Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
Feature selection (FS) is an important preprocessing technique for dimensionality reduction in classification problems. Particle swarm optimization (PSO) algorithms have been widely used as the optimizers for FS problems. However, with the increase of data dimensionality, the search space expands dr...
Saved in:
Published in | Applied soft computing Vol. 106; p. 107302 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Feature selection (FS) is an important preprocessing technique for dimensionality reduction in classification problems. Particle swarm optimization (PSO) algorithms have been widely used as the optimizers for FS problems. However, with the increase of data dimensionality, the search space expands dramatically, which proposes significant challenges for optimization methods, including PSO. In this paper, we propose an improved sticky binary PSO (ISBPSO) algorithm for FS. ISBPSO adopts three new mechanisms based on a recently proposed binary PSO variant, sticky binary particle swarm optimization (SBPSO), to improve the evolutionary performance. First, a new initialization strategy using the feature weighting information based on mutual information is proposed. Second, a dynamic bits masking strategy for gradually reducing the search space during the evolutionary process is proposed. Third, based on the framework of memetic algorithms, a refinement procedure conducting genetic operations on the personal best positions of ISBPSO is used to alleviate the premature convergence problem. The results on 12 UCI datasets show that ISBPSO outperforms six benchmark PSO-based FS methods and two conventional FS methods (sequential forward selection and sequential backward selection) — ISBPSO obtains either higher or similar accuracies with fewer features in most cases. Moreover, ISBPSO substantially reduces the computation time compared with benchmark PSO-based FS methods. Further analysis shows that all the three proposed mechanisms are effective for improving the search performance of ISBPSO.
•An improved binary PSO algorithm is proposed for feature selection.•A new initialization strategy using the feature weighting results is proposed.•A bits masking strategy for dynamically reducing the search space is proposed.•The genetic operations are adopted to alleviate the premature convergence problem.•The proposed algorithm is effective and efficient for feature selection. |
---|---|
AbstractList | Feature selection (FS) is an important preprocessing technique for dimensionality reduction in classification problems. Particle swarm optimization (PSO) algorithms have been widely used as the optimizers for FS problems. However, with the increase of data dimensionality, the search space expands dramatically, which proposes significant challenges for optimization methods, including PSO. In this paper, we propose an improved sticky binary PSO (ISBPSO) algorithm for FS. ISBPSO adopts three new mechanisms based on a recently proposed binary PSO variant, sticky binary particle swarm optimization (SBPSO), to improve the evolutionary performance. First, a new initialization strategy using the feature weighting information based on mutual information is proposed. Second, a dynamic bits masking strategy for gradually reducing the search space during the evolutionary process is proposed. Third, based on the framework of memetic algorithms, a refinement procedure conducting genetic operations on the personal best positions of ISBPSO is used to alleviate the premature convergence problem. The results on 12 UCI datasets show that ISBPSO outperforms six benchmark PSO-based FS methods and two conventional FS methods (sequential forward selection and sequential backward selection) — ISBPSO obtains either higher or similar accuracies with fewer features in most cases. Moreover, ISBPSO substantially reduces the computation time compared with benchmark PSO-based FS methods. Further analysis shows that all the three proposed mechanisms are effective for improving the search performance of ISBPSO.
•An improved binary PSO algorithm is proposed for feature selection.•A new initialization strategy using the feature weighting results is proposed.•A bits masking strategy for dynamically reducing the search space is proposed.•The genetic operations are adopted to alleviate the premature convergence problem.•The proposed algorithm is effective and efficient for feature selection. |
ArticleNumber | 107302 |
Author | Xue, Bing Zhang, Mengjie Li, An-Da |
Author_xml | – sequence: 1 givenname: An-Da orcidid: 0000-0002-2111-8724 surname: Li fullname: Li, An-Da email: adli@tjcu.edu.cn organization: School of Management, Tianjin University of Commerce, Tianjin 300134, China – sequence: 2 givenname: Bing surname: Xue fullname: Xue, Bing organization: Evolutionary Computation Research Group, Victoria University of Wellington, Wellington 6140, New Zealand – sequence: 3 givenname: Mengjie orcidid: 0000-0003-4463-9538 surname: Zhang fullname: Zhang, Mengjie organization: Evolutionary Computation Research Group, Victoria University of Wellington, Wellington 6140, New Zealand |
BookMark | eNp9kMlOAzEMQCNUJNrCD3DKD0xJZs1IXFDFUqkSFzhHmcRDXc2mJG0FF36dtAMXDj3Zsv0s-83IpOs7IOSWswVnPL_bLpTr9SJmMQ-FImHxBZlyUcRRmQs-CXmWiygt0_yKzJzbsgCVsZiS71U72H4PhlbYKftJB2U96gaoOyjb0n7w2OKX8th3tO4trUH5nQ1taECfqgf0G9rBgWKHHlXzN606E6aU1RvqBqWBWjC7EXHeKg8fCO6aXNaqcXDzG-fk_enxbfkSrV-fV8uHdaQTxnykeJoZBbyqMg5JyRMOimfARFoJLTgzGWSmLFmWFiBAiDRPTF1Wuk6SotRMJXMixr3a9s5ZqKVGf7oznIKN5EweRcqtPIqUR5FyFBnQ-B86WGyDq_PQ_QhBeGqPYKXTCJ0GgzZ4k6bHc_gPUZmSrg |
CitedBy_id | crossref_primary_10_1016_j_engappai_2022_105556 crossref_primary_10_1007_s11042_023_15467_x crossref_primary_10_3390_electronics11193044 crossref_primary_10_3390_fi14060178 crossref_primary_10_1109_ACCESS_2023_3298955 crossref_primary_10_1007_s13042_024_02098_3 crossref_primary_10_1007_s00477_023_02556_4 crossref_primary_10_3390_ai3020024 crossref_primary_10_1016_j_inffus_2023_02_016 crossref_primary_10_1016_j_asoc_2021_107956 crossref_primary_10_1007_s00521_023_08772_x crossref_primary_10_1109_ACCESS_2022_3143802 crossref_primary_10_1080_0952813X_2023_2183267 crossref_primary_10_3390_biomimetics9100586 crossref_primary_10_1016_j_ins_2024_121188 crossref_primary_10_1016_j_asoc_2023_109987 crossref_primary_10_1016_j_knosys_2024_112699 crossref_primary_10_1038_s41598_024_76010_y crossref_primary_10_1016_j_eswa_2023_123069 crossref_primary_10_1016_j_asoc_2022_109166 crossref_primary_10_1049_cit2_12122 crossref_primary_10_1109_TGRS_2023_3305545 crossref_primary_10_1371_journal_pone_0295579 crossref_primary_10_1016_j_knosys_2023_110635 crossref_primary_10_1016_j_cie_2022_108617 crossref_primary_10_3390_ma16041662 crossref_primary_10_1016_j_cor_2025_107009 crossref_primary_10_3390_math10111929 crossref_primary_10_3390_s24247879 crossref_primary_10_1007_s13748_023_00306_9 crossref_primary_10_1016_j_knosys_2024_111578 crossref_primary_10_1016_j_ins_2023_119062 crossref_primary_10_1109_ACCESS_2022_3162074 crossref_primary_10_1007_s42044_024_00174_z crossref_primary_10_3390_s22134926 crossref_primary_10_3390_app122111296 crossref_primary_10_3390_biomimetics8060457 crossref_primary_10_1007_s13042_023_01788_8 crossref_primary_10_1007_s40747_021_00636_y crossref_primary_10_1002_int_23074 crossref_primary_10_1016_j_asoc_2024_112156 crossref_primary_10_1016_j_knosys_2022_109874 crossref_primary_10_1007_s10489_022_03465_9 crossref_primary_10_1007_s41060_024_00712_9 crossref_primary_10_1016_j_asoc_2023_110983 crossref_primary_10_1007_s11440_022_01779_z crossref_primary_10_1016_j_asoc_2024_111978 crossref_primary_10_1007_s12065_023_00819_1 crossref_primary_10_1016_j_knosys_2024_112550 crossref_primary_10_3390_app12189378 crossref_primary_10_1007_s00500_023_08530_0 crossref_primary_10_1016_j_cmpb_2023_107987 crossref_primary_10_1016_j_asoc_2023_110240 crossref_primary_10_1109_TNSM_2022_3162885 crossref_primary_10_1007_s10489_023_05179_y crossref_primary_10_1109_ACCESS_2024_3519180 crossref_primary_10_1016_j_ins_2021_12_086 crossref_primary_10_1007_s11042_024_20221_y crossref_primary_10_1109_JIOT_2023_3317089 crossref_primary_10_1016_j_asoc_2021_108322 crossref_primary_10_1007_s10489_021_02776_7 crossref_primary_10_3390_sym15020316 crossref_primary_10_1016_j_jksuci_2023_101757 crossref_primary_10_1109_TCYB_2021_3108977 crossref_primary_10_37391_ijeer_100432 crossref_primary_10_1007_s10462_024_10954_5 crossref_primary_10_1016_j_bspc_2022_103707 crossref_primary_10_1016_j_swevo_2024_101661 crossref_primary_10_1016_j_ejor_2024_12_036 crossref_primary_10_1109_TEVC_2022_3175226 crossref_primary_10_1145_3653025 crossref_primary_10_1016_j_ijar_2024_109181 crossref_primary_10_1109_TCSS_2023_3325263 crossref_primary_10_3389_fneur_2024_1321923 crossref_primary_10_1016_j_eswa_2022_117238 crossref_primary_10_32604_cmc_2024_048929 crossref_primary_10_1016_j_ifacol_2022_05_040 crossref_primary_10_1162_evco_a_00339 crossref_primary_10_3390_sym14071293 crossref_primary_10_1016_j_swevo_2024_101533 crossref_primary_10_1016_j_asoc_2024_111948 crossref_primary_10_1007_s42235_023_00400_7 crossref_primary_10_1016_j_asoc_2024_111708 crossref_primary_10_1109_ACCESS_2022_3218691 crossref_primary_10_1016_j_asoc_2021_107855 crossref_primary_10_1155_2022_1825341 crossref_primary_10_1016_j_eswa_2023_122390 crossref_primary_10_1016_j_asoc_2021_107978 crossref_primary_10_1016_j_engappai_2023_106156 crossref_primary_10_3390_math10152627 crossref_primary_10_1016_j_ijdrr_2022_103259 crossref_primary_10_1109_ACCESS_2022_3211263 crossref_primary_10_1021_acsomega_2c06324 crossref_primary_10_1002_cpe_70000 crossref_primary_10_1007_s13042_024_02107_5 crossref_primary_10_1016_j_eswa_2024_124919 crossref_primary_10_3390_a14110324 crossref_primary_10_1007_s00500_024_09814_9 crossref_primary_10_1364_OE_470642 crossref_primary_10_1002_int_22979 crossref_primary_10_1007_s10586_024_04879_5 crossref_primary_10_1142_S012906572450014X |
Cites_doi | 10.1016/j.neucom.2012.09.049 10.1109/TCYB.2015.2444435 10.1007/BF00153759 10.1109/TPAMI.2005.159 10.1016/j.asoc.2013.09.018 10.1016/j.patcog.2015.03.020 10.1109/TEVC.2011.2166158 10.1016/j.knosys.2017.10.028 10.1109/TPWRS.2010.2042472 10.1016/j.swevo.2012.09.002 10.1016/j.ins.2019.08.040 10.1109/ICNN.1995.488968 10.1109/TCYB.2017.2714145 10.1109/CEC.2012.6256452 10.1109/MCI.2010.936309 10.1109/TEVC.2015.2503422 10.1016/j.knosys.2016.10.030 10.1016/j.asoc.2015.07.023 10.1023/A:1025667309714 10.1016/j.swevo.2017.04.002 10.1016/j.patrec.2014.10.007 10.1016/j.asoc.2017.09.038 10.1109/4235.996017 10.1109/TEVC.2018.2869405 10.1145/1656274.1656278 10.1016/j.asoc.2007.10.007 10.1002/j.1538-7305.1948.tb01338.x 10.1016/j.eswa.2019.03.039 10.1016/j.asoc.2016.01.044 10.1109/TSMCB.2012.2237394 10.1109/TEVC.2005.857610 10.1109/TCYB.2016.2549639 10.1016/j.ejor.2018.10.051 10.1016/j.knosys.2019.04.011 10.1109/TPAMI.2004.105 10.1109/TCYB.2015.2404806 10.1016/j.knosys.2014.03.015 10.1016/j.knosys.2018.09.004 10.1016/j.ins.2020.03.032 10.1109/TCYB.2016.2609408 10.1016/S0004-3702(97)00043-X 10.1007/s00500-016-2128-8 10.1109/ICSMC.1997.637339 10.1007/s00500-016-2385-6 10.1109/TSMCB.2012.2227469 10.1016/j.cie.2020.106852 10.1109/TEVC.2015.2504420 10.1016/j.asoc.2018.11.001 10.1109/TCYB.2014.2322602 10.1016/j.eswa.2018.07.013 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107302 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107302 S1568494621002258 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-a145dae1bb51e39131ea15e084b8c810d5e5d990547e8e88463df9bcf3379c0a3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:12:03 EDT 2025 Tue Jul 01 01:50:09 EDT 2025 Fri Feb 23 02:41:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Initialization Feature selection Particle swarm optimization Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-a145dae1bb51e39131ea15e084b8c810d5e5d990547e8e88463df9bcf3379c0a3 |
ORCID | 0000-0002-2111-8724 0000-0003-4463-9538 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107302 crossref_primary_10_1016_j_asoc_2021_107302 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107302 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Xue, Zhang (b34) 2020; 523 Tabakhi, Moradi (b17) 2015; 48 Tran, Xue, Zhang (b42) 2018; 48 Gu, Cheng, Jin (b39) 2018; 22 Martin, Hirschberg (b57) 1995 Zhang, wei Gong, zhi Gao, Tian, yan Sun (b36) 2020; 507 Shunmugapriya, Kanmani (b37) 2017; 36 Kundu, Mitra (b2) 2017; 47 M.A. Khanesar, M. Teshnehlab, M.A. Shoorehdeli, A novel binary particle swarm optimization, in: 2007 Mediterranean Conference on Control Automation, 2007, pp. 1–6. Deb, Agrawal, Pratap, Meyarivan (b56) 2002; 6 Zhang, Huang, Zhou (b9) 2019; 181 Xue, Zhang, Browne (b53) 2012 U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings of the 13th International Joint Conference on Artificial Intelligence. ChambÉRy, France, August 28 - September 3, 1993, 1993, pp. 1022–1029. Jain, Jain, Jain (b51) 2018; 62 Yu, Liu (b5) 2004; 5 Chen, Zhou, Yuan (b27) 2019; 128 Xue, Zhang, Browne, Yao (b4) 2016; 20 Zhu, Liang, Chen, Ming (b33) 2017; 116 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (b61) 2009; 11 Gibbons, Chakraborti (b62) 2011 Tran, Xue, Zhang (b41) 2018; 23 Nguyen, Xue, Liu, Andreae, Zhang (b46) 2016; 20 Peng, Long, Ding (b7) 2005; 27 Oh, Lee, Moon (b13) 2004; 26 J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, 1997, pp. 4104–4108. Liang, Qin, Suganthan, Baskar (b40) 2006; 10 Xue, Zhang, Browne (b45) 2013; 43 Xue, Zhang, Browne (b21) 2014; 18 L. Cervante, B. Xue, M. Zhang, L. Shang, Binary particle swarm optimisation for feature selection: A filter based approach, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2012), 2012, pp. 1–8. Hancer, Xue, Karaboga, Zhang (b18) 2015; 36 Xue, Nguyen, Zhang (b23) 2014 Zhang, Gong, Hu, Zhang (b43) 2015; 148 Mafarja, Jarrar, Ahmad, Abusnaina (b49) 2018 Liu, Mei, Li (b58) 2016; 20 Moradi, Gholampour (b50) 2016; 43 Banka, Dara (b25) 2015; 52 Huang, Dun (b48) 2008; 8 Li, He, Wang, Zhang (b3) 2019; 274 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948. Dheeru, Karra Taniskidou (b28) 2017 Kohavi, John (b12) 1997; 97 Zhang, Wang, Phillips, Ji (b22) 2014; 64 Ong, Lim, Chen (b55) 2010; 5 Yan, Jia (b8) 2019; 163 Aha, Kibler, Albert (b60) 1991; 6 Nag, Pal (b35) 2016; 46 Karakaya, Galelli, Ahipasaoglu, Taormina (b6) 2016; 46 Mistry, Zhang, Neoh, Lim, Fielding (b26) 2017; 47 Cheng, Jin (b38) 2015; 45 Shannon (b29) 1948; 27 J. Kennedy, Bare bones particle swarms, in: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706), 2003, pp. 80–87. Amoozegar, Minaei-Bidgoli (b47) 2018; 113 Tao, Huiling, Wenwen, Xia (b32) 2019; 75 Jeong, Park, Jang, Lee (b59) 2010; 25 Robnik-Šikonja, Kononenko (b10) 2003; 53 Mirjalili, Lewis (b54) 2013; 9 Hancer, Xue, Zhang (b16) 2018; 140 Neshatian, Zhang, Andreae (b15) 2012; 16 Nguyen, Xue, Andreae (b24) 2017 Guyon, Elisseeff (b1) 2003; 3 Freeman, Kulić, Basir (b31) 2013; 43 Li, He (b11) 2020; 149 Shunmugapriya (10.1016/j.asoc.2021.107302_b37) 2017; 36 Deb (10.1016/j.asoc.2021.107302_b56) 2002; 6 10.1016/j.asoc.2021.107302_b52 Mirjalili (10.1016/j.asoc.2021.107302_b54) 2013; 9 Tao (10.1016/j.asoc.2021.107302_b32) 2019; 75 Hancer (10.1016/j.asoc.2021.107302_b18) 2015; 36 Mistry (10.1016/j.asoc.2021.107302_b26) 2017; 47 10.1016/j.asoc.2021.107302_b14 Xue (10.1016/j.asoc.2021.107302_b53) 2012 10.1016/j.asoc.2021.107302_b19 Shannon (10.1016/j.asoc.2021.107302_b29) 1948; 27 Nguyen (10.1016/j.asoc.2021.107302_b46) 2016; 20 Hall (10.1016/j.asoc.2021.107302_b61) 2009; 11 Tabakhi (10.1016/j.asoc.2021.107302_b17) 2015; 48 Tran (10.1016/j.asoc.2021.107302_b42) 2018; 48 Ong (10.1016/j.asoc.2021.107302_b55) 2010; 5 Chen (10.1016/j.asoc.2021.107302_b27) 2019; 128 Dheeru (10.1016/j.asoc.2021.107302_b28) 2017 Li (10.1016/j.asoc.2021.107302_b11) 2020; 149 Liang (10.1016/j.asoc.2021.107302_b40) 2006; 10 Hancer (10.1016/j.asoc.2021.107302_b16) 2018; 140 Li (10.1016/j.asoc.2021.107302_b34) 2020; 523 10.1016/j.asoc.2021.107302_b20 Zhang (10.1016/j.asoc.2021.107302_b22) 2014; 64 Robnik-Šikonja (10.1016/j.asoc.2021.107302_b10) 2003; 53 Zhu (10.1016/j.asoc.2021.107302_b33) 2017; 116 Xue (10.1016/j.asoc.2021.107302_b4) 2016; 20 Aha (10.1016/j.asoc.2021.107302_b60) 1991; 6 Banka (10.1016/j.asoc.2021.107302_b25) 2015; 52 Yan (10.1016/j.asoc.2021.107302_b8) 2019; 163 Mafarja (10.1016/j.asoc.2021.107302_b49) 2018 Oh (10.1016/j.asoc.2021.107302_b13) 2004; 26 Zhang (10.1016/j.asoc.2021.107302_b36) 2020; 507 Peng (10.1016/j.asoc.2021.107302_b7) 2005; 27 Jeong (10.1016/j.asoc.2021.107302_b59) 2010; 25 Zhang (10.1016/j.asoc.2021.107302_b9) 2019; 181 Gibbons (10.1016/j.asoc.2021.107302_b62) 2011 Nguyen (10.1016/j.asoc.2021.107302_b24) 2017 10.1016/j.asoc.2021.107302_b30 Jain (10.1016/j.asoc.2021.107302_b51) 2018; 62 Gu (10.1016/j.asoc.2021.107302_b39) 2018; 22 Huang (10.1016/j.asoc.2021.107302_b48) 2008; 8 Cheng (10.1016/j.asoc.2021.107302_b38) 2015; 45 Martin (10.1016/j.asoc.2021.107302_b57) 1995 Karakaya (10.1016/j.asoc.2021.107302_b6) 2016; 46 Li (10.1016/j.asoc.2021.107302_b3) 2019; 274 Nag (10.1016/j.asoc.2021.107302_b35) 2016; 46 10.1016/j.asoc.2021.107302_b44 Kundu (10.1016/j.asoc.2021.107302_b2) 2017; 47 Xue (10.1016/j.asoc.2021.107302_b23) 2014 Amoozegar (10.1016/j.asoc.2021.107302_b47) 2018; 113 Moradi (10.1016/j.asoc.2021.107302_b50) 2016; 43 Zhang (10.1016/j.asoc.2021.107302_b43) 2015; 148 Yu (10.1016/j.asoc.2021.107302_b5) 2004; 5 Guyon (10.1016/j.asoc.2021.107302_b1) 2003; 3 Neshatian (10.1016/j.asoc.2021.107302_b15) 2012; 16 Tran (10.1016/j.asoc.2021.107302_b41) 2018; 23 Xue (10.1016/j.asoc.2021.107302_b45) 2013; 43 Xue (10.1016/j.asoc.2021.107302_b21) 2014; 18 Liu (10.1016/j.asoc.2021.107302_b58) 2016; 20 Kohavi (10.1016/j.asoc.2021.107302_b12) 1997; 97 Freeman (10.1016/j.asoc.2021.107302_b31) 2013; 43 |
References_xml | – year: 1995 ident: b57 article-title: The Time Complexity of Decision Tree Induction – reference: M.A. Khanesar, M. Teshnehlab, M.A. Shoorehdeli, A novel binary particle swarm optimization, in: 2007 Mediterranean Conference on Control Automation, 2007, pp. 1–6. – volume: 8 start-page: 1381 year: 2008 end-page: 1391 ident: b48 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl. Soft Comput. – volume: 22 start-page: 811 year: 2018 end-page: 822 ident: b39 article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer publication-title: Soft Comput. – reference: J. Kennedy, Bare bones particle swarms, in: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706), 2003, pp. 80–87. – volume: 46 start-page: 1424 year: 2016 end-page: 1437 ident: b6 article-title: Identifying (quasi) equally informative subsets in feature selection problems for classification: A max-relevance min-redundancy approach publication-title: IEEE Trans. Cybern. – volume: 62 start-page: 203 year: 2018 end-page: 215 ident: b51 article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification publication-title: Appl. Soft Comput. – volume: 45 start-page: 191 year: 2015 end-page: 204 ident: b38 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Trans. Cybern. – volume: 20 start-page: 606 year: 2016 end-page: 626 ident: b4 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput. – volume: 274 start-page: 978 year: 2019 end-page: 989 ident: b3 article-title: Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method publication-title: European J. Oper. Res. – reference: J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, 1997, pp. 4104–4108. – volume: 52 start-page: 94 year: 2015 end-page: 100 ident: b25 article-title: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation publication-title: Pattern Recognit. Lett. – volume: 128 start-page: 140 year: 2019 end-page: 156 ident: b27 article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection publication-title: Expert Syst. Appl. – volume: 36 start-page: 27 year: 2017 end-page: 36 ident: b37 article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC hybrid) publication-title: Swarm Evol. Comput. – volume: 46 start-page: 499 year: 2016 end-page: 510 ident: b35 article-title: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification publication-title: IEEE Trans. Cybern. – volume: 26 start-page: 1424 year: 2004 end-page: 1437 ident: b13 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 501 year: 2014 end-page: 513 ident: b23 article-title: A new binary particle swarm optimisation algorithm for feature selection publication-title: Applications of Evolutionary Computation – volume: 48 start-page: 1733 year: 2018 end-page: 1746 ident: b42 article-title: A new representation in PSO for discretization-based feature selection publication-title: IEEE Trans. Cybern. – volume: 140 start-page: 103 year: 2018 end-page: 119 ident: b16 article-title: Differential evolution for filter feature selection based on information theory and feature ranking publication-title: Knowl.-Based Syst. – start-page: 81 year: 2012 end-page: 88 ident: b53 article-title: Multi-objective particle swarm optimisation (PSO) for feature selection publication-title: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO ’12 – volume: 64 start-page: 22 year: 2014 end-page: 31 ident: b22 article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection publication-title: Knowl.-Based Syst. – volume: 36 start-page: 334 year: 2015 end-page: 348 ident: b18 article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection publication-title: Appl. Soft Comput. – volume: 5 start-page: 1205 year: 2004 end-page: 1224 ident: b5 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: b12 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence – volume: 25 start-page: 1486 year: 2010 end-page: 1495 ident: b59 article-title: A new quantum-inspired binary PSO: Application to unit commitment problems for power systems publication-title: IEEE Trans. Power Syst. – year: 2017 ident: b28 article-title: UCI Machine Learning Repository – volume: 43 start-page: 1656 year: 2013 end-page: 1671 ident: b45 article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach publication-title: IEEE Trans. Cybern. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b56 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – reference: L. Cervante, B. Xue, M. Zhang, L. Shang, Binary particle swarm optimisation for feature selection: A filter based approach, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2012), 2012, pp. 1–8. – volume: 5 start-page: 24 year: 2010 end-page: 31 ident: b55 article-title: Memetic computation—Past, present future [Research Frontier] publication-title: IEEE Comput. Intell. Mag. – volume: 523 start-page: 245 year: 2020 end-page: 265 ident: b34 article-title: Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection publication-title: Inform. Sci. – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948. – volume: 18 start-page: 261 year: 2014 end-page: 276 ident: b21 article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b7 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 6 start-page: 37 year: 1991 end-page: 66 ident: b60 article-title: Instance-based learning algorithms publication-title: Mach. Learn. – volume: 43 start-page: 1990 year: 2013 end-page: 2004 ident: b31 article-title: Feature-selected tree-based classification publication-title: IEEE Trans. Cybern. – volume: 75 start-page: 323 year: 2019 end-page: 332 ident: b32 article-title: GA-SVM based feature selection and parameter optimization in hospitalization expense modeling publication-title: Appl. Soft Comput. – volume: 507 start-page: 67 year: 2020 end-page: 85 ident: b36 article-title: Binary differential evolution with self-learning for multi-objective feature selection publication-title: Inform. Sci. – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: b40 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. – volume: 113 start-page: 499 year: 2018 end-page: 514 ident: b47 article-title: Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism publication-title: Expert Syst. Appl. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: b1 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 473 year: 2018 end-page: 487 ident: b41 article-title: Variable-length particle swarm optimisation for feature selection on high-dimensional classification publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2018 end-page: 9 ident: b49 article-title: Feature selection using binary particle swarm optimization with time varying inertia weight strategies publication-title: Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, Amman, Jordan, June 26-27, 2018 – start-page: 977 year: 2011 end-page: 979 ident: b62 article-title: Nonparametric statistical inference publication-title: International Encyclopedia of Statistical Science – volume: 16 start-page: 645 year: 2012 end-page: 661 ident: b15 article-title: A filter approach to multiple feature construction for symbolic learning classifiers using genetic programming publication-title: IEEE Trans. Evol. Comput. – volume: 43 start-page: 117 year: 2016 end-page: 130 ident: b50 article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy publication-title: Appl. Soft Comput. – volume: 20 start-page: 3927 year: 2016 end-page: 3946 ident: b46 article-title: New mechanism for archive maintenance in PSO-based multi-objective feature selection publication-title: Soft Comput. – volume: 149 year: 2020 ident: b11 article-title: Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm publication-title: Comput. Ind. Eng. – volume: 53 start-page: 23 year: 2003 end-page: 69 ident: b10 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Mach. Learn. – volume: 181 year: 2019 ident: b9 article-title: Logistic local hyperplane-relief: A feature weighting method for classification publication-title: Knowl.-Based Syst. – volume: 47 start-page: 1496 year: 2017 end-page: 1509 ident: b26 article-title: A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition publication-title: IEEE Trans. Cybern. – volume: 27 start-page: 379 year: 1948 end-page: 423 ident: b29 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. – reference: U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings of the 13th International Joint Conference on Artificial Intelligence. ChambÉRy, France, August 28 - September 3, 1993, 1993, pp. 1022–1029. – volume: 148 start-page: 150 year: 2015 end-page: 157 ident: b43 article-title: Feature selection algorithm based on bare bones particle swarm optimization publication-title: Neurocomputing – volume: 163 start-page: 450 year: 2019 end-page: 471 ident: b8 article-title: Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection publication-title: Knowl.-Based Syst. – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: b61 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor. Newsl. – volume: 48 start-page: 2798 year: 2015 end-page: 2811 ident: b17 article-title: Relevance–redundancy feature selection based on ant colony optimization publication-title: Pattern Recognit. – volume: 47 start-page: 4356 year: 2017 end-page: 4366 ident: b2 article-title: Feature selection through message passing publication-title: IEEE Trans. Cybern. – volume: 20 start-page: 666 year: 2016 end-page: 681 ident: b58 article-title: An analysis of the inertia weight parameter for binary particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 319 year: 2017 end-page: 332 ident: b24 article-title: A novel binary particle swarm optimization algorithm and its applications on knapsack and feature selection problems publication-title: Intelligent and Evolutionary Systems – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: b54 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. – volume: 116 start-page: 74 year: 2017 end-page: 85 ident: b33 article-title: An improved NSGA-III algorithm for feature selection used in intrusion detection publication-title: Knowl.-Based Syst. – volume: 148 start-page: 150 year: 2015 ident: 10.1016/j.asoc.2021.107302_b43 article-title: Feature selection algorithm based on bare bones particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.049 – volume: 46 start-page: 1424 issue: 6 year: 2016 ident: 10.1016/j.asoc.2021.107302_b6 article-title: Identifying (quasi) equally informative subsets in feature selection problems for classification: A max-relevance min-redundancy approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2444435 – volume: 6 start-page: 37 issue: 1 year: 1991 ident: 10.1016/j.asoc.2021.107302_b60 article-title: Instance-based learning algorithms publication-title: Mach. Learn. doi: 10.1007/BF00153759 – start-page: 319 year: 2017 ident: 10.1016/j.asoc.2021.107302_b24 article-title: A novel binary particle swarm optimization algorithm and its applications on knapsack and feature selection problems – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.asoc.2021.107302_b7 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 18 start-page: 261 year: 2014 ident: 10.1016/j.asoc.2021.107302_b21 article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.09.018 – volume: 48 start-page: 2798 issue: 9 year: 2015 ident: 10.1016/j.asoc.2021.107302_b17 article-title: Relevance–redundancy feature selection based on ant colony optimization publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.03.020 – volume: 16 start-page: 645 issue: 5 year: 2012 ident: 10.1016/j.asoc.2021.107302_b15 article-title: A filter approach to multiple feature construction for symbolic learning classifiers using genetic programming publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2011.2166158 – volume: 140 start-page: 103 year: 2018 ident: 10.1016/j.asoc.2021.107302_b16 article-title: Differential evolution for filter feature selection based on information theory and feature ranking publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.10.028 – volume: 25 start-page: 1486 issue: 3 year: 2010 ident: 10.1016/j.asoc.2021.107302_b59 article-title: A new quantum-inspired binary PSO: Application to unit commitment problems for power systems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2042472 – ident: 10.1016/j.asoc.2021.107302_b52 – volume: 9 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2021.107302_b54 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.09.002 – volume: 507 start-page: 67 year: 2020 ident: 10.1016/j.asoc.2021.107302_b36 article-title: Binary differential evolution with self-learning for multi-objective feature selection publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.08.040 – ident: 10.1016/j.asoc.2021.107302_b19 doi: 10.1109/ICNN.1995.488968 – start-page: 81 year: 2012 ident: 10.1016/j.asoc.2021.107302_b53 article-title: Multi-objective particle swarm optimisation (PSO) for feature selection – year: 2017 ident: 10.1016/j.asoc.2021.107302_b28 – volume: 48 start-page: 1733 issue: 6 year: 2018 ident: 10.1016/j.asoc.2021.107302_b42 article-title: A new representation in PSO for discretization-based feature selection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2714145 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2021.107302_b49 article-title: Feature selection using binary particle swarm optimization with time varying inertia weight strategies – ident: 10.1016/j.asoc.2021.107302_b14 doi: 10.1109/CEC.2012.6256452 – volume: 5 start-page: 24 issue: 2 year: 2010 ident: 10.1016/j.asoc.2021.107302_b55 article-title: Memetic computation—Past, present future [Research Frontier] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2010.936309 – volume: 20 start-page: 666 issue: 5 year: 2016 ident: 10.1016/j.asoc.2021.107302_b58 article-title: An analysis of the inertia weight parameter for binary particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2503422 – volume: 116 start-page: 74 year: 2017 ident: 10.1016/j.asoc.2021.107302_b33 article-title: An improved NSGA-III algorithm for feature selection used in intrusion detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.10.030 – volume: 36 start-page: 334 year: 2015 ident: 10.1016/j.asoc.2021.107302_b18 article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.023 – volume: 53 start-page: 23 issue: 1 year: 2003 ident: 10.1016/j.asoc.2021.107302_b10 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Mach. Learn. doi: 10.1023/A:1025667309714 – volume: 36 start-page: 27 year: 2017 ident: 10.1016/j.asoc.2021.107302_b37 article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC hybrid) publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.04.002 – start-page: 501 year: 2014 ident: 10.1016/j.asoc.2021.107302_b23 article-title: A new binary particle swarm optimisation algorithm for feature selection – volume: 52 start-page: 94 year: 2015 ident: 10.1016/j.asoc.2021.107302_b25 article-title: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.10.007 – volume: 62 start-page: 203 year: 2018 ident: 10.1016/j.asoc.2021.107302_b51 article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.038 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.asoc.2021.107302_b56 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 23 start-page: 473 issue: 3 year: 2018 ident: 10.1016/j.asoc.2021.107302_b41 article-title: Variable-length particle swarm optimisation for feature selection on high-dimensional classification publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2869405 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.asoc.2021.107302_b61 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1656274.1656278 – volume: 5 start-page: 1205 issue: Oct. year: 2004 ident: 10.1016/j.asoc.2021.107302_b5 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 1381 issue: 4 year: 2008 ident: 10.1016/j.asoc.2021.107302_b48 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.10.007 – ident: 10.1016/j.asoc.2021.107302_b44 – volume: 27 start-page: 379 issue: 3 year: 1948 ident: 10.1016/j.asoc.2021.107302_b29 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 128 start-page: 140 year: 2019 ident: 10.1016/j.asoc.2021.107302_b27 article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.039 – volume: 43 start-page: 117 year: 2016 ident: 10.1016/j.asoc.2021.107302_b50 article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.01.044 – volume: 43 start-page: 1990 issue: 6 year: 2013 ident: 10.1016/j.asoc.2021.107302_b31 article-title: Feature-selected tree-based classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2237394 – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 10.1016/j.asoc.2021.107302_b40 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857610 – volume: 47 start-page: 1496 issue: 6 year: 2017 ident: 10.1016/j.asoc.2021.107302_b26 article-title: A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2549639 – volume: 274 start-page: 978 issue: 3 year: 2019 ident: 10.1016/j.asoc.2021.107302_b3 article-title: Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2018.10.051 – volume: 181 year: 2019 ident: 10.1016/j.asoc.2021.107302_b9 article-title: Logistic local hyperplane-relief: A feature weighting method for classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.04.011 – volume: 26 start-page: 1424 issue: 11 year: 2004 ident: 10.1016/j.asoc.2021.107302_b13 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.105 – year: 1995 ident: 10.1016/j.asoc.2021.107302_b57 – volume: 46 start-page: 499 issue: 2 year: 2016 ident: 10.1016/j.asoc.2021.107302_b35 article-title: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2404806 – volume: 64 start-page: 22 year: 2014 ident: 10.1016/j.asoc.2021.107302_b22 article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.03.015 – start-page: 977 year: 2011 ident: 10.1016/j.asoc.2021.107302_b62 article-title: Nonparametric statistical inference – volume: 163 start-page: 450 year: 2019 ident: 10.1016/j.asoc.2021.107302_b8 article-title: Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.09.004 – volume: 523 start-page: 245 year: 2020 ident: 10.1016/j.asoc.2021.107302_b34 article-title: Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.03.032 – volume: 47 start-page: 4356 issue: 12 year: 2017 ident: 10.1016/j.asoc.2021.107302_b2 article-title: Feature selection through message passing publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2609408 – ident: 10.1016/j.asoc.2021.107302_b30 – volume: 97 start-page: 273 issue: 1 year: 1997 ident: 10.1016/j.asoc.2021.107302_b12 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X – volume: 20 start-page: 3927 issue: 10 year: 2016 ident: 10.1016/j.asoc.2021.107302_b46 article-title: New mechanism for archive maintenance in PSO-based multi-objective feature selection publication-title: Soft Comput. doi: 10.1007/s00500-016-2128-8 – ident: 10.1016/j.asoc.2021.107302_b20 doi: 10.1109/ICSMC.1997.637339 – volume: 22 start-page: 811 issue: 3 year: 2018 ident: 10.1016/j.asoc.2021.107302_b39 article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer publication-title: Soft Comput. doi: 10.1007/s00500-016-2385-6 – volume: 3 start-page: 1157 issue: Mar. year: 2003 ident: 10.1016/j.asoc.2021.107302_b1 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 43 start-page: 1656 issue: 6 year: 2013 ident: 10.1016/j.asoc.2021.107302_b45 article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2227469 – volume: 149 year: 2020 ident: 10.1016/j.asoc.2021.107302_b11 article-title: Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106852 – volume: 20 start-page: 606 issue: 4 year: 2016 ident: 10.1016/j.asoc.2021.107302_b4 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2504420 – volume: 75 start-page: 323 year: 2019 ident: 10.1016/j.asoc.2021.107302_b32 article-title: GA-SVM based feature selection and parameter optimization in hospitalization expense modeling publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.001 – volume: 45 start-page: 191 issue: 2 year: 2015 ident: 10.1016/j.asoc.2021.107302_b38 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2322602 – volume: 113 start-page: 499 year: 2018 ident: 10.1016/j.asoc.2021.107302_b47 article-title: Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.07.013 |
SSID | ssj0016928 |
Score | 2.6117775 |
Snippet | Feature selection (FS) is an important preprocessing technique for dimensionality reduction in classification problems. Particle swarm optimization (PSO)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107302 |
SubjectTerms | Classification Feature selection Initialization Particle swarm optimization |
Title | Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107302 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSgMxMBS9ePEt1kfJwZusTZpkN3ssxVIfFFELvS15FSrttrQVb_rrTnazRUF68LRsMgNhZjKPMA-ErmKrFLXEe27JCAIUIiOtYhWlRPMklSy2tuj22Y97A34_FMMa6lS1MD6tMuj-UqcX2jqsNAM1m_PxuPkCkYfkKY9bvotoS_iCX84TL-U3n-s0DxqnxXxVDxx56FA4U-Z4KaAAxIgtCgsg6q2_jdMPg9PdR7vBU8Tt8jAHqObyQ7RXTWHA4VIeoa_yXcBZrIvaWjwP58fLD7WY4hkohWmotsTgouKRK5p54mUxAsev-sdYDP41HvtUIjWpoFVucXkVMCge4_DCN3ottparqsfEMRp0b187vSiMVYgMI2QVKcqFVY5qLahjKWXUKSockVxLIymxwgkLRkrwxEknwUFhdpRqM2IsSQ1R7ARt5bPcnSKcMNgmyhomgLTSKG40MN1ZGhMI2Xkd0YqemQk9x_3oi0lWJZe9ZZ4HmedBVvKgjq7XOPOy48ZGaFGxKfslNxmYhA14Z__EO0c7_q9M2L1AW6vFu7sEt2SlG4XcNdB2u_P8-OS_dw-9_jfm0uWm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gHPTi2_i2B29mQ0u3S_dojAQFuQgJt01fJBheAYxH_7rT3S7RxHjw2naS3Zl2Hu3MNwC3iVWKWeo9t-YIAxQqI60SFaVUx81U8sTaHO2zl7QH8fNQDCvwUNbC-LTKoPsLnZ5r6zBSD9ysL8bj-itGHjJO46ThUUQbQm5BzaNTiSrU7p867d7mMSFJ8xarfn3kCULtTJHmpZAJGCY2GA7gbm_8bp--2ZzWPuwGZ5HcF99zABU3O4S9shEDCefyCD6LqwFnic7La8ki_AJZfajllMxRL0xDwSVBL5WMXI7nSVZ5Fxw_6u9jCbrYZOyzidSkXK1mlhSngaDuMY4sPdZrPrValzATxzBoPfYf2lHorBAZTuk6UiwWVjmmtWCOp4wzp5hwVMZaGsmoFU5YtFPITiedRB-F21GqzYjzZmqo4idQnc1n7hRIk-M0VdZwgayVRsVGo9ydZQnFqD0-A1byMzMBdtx3v5hkZX7ZW-ZlkHkZZIUMzuBuQ7MoQDf-XC1KMWU_tk6GVuEPuvN_0t3Adrv_0s26T73OBez4mSJ_9xKq6-W7u0IvZa2vwy78ApNM5sI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+binary+particle+swarm+optimization+for+feature+selection+with+new+initialization+and+search+space+reduction+strategies&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+An-Da&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2021-07-01&rft.issn=1568-4946&rft.volume=106&rft.spage=107302&rft_id=info:doi/10.1016%2Fj.asoc.2021.107302&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |