Interpreting network knowledge with attention mechanism for bearing fault diagnosis

Condition monitoring and fault diagnosis of bearings play important roles in production safety and limiting the cost of maintenance on a reasonable level. Nowadays, artificial intelligence and machine learning make fault diagnosis gradually become intelligent, and data-driven intelligent algorithms...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 97; p. 106829
Main Authors Yang, Zhi-bo, Zhang, Jun-peng, Zhao, Zhi-bin, Zhai, Zhi, Chen, Xue-feng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Condition monitoring and fault diagnosis of bearings play important roles in production safety and limiting the cost of maintenance on a reasonable level. Nowadays, artificial intelligence and machine learning make fault diagnosis gradually become intelligent, and data-driven intelligent algorithms are receiving more and more attention. However, many methods use the existing deep learning models directly for the analysis of mechanical vibration signals, which is still lack of interpretability to researchers. In this paper, a method based on multilayer bidirectional gated recurrent units with attention mechanism is proposed to access the interpretability of neural networks in fault diagnosis, which combines the convolution neural network, gated recurrent unit, and the attention mechanism. Based on the attention mechanism, the attention distribution of input segments is visualized and thus the interpretability of neural networks can be further presented. Experimental validations and comparisons are conducted on bearings. The results present that the proposed model is effective for localizing the discriminative information from the input data, which provides a tool for better understanding the feature extraction process in neural networks, especially for mechanical vibration signals. •The attention mechanism is introduced in bearing fault diagnosis.•A deep learning-based bearing fault diagnosis model via attention is proposed.•The results of the model have clearer interpretability compared with other models.•Experiments on bearing datasets verified the effectiveness of the model.
AbstractList Condition monitoring and fault diagnosis of bearings play important roles in production safety and limiting the cost of maintenance on a reasonable level. Nowadays, artificial intelligence and machine learning make fault diagnosis gradually become intelligent, and data-driven intelligent algorithms are receiving more and more attention. However, many methods use the existing deep learning models directly for the analysis of mechanical vibration signals, which is still lack of interpretability to researchers. In this paper, a method based on multilayer bidirectional gated recurrent units with attention mechanism is proposed to access the interpretability of neural networks in fault diagnosis, which combines the convolution neural network, gated recurrent unit, and the attention mechanism. Based on the attention mechanism, the attention distribution of input segments is visualized and thus the interpretability of neural networks can be further presented. Experimental validations and comparisons are conducted on bearings. The results present that the proposed model is effective for localizing the discriminative information from the input data, which provides a tool for better understanding the feature extraction process in neural networks, especially for mechanical vibration signals. •The attention mechanism is introduced in bearing fault diagnosis.•A deep learning-based bearing fault diagnosis model via attention is proposed.•The results of the model have clearer interpretability compared with other models.•Experiments on bearing datasets verified the effectiveness of the model.
ArticleNumber 106829
Author Zhang, Jun-peng
Chen, Xue-feng
Yang, Zhi-bo
Zhao, Zhi-bin
Zhai, Zhi
Author_xml – sequence: 1
  givenname: Zhi-bo
  surname: Yang
  fullname: Yang, Zhi-bo
  email: phdapple@mail.xjtu.edu.cn
– sequence: 2
  givenname: Jun-peng
  surname: Zhang
  fullname: Zhang, Jun-peng
– sequence: 3
  givenname: Zhi-bin
  surname: Zhao
  fullname: Zhao, Zhi-bin
– sequence: 4
  givenname: Zhi
  surname: Zhai
  fullname: Zhai, Zhi
– sequence: 5
  givenname: Xue-feng
  surname: Chen
  fullname: Chen, Xue-feng
BookMark eNp9kM1KAzEURoNUsK2-gKu8wIxJ5i8BN1LUFgou1HXIJHfatNOkJNHi2ztDXbno6l4unI_7nRmaOO8AoXtKckpo_bDLVfQ6Z4SNh5ozcYWmlDcsEzWnk2Gvap6Voqxv0CzGHRkgwfgUva9cgnAMkKzbYAfp5MMe750_9WA2gE82bbFKCVyy3uED6K1yNh5w5wNuQYUR69RXn7CxauN8tPEWXXeqj3D3N-fo8-X5Y7HM1m-vq8XTOtMFISlTFEhbMNFUQ4UWGqZ425iSMyoaYwQQ1lVdW1ei4ESwomWUVoqV3IimEGUpijni51wdfIwBOqltUuOfKSjbS0rkKEfu5ChHjnLkWc6Asn_oMdiDCj-XocczBEOpbwtBRm3BaTA2gE7SeHsJ_wVgpYCa
CitedBy_id crossref_primary_10_1016_j_measurement_2022_111594
crossref_primary_10_1016_j_engappai_2024_107975
crossref_primary_10_1177_14759217211018281
crossref_primary_10_1016_j_ymssp_2022_109611
crossref_primary_10_1109_TIM_2021_3134999
crossref_primary_10_1109_JSEN_2024_3427125
crossref_primary_10_1016_j_ymssp_2025_112624
crossref_primary_10_1109_ACCESS_2022_3164077
crossref_primary_10_3390_app12168388
crossref_primary_10_1093_tse_tdac050
crossref_primary_10_1109_JSEN_2022_3200691
crossref_primary_10_1016_j_asoc_2022_109959
crossref_primary_10_1177_16878132241245894
crossref_primary_10_1016_j_aei_2024_103048
crossref_primary_10_1016_j_compind_2024_104229
crossref_primary_10_1016_j_cose_2022_102663
crossref_primary_10_1007_s12559_023_10218_4
crossref_primary_10_1016_j_ymssp_2021_108653
crossref_primary_10_1109_JSEN_2021_3131166
crossref_primary_10_1109_ACCESS_2023_3255891
crossref_primary_10_1088_1361_6501_ad3a08
crossref_primary_10_1109_TNNLS_2022_3232394
crossref_primary_10_1016_j_measurement_2021_110242
crossref_primary_10_3390_w15091773
crossref_primary_10_1088_1361_6501_acce55
crossref_primary_10_1088_1361_6501_acf8e6
crossref_primary_10_1109_TII_2021_3121294
crossref_primary_10_1088_1361_6501_ad3fd2
crossref_primary_10_3390_act11100275
crossref_primary_10_1186_s10033_021_00580_5
crossref_primary_10_1016_j_measurement_2022_111935
crossref_primary_10_3390_su15118731
crossref_primary_10_3390_sym17010050
crossref_primary_10_1016_j_eswa_2022_116503
crossref_primary_10_1109_JSEN_2024_3421242
crossref_primary_10_1016_j_compind_2022_103638
crossref_primary_10_1016_j_eswa_2022_117716
crossref_primary_10_1088_1361_6501_acd01e
crossref_primary_10_1016_j_automatica_2022_110350
crossref_primary_10_1109_ACCESS_2024_3412157
crossref_primary_10_1088_1361_6501_ad3b2c
crossref_primary_10_1088_1361_6501_ac66c4
crossref_primary_10_1016_j_knosys_2024_111579
crossref_primary_10_1063_5_0158412
crossref_primary_10_1016_j_sigpro_2024_109683
crossref_primary_10_1109_JSEN_2023_3284044
crossref_primary_10_1016_j_ymssp_2023_110314
crossref_primary_10_1016_j_isatra_2022_06_035
crossref_primary_10_1088_1361_6501_ad11c9
crossref_primary_10_1007_s40430_025_05457_5
crossref_primary_10_21595_jve_2023_23398
crossref_primary_10_1109_JIOT_2024_3387538
crossref_primary_10_1016_j_measurement_2024_116067
crossref_primary_10_1007_s10489_024_05643_3
crossref_primary_10_1007_s10845_023_02133_0
crossref_primary_10_1016_j_engappai_2023_107052
crossref_primary_10_1109_TIM_2023_3298403
crossref_primary_10_3390_machines11070746
crossref_primary_10_1016_j_est_2022_105820
crossref_primary_10_3390_vibration6010002
crossref_primary_10_1016_j_measurement_2022_111950
crossref_primary_10_1109_TCYB_2024_3497597
crossref_primary_10_1177_10775463231211403
crossref_primary_10_3390_app14031198
crossref_primary_10_3390_a14070208
crossref_primary_10_1109_JSEN_2023_3234980
crossref_primary_10_1016_j_asoc_2023_110358
crossref_primary_10_1109_TIM_2023_3318686
crossref_primary_10_1109_TII_2023_3268407
crossref_primary_10_3390_jtaer18040110
crossref_primary_10_1016_j_jmsy_2021_12_003
crossref_primary_10_1109_ACCESS_2024_3430010
crossref_primary_10_1016_j_asoc_2021_107755
crossref_primary_10_1038_s41598_021_04545_5
crossref_primary_10_1088_1361_6501_ace278
crossref_primary_10_3390_s25010224
crossref_primary_10_34133_research_0176
crossref_primary_10_35377_saucis_04_02_912154
crossref_primary_10_1016_j_measurement_2022_110698
crossref_primary_10_1177_01423312231157118
crossref_primary_10_3390_machines11111029
crossref_primary_10_1016_j_eswa_2023_120957
crossref_primary_10_1186_s10033_021_00587_y
crossref_primary_10_1007_s00170_023_12356_3
crossref_primary_10_1016_j_asoc_2024_112007
crossref_primary_10_1109_TIM_2022_3173278
crossref_primary_10_1088_1361_6501_ac8893
crossref_primary_10_23919_JSEE_2023_000129
crossref_primary_10_1016_j_jmsy_2022_11_012
crossref_primary_10_1109_JSEN_2023_3323276
crossref_primary_10_1088_1361_6501_ad5460
crossref_primary_10_1177_14759217241262956
crossref_primary_10_1109_TSMC_2024_3461668
crossref_primary_10_1016_j_apenergy_2024_123773
crossref_primary_10_1063_5_0130984
crossref_primary_10_1109_JSEN_2025_3529479
crossref_primary_10_1016_j_ress_2021_108017
crossref_primary_10_1088_1361_6501_ad99f4
crossref_primary_10_1016_j_apacoust_2022_108703
crossref_primary_10_1109_TIM_2023_3318747
crossref_primary_10_1016_j_asoc_2022_109554
crossref_primary_10_1007_s11465_021_0650_6
crossref_primary_10_3390_app13020718
crossref_primary_10_1109_TIM_2023_3314809
crossref_primary_10_1109_TR_2024_3381579
crossref_primary_10_1016_j_measurement_2023_112833
crossref_primary_10_1063_5_0174359
crossref_primary_10_1109_TII_2023_3243929
crossref_primary_10_1088_1361_6501_ad3293
crossref_primary_10_1016_j_isatra_2024_08_033
crossref_primary_10_1109_TNNLS_2022_3202234
crossref_primary_10_1088_1361_6501_ad356e
crossref_primary_10_3390_en16104164
crossref_primary_10_1016_j_oceaneng_2024_118139
crossref_primary_10_1109_TIM_2023_3259031
crossref_primary_10_3390_math11143113
crossref_primary_10_1177_00202940221126497
Cites_doi 10.3390/s20010166
10.1016/j.ymssp.2018.03.025
10.1109/5.726791
10.1162/neco.1997.9.8.1735
10.1016/j.ymssp.2018.05.050
10.1016/j.sigpro.2019.03.019
10.1038/323533a0
10.3115/v1/D14-1179
10.1109/ACCESS.2019.2907131
10.1109/ACCESS.2019.2962734
10.1109/TIE.2018.2838070
10.18653/v1/P16-2034
10.3390/s19092034
10.1007/s10845-015-1110-0
10.1109/TIE.2016.2627020
10.1016/j.neucom.2018.06.078
10.1109/TII.2019.2912428
10.1016/j.jsv.2016.05.027
10.1016/j.ymssp.2019.106587
10.1109/ACCESS.2019.2948661
10.1016/j.isatra.2020.08.010
10.1038/nature14539
10.1088/1361-6501/ab3072
10.18653/v1/D15-1166
10.3390/en12203937
10.1109/TIE.2017.2762639
10.1016/j.asoc.2019.105919
10.18653/v1/N16-1174
10.1016/j.neucom.2018.04.048
10.1016/j.ymssp.2017.11.024
10.1109/JSEN.2020.2980596
10.1016/j.measurement.2020.108202
10.3390/app9091823
10.1016/j.compind.2019.01.001
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106829
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106829
S1568494620307675
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-a1e0b32975101be72a8b7d482197dd9e02f5fb659380923b2115a248d97394493
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:07 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bearing fault diagnosis
Attention mechanism
Interpretability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a1e0b32975101be72a8b7d482197dd9e02f5fb659380923b2115a248d97394493
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106829
crossref_primary_10_1016_j_asoc_2020_106829
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106829
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References LeCun, Bengio, Hinton (b4) 2015; 521
Li, Chen, Shen, Yang, Zhu (b23) 2019; 30
Lecun, Bottou, Bengio, Haffner (b34) 1998; 86
Bearing data center
Lei, Yang, Jiang, Jia, Li, Nandi (b3) 2020; 138
Pan, He, Tang, Meng (b13) 2018; 64
Li, Zhang, Ding (b29) 2019; 161
K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734.
V. Mnih, N. Heess, A. Graves, K. Kavukcuoglu, Recurrent models of visual attention, in: Advances in Neural Information Processing Systems 27, Vol. 3, pp. 2204–2212.
Lu, Liang, Cheng, Meng, Yang, Zhang (b12) 2017; 64
Shao, Wang, Yan (b24) 2019; 106
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, u. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5998–6008.
Janssens, Slavkovikj, Vervisch, Stockman, Loccufier, Verstockt, Van de Walle, Van Hoecke (b5) 2016; 377
Wei, Changqing, Dong, Liang, Xingxing, Zhongkui (b18) 2020; 8
K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio, Show, attend and tell: Neural image caption generation with visual attention, in: Proceedings of the 32nd International Conference on Machine Learning, pp. 2048–2057.
M.T. Luong, H. Pham, C.D. Manning, Effective approaches to attention-based neural machine translation, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421.
Huang, Fu, Feng, Kuang (b30) 2019; 12
Zhao, Wu, Qiao, Wang, Chen (b2) 2019; 66
Wang, Mo, Zhang, Miao (b17) 2019; 7
Tang, Shen, Wang, Li, Huang, Zhu (b19) 2018; 305
Qi, Shen, Zhu, Jiang, Shi, Zhu (b9) 2019; 7
Chung, Gulcehre, Cho, Bengio (b37) 2014
Jiang, Lee, Zeng (b32) 2019; 20
Rumelhart, Hinton, Williams (b42) 1986; 323
Li, Huang, Ji (b8) 2019; 19
Jia, Lei, Lu, Xing (b25) 2018; 110
Chen, Peng, Zhu, Li (b31) 2020; 86
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: ICLR 2015: International Conference on Learning Representations 2015.
Xu, Zheng, Guo, Wu, Zheng (b22) 2019; 9
Ma, Sun, Chen, Zhang, Yan (b10) 2019; 15
Zhao, Kang, Tang, Pecht (b16) 2018; 65
Bahdanau, Cho, Bengio (b27) 2015
.
Zhao, Yan, Chen, Mao, Wang, Gao (b6) 2019; 115
Zhuang, Lv, Xu, Huang, Qin (b14) 2019; 9
Zhao, Li, Wu, Sun, Wang, Yan, Chen (b15) 2020
Khan, Yairi (b1) 2018; 107
Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, Hierarchical attention networks for document classification, in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489.
Hoang, Kang (b7) 2019; 335
Santos, Maudes, Bustillo (b20) 2015; 29
Li, Zhao, Sun, Yan, Chen (b11) 2020; 20
Wu, Zhao, Sun, Yan, Chen (b21) 2020; 166
Hochreiter, Schmidhuber (b35) 1997; 9
P. Zhou, W. Shi, J. Tian, Z.Y. Qi, B.C. Li, H.W. Hao, B. Xu, Attention-based bidirectional long short-term memory networks for relation classification, in: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Acl 2016), Vol. 2, pp. 207–212.
Wu (10.1016/j.asoc.2020.106829_b21) 2020; 166
10.1016/j.asoc.2020.106829_b26
Rumelhart (10.1016/j.asoc.2020.106829_b42) 1986; 323
Shao (10.1016/j.asoc.2020.106829_b24) 2019; 106
10.1016/j.asoc.2020.106829_b28
Li (10.1016/j.asoc.2020.106829_b11) 2020; 20
Tang (10.1016/j.asoc.2020.106829_b19) 2018; 305
Hochreiter (10.1016/j.asoc.2020.106829_b35) 1997; 9
Jia (10.1016/j.asoc.2020.106829_b25) 2018; 110
Zhao (10.1016/j.asoc.2020.106829_b15) 2020
10.1016/j.asoc.2020.106829_b40
Li (10.1016/j.asoc.2020.106829_b8) 2019; 19
10.1016/j.asoc.2020.106829_b41
Li (10.1016/j.asoc.2020.106829_b29) 2019; 161
10.1016/j.asoc.2020.106829_b43
Lei (10.1016/j.asoc.2020.106829_b3) 2020; 138
Zhao (10.1016/j.asoc.2020.106829_b16) 2018; 65
LeCun (10.1016/j.asoc.2020.106829_b4) 2015; 521
Xu (10.1016/j.asoc.2020.106829_b22) 2019; 9
Qi (10.1016/j.asoc.2020.106829_b9) 2019; 7
Pan (10.1016/j.asoc.2020.106829_b13) 2018; 64
Santos (10.1016/j.asoc.2020.106829_b20) 2015; 29
Zhao (10.1016/j.asoc.2020.106829_b6) 2019; 115
10.1016/j.asoc.2020.106829_b36
Li (10.1016/j.asoc.2020.106829_b23) 2019; 30
10.1016/j.asoc.2020.106829_b39
10.1016/j.asoc.2020.106829_b38
Janssens (10.1016/j.asoc.2020.106829_b5) 2016; 377
Zhao (10.1016/j.asoc.2020.106829_b2) 2019; 66
10.1016/j.asoc.2020.106829_b33
Huang (10.1016/j.asoc.2020.106829_b30) 2019; 12
Ma (10.1016/j.asoc.2020.106829_b10) 2019; 15
Wei (10.1016/j.asoc.2020.106829_b18) 2020; 8
Lu (10.1016/j.asoc.2020.106829_b12) 2017; 64
Chen (10.1016/j.asoc.2020.106829_b31) 2020; 86
Chung (10.1016/j.asoc.2020.106829_b37) 2014
Wang (10.1016/j.asoc.2020.106829_b17) 2019; 7
Khan (10.1016/j.asoc.2020.106829_b1) 2018; 107
Hoang (10.1016/j.asoc.2020.106829_b7) 2019; 335
Zhuang (10.1016/j.asoc.2020.106829_b14) 2019; 9
Jiang (10.1016/j.asoc.2020.106829_b32) 2019; 20
Lecun (10.1016/j.asoc.2020.106829_b34) 1998; 86
Bahdanau (10.1016/j.asoc.2020.106829_b27) 2015
References_xml – volume: 66
  start-page: 2143
  year: 2019
  end-page: 2153
  ident: b2
  article-title: Enhanced sparse period-group lasso for bearing fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
– volume: 335
  start-page: 327
  year: 2019
  end-page: 335
  ident: b7
  article-title: A survey on deep learning based bearing fault diagnosis
  publication-title: Neurocomputing
– reference: Bearing data center,
– volume: 19
  year: 2019
  ident: b8
  article-title: Bearing fault diagnosis with a feature fusion method based on an ensemble convolutional neural network and deep neural network
  publication-title: Sensors (Basel)
– year: 2014
  ident: b37
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume: 107
  start-page: 241
  year: 2018
  end-page: 265
  ident: b1
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech. Syst. Signal Process.
– volume: 377
  start-page: 331
  year: 2016
  end-page: 345
  ident: b5
  article-title: Convolutional neural network based fault detection for rotating machinery
  publication-title: J. Sound Vib.
– reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: ICLR 2015: International Conference on Learning Representations 2015.
– reference: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, u. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5998–6008.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b34
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– reference: M.T. Luong, H. Pham, C.D. Manning, Effective approaches to attention-based neural machine translation, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421.
– reference: V. Mnih, N. Heess, A. Graves, K. Kavukcuoglu, Recurrent models of visual attention, in: Advances in Neural Information Processing Systems 27, Vol. 3, pp. 2204–2212.
– volume: 86
  year: 2020
  ident: b31
  article-title: A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
  publication-title: Appl. Soft Comput.
– volume: 64
  start-page: 2296
  year: 2017
  end-page: 2305
  ident: b12
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
– volume: 30
  year: 2019
  ident: b23
  article-title: Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data
  publication-title: Meas. Sci. Technol.
– volume: 106
  start-page: 85
  year: 2019
  end-page: 93
  ident: b24
  article-title: Generative adversarial networks for data augmentation in machine fault diagnosis
  publication-title: Comput. Ind.
– volume: 9
  year: 2019
  ident: b22
  article-title: SDD-CNN: Small data-driven convolution neural networks for subtle roller defect inspection
  publication-title: Appl. Sci.-Basel
– volume: 305
  start-page: 1
  year: 2018
  end-page: 14
  ident: b19
  article-title: Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis
  publication-title: Neurocomputing
– reference: Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, Hierarchical attention networks for document classification, in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489.
– volume: 166
  year: 2020
  ident: b21
  article-title: Few-shot transfer learning for intelligent fault diagnosis of machine
  publication-title: Measurement
– year: 2015
  ident: b27
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: ICLR 2015 : International Conference on Learning Representations 2015
– volume: 12
  year: 2019
  ident: b30
  article-title: Bearing fault diagnosis based on shallow multi-scale convolutional neural network with attention
  publication-title: Energies
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: b6
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
– volume: 8
  start-page: 1975
  year: 2020
  end-page: 1985
  ident: b18
  article-title: An intelligent deep feature learning method with improved activation functions for machine fault diagnosis
  publication-title: IEEE Access
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b42
  article-title: Learning representations by back propagating errors
  publication-title: Nature
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b35
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 161
  start-page: 136
  year: 2019
  end-page: 154
  ident: b29
  article-title: Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism
  publication-title: Signal Process.
– volume: 65
  start-page: 4290
  year: 2018
  end-page: 4300
  ident: b16
  article-title: Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes
  publication-title: IEEE Trans. Ind. Electron.
– volume: 64
  start-page: 443
  year: 2018
  end-page: 452
  ident: b13
  article-title: An improved bearing fault diagnosis method using one-dimensional CNN and LSTM
  publication-title: Stroj. Vestn. - J. Mech. Eng.
– volume: 9
  year: 2019
  ident: b14
  article-title: A deep learning method for bearing fault diagnosis through stacked residual dilated convolutions
  publication-title: Appl. Sci.
– volume: 7
  start-page: 42373
  year: 2019
  end-page: 42383
  ident: b17
  article-title: A deep learning method for bearing fault diagnosis based on time-frequency image
  publication-title: IEEE Access
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b4
  article-title: Deep learning
  publication-title: Nature
– reference: .
– year: 2020
  ident: b15
  article-title: Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study
  publication-title: ISA Trans.
– volume: 20
  start-page: 8364
  year: 2020
  end-page: 8373
  ident: b11
  article-title: Adaptive channel weighted CNN with multisensor fusion for condition monitoring of helicopter transmission system
  publication-title: IEEE Sensors J.
– volume: 20
  year: 2019
  ident: b32
  article-title: Time series multiple channel convolutional neural network with attention-based long short-term memory for predicting bearing remaining useful life
  publication-title: Sensors (Basel)
– reference: K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio, Show, attend and tell: Neural image caption generation with visual attention, in: Proceedings of the 32nd International Conference on Machine Learning, pp. 2048–2057.
– reference: K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734.
– volume: 110
  start-page: 349
  year: 2018
  end-page: 367
  ident: b25
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mech. Syst. Signal Process.
– volume: 138
  year: 2020
  ident: b3
  article-title: Applications of machine learning to machine fault diagnosis: A review and roadmap
  publication-title: Mech. Syst. Signal Process.
– reference: P. Zhou, W. Shi, J. Tian, Z.Y. Qi, B.C. Li, H.W. Hao, B. Xu, Attention-based bidirectional long short-term memory networks for relation classification, in: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Acl 2016), Vol. 2, pp. 207–212.
– volume: 29
  start-page: 333
  year: 2015
  end-page: 351
  ident: b20
  article-title: Identifying maximum imbalance in datasets for fault diagnosis of gearboxes
  publication-title: J. Intell. Manuf.
– volume: 7
  start-page: 152552
  year: 2019
  end-page: 152563
  ident: b9
  article-title: A new deep fusion network for automatic mechanical fault feature learning
  publication-title: IEEE Access
– volume: 15
  start-page: 6415
  year: 2019
  end-page: 6424
  ident: b10
  article-title: A deep coupled network for health state assessment of cutting tools based on fusion of multisensory signals
  publication-title: IEEE Trans. Ind. Inform.
– volume: 20
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b32
  article-title: Time series multiple channel convolutional neural network with attention-based long short-term memory for predicting bearing remaining useful life
  publication-title: Sensors (Basel)
  doi: 10.3390/s20010166
– volume: 110
  start-page: 349
  year: 2018
  ident: 10.1016/j.asoc.2020.106829_b25
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.03.025
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.asoc.2020.106829_b34
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.asoc.2020.106829_b35
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b6
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 161
  start-page: 136
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b29
  article-title: Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.03.019
– ident: 10.1016/j.asoc.2020.106829_b39
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.asoc.2020.106829_b42
  article-title: Learning representations by back propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 10.1016/j.asoc.2020.106829_b36
  doi: 10.3115/v1/D14-1179
– volume: 7
  start-page: 42373
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b17
  article-title: A deep learning method for bearing fault diagnosis based on time-frequency image
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907131
– volume: 8
  start-page: 1975
  year: 2020
  ident: 10.1016/j.asoc.2020.106829_b18
  article-title: An intelligent deep feature learning method with improved activation functions for machine fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962734
– volume: 66
  start-page: 2143
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b2
  article-title: Enhanced sparse period-group lasso for bearing fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2838070
– ident: 10.1016/j.asoc.2020.106829_b33
  doi: 10.18653/v1/P16-2034
– volume: 19
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b8
  article-title: Bearing fault diagnosis with a feature fusion method based on an ensemble convolutional neural network and deep neural network
  publication-title: Sensors (Basel)
  doi: 10.3390/s19092034
– volume: 29
  start-page: 333
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2020.106829_b20
  article-title: Identifying maximum imbalance in datasets for fault diagnosis of gearboxes
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1110-0
– volume: 64
  start-page: 2296
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2020.106829_b12
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2627020
– volume: 335
  start-page: 327
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b7
  article-title: A survey on deep learning based bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.078
– volume: 15
  start-page: 6415
  issue: 12
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b10
  article-title: A deep coupled network for health state assessment of cutting tools based on fusion of multisensory signals
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2912428
– volume: 377
  start-page: 331
  year: 2016
  ident: 10.1016/j.asoc.2020.106829_b5
  article-title: Convolutional neural network based fault detection for rotating machinery
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.05.027
– volume: 138
  year: 2020
  ident: 10.1016/j.asoc.2020.106829_b3
  article-title: Applications of machine learning to machine fault diagnosis: A review and roadmap
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106587
– volume: 7
  start-page: 152552
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b9
  article-title: A new deep fusion network for automatic mechanical fault feature learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948661
– year: 2015
  ident: 10.1016/j.asoc.2020.106829_b27
  article-title: Neural machine translation by jointly learning to align and translate
– year: 2020
  ident: 10.1016/j.asoc.2020.106829_b15
  article-title: Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.08.010
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.asoc.2020.106829_b4
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 30
  issue: 11
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b23
  article-title: Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab3072
– ident: 10.1016/j.asoc.2020.106829_b38
– ident: 10.1016/j.asoc.2020.106829_b40
  doi: 10.18653/v1/D15-1166
– volume: 12
  issue: 20
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b30
  article-title: Bearing fault diagnosis based on shallow multi-scale convolutional neural network with attention
  publication-title: Energies
  doi: 10.3390/en12203937
– volume: 65
  start-page: 4290
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2020.106829_b16
  article-title: Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2762639
– volume: 86
  year: 2020
  ident: 10.1016/j.asoc.2020.106829_b31
  article-title: A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105919
– year: 2014
  ident: 10.1016/j.asoc.2020.106829_b37
– ident: 10.1016/j.asoc.2020.106829_b41
  doi: 10.18653/v1/N16-1174
– volume: 64
  start-page: 443
  issue: 7–8
  year: 2018
  ident: 10.1016/j.asoc.2020.106829_b13
  article-title: An improved bearing fault diagnosis method using one-dimensional CNN and LSTM
  publication-title: Stroj. Vestn. - J. Mech. Eng.
– volume: 305
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106829_b19
  article-title: Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.048
– ident: 10.1016/j.asoc.2020.106829_b28
– volume: 107
  start-page: 241
  year: 2018
  ident: 10.1016/j.asoc.2020.106829_b1
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.11.024
– volume: 20
  start-page: 8364
  issue: 15
  year: 2020
  ident: 10.1016/j.asoc.2020.106829_b11
  article-title: Adaptive channel weighted CNN with multisensor fusion for condition monitoring of helicopter transmission system
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2020.2980596
– volume: 166
  year: 2020
  ident: 10.1016/j.asoc.2020.106829_b21
  article-title: Few-shot transfer learning for intelligent fault diagnosis of machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108202
– volume: 9
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b14
  article-title: A deep learning method for bearing fault diagnosis through stacked residual dilated convolutions
  publication-title: Appl. Sci.
  doi: 10.3390/app9091823
– volume: 106
  start-page: 85
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b24
  article-title: Generative adversarial networks for data augmentation in machine fault diagnosis
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.01.001
– ident: 10.1016/j.asoc.2020.106829_b26
– ident: 10.1016/j.asoc.2020.106829_b43
– volume: 9
  issue: 7
  year: 2019
  ident: 10.1016/j.asoc.2020.106829_b22
  article-title: SDD-CNN: Small data-driven convolution neural networks for subtle roller defect inspection
  publication-title: Appl. Sci.-Basel
SSID ssj0016928
Score 2.607527
Snippet Condition monitoring and fault diagnosis of bearings play important roles in production safety and limiting the cost of maintenance on a reasonable level....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106829
SubjectTerms Attention mechanism
Bearing fault diagnosis
Interpretability
Title Interpreting network knowledge with attention mechanism for bearing fault diagnosis
URI https://dx.doi.org/10.1016/j.asoc.2020.106829
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhXbr0XZo-goZuxY38lDSG0JC-QmkayGYkWwaXxA1Nsva3986yTQslQydhoQP743wP8d0dIdecJWDjssjRWSidQCjlaKaFY7IEvKfvcR5icfLzOBpNg4dZOGuRQV0Lg7TKyvZbm15a62qnV6HZW-Z5bwKZhwhkEHmopxD3YgV7wFHLb78amocbyXK-Kh528HRVOGM5XgoQgBzRw41IlGHmH87ph8MZHpC9KlKkffsyh6RliiOyX09hoNVPeUwmDW8QvBAtLK2bNndlFG9aKXbRLHmNdGGw1jdfLSiEq1SDoqNYpjbzNU0t7y5fnZDp8O5tMHKqUQlO4jO2dpRrmPaxSha-TBvuKaF5GgiwRzxNpWFeFmY6CqUvGIR0GtK-UHmBSCXHyljpn5J28VGYM0JD7hthIqF0VnZzl5CRuSqBhWmWKNMhbo1RnFR9xHGcxTyuCWPvMeIaI66xxbVDbhqZpe2isfV0WEMf_9KFGMz8Frnzf8pdkF18siSVS9Jef27MFYQaa90tdalLdvqD16cXXO8fR-NvsCLT6w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHtpL36X2uYfeSnBNssnmKFLR-rio4C3sJhuwqJWq_78zyUZaKB56Cmx2IPmYzGPzzQzAS8gTtHFZ4OhMRI4vlXI019IxWYLe03PDUFBx8nAUdKf--0zMKtAua2GIVmltf2HTc2ttVxoWzcZ6Pm-MMfOQfuQHLukpxr1HUKPuVKIKtVav3x3tfyYEUT5ilfY7JGBrZwqal0IQME10aSGQeaT5h3_64XM653Bqg0XWKp7nAipmdQln5SAGZr_LKxjvqYPoiNiqYHaz_XEZo8NWRo00c2ojWxoq951vlgwjVqZR10ksU7vFlqUF9W6-uYZp523S7jp2WoKTeJxvHdU0XHtUKItvpk3oKqnD1JdoksI0jQx3M5HpQESe5BjVacz8hHJ9mUYhFcdG3g1UV58rcwtMhJ6RJpBKZ3lD9wiTsqZK8MI1T5SpQ7PEKE5sK3GaaLGIS87YR0y4xoRrXOBah9e9zLpopHFwtyihj3-pQ4yW_oDc3T_lnuG4OxkO4kFv1L-HE7pTcFYeoLr92plHjDy2-slq1jdfPtUH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+network+knowledge+with+attention+mechanism+for+bearing+fault+diagnosis&rft.jtitle=Applied+soft+computing&rft.au=Yang%2C+Zhi-bo&rft.au=Zhang%2C+Jun-peng&rft.au=Zhao%2C+Zhi-bin&rft.au=Zhai%2C+Zhi&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=97&rft_id=info:doi/10.1016%2Fj.asoc.2020.106829&rft.externalDocID=S1568494620307675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon