1-NHMcWdpEhyZJJnjr49P3FtRstr3ZCNvrBYWqcZjXYCEMr_gyQhPfxoI5kdo0LkZRF1SDEogyq59QQTTcFrohix0udCjIJAO056ioVShq41i9ifCUA5U-NxjRnDBtW4Z4Rhf2hLiGFXTSWpOEDahLYfcUPnaGVFBteQ-DVwFLG7CbuatGnJKA8WqIBGHWRZJXKLF3mIwagxGjXOj1tDVSmeaU2hslGal3eNfgRDbHL9B7_Sfemdo297RHIh9jqqL2dJc2DpjIetZINXRVjt6eniE6-19t_8NaVPUDQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oHNSD8Rnf7sGbqdDtbts9KpGAAhfRcGv2RYJpgAje_RH-Qn-JO3RBTAwHr-1O036zmfmanfkG4KqvOU2sMoEKVRQwK1igdGoDKpmmUWxQkwqrLTpx45k99HhvDWrzXhgsq_Sxv4jps2jtr1Q8mpXxYFB5CqOYVSMMvUh7ErEOZVSn4iUo3zYfG53FYQJPZwfNuD5AA987U5R5vTlP3-AMcZxuIlBS86_8tJRz6juw7ckiuS3eZxfW7HAPtpYkBPfhpT3KHe0ld-hKOyH1d5uTms3zCfn6-CTthSqre85s6o2zInJoyMD4OqGZa8ioT8Y_PQSTA-jW77u1RuBnJQTaff40kNzggSEVXNBEmn6aqpCbSDOhtKDGau7-I6xDh8Y8ibiViUyMqVoZ2lg5FnEIpeFoaI-AWOEYERU6NmGfSWZUErOUahRyky6fV48hnAOUaa8jjuMs8mxeMPaaIagZgpoVoB7D9cJmXKhorFzN57hnv_ZC5sL8CruTf9pdwkaj225lrWbn8RQ23R1W1GWfQWn69m7PHe2Yqgu_rb4BFmbVKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molten+Borates+Fuel+Cells+%E2%80%94+Mathematical+modeling+and+identification+of+performances&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Milewski%2C+Jaros%C5%82aw&rft.au=Szcz%C4%99%C5%9Bniak%2C+Arkadiusz&rft.au=Szab%C5%82owski%2C+%C5%81ukasz&rft.au=Martsinchyk%2C+Aliaxandr&rft.date=2024-02-01&rft.issn=1364-0321&rft.volume=190&rft.spage=113949&rft_id=info:doi/10.1016%2Fj.rser.2023.113949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rser_2023_113949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |