Eye detection and coarse localization of pupil for video-based eye tracking systems

A video-based eye tracking system generally captures NIR images, each of which contains one or two eyes of a subject. The subject’s point of gaze is then determined using 3D eye model and pupil centre corneal reflection technique. Eye detection and pupil localization play significant roles in video-...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 236; p. 121316
Main Authors Chen, Jie-chun, Yu, Pin-qing, Yao, Chun-ying, Zhao, Li-ping, Qiao, Yu-yang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A video-based eye tracking system generally captures NIR images, each of which contains one or two eyes of a subject. The subject’s point of gaze is then determined using 3D eye model and pupil centre corneal reflection technique. Eye detection and pupil localization play significant roles in video-based eye tracking systems. However, face rotation, wearing glasses, eye-shape variation and illumination variation make it difficult to detect an eye and localize a pupil accurately in the images captured by video-based eye tracking systems. In this paper, we proposed an eye detector that adopts a coarse-to-fine strategy. The eye detector consists of three classifiers: an ATLBP-THACs feature-based cascade classifier, a branch CNN and a multi-task CNN. We also proposed a method for coarse pupil localization. Coarse localization is an important step for pupil localization since it can provide initial pupil coordinates for a fine pupil localization method. Given a downscaled eye image, a shallow CNN is used to estimate the location of seven landmarks. On this basis, pupil center and radius are estimated. A method for small dim target enhancement is used to increase the contrast between pupil and background. The main goal of pupil enhancement is to make it easier to binarize an eye image. At last, component filtering is made by utilizing the estimated pupil center and radius. We collected a dataset named neepuEYE dataset that consists of 5500 NIR eye images from 109 people. The images can be used to generate augmented samples for training an eye detector since they contain eyes with different shape, orientation and pupil localization. Experimental results show that our eye detector is a fast and robust detector. Furthermore, our method for coarse pupil localization can obtain not only high detection rate but also high localization speed.
AbstractList A video-based eye tracking system generally captures NIR images, each of which contains one or two eyes of a subject. The subject’s point of gaze is then determined using 3D eye model and pupil centre corneal reflection technique. Eye detection and pupil localization play significant roles in video-based eye tracking systems. However, face rotation, wearing glasses, eye-shape variation and illumination variation make it difficult to detect an eye and localize a pupil accurately in the images captured by video-based eye tracking systems. In this paper, we proposed an eye detector that adopts a coarse-to-fine strategy. The eye detector consists of three classifiers: an ATLBP-THACs feature-based cascade classifier, a branch CNN and a multi-task CNN. We also proposed a method for coarse pupil localization. Coarse localization is an important step for pupil localization since it can provide initial pupil coordinates for a fine pupil localization method. Given a downscaled eye image, a shallow CNN is used to estimate the location of seven landmarks. On this basis, pupil center and radius are estimated. A method for small dim target enhancement is used to increase the contrast between pupil and background. The main goal of pupil enhancement is to make it easier to binarize an eye image. At last, component filtering is made by utilizing the estimated pupil center and radius. We collected a dataset named neepuEYE dataset that consists of 5500 NIR eye images from 109 people. The images can be used to generate augmented samples for training an eye detector since they contain eyes with different shape, orientation and pupil localization. Experimental results show that our eye detector is a fast and robust detector. Furthermore, our method for coarse pupil localization can obtain not only high detection rate but also high localization speed.
ArticleNumber 121316
Author Chen, Jie-chun
Zhao, Li-ping
Yao, Chun-ying
Qiao, Yu-yang
Yu, Pin-qing
Author_xml – sequence: 1
  givenname: Jie-chun
  orcidid: 0000-0002-2361-3104
  surname: Chen
  fullname: Chen, Jie-chun
  email: chenjiechun@neepu.edu.cn
  organization: College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
– sequence: 2
  givenname: Pin-qing
  surname: Yu
  fullname: Yu, Pin-qing
  organization: College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
– sequence: 3
  givenname: Chun-ying
  surname: Yao
  fullname: Yao, Chun-ying
  organization: College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
– sequence: 4
  givenname: Li-ping
  surname: Zhao
  fullname: Zhao, Li-ping
  organization: College of Science, Northeast Electric Power University, Jilin 132012, China
– sequence: 5
  givenname: Yu-yang
  surname: Qiao
  fullname: Qiao, Yu-yang
  organization: College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
BookMark eNp9kM1KAzEUhYNUsFVfwFVeYMbcZGaSATdS6g8UXKjrkMncSOp0UpKxUp_eaevKRVcHLnyXc74ZmfShR0JugOXAoLpd5Zi-Tc4ZFzlwEFCdkSkoKbJK1mJCpqwuZVaALC7ILKUVYyAZk1PyutghbXFAO_jQU9O31AYTE9IuWNP5H3O4B0c3XxvfURci3foWQ9aYhC3FER-isZ--_6BplwZcpyty7kyX8PovL8n7w-Jt_pQtXx6f5_fLzArGhswIA6Zp6oq5UlpoKwCj6pqDk0qB47zGRiqBihlRNTXj3EmJRSFLBYVqS3FJ1PGvjSGliE5bPxz6jo18p4HpvRy90ns5ei9HH-WMKP-HbqJfm7g7Dd0dIRxHbT1GnazH3mLr4-hPt8Gfwn8BWuGAAQ
CitedBy_id crossref_primary_10_1007_s12596_024_01952_5
crossref_primary_10_1016_j_optlastec_2025_112762
crossref_primary_10_1016_j_engappai_2024_108235
Cites_doi 10.1016/j.eswa.2016.09.036
10.1016/j.jneumeth.2019.05.016
10.1007/s00138-016-0776-4
10.1109/ACCESS.2017.2735633
10.1109/TIP.2013.2286328
10.1145/2168556.2168585
10.1007/s11760-020-01710-7
10.1016/S0262-8856(99)00053-0
10.5244/C.8.42
10.1007/s11042-016-4334-x
10.1109/ACCESS.2021.3052851
10.1109/TPAMI.2009.30
10.1109/TIP.2010.2042645
10.1155/2017/8718956
10.1109/TBME.2005.863952
10.3233/IDA-173361
10.1109/ISMAR52148.2021.00053
10.1007/978-3-319-23192-1_4
10.1016/j.neunet.2021.03.019
10.1109/CMVIT57620.2023.00018
10.1145/2857491.2857505
10.1016/j.eswa.2021.116004
10.1145/2857491.2857520
10.1016/j.jvcir.2018.07.013
10.1016/S0169-2607(98)00105-9
10.1080/09500340701467827
10.1016/j.patcog.2009.12.023
10.1016/j.cviu.2018.02.002
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.121316
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_121316
S0957417423018183
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-a3a1abb960f57c1d611a89921f7881f229eb783e80a36b9022f77e44758148d53
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:13 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Fri Feb 23 02:37:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Eye tracking
NIR
Eye detection
Gaze tracking
Pupil localization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a3a1abb960f57c1d611a89921f7881f229eb783e80a36b9022f77e44758148d53
ORCID 0000-0002-2361-3104
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_121316
crossref_primary_10_1016_j_eswa_2023_121316
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Akinlar, Kucukkartal, Topal (b0005) 2022; 188
Santini, Fuhl, Kasneci (b0130) 2018; 170
Zhang, Shen, Zhang, Yang, Zhang (b0165) 2018; 55
Guestrin, Eizenman (b0060) 2006; 53
Yiu, Aboulatta, Raiser, Ophey, Flanagin, Eulenburg, Ahmadi (b0155) 2019; 324
Ma, H., Shen, R., Ye, J., Su, H., Xie, H., & Jiang, H. (2023). High-Automatical and High-Accurate Pupil Location Neural Network via FRST FPL. In 7th International Conference on Machine Vision and Information Technology (CMVIT), Xiamen, China, 45-51, 10.1109/CMVIT57620.2023.00018.
Zhu, Moore, Raphan (b0170) 1999; 59
Chennamma, H. R., & Yuan, X. (2013). A Survey on Eye-Gaze Tracking Techniques. arXiv:1312.6410 [cs.CV]. 10.48550/arXiv.1312.6410.
Fuhl, W., Santini, T., Kasneci, G., Rosenstiel, W., & Kasneci, E. (2017). Pupilnet v2.0: Convolutional neural networks for cpu based real time robust pupil detection. arXiv: 1711.00112 [cs.CV]. 10.48550/arXiv.1711.00112.
Fuhl, Tonsen, Bulling, Kasneci (b0055) 2016; 27
Brusius, Schwanecke, Barth (b0015) 2011; vol 274
Fuhl, W., Kübler, T., Sippel, K., Rosenstiel, W., & Kasneci, E. (2015). ExCuSe: Robust Pupil Detection in Real-World Scenarios. In Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science, vol 9256. Springer, Cham. 10.1007/978-3-319-23192-1_4.
Jan (b0085) 2018; 77
Ryan, O'Sullivan, Elrasad, Lemley, Kielty, Posch, Perot (b0125) 2021; 141
Chen, Wang, Zhao, He (b0020) 2020; 14
Yu, Tang, Lin, Schmidt, Wang, Guo, Liang (b0160) 2018; 22
Li, Munn, Pelz (b0095) 2008; 55
Jung, Kim, Son, Kim (b0075) 2017; 67
Chinsatit, W., & Saitoh, T. (2017). CNN-Based Pupil Center Detection for Wearable Gaze Estimation System. Applied Computational Intelligence and Soft Computing, vol 2017, Article ID 8718956. 10.1155/2017/8718956.
Tan, Triggs (b0140) 2010; 19
Hansen, Ji (b0065) 2010; 32
Morimoto, Koons, Amir, Flickner (b0105) 2000; 18
Jain, Learned-Miller (b0080) 2010
Fuhl, W., Santini, T. C., Kübler, T., & Kasneci, E. (2016). Else: Ellipse selection for robust pupil detection in real-world environments. arXiv:1511.06575 [cs.CV]. 10.48550/arXiv.1511.06575.
Phillips, C., & Komogortsev, O. V. (2011). Impact of Resolution and Blur on Iris Identification. Technical Report. from https://api.semanticscholar.org/CorpusID:17922978.
Viola, Jones (b0150) 2001; 1
Hill, A., & Taylor, C. J. (1994). Automatic Landmark Generation for Point Distribution Models. In Edwin R. Hancock, editors, Proceedings of the British Machine Conference, pages 42.1-42.10. BMVA Press, September 1994. 10.5244/C.8.42.
Oliveira, Figueiredo, Bioucas-Dias (b0115) 2014; 23
Tonsen, M., Zhang, X., Sugano, Y., & Bulling, A. (2016). Labelled pupils in the wild: a dataset for studying pupil detection in unconstrained environments. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, 139-142. http://dx.doi.org/10.1145/2857491.2857520.
Kar, Corcoran (b0090) 2017; 5
Bai, Zhou (b0010) 2010; 43
Świrski, L., Bulling, A., & Dodgson, N. (2012). Robust real-time pupil tracking in highly off-axis images. In Proceedings of the Symposium on Eye Tracking Research and Applications, 173-176. 10.1145/2168556.2168585.
Nsaif, Ali, Jassim, Nseaf, Sulaiman, Al-Qaraghuli, Nayan (b0110) 2021; 9
Fuhl, W., Kasneci, G., & Kasneci, E. (2021). TEyeD: Over 20 million real-world eye images with Pupil, Eyelid, and Iris 2D and 3D Segmentations, 2D and 3D Landmarks, 3D Eyeball, Gaze Vector, and Eye Movement Types. arXiv:2102.02115 [eess.IV]. 10.48550/arXiv.2102.02115.
10.1016/j.eswa.2023.121316_b0030
Yiu (10.1016/j.eswa.2023.121316_b0155) 2019; 324
10.1016/j.eswa.2023.121316_b0035
Oliveira (10.1016/j.eswa.2023.121316_b0115) 2014; 23
10.1016/j.eswa.2023.121316_b0135
Morimoto (10.1016/j.eswa.2023.121316_b0105) 2000; 18
Jan (10.1016/j.eswa.2023.121316_b0085) 2018; 77
Fuhl (10.1016/j.eswa.2023.121316_b0055) 2016; 27
Kar (10.1016/j.eswa.2023.121316_b0090) 2017; 5
Hansen (10.1016/j.eswa.2023.121316_b0065) 2010; 32
Ryan (10.1016/j.eswa.2023.121316_b0125) 2021; 141
Viola (10.1016/j.eswa.2023.121316_b0150) 2001; 1
Zhang (10.1016/j.eswa.2023.121316_b0165) 2018; 55
10.1016/j.eswa.2023.121316_b0040
10.1016/j.eswa.2023.121316_b0120
10.1016/j.eswa.2023.121316_b0045
10.1016/j.eswa.2023.121316_b0100
10.1016/j.eswa.2023.121316_b0145
10.1016/j.eswa.2023.121316_b0025
Guestrin (10.1016/j.eswa.2023.121316_b0060) 2006; 53
Jain (10.1016/j.eswa.2023.121316_b0080) 2010
Zhu (10.1016/j.eswa.2023.121316_b0170) 1999; 59
Yu (10.1016/j.eswa.2023.121316_b0160) 2018; 22
Tan (10.1016/j.eswa.2023.121316_b0140) 2010; 19
Akinlar (10.1016/j.eswa.2023.121316_b0005) 2022; 188
Li (10.1016/j.eswa.2023.121316_b0095) 2008; 55
Chen (10.1016/j.eswa.2023.121316_b0020) 2020; 14
Nsaif (10.1016/j.eswa.2023.121316_b0110) 2021; 9
Bai (10.1016/j.eswa.2023.121316_b0010) 2010; 43
Brusius (10.1016/j.eswa.2023.121316_b0015) 2011; vol 274
10.1016/j.eswa.2023.121316_b0070
Santini (10.1016/j.eswa.2023.121316_b0130) 2018; 170
Jung (10.1016/j.eswa.2023.121316_b0075) 2017; 67
10.1016/j.eswa.2023.121316_b0050
References_xml – reference: Fuhl, W., Santini, T. C., Kübler, T., & Kasneci, E. (2016). Else: Ellipse selection for robust pupil detection in real-world environments. arXiv:1511.06575 [cs.CV]. 10.48550/arXiv.1511.06575.
– volume: 53
  start-page: 1124
  year: 2006
  end-page: 1133
  ident: b0060
  article-title: General Theory of Remote Gaze Estimation Using the Pupil Center and Corneal Reflections
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 23
  start-page: 466
  year: 2014
  end-page: 477
  ident: b0115
  article-title: Parametric Blur Estimation for Blind Restoration of Natural Images: Linear Motion and Out-of-Focus
  publication-title: IEEE Transactions on Image Processing
– volume: 170
  start-page: 40
  year: 2018
  end-page: 50
  ident: b0130
  article-title: PuRe: Robust pupil detection for real-time pervasive eye tracking
  publication-title: Computer Vision and Image Understanding
– volume: 55
  start-page: 503
  year: 2008
  end-page: 531
  ident: b0095
  article-title: A model-based approach to video-based eye tracking
  publication-title: Journal of Modern Optics
– reference: Chennamma, H. R., & Yuan, X. (2013). A Survey on Eye-Gaze Tracking Techniques. arXiv:1312.6410 [cs.CV]. 10.48550/arXiv.1312.6410.
– volume: 19
  start-page: 1635
  year: 2010
  end-page: 1650
  ident: b0140
  article-title: Enhanced local texture feature sets for face recognition under difficult lighting conditions
  publication-title: IEEE Transactions on Image Processing
– volume: 43
  start-page: 2145
  year: 2010
  end-page: 2156
  ident: b0010
  article-title: Analysis of new top-hat transformation and the application for infrared dim small target detection
  publication-title: Pattern Recognition
– volume: 1
  start-page: 511
  year: 2001
  end-page: 518
  ident: b0150
  article-title: Rapid Object Detection using a Boosted Cascade of Simple Features
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 18
  start-page: 331
  year: 2000
  end-page: 335
  ident: b0105
  article-title: Pupil detection and tracking using multiple light sources
  publication-title: Image and Vision Computing
– reference: Hill, A., & Taylor, C. J. (1994). Automatic Landmark Generation for Point Distribution Models. In Edwin R. Hancock, editors, Proceedings of the British Machine Conference, pages 42.1-42.10. BMVA Press, September 1994. 10.5244/C.8.42.
– reference: Chinsatit, W., & Saitoh, T. (2017). CNN-Based Pupil Center Detection for Wearable Gaze Estimation System. Applied Computational Intelligence and Soft Computing, vol 2017, Article ID 8718956. 10.1155/2017/8718956.
– reference: Fuhl, W., Kübler, T., Sippel, K., Rosenstiel, W., & Kasneci, E. (2015). ExCuSe: Robust Pupil Detection in Real-World Scenarios. In Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science, vol 9256. Springer, Cham. 10.1007/978-3-319-23192-1_4.
– volume: 9
  start-page: 15708
  year: 2021
  end-page: 15719
  ident: b0110
  article-title: FRCNN-GNB: Cascade Faster R-CNN with Gabor Filters and Naïve Bayes for Enhanced Eye Detection
  publication-title: IEEE Access
– volume: 77
  start-page: 1041
  year: 2018
  end-page: 1067
  ident: b0085
  article-title: Pupil localization in image data acquired with near-infrared or visible wavelength illumination
  publication-title: Multimedia Tools and Applications
– volume: 59
  start-page: 145
  year: 1999
  end-page: 157
  ident: b0170
  article-title: Robust pupil center detection using a curvature algorithm
  publication-title: Computer Methods and Programs in Biomedicine
– reference: Fuhl, W., Kasneci, G., & Kasneci, E. (2021). TEyeD: Over 20 million real-world eye images with Pupil, Eyelid, and Iris 2D and 3D Segmentations, 2D and 3D Landmarks, 3D Eyeball, Gaze Vector, and Eye Movement Types. arXiv:2102.02115 [eess.IV]. 10.48550/arXiv.2102.02115.
– volume: 141
  start-page: 87
  year: 2021
  end-page: 97
  ident: b0125
  article-title: Real-Time Face & Eye Tracking and Blink Detection using Event Cameras
  publication-title: Neural Networks
– reference: Świrski, L., Bulling, A., & Dodgson, N. (2012). Robust real-time pupil tracking in highly off-axis images. In Proceedings of the Symposium on Eye Tracking Research and Applications, 173-176. 10.1145/2168556.2168585.
– volume: 55
  start-page: 654
  year: 2018
  end-page: 659
  ident: b0165
  article-title: Robust Eye Detection using Deeply-learned Gaze Shifting Path
  publication-title: Journal of Visual Communication and Image Representation
– volume: 5
  start-page: 16495
  year: 2017
  end-page: 16519
  ident: b0090
  article-title: A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms
  publication-title: IEEE Access
– volume: 67
  start-page: 178
  year: 2017
  end-page: 188
  ident: b0075
  article-title: An eye detection method robust to eyeglasses for mobile iris recognition
  publication-title: Expert Systems With Applications
– volume: 32
  start-page: 478
  year: 2010
  end-page: 500
  ident: b0065
  article-title: In the Eye of the Beholder: A Survey of Models for Eyes and Gaze
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Ma, H., Shen, R., Ye, J., Su, H., Xie, H., & Jiang, H. (2023). High-Automatical and High-Accurate Pupil Location Neural Network via FRST FPL. In 7th International Conference on Machine Vision and Information Technology (CMVIT), Xiamen, China, 45-51, 10.1109/CMVIT57620.2023.00018.
– reference: Tonsen, M., Zhang, X., Sugano, Y., & Bulling, A. (2016). Labelled pupils in the wild: a dataset for studying pupil detection in unconstrained environments. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, 139-142. http://dx.doi.org/10.1145/2857491.2857520.
– volume: 22
  start-page: 345
  year: 2018
  end-page: 362
  ident: b0160
  article-title: An eye detection method based on convolutional neural networks and support vector machines
  publication-title: Intelligent Data Analysis
– year: 2010
  ident: b0080
  article-title: FDDB: A Benchmark for Face Detection in Unconstrained Settings
– reference: Fuhl, W., Santini, T., Kasneci, G., Rosenstiel, W., & Kasneci, E. (2017). Pupilnet v2.0: Convolutional neural networks for cpu based real time robust pupil detection. arXiv: 1711.00112 [cs.CV]. 10.48550/arXiv.1711.00112.
– volume: 324
  start-page: 108301
  year: 2019
  end-page: 108307
  ident: b0155
  article-title: DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning
  publication-title: Journal of Neuroscience Methods
– volume: 14
  start-page: 1699
  year: 2020
  end-page: 1706
  ident: b0020
  article-title: Branch-structured detector for fast face detection using asymmetric LBP features
  publication-title: Signal, Image and Video Processing
– reference: Phillips, C., & Komogortsev, O. V. (2011). Impact of Resolution and Blur on Iris Identification. Technical Report. from https://api.semanticscholar.org/CorpusID:17922978.
– volume: vol 274
  year: 2011
  ident: b0015
  article-title: Blind Image Deconvolution of Linear Motion Blur
  publication-title: Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2011. Communications in Computer and Information Science
– volume: 188
  year: 2022
  ident: b0005
  article-title: Accurate CNN-based pupil segmentation with an ellipse fit error regularization term
  publication-title: Expert Systems with Applications
– volume: 27
  start-page: 1275
  year: 2016
  end-page: 1288
  ident: b0055
  article-title: Pupil detection for head-mounted eye tracking in the wild: An evaluation of the state of the art
  publication-title: Machine Vision and Applications
– volume: 67
  start-page: 178
  year: 2017
  ident: 10.1016/j.eswa.2023.121316_b0075
  article-title: An eye detection method robust to eyeglasses for mobile iris recognition
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2016.09.036
– volume: 324
  start-page: 108301
  year: 2019
  ident: 10.1016/j.eswa.2023.121316_b0155
  article-title: DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2019.05.016
– volume: 27
  start-page: 1275
  issue: 8
  year: 2016
  ident: 10.1016/j.eswa.2023.121316_b0055
  article-title: Pupil detection for head-mounted eye tracking in the wild: An evaluation of the state of the art
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-016-0776-4
– ident: 10.1016/j.eswa.2023.121316_b0045
– volume: 5
  start-page: 16495
  year: 2017
  ident: 10.1016/j.eswa.2023.121316_b0090
  article-title: A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2735633
– volume: 23
  start-page: 466
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2023.121316_b0115
  article-title: Parametric Blur Estimation for Blind Restoration of Natural Images: Linear Motion and Out-of-Focus
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2013.2286328
– ident: 10.1016/j.eswa.2023.121316_b0135
  doi: 10.1145/2168556.2168585
– volume: 14
  start-page: 1699
  year: 2020
  ident: 10.1016/j.eswa.2023.121316_b0020
  article-title: Branch-structured detector for fast face detection using asymmetric LBP features
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-020-01710-7
– volume: 18
  start-page: 331
  issue: 4
  year: 2000
  ident: 10.1016/j.eswa.2023.121316_b0105
  article-title: Pupil detection and tracking using multiple light sources
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(99)00053-0
– ident: 10.1016/j.eswa.2023.121316_b0070
  doi: 10.5244/C.8.42
– volume: 77
  start-page: 1041
  year: 2018
  ident: 10.1016/j.eswa.2023.121316_b0085
  article-title: Pupil localization in image data acquired with near-infrared or visible wavelength illumination
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-4334-x
– volume: 9
  start-page: 15708
  year: 2021
  ident: 10.1016/j.eswa.2023.121316_b0110
  article-title: FRCNN-GNB: Cascade Faster R-CNN with Gabor Filters and Naïve Bayes for Enhanced Eye Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052851
– volume: 32
  start-page: 478
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2023.121316_b0065
  article-title: In the Eye of the Beholder: A Survey of Models for Eyes and Gaze
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.30
– volume: 19
  start-page: 1635
  year: 2010
  ident: 10.1016/j.eswa.2023.121316_b0140
  article-title: Enhanced local texture feature sets for face recognition under difficult lighting conditions
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2010.2042645
– ident: 10.1016/j.eswa.2023.121316_b0030
  doi: 10.1155/2017/8718956
– year: 2010
  ident: 10.1016/j.eswa.2023.121316_b0080
– ident: 10.1016/j.eswa.2023.121316_b0120
– volume: 53
  start-page: 1124
  issue: 6
  year: 2006
  ident: 10.1016/j.eswa.2023.121316_b0060
  article-title: General Theory of Remote Gaze Estimation Using the Pupil Center and Corneal Reflections
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2005.863952
– volume: 22
  start-page: 345
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2023.121316_b0160
  article-title: An eye detection method based on convolutional neural networks and support vector machines
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-173361
– ident: 10.1016/j.eswa.2023.121316_b0035
  doi: 10.1109/ISMAR52148.2021.00053
– ident: 10.1016/j.eswa.2023.121316_b0025
– ident: 10.1016/j.eswa.2023.121316_b0040
  doi: 10.1007/978-3-319-23192-1_4
– volume: 141
  start-page: 87
  year: 2021
  ident: 10.1016/j.eswa.2023.121316_b0125
  article-title: Real-Time Face & Eye Tracking and Blink Detection using Event Cameras
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.03.019
– volume: 1
  start-page: 511
  year: 2001
  ident: 10.1016/j.eswa.2023.121316_b0150
  article-title: Rapid Object Detection using a Boosted Cascade of Simple Features
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– ident: 10.1016/j.eswa.2023.121316_b0100
  doi: 10.1109/CMVIT57620.2023.00018
– ident: 10.1016/j.eswa.2023.121316_b0050
  doi: 10.1145/2857491.2857505
– volume: vol 274
  year: 2011
  ident: 10.1016/j.eswa.2023.121316_b0015
  article-title: Blind Image Deconvolution of Linear Motion Blur
– volume: 188
  year: 2022
  ident: 10.1016/j.eswa.2023.121316_b0005
  article-title: Accurate CNN-based pupil segmentation with an ellipse fit error regularization term
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116004
– ident: 10.1016/j.eswa.2023.121316_b0145
  doi: 10.1145/2857491.2857520
– volume: 55
  start-page: 654
  year: 2018
  ident: 10.1016/j.eswa.2023.121316_b0165
  article-title: Robust Eye Detection using Deeply-learned Gaze Shifting Path
  publication-title: Journal of Visual Communication and Image Representation
  doi: 10.1016/j.jvcir.2018.07.013
– volume: 59
  start-page: 145
  issue: 3
  year: 1999
  ident: 10.1016/j.eswa.2023.121316_b0170
  article-title: Robust pupil center detection using a curvature algorithm
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/S0169-2607(98)00105-9
– volume: 55
  start-page: 503
  year: 2008
  ident: 10.1016/j.eswa.2023.121316_b0095
  article-title: A model-based approach to video-based eye tracking
  publication-title: Journal of Modern Optics
  doi: 10.1080/09500340701467827
– volume: 43
  start-page: 2145
  year: 2010
  ident: 10.1016/j.eswa.2023.121316_b0010
  article-title: Analysis of new top-hat transformation and the application for infrared dim small target detection
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.12.023
– volume: 170
  start-page: 40
  year: 2018
  ident: 10.1016/j.eswa.2023.121316_b0130
  article-title: PuRe: Robust pupil detection for real-time pervasive eye tracking
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2018.02.002
SSID ssj0017007
Score 2.4613638
Snippet A video-based eye tracking system generally captures NIR images, each of which contains one or two eyes of a subject. The subject’s point of gaze is then...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121316
SubjectTerms Eye detection
Eye tracking
Gaze tracking
NIR
Pupil localization
Title Eye detection and coarse localization of pupil for video-based eye tracking systems
URI https://dx.doi.org/10.1016/j.eswa.2023.121316
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXnrpu_Qpe-itbM1mk2w8iii2BS9W8Bb2FbBIIhopvfS3dye7kRaKhx4TdiB8TOaRfPMNQg9S5EkgQ0polGsShZIRGTNBEs2UUaFMhSPITpLxLHqZx_MWGjSzMECr9LHfxfQ6Wvs7XY9md7VYdKe2OLDpEP40guhUCoqfUcTBy5--djQPkJ_jTm-PEzjtB2ccx8tsPkB7KGQgssBg5_lfyelHwhmdoCNfKeK-e5hT1DLFGTputjBg_1Keo-nw02BtqppTVWBRaKxK264aXOcpP2eJyxyvtqvFEtsqFcPwXUkgg2lsrHm1Fgq-mWMn7Ly5QLPR8G0wJn5VAlEsCCoimKBCStuO5DFXVCeUWpB7Ic1BLj4Pw56RPGUmDQRLZM8m7pxzA2J_qe2HdMwuUbsoC3OFMFdMGlvU6FioyPbdaZCnSjMemMiWhiG9RrTBKFNeRxzWWSyzhjD2ngGuGeCaOVyv0ePOZuVUNPaejhvos1--kNkwv8fu5p92t-jQXkWOi32H2tV6a-5tqVHJTu1LHXTQf34dT74BFknSOg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG4QD3pxN-LagzdTmU5n42gIBBW5AAm3SbdJMGSYwBDjxd9uH-0QTQwHrzN9SfOlfcvM976H0L3gWeQJnxIaZIoEvmBEhIyTSDGppS8Sbgmyg6g3Dl4m4aSG2lUvDNAqne-3Pn3trd2TpkOzWUynzaFJDkw4hD-NIDqVsB20G5jrC2MMHr82PA_Qn4ut4F5MYLnrnLEkL738APEhn4HKAoOh539Fpx8Rp3uEDlyqiJ_sbo5RTecn6LAaw4DdrTxFw86nxkqXa1JVjnmusJybelXjdaByjZZ4nuFiVUxn2KSpGLrv5gRCmMLamJcLLuGjObbKzsszNO52Ru0ecbMSiGSeVxLOOOVCmHokC2NJVUSpQbnl0wz04jPfb2kRJ0wnHmeRaJnIncWxBrW_xBREKmTnqJ7Pc32BcCyZ0CarUSGXgSm8Ey9LpGKxpw28zKcNRCuMUumExGGexSytGGPvKeCaAq6pxbWBHjY2hZXR2Lo6rKBPfx2G1Pj5LXaX_7S7Q3u90Vs_7T8PXq_QvnkTWGL2NaqXi5W-MXlHKW7X5-obEBTTyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eye+detection+and+coarse+localization+of+pupil+for+video-based+eye+tracking+systems&rft.jtitle=Expert+systems+with+applications&rft.au=Chen%2C+Jie-chun&rft.au=Yu%2C+Pin-qing&rft.au=Yao%2C+Chun-ying&rft.au=Zhao%2C+Li-ping&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=236&rft_id=info:doi/10.1016%2Fj.eswa.2023.121316&rft.externalDocID=S0957417423018183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon