A Population Pharmacokinetic Model and Dosing Algorithm to Guide the Tacrolimus Starting and Follow-Up Dose in Living and Deceased Donor Kidney Transplant Recipients

Tacrolimus treatment is complicated by its narrow therapeutic range and large inter- and intra-patient variability. This study aimed to develop a population pharmacokinetic model and dosing algorithm to predict an individual's dose requirement following living and deceased donor kidney transpla...

Full description

Saved in:
Bibliographic Details
Published inClinical pharmacokinetics
Main Authors Francke, Marith I., Sassen, Sebastiaan D. T., Lloberas, Nuria, Colom, Helena, Elens, Laure, Moudio, Serge, de Vries, Aiko P. J., Moes, Dirk Jan A. R., van Schaik, Ron H. N., Hesselink, Dennis A., de Winter, Brenda C. M.
Format Journal Article
LanguageEnglish
Published Switzerland 30.06.2025
Online AccessGet full text

Cover

Loading…
Abstract Tacrolimus treatment is complicated by its narrow therapeutic range and large inter- and intra-patient variability. This study aimed to develop a population pharmacokinetic model and dosing algorithm to predict an individual's dose requirement following living and deceased donor kidney transplantation. In this international, multicenter, retrospective study, data was collected from patients who had received a living or a deceased donor kidney and received tacrolimus twice daily. A population pharmacokinetic model was developed using nonlinear mixed-effects modeling (NONMEM). This study included 13,427 tacrolimus concentrations from 1180 kidney transplant recipients. A two-compartment model with first-order absorption best described the data. The mean absorption rate was 6.59/h, apparent clearance 20.7 L/h, central volume of distribution 705 L, and peripheral volume of distribution 7670 L. Higher age, creatinine, and hematocrit, as well as lower height, were associated with lower tacrolimus clearance. Tacrolimus clearance was higher for cytochrome P450 (CYP) 3A5*1 carriers compared with CYP3A5*3/*3 individuals, and lower for CYP3A4*22 carriers compared with CYP3A4*1/*1 patients. Together, these covariates explained 19.3% of the inter-individual variability in clearance. From the full model, a starting dose algorithm was developed with age, height, and the CYP3A4 and CYP3A5 genotypes as covariates. Both the full model and the starting dose algorithm were successfully internally validated. In this international, multicenter study, age, CYP3A4 and CYP3A5 genotype, creatinine, height, and hematocrit were identified as significant covariates associated with tacrolimus pharmacokinetics, and can be used to predict the optimal individual's dose requirement for both living and deceased donor kidney transplant recipients.
AbstractList Tacrolimus treatment is complicated by its narrow therapeutic range and large inter- and intra-patient variability. This study aimed to develop a population pharmacokinetic model and dosing algorithm to predict an individual's dose requirement following living and deceased donor kidney transplantation. In this international, multicenter, retrospective study, data was collected from patients who had received a living or a deceased donor kidney and received tacrolimus twice daily. A population pharmacokinetic model was developed using nonlinear mixed-effects modeling (NONMEM). This study included 13,427 tacrolimus concentrations from 1180 kidney transplant recipients. A two-compartment model with first-order absorption best described the data. The mean absorption rate was 6.59/h, apparent clearance 20.7 L/h, central volume of distribution 705 L, and peripheral volume of distribution 7670 L. Higher age, creatinine, and hematocrit, as well as lower height, were associated with lower tacrolimus clearance. Tacrolimus clearance was higher for cytochrome P450 (CYP) 3A5*1 carriers compared with CYP3A5*3/*3 individuals, and lower for CYP3A4*22 carriers compared with CYP3A4*1/*1 patients. Together, these covariates explained 19.3% of the inter-individual variability in clearance. From the full model, a starting dose algorithm was developed with age, height, and the CYP3A4 and CYP3A5 genotypes as covariates. Both the full model and the starting dose algorithm were successfully internally validated. In this international, multicenter study, age, CYP3A4 and CYP3A5 genotype, creatinine, height, and hematocrit were identified as significant covariates associated with tacrolimus pharmacokinetics, and can be used to predict the optimal individual's dose requirement for both living and deceased donor kidney transplant recipients.
Tacrolimus treatment is complicated by its narrow therapeutic range and large inter- and intra-patient variability. This study aimed to develop a population pharmacokinetic model and dosing algorithm to predict an individual's dose requirement following living and deceased donor kidney transplantation.INTRODUCTIONTacrolimus treatment is complicated by its narrow therapeutic range and large inter- and intra-patient variability. This study aimed to develop a population pharmacokinetic model and dosing algorithm to predict an individual's dose requirement following living and deceased donor kidney transplantation.In this international, multicenter, retrospective study, data was collected from patients who had received a living or a deceased donor kidney and received tacrolimus twice daily. A population pharmacokinetic model was developed using nonlinear mixed-effects modeling (NONMEM).METHODSIn this international, multicenter, retrospective study, data was collected from patients who had received a living or a deceased donor kidney and received tacrolimus twice daily. A population pharmacokinetic model was developed using nonlinear mixed-effects modeling (NONMEM).This study included 13,427 tacrolimus concentrations from 1180 kidney transplant recipients. A two-compartment model with first-order absorption best described the data. The mean absorption rate was 6.59/h, apparent clearance 20.7 L/h, central volume of distribution 705 L, and peripheral volume of distribution 7670 L. Higher age, creatinine, and hematocrit, as well as lower height, were associated with lower tacrolimus clearance. Tacrolimus clearance was higher for cytochrome P450 (CYP) 3A5*1 carriers compared with CYP3A5*3/*3 individuals, and lower for CYP3A4*22 carriers compared with CYP3A4*1/*1 patients. Together, these covariates explained 19.3% of the inter-individual variability in clearance. From the full model, a starting dose algorithm was developed with age, height, and the CYP3A4 and CYP3A5 genotypes as covariates. Both the full model and the starting dose algorithm were successfully internally validated.RESULTSThis study included 13,427 tacrolimus concentrations from 1180 kidney transplant recipients. A two-compartment model with first-order absorption best described the data. The mean absorption rate was 6.59/h, apparent clearance 20.7 L/h, central volume of distribution 705 L, and peripheral volume of distribution 7670 L. Higher age, creatinine, and hematocrit, as well as lower height, were associated with lower tacrolimus clearance. Tacrolimus clearance was higher for cytochrome P450 (CYP) 3A5*1 carriers compared with CYP3A5*3/*3 individuals, and lower for CYP3A4*22 carriers compared with CYP3A4*1/*1 patients. Together, these covariates explained 19.3% of the inter-individual variability in clearance. From the full model, a starting dose algorithm was developed with age, height, and the CYP3A4 and CYP3A5 genotypes as covariates. Both the full model and the starting dose algorithm were successfully internally validated.In this international, multicenter study, age, CYP3A4 and CYP3A5 genotype, creatinine, height, and hematocrit were identified as significant covariates associated with tacrolimus pharmacokinetics, and can be used to predict the optimal individual's dose requirement for both living and deceased donor kidney transplant recipients.CONCLUSIONSIn this international, multicenter study, age, CYP3A4 and CYP3A5 genotype, creatinine, height, and hematocrit were identified as significant covariates associated with tacrolimus pharmacokinetics, and can be used to predict the optimal individual's dose requirement for both living and deceased donor kidney transplant recipients.
Author Francke, Marith I.
de Winter, Brenda C. M.
Elens, Laure
Sassen, Sebastiaan D. T.
Lloberas, Nuria
van Schaik, Ron H. N.
Moes, Dirk Jan A. R.
Colom, Helena
Hesselink, Dennis A.
Moudio, Serge
de Vries, Aiko P. J.
Author_xml – sequence: 1
  givenname: Marith I.
  surname: Francke
  fullname: Francke, Marith I.
– sequence: 2
  givenname: Sebastiaan D. T.
  surname: Sassen
  fullname: Sassen, Sebastiaan D. T.
– sequence: 3
  givenname: Nuria
  surname: Lloberas
  fullname: Lloberas, Nuria
– sequence: 4
  givenname: Helena
  surname: Colom
  fullname: Colom, Helena
– sequence: 5
  givenname: Laure
  surname: Elens
  fullname: Elens, Laure
– sequence: 6
  givenname: Serge
  surname: Moudio
  fullname: Moudio, Serge
– sequence: 7
  givenname: Aiko P. J.
  surname: de Vries
  fullname: de Vries, Aiko P. J.
– sequence: 8
  givenname: Dirk Jan A. R.
  surname: Moes
  fullname: Moes, Dirk Jan A. R.
– sequence: 9
  givenname: Ron H. N.
  surname: van Schaik
  fullname: van Schaik, Ron H. N.
– sequence: 10
  givenname: Dennis A.
  surname: Hesselink
  fullname: Hesselink, Dennis A.
– sequence: 11
  givenname: Brenda C. M.
  surname: de Winter
  fullname: de Winter, Brenda C. M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40588615$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1v1DAQhi1URLeFP8AB-cjFMLbjfBxX_QKxVauyPVteZ9I1JHawHVB_EP-ThG17msM872j0PifkyAePhLzn8IkDVJ9TAaIUDIRiwJWUDF6RFedVw3gjyiOyAskFU00pj8lJSj8AoBYAb8hxAaquS65W5O-a3oZx6k12wdPbvYmDseGn85idpdehxZ4a39LzkJx_oOv-IUSX9wPNgV5NrkWa90i3xsbQu2FK9Hs2MS_okroMfR_-sPtxySN1nm7c7-flOVo0CZfbPkT6zbUeH-k2Gp_G3vhM79C60aHP6S153Zk-4buneUruLy-2Z1_Y5ubq69l6w6wEyMzI0uw62zVdK7HgZWFrYYWR0gploWlVY7msUJS7SopaVVJ1jRRFh6pSXM0NnpKPh7tjDL8mTFkPLlns53cwTElLIVRdlRIW9MMTOu0GbPUY3WDio36udgbEAZirSSli94Jw0Is_ffCnZ3_6vz8N8h9Gu444
Cites_doi 10.1111/tri.14145
10.1097/FTD.0000000000000640
10.1111/ctr.12101
10.1111/bcp.13838
10.1097/FPC.0b013e32835fcbb6
10.1038/psp.2013.78
10.1007/s00228-012-1296-4
10.1038/tpj.2015.87
10.1111/j.1365-2125.2007.02888.x
10.1080/17425255.2023.2250251
10.1038/sj.bmt.1703224
10.1111/j.1365-2125.2011.04039.x
10.1080/03602530902722679
10.3389/fphar.2017.00358
10.1097/FTD.0b013e318296045b
10.1097/TXD.0000000000000644
10.1111/jcpt.12523
10.1111/ajt.13691
10.1517/17425255.2015.1033397
10.1097/FTD.0b013e31829f1ab8
10.1097/FTD.0000000000000266
10.1002/cpt.2220
10.2217/pgs.10.43
10.1007/s00228-013-1584-7
10.1002/cpt.2163
10.1007/s40262-020-00922-x
10.1111/ajt.16502
10.1016/j.krcp.2012.06.007
10.1007/s40262-017-0567-8
10.1097/FPC.0000000000000296
10.1097/FTD.0000000000001147
10.1002/jcph.1823
10.1111/j.1600-6143.2012.04232.x
10.1007/s00228-022-03323-0
10.1371/journal.pone.0122399
10.1124/dmd.118.084772
10.1038/s41586-019-1291-3
10.1007/s40262-016-0491-3
10.1016/j.ejps.2013.10.008
10.1016/j.kint.2023.06.021
10.1111/tri.12194
10.1097/FTD.0b013e31819c3d6d
10.1038/clpt.2009.210
10.1007/s40262-023-01259-x
10.1080/00498254.2019.1607918
ContentType Journal Article
Copyright 2025. The Author(s).
Copyright_xml – notice: 2025. The Author(s).
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s40262-025-01533-0
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1179-1926
ExternalDocumentID 40588615
10_1007_s40262_025_01533_0
Genre Journal Article
GroupedDBID ---
.XZ
0R~
199
29B
2JY
36B
4.4
406
5GY
5RE
6J9
6PF
95.
AABHQ
AACDK
AADNT
AAIKX
AAJKR
AANZL
AASML
AATNV
AAWTL
AAYQN
AAYXX
ABAKF
ABBRH
ABDBE
ABDZT
ABFSG
ABFTV
ABIPD
ABJNI
ABJOX
ABKCH
ABKMS
ABKTR
ABOCM
ABPLI
ABRTQ
ABTKH
ABTMW
ABXPI
ACAOD
ACCOQ
ACCUX
ACDTI
ACGFO
ACGFS
ACMJI
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADBBV
ADFRT
ADHHG
ADJJI
ADURQ
ADYOE
ADZKW
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFWTZ
AFZKB
AGAYW
AGDGC
AGQEE
AGQMX
AGRTI
AHIZS
AHMBA
AHWEU
AIAKS
AIGIU
AILAN
AIXLP
AIZAD
AJRNO
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ASPBG
ATHPR
AVWKF
AWSVR
AXYYD
AYFIA
BENPR
BGNMA
CITATION
CS3
DCUDU
DNIVK
DPUIP
DU5
EBLON
EBS
F5P
F8P
FERAY
FIGPU
FNLPD
HF~
IAO
IEA
IHR
IMOTQ
INH
INR
IWAJR
J-C
JZLTJ
LGEZI
LLZTM
LOTEE
M4Y
NADUK
NQJWS
NU0
NXXTH
OAC
OPC
P2P
ROL
RSV
SJYHP
SNPRN
SNX
SOHCF
SOJ
SPKJE
SRMVM
SSLCW
TEORI
TSG
U5U
U9L
UAX
UG4
UNMZH
UTJUX
VDBLX
VFIZW
W48
WAF
YQY
ZMTXR
~JE
ACMFV
NPM
7X8
ID FETCH-LOGICAL-c300t-a36abfcf9fd3e4164c82c2a33c25c09d59c137e26b73285735f9324fe57515533
ISSN 0312-5963
1179-1926
IngestDate Wed Jul 02 01:49:32 EDT 2025
Wed Jul 02 01:57:39 EDT 2025
Tue Aug 05 12:07:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License 2025. The Author(s).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-a36abfcf9fd3e4164c82c2a33c25c09d59c137e26b73285735f9324fe57515533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s40262-025-01533-0.pdf
PMID 40588615
PQID 3225876303
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3225876303
pubmed_primary_40588615
crossref_primary_10_1007_s40262_025_01533_0
PublicationCentury 2000
PublicationDate 2025-06-30
PublicationDateYYYYMMDD 2025-06-30
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-30
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Clinical pharmacokinetics
PublicationTitleAlternate Clin Pharmacokinet
PublicationYear 2025
References LM Andrews (1533_CR15) 2018; 57
M Brunet (1533_CR20) 2019; 41
A Abderahmene (1533_CR47) 2024; 46
1533_CR19
E Storset (1533_CR6) 2014; 70
P Jacobson (1533_CR41) 2001; 28
S Fukatsu (1533_CR40) 2001; 57
JB Woillard (1533_CR18) 2017; 8
M Al-Kofahi (1533_CR24) 2021; 61
LM Andrews (1533_CR1) 2017; 3
N Han (1533_CR7) 2013; 69
XC Zuo (1533_CR11) 2013; 23
Y Guo (1533_CR45) 2019; 47
B Golubovic (1533_CR10) 2014; 52
HJ Zhang (1533_CR17) 2017; 42
A Hart (1533_CR27) 2021; 21
L Chen (1533_CR42) 2020; 50
P Fontova (1533_CR32) 2021; 110
M Antignac (1533_CR13) 2007; 64
JR Lee (1533_CR44) 2015; 10
N Shuker (1533_CR29) 2016; 38
SS Han (1533_CR43) 2012; 31
A Capron (1533_CR34) 2010; 11
LM Andrews (1533_CR4) 2015; 11
A Asberg (1533_CR12) 2013; 26
F Andreu (1533_CR5) 2017; 56
K Sanghavi (1533_CR37) 2017; 17
1533_CR28
MI Francke (1533_CR36) 2022; 78
N Lloberas (1533_CR35) 2017; 27
LM Andrews (1533_CR16) 2019; 85
RR Press (1533_CR3) 2009; 31
SY Chen (1533_CR9) 2013; 27
N Shuker (1533_CR26) 2016; 16
U Klotz (1533_CR39) 2009; 41
TK Bergmann (1533_CR8) 2014; 36
L Elens (1533_CR31) 2013; 35
M Zimmermann (1533_CR46) 2019; 570
PA Jacobson (1533_CR38) 2012; 12
DJ Moes (1533_CR33) 2014; 3
1533_CR25
AE de Weerd (1533_CR30) 2021; 34
C Passey (1533_CR2) 2011; 72
W Zhao (1533_CR14) 2009; 86
1533_CR22
1533_CR23
1533_CR21
References_xml – volume: 34
  start-page: 2706
  issue: 12
  year: 2021
  ident: 1533_CR30
  publication-title: Transpl Int
  doi: 10.1111/tri.14145
– volume: 41
  start-page: 261
  issue: 3
  year: 2019
  ident: 1533_CR20
  publication-title: Ther Drug Monit
  doi: 10.1097/FTD.0000000000000640
– volume: 27
  start-page: E272
  issue: 3
  year: 2013
  ident: 1533_CR9
  publication-title: Clin Transplant
  doi: 10.1111/ctr.12101
– volume: 85
  start-page: 601
  issue: 3
  year: 2019
  ident: 1533_CR16
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.13838
– volume: 23
  start-page: 251
  issue: 5
  year: 2013
  ident: 1533_CR11
  publication-title: Pharmacogenet Genomics
  doi: 10.1097/FPC.0b013e32835fcbb6
– volume: 3
  issue: 2
  year: 2014
  ident: 1533_CR33
  publication-title: CPT Pharmacometr Syst Pharmacol
  doi: 10.1038/psp.2013.78
– volume: 69
  start-page: 53
  issue: 1
  year: 2013
  ident: 1533_CR7
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-012-1296-4
– volume: 17
  start-page: 61
  issue: 1
  year: 2017
  ident: 1533_CR37
  publication-title: Pharmacogenomics J
  doi: 10.1038/tpj.2015.87
– volume: 64
  start-page: 750
  issue: 6
  year: 2007
  ident: 1533_CR13
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2007.02888.x
– ident: 1533_CR23
  doi: 10.1080/17425255.2023.2250251
– volume: 28
  start-page: 753
  issue: 8
  year: 2001
  ident: 1533_CR41
  publication-title: Bone Marrow Transplant
  doi: 10.1038/sj.bmt.1703224
– volume: 72
  start-page: 948
  issue: 6
  year: 2011
  ident: 1533_CR2
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2011.04039.x
– volume: 41
  start-page: 67
  issue: 2
  year: 2009
  ident: 1533_CR39
  publication-title: Drug Metab Rev
  doi: 10.1080/03602530902722679
– volume: 8
  start-page: 358
  year: 2017
  ident: 1533_CR18
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2017.00358
– volume: 35
  start-page: 608
  issue: 5
  year: 2013
  ident: 1533_CR31
  publication-title: Ther Drug Monit
  doi: 10.1097/FTD.0b013e318296045b
– volume: 57
  start-page: 479
  issue: 6–7
  year: 2001
  ident: 1533_CR40
  publication-title: Eur J Clin Pharmacol
– volume: 3
  issue: 2
  year: 2017
  ident: 1533_CR1
  publication-title: Transplant Direct.
  doi: 10.1097/TXD.0000000000000644
– volume: 42
  start-page: 425
  issue: 4
  year: 2017
  ident: 1533_CR17
  publication-title: J Clin Pharm Ther
  doi: 10.1111/jcpt.12523
– volume: 16
  start-page: 2085
  issue: 7
  year: 2016
  ident: 1533_CR26
  publication-title: Am J Transplant
  doi: 10.1111/ajt.13691
– volume: 11
  start-page: 921
  issue: 6
  year: 2015
  ident: 1533_CR4
  publication-title: Expert Opin Drug Metab Toxicol
  doi: 10.1517/17425255.2015.1033397
– volume: 36
  start-page: 62
  issue: 1
  year: 2014
  ident: 1533_CR8
  publication-title: Ther Drug Monit
  doi: 10.1097/FTD.0b013e31829f1ab8
– volume: 38
  start-page: 217
  issue: 2
  year: 2016
  ident: 1533_CR29
  publication-title: Ther Drug Monit
  doi: 10.1097/FTD.0000000000000266
– volume: 110
  start-page: 238
  issue: 1
  year: 2021
  ident: 1533_CR32
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.2220
– volume: 11
  start-page: 703
  issue: 5
  year: 2010
  ident: 1533_CR34
  publication-title: Pharmacogenomics
  doi: 10.2217/pgs.10.43
– volume: 70
  start-page: 65
  issue: 1
  year: 2014
  ident: 1533_CR6
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-013-1584-7
– ident: 1533_CR25
  doi: 10.1002/cpt.2163
– ident: 1533_CR19
  doi: 10.1007/s40262-020-00922-x
– volume: 21
  start-page: 21
  issue: Suppl 2
  year: 2021
  ident: 1533_CR27
  publication-title: Am J Transplant
  doi: 10.1111/ajt.16502
– ident: 1533_CR28
– volume: 31
  start-page: 157
  issue: 3
  year: 2012
  ident: 1533_CR43
  publication-title: Kidney Res Clin Pract.
  doi: 10.1016/j.krcp.2012.06.007
– volume: 57
  start-page: 475
  issue: 4
  year: 2018
  ident: 1533_CR15
  publication-title: Clin Pharmacokinet
  doi: 10.1007/s40262-017-0567-8
– volume: 27
  start-page: 313
  issue: 9
  year: 2017
  ident: 1533_CR35
  publication-title: Pharmacogenet Genom
  doi: 10.1097/FPC.0000000000000296
– volume: 46
  start-page: 57
  issue: 1
  year: 2024
  ident: 1533_CR47
  publication-title: Ther Drug Monit
  doi: 10.1097/FTD.0000000000001147
– volume: 61
  start-page: 1035
  issue: 8
  year: 2021
  ident: 1533_CR24
  publication-title: J Clin Pharmacol
  doi: 10.1002/jcph.1823
– volume: 12
  start-page: 3326
  issue: 12
  year: 2012
  ident: 1533_CR38
  publication-title: Am J Transplant
  doi: 10.1111/j.1600-6143.2012.04232.x
– volume: 78
  start-page: 1273
  issue: 8
  year: 2022
  ident: 1533_CR36
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-022-03323-0
– volume: 10
  issue: 3
  year: 2015
  ident: 1533_CR44
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0122399
– volume: 47
  start-page: 194
  issue: 3
  year: 2019
  ident: 1533_CR45
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.118.084772
– volume: 570
  start-page: 462
  issue: 7762
  year: 2019
  ident: 1533_CR46
  publication-title: Nature
  doi: 10.1038/s41586-019-1291-3
– volume: 56
  start-page: 963
  issue: 8
  year: 2017
  ident: 1533_CR5
  publication-title: Clin Pharmacokinet
  doi: 10.1007/s40262-016-0491-3
– volume: 52
  start-page: 34
  year: 2014
  ident: 1533_CR10
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2013.10.008
– ident: 1533_CR22
  doi: 10.1016/j.kint.2023.06.021
– volume: 26
  start-page: 1198
  issue: 12
  year: 2013
  ident: 1533_CR12
  publication-title: Transpl Int
  doi: 10.1111/tri.12194
– volume: 31
  start-page: 187
  issue: 2
  year: 2009
  ident: 1533_CR3
  publication-title: Ther Drug Monit
  doi: 10.1097/FTD.0b013e31819c3d6d
– volume: 86
  start-page: 609
  issue: 6
  year: 2009
  ident: 1533_CR14
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2009.210
– ident: 1533_CR21
  doi: 10.1007/s40262-023-01259-x
– volume: 50
  start-page: 186
  issue: 2
  year: 2020
  ident: 1533_CR42
  publication-title: Xenobiotica
  doi: 10.1080/00498254.2019.1607918
SSID ssj0008200
Score 2.4675074
SecondaryResourceType online_first
Snippet Tacrolimus treatment is complicated by its narrow therapeutic range and large inter- and intra-patient variability. This study aimed to develop a population...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title A Population Pharmacokinetic Model and Dosing Algorithm to Guide the Tacrolimus Starting and Follow-Up Dose in Living and Deceased Donor Kidney Transplant Recipients
URI https://www.ncbi.nlm.nih.gov/pubmed/40588615
https://www.proquest.com/docview/3225876303
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVZC6MvY99r98EdjL6kHo5lO8ljuiwrWxsCTaBvRpbkzqyxTWJ3dD9j_2H_c1eSZaddC9teTLAjxeQcrs617z0i5B3re6oPhzqyh7mJTxPuxL4InKGQA-H5iWDarPpkGh4t_M9nwVmn83Ojaqkq4_f8x619Jf-DKp5DXFWX7D8g20yKJ_Az4otHRBiPf4XxqDtr9t_qzmoT6m-oG5ULq9rlzPgAjHP9QGB0cZ6v0vLrUunNT1UqpFadc8bVzj3Laq2U56q0XYsTZEj-3VkUary2FjlOL-3FseTqvY6aO8tX3S-pyDC4GKf0CwRLydG0SK1RVOOFYPswi-s3u9GEgiw09UInTN1s-1T3FGW-iZGnEtdejEwYmsZtkfexqhtZmf60aWWqp-1uzvmyWWLZ5nMOL7BFeWqZMrEZY4eDgjS8NfKbYo81psOh5-jhSsk67uaXEb1iqbmAMnUwCE0j6Q2_bXvpHtn2MPXA2Lk9mhweTpv1HTWTW7df6SbMP35yh9y3k1xXO3ekMFrKzB-SB3UOAiNDqEekI7PHZL_mz9UBzNuevPUB7MOstTe_ekJ-jaBlHdxgHWjWAVIEDOugYR2UOWjWAbIOWtaBZZ0e1bBOjZeQZmBYZ6asWQeadWBYBy3roGXdU7KYfJx_OHLqzT4cTl23dBgNWZzwZJgIKjFL8PnA4x6jlHsBd4ciGPIe7UsvjJW9VNCnQYKph59I9eIwwP_9GdnK8ky-IJCgJvb8Ych57PqCsTiMe0kY9AWlAtNjuku6FpSoMJ4uUePerdGMEM1Ioxm5u-StxS3C0Kvep7FM5tU6UmuhMnR0ccbnBtBmPkuAvTuvvCQ7Lc1fka1yVcnXKHDL-E3NuN-gZqji
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Population+Pharmacokinetic+Model+and+Dosing+Algorithm+to+Guide+the+Tacrolimus+Starting+and+Follow-Up+Dose+in+Living+and+Deceased+Donor+Kidney+Transplant+Recipients&rft.jtitle=Clinical+pharmacokinetics&rft.au=Francke%2C+Marith+I&rft.au=Sassen%2C+Sebastiaan+D+T&rft.au=Lloberas%2C+Nuria&rft.au=Colom%2C+Helena&rft.date=2025-06-30&rft.eissn=1179-1926&rft_id=info:doi/10.1007%2Fs40262-025-01533-0&rft_id=info%3Apmid%2F40588615&rft.externalDocID=40588615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0312-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0312-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0312-5963&client=summon