Eye detection and coarse localization of pupil for video-based eye tracking systems
A video-based eye tracking system generally captures NIR images, each of which contains one or two eyes of a subject. The subject’s point of gaze is then determined using 3D eye model and pupil centre corneal reflection technique. Eye detection and pupil localization play significant roles in video-...
Saved in:
Published in | Expert systems with applications Vol. 236; p. 121316 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A video-based eye tracking system generally captures NIR images, each of which contains one or two eyes of a subject. The subject’s point of gaze is then determined using 3D eye model and pupil centre corneal reflection technique. Eye detection and pupil localization play significant roles in video-based eye tracking systems. However, face rotation, wearing glasses, eye-shape variation and illumination variation make it difficult to detect an eye and localize a pupil accurately in the images captured by video-based eye tracking systems. In this paper, we proposed an eye detector that adopts a coarse-to-fine strategy. The eye detector consists of three classifiers: an ATLBP-THACs feature-based cascade classifier, a branch CNN and a multi-task CNN. We also proposed a method for coarse pupil localization. Coarse localization is an important step for pupil localization since it can provide initial pupil coordinates for a fine pupil localization method. Given a downscaled eye image, a shallow CNN is used to estimate the location of seven landmarks. On this basis, pupil center and radius are estimated. A method for small dim target enhancement is used to increase the contrast between pupil and background. The main goal of pupil enhancement is to make it easier to binarize an eye image. At last, component filtering is made by utilizing the estimated pupil center and radius. We collected a dataset named neepuEYE dataset that consists of 5500 NIR eye images from 109 people. The images can be used to generate augmented samples for training an eye detector since they contain eyes with different shape, orientation and pupil localization. Experimental results show that our eye detector is a fast and robust detector. Furthermore, our method for coarse pupil localization can obtain not only high detection rate but also high localization speed. |
---|---|
AbstractList | A video-based eye tracking system generally captures NIR images, each of which contains one or two eyes of a subject. The subject’s point of gaze is then determined using 3D eye model and pupil centre corneal reflection technique. Eye detection and pupil localization play significant roles in video-based eye tracking systems. However, face rotation, wearing glasses, eye-shape variation and illumination variation make it difficult to detect an eye and localize a pupil accurately in the images captured by video-based eye tracking systems. In this paper, we proposed an eye detector that adopts a coarse-to-fine strategy. The eye detector consists of three classifiers: an ATLBP-THACs feature-based cascade classifier, a branch CNN and a multi-task CNN. We also proposed a method for coarse pupil localization. Coarse localization is an important step for pupil localization since it can provide initial pupil coordinates for a fine pupil localization method. Given a downscaled eye image, a shallow CNN is used to estimate the location of seven landmarks. On this basis, pupil center and radius are estimated. A method for small dim target enhancement is used to increase the contrast between pupil and background. The main goal of pupil enhancement is to make it easier to binarize an eye image. At last, component filtering is made by utilizing the estimated pupil center and radius. We collected a dataset named neepuEYE dataset that consists of 5500 NIR eye images from 109 people. The images can be used to generate augmented samples for training an eye detector since they contain eyes with different shape, orientation and pupil localization. Experimental results show that our eye detector is a fast and robust detector. Furthermore, our method for coarse pupil localization can obtain not only high detection rate but also high localization speed. |
ArticleNumber | 121316 |
Author | Chen, Jie-chun Zhao, Li-ping Yao, Chun-ying Qiao, Yu-yang Yu, Pin-qing |
Author_xml | – sequence: 1 givenname: Jie-chun orcidid: 0000-0002-2361-3104 surname: Chen fullname: Chen, Jie-chun email: chenjiechun@neepu.edu.cn organization: College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China – sequence: 2 givenname: Pin-qing surname: Yu fullname: Yu, Pin-qing organization: College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China – sequence: 3 givenname: Chun-ying surname: Yao fullname: Yao, Chun-ying organization: College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China – sequence: 4 givenname: Li-ping surname: Zhao fullname: Zhao, Li-ping organization: College of Science, Northeast Electric Power University, Jilin 132012, China – sequence: 5 givenname: Yu-yang surname: Qiao fullname: Qiao, Yu-yang organization: College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China |
BookMark | eNp9kM1KAzEUhYNUsFVfwFVeYMbcZGaSATdS6g8UXKjrkMncSOp0UpKxUp_eaevKRVcHLnyXc74ZmfShR0JugOXAoLpd5Zi-Tc4ZFzlwEFCdkSkoKbJK1mJCpqwuZVaALC7ILKUVYyAZk1PyutghbXFAO_jQU9O31AYTE9IuWNP5H3O4B0c3XxvfURci3foWQ9aYhC3FER-isZ--_6BplwZcpyty7kyX8PovL8n7w-Jt_pQtXx6f5_fLzArGhswIA6Zp6oq5UlpoKwCj6pqDk0qB47zGRiqBihlRNTXj3EmJRSFLBYVqS3FJ1PGvjSGliE5bPxz6jo18p4HpvRy90ns5ei9HH-WMKP-HbqJfm7g7Dd0dIRxHbT1GnazH3mLr4-hPt8Gfwn8BWuGAAQ |
CitedBy_id | crossref_primary_10_1007_s12596_024_01952_5 crossref_primary_10_1016_j_optlastec_2025_112762 crossref_primary_10_1016_j_engappai_2024_108235 |
Cites_doi | 10.1016/j.eswa.2016.09.036 10.1016/j.jneumeth.2019.05.016 10.1007/s00138-016-0776-4 10.1109/ACCESS.2017.2735633 10.1109/TIP.2013.2286328 10.1145/2168556.2168585 10.1007/s11760-020-01710-7 10.1016/S0262-8856(99)00053-0 10.5244/C.8.42 10.1007/s11042-016-4334-x 10.1109/ACCESS.2021.3052851 10.1109/TPAMI.2009.30 10.1109/TIP.2010.2042645 10.1155/2017/8718956 10.1109/TBME.2005.863952 10.3233/IDA-173361 10.1109/ISMAR52148.2021.00053 10.1007/978-3-319-23192-1_4 10.1016/j.neunet.2021.03.019 10.1109/CMVIT57620.2023.00018 10.1145/2857491.2857505 10.1016/j.eswa.2021.116004 10.1145/2857491.2857520 10.1016/j.jvcir.2018.07.013 10.1016/S0169-2607(98)00105-9 10.1080/09500340701467827 10.1016/j.patcog.2009.12.023 10.1016/j.cviu.2018.02.002 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2023.121316 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2023_121316 S0957417423018183 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-a3a1abb960f57c1d611a89921f7881f229eb783e80a36b9022f77e44758148d53 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:13 EDT 2025 Thu Apr 24 23:06:27 EDT 2025 Fri Feb 23 02:37:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Eye tracking NIR Eye detection Gaze tracking Pupil localization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-a3a1abb960f57c1d611a89921f7881f229eb783e80a36b9022f77e44758148d53 |
ORCID | 0000-0002-2361-3104 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_121316 crossref_primary_10_1016_j_eswa_2023_121316 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Akinlar, Kucukkartal, Topal (b0005) 2022; 188 Santini, Fuhl, Kasneci (b0130) 2018; 170 Zhang, Shen, Zhang, Yang, Zhang (b0165) 2018; 55 Guestrin, Eizenman (b0060) 2006; 53 Yiu, Aboulatta, Raiser, Ophey, Flanagin, Eulenburg, Ahmadi (b0155) 2019; 324 Ma, H., Shen, R., Ye, J., Su, H., Xie, H., & Jiang, H. (2023). High-Automatical and High-Accurate Pupil Location Neural Network via FRST FPL. In 7th International Conference on Machine Vision and Information Technology (CMVIT), Xiamen, China, 45-51, 10.1109/CMVIT57620.2023.00018. Zhu, Moore, Raphan (b0170) 1999; 59 Chennamma, H. R., & Yuan, X. (2013). A Survey on Eye-Gaze Tracking Techniques. arXiv:1312.6410 [cs.CV]. 10.48550/arXiv.1312.6410. Fuhl, W., Santini, T., Kasneci, G., Rosenstiel, W., & Kasneci, E. (2017). Pupilnet v2.0: Convolutional neural networks for cpu based real time robust pupil detection. arXiv: 1711.00112 [cs.CV]. 10.48550/arXiv.1711.00112. Fuhl, Tonsen, Bulling, Kasneci (b0055) 2016; 27 Brusius, Schwanecke, Barth (b0015) 2011; vol 274 Fuhl, W., Kübler, T., Sippel, K., Rosenstiel, W., & Kasneci, E. (2015). ExCuSe: Robust Pupil Detection in Real-World Scenarios. In Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science, vol 9256. Springer, Cham. 10.1007/978-3-319-23192-1_4. Jan (b0085) 2018; 77 Ryan, O'Sullivan, Elrasad, Lemley, Kielty, Posch, Perot (b0125) 2021; 141 Chen, Wang, Zhao, He (b0020) 2020; 14 Yu, Tang, Lin, Schmidt, Wang, Guo, Liang (b0160) 2018; 22 Li, Munn, Pelz (b0095) 2008; 55 Jung, Kim, Son, Kim (b0075) 2017; 67 Chinsatit, W., & Saitoh, T. (2017). CNN-Based Pupil Center Detection for Wearable Gaze Estimation System. Applied Computational Intelligence and Soft Computing, vol 2017, Article ID 8718956. 10.1155/2017/8718956. Tan, Triggs (b0140) 2010; 19 Hansen, Ji (b0065) 2010; 32 Morimoto, Koons, Amir, Flickner (b0105) 2000; 18 Jain, Learned-Miller (b0080) 2010 Fuhl, W., Santini, T. C., Kübler, T., & Kasneci, E. (2016). Else: Ellipse selection for robust pupil detection in real-world environments. arXiv:1511.06575 [cs.CV]. 10.48550/arXiv.1511.06575. Phillips, C., & Komogortsev, O. V. (2011). Impact of Resolution and Blur on Iris Identification. Technical Report. from https://api.semanticscholar.org/CorpusID:17922978. Viola, Jones (b0150) 2001; 1 Hill, A., & Taylor, C. J. (1994). Automatic Landmark Generation for Point Distribution Models. In Edwin R. Hancock, editors, Proceedings of the British Machine Conference, pages 42.1-42.10. BMVA Press, September 1994. 10.5244/C.8.42. Oliveira, Figueiredo, Bioucas-Dias (b0115) 2014; 23 Tonsen, M., Zhang, X., Sugano, Y., & Bulling, A. (2016). Labelled pupils in the wild: a dataset for studying pupil detection in unconstrained environments. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, 139-142. http://dx.doi.org/10.1145/2857491.2857520. Kar, Corcoran (b0090) 2017; 5 Bai, Zhou (b0010) 2010; 43 Świrski, L., Bulling, A., & Dodgson, N. (2012). Robust real-time pupil tracking in highly off-axis images. In Proceedings of the Symposium on Eye Tracking Research and Applications, 173-176. 10.1145/2168556.2168585. Nsaif, Ali, Jassim, Nseaf, Sulaiman, Al-Qaraghuli, Nayan (b0110) 2021; 9 Fuhl, W., Kasneci, G., & Kasneci, E. (2021). TEyeD: Over 20 million real-world eye images with Pupil, Eyelid, and Iris 2D and 3D Segmentations, 2D and 3D Landmarks, 3D Eyeball, Gaze Vector, and Eye Movement Types. arXiv:2102.02115 [eess.IV]. 10.48550/arXiv.2102.02115. 10.1016/j.eswa.2023.121316_b0030 Yiu (10.1016/j.eswa.2023.121316_b0155) 2019; 324 10.1016/j.eswa.2023.121316_b0035 Oliveira (10.1016/j.eswa.2023.121316_b0115) 2014; 23 10.1016/j.eswa.2023.121316_b0135 Morimoto (10.1016/j.eswa.2023.121316_b0105) 2000; 18 Jan (10.1016/j.eswa.2023.121316_b0085) 2018; 77 Fuhl (10.1016/j.eswa.2023.121316_b0055) 2016; 27 Kar (10.1016/j.eswa.2023.121316_b0090) 2017; 5 Hansen (10.1016/j.eswa.2023.121316_b0065) 2010; 32 Ryan (10.1016/j.eswa.2023.121316_b0125) 2021; 141 Viola (10.1016/j.eswa.2023.121316_b0150) 2001; 1 Zhang (10.1016/j.eswa.2023.121316_b0165) 2018; 55 10.1016/j.eswa.2023.121316_b0040 10.1016/j.eswa.2023.121316_b0120 10.1016/j.eswa.2023.121316_b0045 10.1016/j.eswa.2023.121316_b0100 10.1016/j.eswa.2023.121316_b0145 10.1016/j.eswa.2023.121316_b0025 Guestrin (10.1016/j.eswa.2023.121316_b0060) 2006; 53 Jain (10.1016/j.eswa.2023.121316_b0080) 2010 Zhu (10.1016/j.eswa.2023.121316_b0170) 1999; 59 Yu (10.1016/j.eswa.2023.121316_b0160) 2018; 22 Tan (10.1016/j.eswa.2023.121316_b0140) 2010; 19 Akinlar (10.1016/j.eswa.2023.121316_b0005) 2022; 188 Li (10.1016/j.eswa.2023.121316_b0095) 2008; 55 Chen (10.1016/j.eswa.2023.121316_b0020) 2020; 14 Nsaif (10.1016/j.eswa.2023.121316_b0110) 2021; 9 Bai (10.1016/j.eswa.2023.121316_b0010) 2010; 43 Brusius (10.1016/j.eswa.2023.121316_b0015) 2011; vol 274 10.1016/j.eswa.2023.121316_b0070 Santini (10.1016/j.eswa.2023.121316_b0130) 2018; 170 Jung (10.1016/j.eswa.2023.121316_b0075) 2017; 67 10.1016/j.eswa.2023.121316_b0050 |
References_xml | – reference: Fuhl, W., Santini, T. C., Kübler, T., & Kasneci, E. (2016). Else: Ellipse selection for robust pupil detection in real-world environments. arXiv:1511.06575 [cs.CV]. 10.48550/arXiv.1511.06575. – volume: 53 start-page: 1124 year: 2006 end-page: 1133 ident: b0060 article-title: General Theory of Remote Gaze Estimation Using the Pupil Center and Corneal Reflections publication-title: IEEE Transactions on Biomedical Engineering – volume: 23 start-page: 466 year: 2014 end-page: 477 ident: b0115 article-title: Parametric Blur Estimation for Blind Restoration of Natural Images: Linear Motion and Out-of-Focus publication-title: IEEE Transactions on Image Processing – volume: 170 start-page: 40 year: 2018 end-page: 50 ident: b0130 article-title: PuRe: Robust pupil detection for real-time pervasive eye tracking publication-title: Computer Vision and Image Understanding – volume: 55 start-page: 503 year: 2008 end-page: 531 ident: b0095 article-title: A model-based approach to video-based eye tracking publication-title: Journal of Modern Optics – reference: Chennamma, H. R., & Yuan, X. (2013). A Survey on Eye-Gaze Tracking Techniques. arXiv:1312.6410 [cs.CV]. 10.48550/arXiv.1312.6410. – volume: 19 start-page: 1635 year: 2010 end-page: 1650 ident: b0140 article-title: Enhanced local texture feature sets for face recognition under difficult lighting conditions publication-title: IEEE Transactions on Image Processing – volume: 43 start-page: 2145 year: 2010 end-page: 2156 ident: b0010 article-title: Analysis of new top-hat transformation and the application for infrared dim small target detection publication-title: Pattern Recognition – volume: 1 start-page: 511 year: 2001 end-page: 518 ident: b0150 article-title: Rapid Object Detection using a Boosted Cascade of Simple Features publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 18 start-page: 331 year: 2000 end-page: 335 ident: b0105 article-title: Pupil detection and tracking using multiple light sources publication-title: Image and Vision Computing – reference: Hill, A., & Taylor, C. J. (1994). Automatic Landmark Generation for Point Distribution Models. In Edwin R. Hancock, editors, Proceedings of the British Machine Conference, pages 42.1-42.10. BMVA Press, September 1994. 10.5244/C.8.42. – reference: Chinsatit, W., & Saitoh, T. (2017). CNN-Based Pupil Center Detection for Wearable Gaze Estimation System. Applied Computational Intelligence and Soft Computing, vol 2017, Article ID 8718956. 10.1155/2017/8718956. – reference: Fuhl, W., Kübler, T., Sippel, K., Rosenstiel, W., & Kasneci, E. (2015). ExCuSe: Robust Pupil Detection in Real-World Scenarios. In Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science, vol 9256. Springer, Cham. 10.1007/978-3-319-23192-1_4. – volume: 9 start-page: 15708 year: 2021 end-page: 15719 ident: b0110 article-title: FRCNN-GNB: Cascade Faster R-CNN with Gabor Filters and Naïve Bayes for Enhanced Eye Detection publication-title: IEEE Access – volume: 77 start-page: 1041 year: 2018 end-page: 1067 ident: b0085 article-title: Pupil localization in image data acquired with near-infrared or visible wavelength illumination publication-title: Multimedia Tools and Applications – volume: 59 start-page: 145 year: 1999 end-page: 157 ident: b0170 article-title: Robust pupil center detection using a curvature algorithm publication-title: Computer Methods and Programs in Biomedicine – reference: Fuhl, W., Kasneci, G., & Kasneci, E. (2021). TEyeD: Over 20 million real-world eye images with Pupil, Eyelid, and Iris 2D and 3D Segmentations, 2D and 3D Landmarks, 3D Eyeball, Gaze Vector, and Eye Movement Types. arXiv:2102.02115 [eess.IV]. 10.48550/arXiv.2102.02115. – volume: 141 start-page: 87 year: 2021 end-page: 97 ident: b0125 article-title: Real-Time Face & Eye Tracking and Blink Detection using Event Cameras publication-title: Neural Networks – reference: Świrski, L., Bulling, A., & Dodgson, N. (2012). Robust real-time pupil tracking in highly off-axis images. In Proceedings of the Symposium on Eye Tracking Research and Applications, 173-176. 10.1145/2168556.2168585. – volume: 55 start-page: 654 year: 2018 end-page: 659 ident: b0165 article-title: Robust Eye Detection using Deeply-learned Gaze Shifting Path publication-title: Journal of Visual Communication and Image Representation – volume: 5 start-page: 16495 year: 2017 end-page: 16519 ident: b0090 article-title: A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms publication-title: IEEE Access – volume: 67 start-page: 178 year: 2017 end-page: 188 ident: b0075 article-title: An eye detection method robust to eyeglasses for mobile iris recognition publication-title: Expert Systems With Applications – volume: 32 start-page: 478 year: 2010 end-page: 500 ident: b0065 article-title: In the Eye of the Beholder: A Survey of Models for Eyes and Gaze publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Ma, H., Shen, R., Ye, J., Su, H., Xie, H., & Jiang, H. (2023). High-Automatical and High-Accurate Pupil Location Neural Network via FRST FPL. In 7th International Conference on Machine Vision and Information Technology (CMVIT), Xiamen, China, 45-51, 10.1109/CMVIT57620.2023.00018. – reference: Tonsen, M., Zhang, X., Sugano, Y., & Bulling, A. (2016). Labelled pupils in the wild: a dataset for studying pupil detection in unconstrained environments. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, 139-142. http://dx.doi.org/10.1145/2857491.2857520. – volume: 22 start-page: 345 year: 2018 end-page: 362 ident: b0160 article-title: An eye detection method based on convolutional neural networks and support vector machines publication-title: Intelligent Data Analysis – year: 2010 ident: b0080 article-title: FDDB: A Benchmark for Face Detection in Unconstrained Settings – reference: Fuhl, W., Santini, T., Kasneci, G., Rosenstiel, W., & Kasneci, E. (2017). Pupilnet v2.0: Convolutional neural networks for cpu based real time robust pupil detection. arXiv: 1711.00112 [cs.CV]. 10.48550/arXiv.1711.00112. – volume: 324 start-page: 108301 year: 2019 end-page: 108307 ident: b0155 article-title: DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning publication-title: Journal of Neuroscience Methods – volume: 14 start-page: 1699 year: 2020 end-page: 1706 ident: b0020 article-title: Branch-structured detector for fast face detection using asymmetric LBP features publication-title: Signal, Image and Video Processing – reference: Phillips, C., & Komogortsev, O. V. (2011). Impact of Resolution and Blur on Iris Identification. Technical Report. from https://api.semanticscholar.org/CorpusID:17922978. – volume: vol 274 year: 2011 ident: b0015 article-title: Blind Image Deconvolution of Linear Motion Blur publication-title: Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2011. Communications in Computer and Information Science – volume: 188 year: 2022 ident: b0005 article-title: Accurate CNN-based pupil segmentation with an ellipse fit error regularization term publication-title: Expert Systems with Applications – volume: 27 start-page: 1275 year: 2016 end-page: 1288 ident: b0055 article-title: Pupil detection for head-mounted eye tracking in the wild: An evaluation of the state of the art publication-title: Machine Vision and Applications – volume: 67 start-page: 178 year: 2017 ident: 10.1016/j.eswa.2023.121316_b0075 article-title: An eye detection method robust to eyeglasses for mobile iris recognition publication-title: Expert Systems With Applications doi: 10.1016/j.eswa.2016.09.036 – volume: 324 start-page: 108301 year: 2019 ident: 10.1016/j.eswa.2023.121316_b0155 article-title: DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2019.05.016 – volume: 27 start-page: 1275 issue: 8 year: 2016 ident: 10.1016/j.eswa.2023.121316_b0055 article-title: Pupil detection for head-mounted eye tracking in the wild: An evaluation of the state of the art publication-title: Machine Vision and Applications doi: 10.1007/s00138-016-0776-4 – ident: 10.1016/j.eswa.2023.121316_b0045 – volume: 5 start-page: 16495 year: 2017 ident: 10.1016/j.eswa.2023.121316_b0090 article-title: A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2735633 – volume: 23 start-page: 466 issue: 1 year: 2014 ident: 10.1016/j.eswa.2023.121316_b0115 article-title: Parametric Blur Estimation for Blind Restoration of Natural Images: Linear Motion and Out-of-Focus publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2013.2286328 – ident: 10.1016/j.eswa.2023.121316_b0135 doi: 10.1145/2168556.2168585 – volume: 14 start-page: 1699 year: 2020 ident: 10.1016/j.eswa.2023.121316_b0020 article-title: Branch-structured detector for fast face detection using asymmetric LBP features publication-title: Signal, Image and Video Processing doi: 10.1007/s11760-020-01710-7 – volume: 18 start-page: 331 issue: 4 year: 2000 ident: 10.1016/j.eswa.2023.121316_b0105 article-title: Pupil detection and tracking using multiple light sources publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(99)00053-0 – ident: 10.1016/j.eswa.2023.121316_b0070 doi: 10.5244/C.8.42 – volume: 77 start-page: 1041 year: 2018 ident: 10.1016/j.eswa.2023.121316_b0085 article-title: Pupil localization in image data acquired with near-infrared or visible wavelength illumination publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-4334-x – volume: 9 start-page: 15708 year: 2021 ident: 10.1016/j.eswa.2023.121316_b0110 article-title: FRCNN-GNB: Cascade Faster R-CNN with Gabor Filters and Naïve Bayes for Enhanced Eye Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052851 – volume: 32 start-page: 478 issue: 3 year: 2010 ident: 10.1016/j.eswa.2023.121316_b0065 article-title: In the Eye of the Beholder: A Survey of Models for Eyes and Gaze publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2009.30 – volume: 19 start-page: 1635 year: 2010 ident: 10.1016/j.eswa.2023.121316_b0140 article-title: Enhanced local texture feature sets for face recognition under difficult lighting conditions publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2010.2042645 – ident: 10.1016/j.eswa.2023.121316_b0030 doi: 10.1155/2017/8718956 – year: 2010 ident: 10.1016/j.eswa.2023.121316_b0080 – ident: 10.1016/j.eswa.2023.121316_b0120 – volume: 53 start-page: 1124 issue: 6 year: 2006 ident: 10.1016/j.eswa.2023.121316_b0060 article-title: General Theory of Remote Gaze Estimation Using the Pupil Center and Corneal Reflections publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2005.863952 – volume: 22 start-page: 345 issue: 2 year: 2018 ident: 10.1016/j.eswa.2023.121316_b0160 article-title: An eye detection method based on convolutional neural networks and support vector machines publication-title: Intelligent Data Analysis doi: 10.3233/IDA-173361 – ident: 10.1016/j.eswa.2023.121316_b0035 doi: 10.1109/ISMAR52148.2021.00053 – ident: 10.1016/j.eswa.2023.121316_b0025 – ident: 10.1016/j.eswa.2023.121316_b0040 doi: 10.1007/978-3-319-23192-1_4 – volume: 141 start-page: 87 year: 2021 ident: 10.1016/j.eswa.2023.121316_b0125 article-title: Real-Time Face & Eye Tracking and Blink Detection using Event Cameras publication-title: Neural Networks doi: 10.1016/j.neunet.2021.03.019 – volume: 1 start-page: 511 year: 2001 ident: 10.1016/j.eswa.2023.121316_b0150 article-title: Rapid Object Detection using a Boosted Cascade of Simple Features publication-title: IEEE Conference on Computer Vision and Pattern Recognition – ident: 10.1016/j.eswa.2023.121316_b0100 doi: 10.1109/CMVIT57620.2023.00018 – ident: 10.1016/j.eswa.2023.121316_b0050 doi: 10.1145/2857491.2857505 – volume: vol 274 year: 2011 ident: 10.1016/j.eswa.2023.121316_b0015 article-title: Blind Image Deconvolution of Linear Motion Blur – volume: 188 year: 2022 ident: 10.1016/j.eswa.2023.121316_b0005 article-title: Accurate CNN-based pupil segmentation with an ellipse fit error regularization term publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.116004 – ident: 10.1016/j.eswa.2023.121316_b0145 doi: 10.1145/2857491.2857520 – volume: 55 start-page: 654 year: 2018 ident: 10.1016/j.eswa.2023.121316_b0165 article-title: Robust Eye Detection using Deeply-learned Gaze Shifting Path publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2018.07.013 – volume: 59 start-page: 145 issue: 3 year: 1999 ident: 10.1016/j.eswa.2023.121316_b0170 article-title: Robust pupil center detection using a curvature algorithm publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/S0169-2607(98)00105-9 – volume: 55 start-page: 503 year: 2008 ident: 10.1016/j.eswa.2023.121316_b0095 article-title: A model-based approach to video-based eye tracking publication-title: Journal of Modern Optics doi: 10.1080/09500340701467827 – volume: 43 start-page: 2145 year: 2010 ident: 10.1016/j.eswa.2023.121316_b0010 article-title: Analysis of new top-hat transformation and the application for infrared dim small target detection publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.12.023 – volume: 170 start-page: 40 year: 2018 ident: 10.1016/j.eswa.2023.121316_b0130 article-title: PuRe: Robust pupil detection for real-time pervasive eye tracking publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2018.02.002 |
SSID | ssj0017007 |
Score | 2.4613638 |
Snippet | A video-based eye tracking system generally captures NIR images, each of which contains one or two eyes of a subject. The subject’s point of gaze is then... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121316 |
SubjectTerms | Eye detection Eye tracking Gaze tracking NIR Pupil localization |
Title | Eye detection and coarse localization of pupil for video-based eye tracking systems |
URI | https://dx.doi.org/10.1016/j.eswa.2023.121316 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXnrpu_Qpe-itbM1mk2w8iii2BS9W8Bb2FbBIIhopvfS3dye7kRaKhx4TdiB8TOaRfPMNQg9S5EkgQ0polGsShZIRGTNBEs2UUaFMhSPITpLxLHqZx_MWGjSzMECr9LHfxfQ6Wvs7XY9md7VYdKe2OLDpEP40guhUCoqfUcTBy5--djQPkJ_jTm-PEzjtB2ccx8tsPkB7KGQgssBg5_lfyelHwhmdoCNfKeK-e5hT1DLFGTputjBg_1Keo-nw02BtqppTVWBRaKxK264aXOcpP2eJyxyvtqvFEtsqFcPwXUkgg2lsrHm1Fgq-mWMn7Ly5QLPR8G0wJn5VAlEsCCoimKBCStuO5DFXVCeUWpB7Ic1BLj4Pw56RPGUmDQRLZM8m7pxzA2J_qe2HdMwuUbsoC3OFMFdMGlvU6FioyPbdaZCnSjMemMiWhiG9RrTBKFNeRxzWWSyzhjD2ngGuGeCaOVyv0ePOZuVUNPaejhvos1--kNkwv8fu5p92t-jQXkWOi32H2tV6a-5tqVHJTu1LHXTQf34dT74BFknSOg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG4QD3pxN-LagzdTmU5n42gIBBW5AAm3SbdJMGSYwBDjxd9uH-0QTQwHrzN9SfOlfcvM976H0L3gWeQJnxIaZIoEvmBEhIyTSDGppS8Sbgmyg6g3Dl4m4aSG2lUvDNAqne-3Pn3trd2TpkOzWUynzaFJDkw4hD-NIDqVsB20G5jrC2MMHr82PA_Qn4ut4F5MYLnrnLEkL738APEhn4HKAoOh539Fpx8Rp3uEDlyqiJ_sbo5RTecn6LAaw4DdrTxFw86nxkqXa1JVjnmusJybelXjdaByjZZ4nuFiVUxn2KSpGLrv5gRCmMLamJcLLuGjObbKzsszNO52Ru0ecbMSiGSeVxLOOOVCmHokC2NJVUSpQbnl0wz04jPfb2kRJ0wnHmeRaJnIncWxBrW_xBREKmTnqJ7Pc32BcCyZ0CarUSGXgSm8Ey9LpGKxpw28zKcNRCuMUumExGGexSytGGPvKeCaAq6pxbWBHjY2hZXR2Lo6rKBPfx2G1Pj5LXaX_7S7Q3u90Vs_7T8PXq_QvnkTWGL2NaqXi5W-MXlHKW7X5-obEBTTyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eye+detection+and+coarse+localization+of+pupil+for+video-based+eye+tracking+systems&rft.jtitle=Expert+systems+with+applications&rft.au=Chen%2C+Jie-chun&rft.au=Yu%2C+Pin-qing&rft.au=Yao%2C+Chun-ying&rft.au=Zhao%2C+Li-ping&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=236&rft_id=info:doi/10.1016%2Fj.eswa.2023.121316&rft.externalDocID=S0957417423018183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |