Recognizing and predicting muscular fatigue of biceps brachii in motion with novel fabric strain sensors based on machine learning

•Muscle thickness detect by fabric strain sensors can facilitate recognition and prediction of muscle fatigue.•Features of muscle thickness related to muscle fatigue was proposed and verified.•Based on proposed features, fatigued cycles of curl were successfully recognized.•A model for fatigue predi...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 96; p. 106647
Main Authors Wang, Chuanling, Wang, Xi, Li, Qiao, Tao, Xiaoming
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Muscle thickness detect by fabric strain sensors can facilitate recognition and prediction of muscle fatigue.•Features of muscle thickness related to muscle fatigue was proposed and verified.•Based on proposed features, fatigued cycles of curl were successfully recognized.•A model for fatigue prediction was designed and observed with favorable accuracy. Localized muscle fatigue is of major kinematic and medical significance in the field of sports and rehabilitations. However, only few works reported fatigue recognition for field training, and via analysis of only the noise-susceptible electromyography. In this study, along with portable EMG sensors, a wearable smart arm band powered by fabric strain sensors was implemented to detect the thickness variation of biceps. Dumbbell curl training protocol was designed, and 32 subjects were enrolled, contributing to a database of 580 curl samples. Fatigue-related characteristics of muscle thickness were proposed according to muscle physiology and combined with that of sEMG signals, forming feature vectors of the samples. Clustering results showed that the fatigued cycles can be successfully recognized and labeled. For potential applications, fatigue prediction models based on supervised learning methods were further proposed and compared, of which the SVM-based model was observed with satisfactory overall accuracy of 83.3%, yet the fatigue samples can be predicted at much higher rate, with effective recall 90%, F1-SCORE 95% and AUC 98.7%. This work not only exploits feasibility of using latent physiological indicators such as muscle thickness in muscle fatigue monitoring, the result and methodologies will also inspire wider horizon of human-centered applications using novel flexible sensors.
AbstractList •Muscle thickness detect by fabric strain sensors can facilitate recognition and prediction of muscle fatigue.•Features of muscle thickness related to muscle fatigue was proposed and verified.•Based on proposed features, fatigued cycles of curl were successfully recognized.•A model for fatigue prediction was designed and observed with favorable accuracy. Localized muscle fatigue is of major kinematic and medical significance in the field of sports and rehabilitations. However, only few works reported fatigue recognition for field training, and via analysis of only the noise-susceptible electromyography. In this study, along with portable EMG sensors, a wearable smart arm band powered by fabric strain sensors was implemented to detect the thickness variation of biceps. Dumbbell curl training protocol was designed, and 32 subjects were enrolled, contributing to a database of 580 curl samples. Fatigue-related characteristics of muscle thickness were proposed according to muscle physiology and combined with that of sEMG signals, forming feature vectors of the samples. Clustering results showed that the fatigued cycles can be successfully recognized and labeled. For potential applications, fatigue prediction models based on supervised learning methods were further proposed and compared, of which the SVM-based model was observed with satisfactory overall accuracy of 83.3%, yet the fatigue samples can be predicted at much higher rate, with effective recall 90%, F1-SCORE 95% and AUC 98.7%. This work not only exploits feasibility of using latent physiological indicators such as muscle thickness in muscle fatigue monitoring, the result and methodologies will also inspire wider horizon of human-centered applications using novel flexible sensors.
ArticleNumber 106647
Author Li, Qiao
Wang, Chuanling
Tao, Xiaoming
Wang, Xi
Author_xml – sequence: 1
  givenname: Chuanling
  surname: Wang
  fullname: Wang, Chuanling
  organization: College of Information Science and Technology, Donghua University, Shanghai 201620, China
– sequence: 2
  givenname: Xi
  orcidid: 0000-0003-4770-3128
  surname: Wang
  fullname: Wang, Xi
  email: xiwang@dhu.edu.cn
  organization: College of Information Science and Technology, Donghua University, Shanghai 201620, China
– sequence: 3
  givenname: Qiao
  surname: Li
  fullname: Li, Qiao
  organization: College of Textiles, Donghua University, Shanghai 201620, China
– sequence: 4
  givenname: Xiaoming
  surname: Tao
  fullname: Tao, Xiaoming
  organization: School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
BookMark eNp9kM9qAyEQhz2k0CTtC_TkC2yqrutuoJcS-g8ChZK7uO6YGHY1qElpj33yuqSnHnIaHOdzfn4zNHHeAUJ3lCwooeJ-v2jjQS8YYTw3hOD1BE1pzUXRkCW_RrMY94TwpqZ8in4-QPuts9_WbbFyHT4E6KxO43E4Rn3sVcBGJbs9AvYGt1bDIeI2KL2zFluHB5-sd_jTph12_gR9Hm-D1TimoPJ9BBd9yIiK0OE8OYyoA9yDCi7vuUFXRvURbv_qHG2enzar12L9_vK2elwXuiQkFapUFae1qATjmlZGwbLiTDDNQXABrFJNw5qWGMI6VZUNZdSUvC5bYzgRXTlHzflZHXyMAYzUNqkx-5izl5TIUZ_cy1GfHPXJs76Msn_oIdhBha_L0MMZgvynk4Ugo7bgdNYbQCfZeXsJ_wXmTo--
CitedBy_id crossref_primary_10_3390_s24175484
crossref_primary_10_1016_j_wees_2024_12_005
crossref_primary_10_1016_j_bspc_2024_107356
Cites_doi 10.3390/s21134372
10.1038/s41598-017-09071-x
10.3390/s19143108
10.1097/PHM.0000000000001713
10.1002/adfm.201400379
10.1002/mus.880070902
10.1109/TNSRE.2022.3196501
10.3390/ijerph18052516
10.3390/s22124651
10.1021/acsami.6b12415
10.1007/s42600-020-00061-z
10.1088/0964-1726/23/1/015001
10.1021/acsami.9b09229
10.1007/s40279-021-01456-3
10.1249/MSS.0000000000000923
10.1016/j.bspc.2021.102905
10.1088/0964-1726/25/12/125022
10.1109/TNSRE.2016.2639443
10.3390/s110403545
10.1016/j.patcog.2021.107996
10.1007/978-3-030-00220-6_22
10.1016/j.clinbiomech.2009.01.010
10.3390/s22051900
10.1007/s12541-017-0202-5
10.3390/ijerph17103438
10.3390/sports6040153
10.1080/00140138208924942
10.1109/TIM.2021.3063777
10.3390/s23042030
10.5755/j02.eie.28838
10.3390/s21072535
10.1049/el.2016.2986
10.1109/TITB.2009.2038904
10.1088/0964-1726/20/6/065015
10.1016/j.jelekin.2021.102564
10.3390/s20195573
10.1016/j.medengphy.2006.07.004
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106647
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2024_106647
S1746809424007055
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-a3a541765624c15fae954262c4e646e25a8828b0f02da538121f3473bff406d3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:25 EDT 2025
Thu Apr 24 23:05:18 EDT 2025
Sat Sep 14 18:08:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fatigue recognition
Muscle thickness
Machine learning
Fabric strain sensor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a3a541765624c15fae954262c4e646e25a8828b0f02da538121f3473bff406d3
ORCID 0000-0003-4770-3128
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2024_106647
crossref_primary_10_1016_j_bspc_2024_106647
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Qassim, Hasan, Ramli, Harith, Mat, Ismail (b0075) 2022; 22
Makaram, Karthick, Swaminathan (b0055) 2021; 70
Triwiyanto, Wahyunggoro, Nugroho, Herianto (b0180) 2017; 18
Stöggl, Born (b0125) 2021; 21
Behm, Alizadeh, Hadjizedah Anvar, Hanlon, Ramsay, Mahmoud, Whitten, Fisher, Prieske, Chaabene (b0045) 2021; 51
Mohd Noor, Zakaria, Norali (b0085) 2021
Wang, Hua, Zhu, Li, Yi, Tao (b0135) 2011; 20
Taylor, Amann, Duchateau, Meeusen, Rice (b0050) 2016; 48
Huang, Kang, Xu, Liu (b0190) 2021; 117
Parent, Dal Maso, Pouliot-Laforte, Cherni, Marois, Ballaz (b0025) 2021; 100
Boyer, Bouyer, Roy, Campeau-Lecours (b0115) 2021
Sun, Dai, Zhai, Zhou, Li, Zheng, Li, Liu, Shen (b0210) 2019; 11
Gholami, Napier, Patiño, Cuthbert, Menon (b0220) 2020; 20
Yoon, Bailey, Cohen, Cote (b0095) 2021; 59
Zizoua, Raison, Boukhenous, Attari, Achiche (b0215) 2016; 52
Choi, Kim, Oh, Jung, Jung, Sung, Lee, Lee (b0185) 2017; 9
Alvarez, Gerez, Araromi, Hunter, Choe, Payne, Wood, Walsh (b0150) 2022; 30
Varol, Navarro-Santana, Valera-Calero, Anton-Ramirez, Alvaro-Martinez, Diaz-Arribas, Fernandez-de-las-Penas, Plaza-Manzano (b0100) 2023; 23
Bigland-Ritchie, Woods (b0005) 1984; 7
Zeng, Zhou, Yang, Xu, Zhang, Liu (b0065) 2021
Dai, Bardizbanian, Clancy (b0175) 2017; 25
Petrofsky, Glaser, Phillips, Lind, Williams (b0170) 1982; 25
Liu, Lin, Chen, Chen, Huang, Hsu (b0030) 2019; 19
Kogami, Higuchi, Shibata (b0120) 2022
Theofilidis, Bogdanis, Koutedakis, Karatzaferi (b0020) 2018; 6
Shu, Hua, Wang, Qiao Li, Feng, Tao (b0160) 2010; 14
Zahid, Zych, Dussoni, Spallanzani, Donno, Maggiali, Athanassiou (b0205) 2021
Sonmezocak, Kurt (b0080) 2021; 69
Al-Mulla, Sepulveda, Colley (b0070) 2011; 11
Shi, Zheng, Chen, Huang (b0090) 2007; 29
Wang, Zhu, Shu, Tao (b0155) 2014; 23
Wang, Wang, Yang, Li, Zang, Zhu, Wang, Wu, Zhu (b0200) 2014; 24
Wang, Tao, So, Shu, Yang, Li (b0140) 2016; 25
Wang, Tao, So (b0145) 2017; 7
Krueger, Popović-Maneski, Neto, Mendonça Scheeren, Fiusa, Nohama (b0010) 2020; 36
Klich, Kawczyński, Pietraszewski, Zago, Chen, Smoter, Hassanlouei, Lovecchio (b0040) 2021; 18
Castiblanco, Mondragon, Alvarado-Rojas, Colorado (b0015) 2021; 21
Jebelli, H. and S. Lee, Feasibility of wearable electromyography (EMG) to assess construction workers’ muscle fatigue, in advances in informatics and computing in civil and construction engineering. 2019. p. 181-187.
Alvarez, Gerez, Araromi, Hunter, Choe, Payne, Wood, Walsh (b0130) 2022; 30
Ye, Huang, Zhang, Zheng, Fu, Yang (b0195) 2021
Lin, Chen, Lee, Lin (b0035) 2020; 17
Sonmezocak, Kurt (b0110) 2021; 27
Li, Gao, Lu, Wang, Cao, Zhang (b0060) 2022; 22
Cifrek, Medved, Tonković, Ostojić (b0165) 2009; 24
Krueger (10.1016/j.bspc.2024.106647_b0010) 2020; 36
Qassim (10.1016/j.bspc.2024.106647_b0075) 2022; 22
Zahid (10.1016/j.bspc.2024.106647_b0205) 2021
Alvarez (10.1016/j.bspc.2024.106647_b0130) 2022; 30
Wang (10.1016/j.bspc.2024.106647_b0140) 2016; 25
Varol (10.1016/j.bspc.2024.106647_b0100) 2023; 23
Mohd Noor (10.1016/j.bspc.2024.106647_b0085) 2021
Lin (10.1016/j.bspc.2024.106647_b0035) 2020; 17
Zeng (10.1016/j.bspc.2024.106647_b0065) 2021
Kogami (10.1016/j.bspc.2024.106647_b0120) 2022
Yoon (10.1016/j.bspc.2024.106647_b0095) 2021; 59
Sun (10.1016/j.bspc.2024.106647_b0210) 2019; 11
Castiblanco (10.1016/j.bspc.2024.106647_b0015) 2021; 21
Taylor (10.1016/j.bspc.2024.106647_b0050) 2016; 48
Stöggl (10.1016/j.bspc.2024.106647_b0125) 2021; 21
Shu (10.1016/j.bspc.2024.106647_b0160) 2010; 14
Parent (10.1016/j.bspc.2024.106647_b0025) 2021; 100
Dai (10.1016/j.bspc.2024.106647_b0175) 2017; 25
Triwiyanto (10.1016/j.bspc.2024.106647_b0180) 2017; 18
Huang (10.1016/j.bspc.2024.106647_b0190) 2021; 117
Behm (10.1016/j.bspc.2024.106647_b0045) 2021; 51
Wang (10.1016/j.bspc.2024.106647_b0155) 2014; 23
Zizoua (10.1016/j.bspc.2024.106647_b0215) 2016; 52
Wang (10.1016/j.bspc.2024.106647_b0135) 2011; 20
Klich (10.1016/j.bspc.2024.106647_b0040) 2021; 18
Makaram (10.1016/j.bspc.2024.106647_b0055) 2021; 70
Sonmezocak (10.1016/j.bspc.2024.106647_b0110) 2021; 27
Choi (10.1016/j.bspc.2024.106647_b0185) 2017; 9
Ye (10.1016/j.bspc.2024.106647_b0195) 2021
Wang (10.1016/j.bspc.2024.106647_b0200) 2014; 24
Theofilidis (10.1016/j.bspc.2024.106647_b0020) 2018; 6
Boyer (10.1016/j.bspc.2024.106647_b0115) 2021
Wang (10.1016/j.bspc.2024.106647_b0145) 2017; 7
Petrofsky (10.1016/j.bspc.2024.106647_b0170) 1982; 25
Cifrek (10.1016/j.bspc.2024.106647_b0165) 2009; 24
Al-Mulla (10.1016/j.bspc.2024.106647_b0070) 2011; 11
Bigland-Ritchie (10.1016/j.bspc.2024.106647_b0005) 1984; 7
Sonmezocak (10.1016/j.bspc.2024.106647_b0080) 2021; 69
Shi (10.1016/j.bspc.2024.106647_b0090) 2007; 29
Li (10.1016/j.bspc.2024.106647_b0060) 2022; 22
10.1016/j.bspc.2024.106647_b0105
Alvarez (10.1016/j.bspc.2024.106647_b0150) 2022; 30
Gholami (10.1016/j.bspc.2024.106647_b0220) 2020; 20
Liu (10.1016/j.bspc.2024.106647_b0030) 2019; 19
References_xml – volume: 20
  year: 2011
  ident: b0135
  article-title: Novel fabric pressure sensors: design, fabrication, and characterization
  publication-title: Smart Mater. Struct.
– volume: 7
  start-page: 8919
  year: 2017
  ident: b0145
  article-title: A bio-mechanical model for elbow isokinetic and isotonic flexions
  publication-title: Sci. Rep.
– volume: 30
  start-page: 2198
  year: 2022
  end-page: 2206
  ident: b0150
  article-title: Toward soft wearable strain sensors for muscle activity monitoring
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 52
  start-page: 1836
  year: 2016
  end-page: 1837
  ident: b0215
  article-title: Detecting muscle contractions using strain gauges
  publication-title: Electron. Lett
– volume: 27
  start-page: 11
  year: 2021
  end-page: 21
  ident: b0110
  article-title: Detection of EMG signals by neural networks using autoregression and wavelet entropy for bruxism diagnosis
  publication-title: Elektronika Ir Elektrotechnika
– year: 2021
  ident: b0195
  article-title: Multiview learning with robust double-sided twin SVM
  publication-title: IEEE Trans. Cybern.
– volume: 6
  start-page: 153
  year: 2018
  ident: b0020
  article-title: Monitoring exercise-induced muscle fatigue and adaptations: making sense of popular or emerging indices and biomarkers
  publication-title: Sports
– volume: 25
  start-page: 213
  year: 1982
  end-page: 223
  ident: b0170
  article-title: Evaluation of the amplitude and frequency components of the surface EMG as an index of muscle fatigue
  publication-title: Ergonomics
– volume: 21
  start-page: 4372
  year: 2021
  ident: b0015
  article-title: Assist-as-needed exoskeleton for hand joint rehabilitation based on muscle effort detection
  publication-title: Sensors
– volume: 14
  start-page: 767
  year: 2010
  end-page: 775
  ident: b0160
  article-title: In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 9
  start-page: 1770
  year: 2017
  end-page: 1780
  ident: b0185
  article-title: Highly stretchable, hysteresis-free ionic liquid -based strain sensor for precise human motion monitoring
  publication-title: ACS Appl. Mater. Interfaces
– reference: Jebelli, H. and S. Lee, Feasibility of wearable electromyography (EMG) to assess construction workers’ muscle fatigue, in advances in informatics and computing in civil and construction engineering. 2019. p. 181-187.
– volume: 24
  start-page: 327
  year: 2009
  end-page: 340
  ident: b0165
  article-title: Surface EMG based muscle fatigue evaluation in biomechanics
  publication-title: Clin. Biomech.
– start-page: 220
  year: 2021
  ident: b0205
  article-title: Wearable and self-healable textile-based strain sensors to monitor human muscular activities
  publication-title: Comp. Part B-Eng.
– volume: 18
  start-page: 2516
  year: 2021
  ident: b0040
  article-title: Electromyographic evaluation of the shoulder muscle after a fatiguing isokinetic protocol in recreational overhead athletes
  publication-title: Int. J. Environ. Res. Public Health
– volume: 70
  start-page: 1
  year: 2021
  end-page: 8
  ident: b0055
  article-title: Analysis of dynamics of EMG signal variations in fatiguing contractions of muscles using transition network approach
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 19
  year: 2019
  ident: b0030
  article-title: An EMG patch for the real-time monitoring of muscle-fatigue conditions during exercise
  publication-title: Sensors
– volume: 23
  year: 2023
  ident: b0100
  article-title: Convergent validity between electromyographic muscle activity, ultrasound muscle thickness and dynamometric force measurement for assessing muscle
  publication-title: Sensors
– volume: 11
  start-page: 3545
  year: 2011
  end-page: 3594
  ident: b0070
  article-title: A review of non-invasive techniques to detect and predict localised muscle fatigue
  publication-title: Sensors
– volume: 22
  start-page: 1900
  year: 2022
  ident: b0075
  article-title: Proposed fatigue index for the objective detection of muscle fatigue using surface electromyography and a double-step binary classifier
  publication-title: Sensors
– volume: 100
  start-page: 1093
  year: 2021
  end-page: 1099
  ident: b0025
  article-title: Short walking exercise leads to gait changes and muscle fatigue in children with cerebral palsy who walk with jump gait
  publication-title: Am. J. Phys. Med. Rehabil.
– volume: 25
  start-page: 1529
  year: 2017
  end-page: 1538
  ident: b0175
  article-title: Comparison of constant-posture force-varying EMG-force dynamic models about the elbow
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 51
  start-page: 1893
  year: 2021
  end-page: 1907
  ident: b0045
  article-title: Non-local muscle fatigue effects on muscle strength, power, and endurance in healthy individuals: A systematic review with meta-analysis
  publication-title: Sports Med.
– volume: 59
  year: 2021
  ident: b0095
  article-title: Changes in muscle activation, oxygenation, and morphology following a fatiguing repetitive forward reaching task in young adult males and females
  publication-title: J. Electromyogr. Kinesiol.
– volume: 21
  start-page: 2535
  year: 2021
  ident: b0125
  article-title: Near infrared spectroscopy for muscle specific analysis of intensity and fatigue during cross-country skiing competition—a case report
  publication-title: Sensors
– volume: 20
  year: 2020
  ident: b0220
  article-title: Fatigue monitoring in running using flexible textile wearable sensors
  publication-title: Sensors
– volume: 7
  start-page: 691
  year: 1984
  end-page: 699
  ident: b0005
  article-title: Changes in muscle contractile properties and neural control during human muscular fatigue
  publication-title: Muscle Nerve: Off. J. Am. Assoc. Electrodiag. Med.
– volume: 25
  year: 2016
  ident: b0140
  article-title: Monitoring elbow isometric contraction by novel wearable fabric sensing device
  publication-title: Smart Mater. Struct.
– year: 2021
  ident: b0115
  article-title: A real-time algorithm to estimate shoulder muscle fatigue based on surface EMG signal for static and dynamic upper limb tasks
  publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– volume: 117
  year: 2021
  ident: b0190
  article-title: Robust deep k-means: An effective and simple method for data clustering
  publication-title: Pattern Recogn.
– volume: 29
  start-page: 472
  year: 2007
  end-page: 479
  ident: b0090
  article-title: Assessment of muscle fatigue using sonomyography: muscle thickness change detected from ultrasound images
  publication-title: Med. Eng. Phys.
– volume: 48
  start-page: 2294
  year: 2016
  end-page: 2306
  ident: b0050
  article-title: Neural contributions to muscle fatigue: from the brain to the muscle and back again
  publication-title: Med. Sci. Sports Exerc.
– year: 2021
  ident: b0065
  article-title: Robustness of combined sEMG and ultrasound modalities against muscle fatigue in force estimation
  publication-title: International Conference on Intelligent Robotics and Applications
– volume: 36
  start-page: 203
  year: 2020
  end-page: 212
  ident: b0010
  article-title: Neuromuscular fatigue detection by mechanomyography in people with complete spinal cord injury
  publication-title: Res. Biomed. Eng.
– volume: 24
  start-page: 4666
  year: 2014
  end-page: 4670
  ident: b0200
  article-title: Wearable and highly sensitive graphene strain sensors for human motion monitoring
  publication-title: Adv. Funct. Mater.
– year: 2022
  ident: b0120
  article-title: Fatigue assessment using surface EMG on lifting motions
  publication-title: 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech)
– volume: 30
  start-page: 2198
  year: 2022
  end-page: 2206
  ident: b0130
  article-title: Towards soft wearable strain sensors for muscle activity monitoring
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 1159
  year: 2021
  end-page: 1170
  ident: b0085
  article-title: Muscle Fatigue Assessment Using Multi-sensing Based on Electrical, Mechanical and Acoustic Properties, in Intelligent Manufacturing and Mechatronics
– volume: 17
  start-page: 3438
  year: 2020
  ident: b0035
  article-title: Effects of different ankle supports on the single-leg lateral drop landing following muscle fatigue in athletes with functional ankle instability
  publication-title: Int. J. Environ. Res. Public Health
– volume: 11
  start-page: 36052
  year: 2019
  end-page: 36062
  ident: b0210
  article-title: A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 1739
  year: 2017
  end-page: 1748
  ident: b0180
  article-title: Evaluating the performance of Kalman filter on elbow joint angle prediction based on electromyography
  publication-title: Int. J. Precis. Eng. Manuf.
– volume: 69
  year: 2021
  ident: b0080
  article-title: Machine learning and regression analysis for diagnosis of bruxism by using EMG signals of jaw muscles
  publication-title: Biomed. Signal Process. Control
– volume: 23
  year: 2014
  ident: b0155
  article-title: Flexible pressure sensors for smart protective clothing against impact loading
  publication-title: Smart Mater. Struct.
– volume: 22
  start-page: 4651
  year: 2022
  ident: b0060
  article-title: Estimation of knee extension force using mechanomyography signals based on GRA and ICS-SVR
  publication-title: Sensors
– volume: 21
  start-page: 4372
  issue: 13
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0015
  article-title: Assist-as-needed exoskeleton for hand joint rehabilitation based on muscle effort detection
  publication-title: Sensors
  doi: 10.3390/s21134372
– volume: 7
  start-page: 8919
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2024.106647_b0145
  article-title: A bio-mechanical model for elbow isokinetic and isotonic flexions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09071-x
– volume: 19
  issue: 14
  year: 2019
  ident: 10.1016/j.bspc.2024.106647_b0030
  article-title: An EMG patch for the real-time monitoring of muscle-fatigue conditions during exercise
  publication-title: Sensors
  doi: 10.3390/s19143108
– start-page: 1159
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0085
– volume: 100
  start-page: 1093
  issue: 11
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0025
  article-title: Short walking exercise leads to gait changes and muscle fatigue in children with cerebral palsy who walk with jump gait
  publication-title: Am. J. Phys. Med. Rehabil.
  doi: 10.1097/PHM.0000000000001713
– volume: 24
  start-page: 4666
  issue: 29
  year: 2014
  ident: 10.1016/j.bspc.2024.106647_b0200
  article-title: Wearable and highly sensitive graphene strain sensors for human motion monitoring
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400379
– volume: 7
  start-page: 691
  issue: 9
  year: 1984
  ident: 10.1016/j.bspc.2024.106647_b0005
  article-title: Changes in muscle contractile properties and neural control during human muscular fatigue
  publication-title: Muscle Nerve: Off. J. Am. Assoc. Electrodiag. Med.
  doi: 10.1002/mus.880070902
– volume: 30
  start-page: 2198
  year: 2022
  ident: 10.1016/j.bspc.2024.106647_b0150
  article-title: Toward soft wearable strain sensors for muscle activity monitoring
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2022.3196501
– volume: 18
  start-page: 2516
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0040
  article-title: Electromyographic evaluation of the shoulder muscle after a fatiguing isokinetic protocol in recreational overhead athletes
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18052516
– start-page: 220
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0205
  article-title: Wearable and self-healable textile-based strain sensors to monitor human muscular activities
  publication-title: Comp. Part B-Eng.
– volume: 22
  start-page: 4651
  issue: 12
  year: 2022
  ident: 10.1016/j.bspc.2024.106647_b0060
  article-title: Estimation of knee extension force using mechanomyography signals based on GRA and ICS-SVR
  publication-title: Sensors
  doi: 10.3390/s22124651
– volume: 9
  start-page: 1770
  issue: 2
  year: 2017
  ident: 10.1016/j.bspc.2024.106647_b0185
  article-title: Highly stretchable, hysteresis-free ionic liquid -based strain sensor for precise human motion monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12415
– volume: 36
  start-page: 203
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2024.106647_b0010
  article-title: Neuromuscular fatigue detection by mechanomyography in people with complete spinal cord injury
  publication-title: Res. Biomed. Eng.
  doi: 10.1007/s42600-020-00061-z
– volume: 23
  issue: 1
  year: 2014
  ident: 10.1016/j.bspc.2024.106647_b0155
  article-title: Flexible pressure sensors for smart protective clothing against impact loading
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/1/015001
– volume: 11
  start-page: 36052
  issue: 39
  year: 2019
  ident: 10.1016/j.bspc.2024.106647_b0210
  article-title: A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09229
– volume: 51
  start-page: 1893
  issue: 9
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0045
  article-title: Non-local muscle fatigue effects on muscle strength, power, and endurance in healthy individuals: A systematic review with meta-analysis
  publication-title: Sports Med.
  doi: 10.1007/s40279-021-01456-3
– volume: 48
  start-page: 2294
  issue: 11
  year: 2016
  ident: 10.1016/j.bspc.2024.106647_b0050
  article-title: Neural contributions to muscle fatigue: from the brain to the muscle and back again
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0000000000000923
– volume: 69
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0080
  article-title: Machine learning and regression analysis for diagnosis of bruxism by using EMG signals of jaw muscles
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102905
– volume: 25
  issue: 12
  year: 2016
  ident: 10.1016/j.bspc.2024.106647_b0140
  article-title: Monitoring elbow isometric contraction by novel wearable fabric sensing device
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/12/125022
– volume: 25
  start-page: 1529
  issue: 9
  year: 2017
  ident: 10.1016/j.bspc.2024.106647_b0175
  article-title: Comparison of constant-posture force-varying EMG-force dynamic models about the elbow
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2639443
– volume: 11
  start-page: 3545
  issue: 4
  year: 2011
  ident: 10.1016/j.bspc.2024.106647_b0070
  article-title: A review of non-invasive techniques to detect and predict localised muscle fatigue
  publication-title: Sensors
  doi: 10.3390/s110403545
– volume: 117
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0190
  article-title: Robust deep k-means: An effective and simple method for data clustering
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2021.107996
– ident: 10.1016/j.bspc.2024.106647_b0105
  doi: 10.1007/978-3-030-00220-6_22
– year: 2022
  ident: 10.1016/j.bspc.2024.106647_b0120
  article-title: Fatigue assessment using surface EMG on lifting motions
– volume: 24
  start-page: 327
  issue: 4
  year: 2009
  ident: 10.1016/j.bspc.2024.106647_b0165
  article-title: Surface EMG based muscle fatigue evaluation in biomechanics
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2009.01.010
– volume: 22
  start-page: 1900
  issue: 5
  year: 2022
  ident: 10.1016/j.bspc.2024.106647_b0075
  article-title: Proposed fatigue index for the objective detection of muscle fatigue using surface electromyography and a double-step binary classifier
  publication-title: Sensors
  doi: 10.3390/s22051900
– year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0115
  article-title: A real-time algorithm to estimate shoulder muscle fatigue based on surface EMG signal for static and dynamic upper limb tasks
– volume: 18
  start-page: 1739
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2024.106647_b0180
  article-title: Evaluating the performance of Kalman filter on elbow joint angle prediction based on electromyography
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-017-0202-5
– volume: 17
  start-page: 3438
  issue: 10
  year: 2020
  ident: 10.1016/j.bspc.2024.106647_b0035
  article-title: Effects of different ankle supports on the single-leg lateral drop landing following muscle fatigue in athletes with functional ankle instability
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17103438
– volume: 30
  start-page: 2198
  year: 2022
  ident: 10.1016/j.bspc.2024.106647_b0130
  article-title: Towards soft wearable strain sensors for muscle activity monitoring
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3196501
– volume: 6
  start-page: 153
  issue: 4
  year: 2018
  ident: 10.1016/j.bspc.2024.106647_b0020
  article-title: Monitoring exercise-induced muscle fatigue and adaptations: making sense of popular or emerging indices and biomarkers
  publication-title: Sports
  doi: 10.3390/sports6040153
– volume: 25
  start-page: 213
  issue: 3
  year: 1982
  ident: 10.1016/j.bspc.2024.106647_b0170
  article-title: Evaluation of the amplitude and frequency components of the surface EMG as an index of muscle fatigue
  publication-title: Ergonomics
  doi: 10.1080/00140138208924942
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0055
  article-title: Analysis of dynamics of EMG signal variations in fatiguing contractions of muscles using transition network approach
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3063777
– volume: 23
  issue: 4
  year: 2023
  ident: 10.1016/j.bspc.2024.106647_b0100
  article-title: Convergent validity between electromyographic muscle activity, ultrasound muscle thickness and dynamometric force measurement for assessing muscle
  publication-title: Sensors
  doi: 10.3390/s23042030
– volume: 27
  start-page: 11
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0110
  article-title: Detection of EMG signals by neural networks using autoregression and wavelet entropy for bruxism diagnosis
  publication-title: Elektronika Ir Elektrotechnika
  doi: 10.5755/j02.eie.28838
– volume: 21
  start-page: 2535
  issue: 7
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0125
  article-title: Near infrared spectroscopy for muscle specific analysis of intensity and fatigue during cross-country skiing competition—a case report
  publication-title: Sensors
  doi: 10.3390/s21072535
– year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0195
  article-title: Multiview learning with robust double-sided twin SVM
  publication-title: IEEE Trans. Cybern.
– volume: 52
  start-page: 1836
  issue: 22
  year: 2016
  ident: 10.1016/j.bspc.2024.106647_b0215
  article-title: Detecting muscle contractions using strain gauges
  publication-title: Electron. Lett
  doi: 10.1049/el.2016.2986
– year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0065
  article-title: Robustness of combined sEMG and ultrasound modalities against muscle fatigue in force estimation
– volume: 14
  start-page: 767
  issue: 3
  year: 2010
  ident: 10.1016/j.bspc.2024.106647_b0160
  article-title: In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2038904
– volume: 20
  issue: 6
  year: 2011
  ident: 10.1016/j.bspc.2024.106647_b0135
  article-title: Novel fabric pressure sensors: design, fabrication, and characterization
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/20/6/065015
– volume: 59
  year: 2021
  ident: 10.1016/j.bspc.2024.106647_b0095
  article-title: Changes in muscle activation, oxygenation, and morphology following a fatiguing repetitive forward reaching task in young adult males and females
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2021.102564
– volume: 20
  issue: 19
  year: 2020
  ident: 10.1016/j.bspc.2024.106647_b0220
  article-title: Fatigue monitoring in running using flexible textile wearable sensors
  publication-title: Sensors
  doi: 10.3390/s20195573
– volume: 29
  start-page: 472
  issue: 4
  year: 2007
  ident: 10.1016/j.bspc.2024.106647_b0090
  article-title: Assessment of muscle fatigue using sonomyography: muscle thickness change detected from ultrasound images
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.07.004
SSID ssj0048714
Score 2.36627
Snippet •Muscle thickness detect by fabric strain sensors can facilitate recognition and prediction of muscle fatigue.•Features of muscle thickness related to muscle...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106647
SubjectTerms Fabric strain sensor
Fatigue recognition
Machine learning
Muscle thickness
Title Recognizing and predicting muscular fatigue of biceps brachii in motion with novel fabric strain sensors based on machine learning
URI https://dx.doi.org/10.1016/j.bspc.2024.106647
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnqI8qhvYUGgcO0k7VhVVAcHAQ2KL7MSGIJpGfTAwMPDLuYvTCiTUgdHWnWT5rLvPyefvGDvlRsfcBplnjRKejDLudRQCOdNWBvOhNFEl13RzGw0e5dVT-LTCevO3MESrrHO_y-lVtq5nWvVutso8b90jlo7aeDshFiRpwtALdhnTKT__XNA8EI9X-t5k7JF1_XDGcbz0pCQZw0DiRBRRi5W_itOPgtPfYps1UoSuW8w2WzHFDtv4oR-4y77uHP3nA0egigzKMf13ISYzDGeOYgoW9_55ZmBkQWNWKCeAF-T0Jc8hL8A18QH6GgvF6N28obnG1AiTqncETPCWOxqjCxa7DNByWJEvDdTdJp732EP_4qE38OqmCl4qfH_qKaFCyWOEcYFMeWiV6YSkSp9iWGRkglAh5m5r3_pBpjAb8oBbIWOhrcXan4l9tlqMCnPAwJfa-EGqTSyE1CJV1nKRKV-1rfFFxzYYn29mktaC47T2t2TOLHtNKAAJBSBxAWiws4VP6eQ2llqH8xglvw5NgvVgid_hP_2O2DqNHJfvmK1OxzNzgphkqpvVoWuyte7l9eD2G-US4nQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOQAHxFOwvOawNxQ1jp20PVYVqLx6YIvELbITG4IgjfrYwx73lzOOHQQS4sAxzoxkeaxvxsnnbwB-M606zER5YLTkgUhyFvQkFXK6KzXhodBJLdd0O0qG9-LqIX5YgkFzF8bSKj32O0yv0dqPtP1qtquiaP-hWjrp0unEsiCtJswyrFh1qrgFK_3L6-GoAWQqyWuJb2sfWAd_d8bRvNSsskqGkaCBJLFdVr7KTx9yzsUmbPhiEftuPluwpMttWP8gIbgD_-8cA-gfPaEsc6ym9teLJTPj68KxTNHQ8j8uNE4MKgKGaoZ0Rs6eigKLEl0fH7QfZLGc_NUvZK4IHXFWt4_AGR10J1NyoXyXI1m-1vxLjb7hxOMujC_Ox4Nh4PsqBBkPw3kguYwF61AlF4mMxUbqXmyF6TOKjEh0FEsqu7sqNGGUSwJEFjHDRYcrYyj953wPWuWk1PuAoVA6jDKlO5wLxTNpDOO5DGXX6JD3zAGwZjHTzGuO27m_pA257Dm1AUhtAFIXgAM4e_epnOLGt9ZxE6P0075JKSV84_frh36nsDoc396kN5ej60NYs28cte8IWvPpQh9TiTJXJ34LvgGtEuUl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognizing+and+predicting+muscular+fatigue+of+biceps+brachii+in+motion+with+novel+fabric+strain+sensors+based+on+machine+learning&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wang%2C+Chuanling&rft.au=Wang%2C+Xi&rft.au=Li%2C+Qiao&rft.au=Tao%2C+Xiaoming&rft.date=2024-10-01&rft.issn=1746-8094&rft.volume=96&rft.spage=106647&rft_id=info:doi/10.1016%2Fj.bspc.2024.106647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon