Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies

Feature selection (FS) is an important preprocessing technique for dimensionality reduction in classification problems. Particle swarm optimization (PSO) algorithms have been widely used as the optimizers for FS problems. However, with the increase of data dimensionality, the search space expands dr...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 106; p. 107302
Main Authors Li, An-Da, Xue, Bing, Zhang, Mengjie
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Feature selection (FS) is an important preprocessing technique for dimensionality reduction in classification problems. Particle swarm optimization (PSO) algorithms have been widely used as the optimizers for FS problems. However, with the increase of data dimensionality, the search space expands dramatically, which proposes significant challenges for optimization methods, including PSO. In this paper, we propose an improved sticky binary PSO (ISBPSO) algorithm for FS. ISBPSO adopts three new mechanisms based on a recently proposed binary PSO variant, sticky binary particle swarm optimization (SBPSO), to improve the evolutionary performance. First, a new initialization strategy using the feature weighting information based on mutual information is proposed. Second, a dynamic bits masking strategy for gradually reducing the search space during the evolutionary process is proposed. Third, based on the framework of memetic algorithms, a refinement procedure conducting genetic operations on the personal best positions of ISBPSO is used to alleviate the premature convergence problem. The results on 12 UCI datasets show that ISBPSO outperforms six benchmark PSO-based FS methods and two conventional FS methods (sequential forward selection and sequential backward selection) — ISBPSO obtains either higher or similar accuracies with fewer features in most cases. Moreover, ISBPSO substantially reduces the computation time compared with benchmark PSO-based FS methods. Further analysis shows that all the three proposed mechanisms are effective for improving the search performance of ISBPSO. •An improved binary PSO algorithm is proposed for feature selection.•A new initialization strategy using the feature weighting results is proposed.•A bits masking strategy for dynamically reducing the search space is proposed.•The genetic operations are adopted to alleviate the premature convergence problem.•The proposed algorithm is effective and efficient for feature selection.
AbstractList Feature selection (FS) is an important preprocessing technique for dimensionality reduction in classification problems. Particle swarm optimization (PSO) algorithms have been widely used as the optimizers for FS problems. However, with the increase of data dimensionality, the search space expands dramatically, which proposes significant challenges for optimization methods, including PSO. In this paper, we propose an improved sticky binary PSO (ISBPSO) algorithm for FS. ISBPSO adopts three new mechanisms based on a recently proposed binary PSO variant, sticky binary particle swarm optimization (SBPSO), to improve the evolutionary performance. First, a new initialization strategy using the feature weighting information based on mutual information is proposed. Second, a dynamic bits masking strategy for gradually reducing the search space during the evolutionary process is proposed. Third, based on the framework of memetic algorithms, a refinement procedure conducting genetic operations on the personal best positions of ISBPSO is used to alleviate the premature convergence problem. The results on 12 UCI datasets show that ISBPSO outperforms six benchmark PSO-based FS methods and two conventional FS methods (sequential forward selection and sequential backward selection) — ISBPSO obtains either higher or similar accuracies with fewer features in most cases. Moreover, ISBPSO substantially reduces the computation time compared with benchmark PSO-based FS methods. Further analysis shows that all the three proposed mechanisms are effective for improving the search performance of ISBPSO. •An improved binary PSO algorithm is proposed for feature selection.•A new initialization strategy using the feature weighting results is proposed.•A bits masking strategy for dynamically reducing the search space is proposed.•The genetic operations are adopted to alleviate the premature convergence problem.•The proposed algorithm is effective and efficient for feature selection.
ArticleNumber 107302
Author Xue, Bing
Zhang, Mengjie
Li, An-Da
Author_xml – sequence: 1
  givenname: An-Da
  orcidid: 0000-0002-2111-8724
  surname: Li
  fullname: Li, An-Da
  email: adli@tjcu.edu.cn
  organization: School of Management, Tianjin University of Commerce, Tianjin 300134, China
– sequence: 2
  givenname: Bing
  surname: Xue
  fullname: Xue, Bing
  organization: Evolutionary Computation Research Group, Victoria University of Wellington, Wellington 6140, New Zealand
– sequence: 3
  givenname: Mengjie
  orcidid: 0000-0003-4463-9538
  surname: Zhang
  fullname: Zhang, Mengjie
  organization: Evolutionary Computation Research Group, Victoria University of Wellington, Wellington 6140, New Zealand
BookMark eNp9kMlOAzEMQCNUJNrCD3DKD0xJZs1IXFDFUqkSFzhHmcRDXc2mJG0FF36dtAMXDj3Zsv0s-83IpOs7IOSWswVnPL_bLpTr9SJmMQ-FImHxBZlyUcRRmQs-CXmWiygt0_yKzJzbsgCVsZiS71U72H4PhlbYKftJB2U96gaoOyjb0n7w2OKX8th3tO4trUH5nQ1taECfqgf0G9rBgWKHHlXzN606E6aU1RvqBqWBWjC7EXHeKg8fCO6aXNaqcXDzG-fk_enxbfkSrV-fV8uHdaQTxnykeJoZBbyqMg5JyRMOimfARFoJLTgzGWSmLFmWFiBAiDRPTF1Wuk6SotRMJXMixr3a9s5ZqKVGf7oznIKN5EweRcqtPIqUR5FyFBnQ-B86WGyDq_PQ_QhBeGqPYKXTCJ0GgzZ4k6bHc_gPUZmSrg
CitedBy_id crossref_primary_10_1016_j_engappai_2022_105556
crossref_primary_10_1007_s11042_023_15467_x
crossref_primary_10_3390_electronics11193044
crossref_primary_10_3390_fi14060178
crossref_primary_10_1109_ACCESS_2023_3298955
crossref_primary_10_1007_s13042_024_02098_3
crossref_primary_10_1007_s00477_023_02556_4
crossref_primary_10_3390_ai3020024
crossref_primary_10_1016_j_inffus_2023_02_016
crossref_primary_10_1016_j_asoc_2021_107956
crossref_primary_10_1007_s00521_023_08772_x
crossref_primary_10_1109_ACCESS_2022_3143802
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_3390_biomimetics9100586
crossref_primary_10_1016_j_ins_2024_121188
crossref_primary_10_1016_j_asoc_2023_109987
crossref_primary_10_1016_j_knosys_2024_112699
crossref_primary_10_1038_s41598_024_76010_y
crossref_primary_10_1016_j_eswa_2023_123069
crossref_primary_10_1016_j_asoc_2022_109166
crossref_primary_10_1049_cit2_12122
crossref_primary_10_1109_TGRS_2023_3305545
crossref_primary_10_1371_journal_pone_0295579
crossref_primary_10_1016_j_knosys_2023_110635
crossref_primary_10_1016_j_cie_2022_108617
crossref_primary_10_3390_ma16041662
crossref_primary_10_1016_j_cor_2025_107009
crossref_primary_10_3390_math10111929
crossref_primary_10_3390_s24247879
crossref_primary_10_1007_s13748_023_00306_9
crossref_primary_10_1016_j_knosys_2024_111578
crossref_primary_10_1016_j_ins_2023_119062
crossref_primary_10_1109_ACCESS_2022_3162074
crossref_primary_10_1007_s42044_024_00174_z
crossref_primary_10_3390_s22134926
crossref_primary_10_3390_app122111296
crossref_primary_10_3390_biomimetics8060457
crossref_primary_10_1007_s13042_023_01788_8
crossref_primary_10_1007_s40747_021_00636_y
crossref_primary_10_1002_int_23074
crossref_primary_10_1016_j_asoc_2024_112156
crossref_primary_10_1016_j_knosys_2022_109874
crossref_primary_10_1007_s10489_022_03465_9
crossref_primary_10_1007_s41060_024_00712_9
crossref_primary_10_1016_j_asoc_2023_110983
crossref_primary_10_1007_s11440_022_01779_z
crossref_primary_10_1016_j_asoc_2024_111978
crossref_primary_10_1007_s12065_023_00819_1
crossref_primary_10_1016_j_knosys_2024_112550
crossref_primary_10_3390_app12189378
crossref_primary_10_1007_s00500_023_08530_0
crossref_primary_10_1016_j_cmpb_2023_107987
crossref_primary_10_1016_j_asoc_2023_110240
crossref_primary_10_1109_TNSM_2022_3162885
crossref_primary_10_1007_s10489_023_05179_y
crossref_primary_10_1109_ACCESS_2024_3519180
crossref_primary_10_1016_j_ins_2021_12_086
crossref_primary_10_1007_s11042_024_20221_y
crossref_primary_10_1109_JIOT_2023_3317089
crossref_primary_10_1016_j_asoc_2021_108322
crossref_primary_10_1007_s10489_021_02776_7
crossref_primary_10_3390_sym15020316
crossref_primary_10_1016_j_jksuci_2023_101757
crossref_primary_10_1109_TCYB_2021_3108977
crossref_primary_10_37391_ijeer_100432
crossref_primary_10_1007_s10462_024_10954_5
crossref_primary_10_1016_j_bspc_2022_103707
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_1016_j_ejor_2024_12_036
crossref_primary_10_1109_TEVC_2022_3175226
crossref_primary_10_1145_3653025
crossref_primary_10_1016_j_ijar_2024_109181
crossref_primary_10_1109_TCSS_2023_3325263
crossref_primary_10_3389_fneur_2024_1321923
crossref_primary_10_1016_j_eswa_2022_117238
crossref_primary_10_32604_cmc_2024_048929
crossref_primary_10_1016_j_ifacol_2022_05_040
crossref_primary_10_1162_evco_a_00339
crossref_primary_10_3390_sym14071293
crossref_primary_10_1016_j_swevo_2024_101533
crossref_primary_10_1016_j_asoc_2024_111948
crossref_primary_10_1007_s42235_023_00400_7
crossref_primary_10_1016_j_asoc_2024_111708
crossref_primary_10_1109_ACCESS_2022_3218691
crossref_primary_10_1016_j_asoc_2021_107855
crossref_primary_10_1155_2022_1825341
crossref_primary_10_1016_j_eswa_2023_122390
crossref_primary_10_1016_j_asoc_2021_107978
crossref_primary_10_1016_j_engappai_2023_106156
crossref_primary_10_3390_math10152627
crossref_primary_10_1016_j_ijdrr_2022_103259
crossref_primary_10_1109_ACCESS_2022_3211263
crossref_primary_10_1021_acsomega_2c06324
crossref_primary_10_1002_cpe_70000
crossref_primary_10_1007_s13042_024_02107_5
crossref_primary_10_1016_j_eswa_2024_124919
crossref_primary_10_3390_a14110324
crossref_primary_10_1007_s00500_024_09814_9
crossref_primary_10_1364_OE_470642
crossref_primary_10_1002_int_22979
crossref_primary_10_1007_s10586_024_04879_5
crossref_primary_10_1142_S012906572450014X
Cites_doi 10.1016/j.neucom.2012.09.049
10.1109/TCYB.2015.2444435
10.1007/BF00153759
10.1109/TPAMI.2005.159
10.1016/j.asoc.2013.09.018
10.1016/j.patcog.2015.03.020
10.1109/TEVC.2011.2166158
10.1016/j.knosys.2017.10.028
10.1109/TPWRS.2010.2042472
10.1016/j.swevo.2012.09.002
10.1016/j.ins.2019.08.040
10.1109/ICNN.1995.488968
10.1109/TCYB.2017.2714145
10.1109/CEC.2012.6256452
10.1109/MCI.2010.936309
10.1109/TEVC.2015.2503422
10.1016/j.knosys.2016.10.030
10.1016/j.asoc.2015.07.023
10.1023/A:1025667309714
10.1016/j.swevo.2017.04.002
10.1016/j.patrec.2014.10.007
10.1016/j.asoc.2017.09.038
10.1109/4235.996017
10.1109/TEVC.2018.2869405
10.1145/1656274.1656278
10.1016/j.asoc.2007.10.007
10.1002/j.1538-7305.1948.tb01338.x
10.1016/j.eswa.2019.03.039
10.1016/j.asoc.2016.01.044
10.1109/TSMCB.2012.2237394
10.1109/TEVC.2005.857610
10.1109/TCYB.2016.2549639
10.1016/j.ejor.2018.10.051
10.1016/j.knosys.2019.04.011
10.1109/TPAMI.2004.105
10.1109/TCYB.2015.2404806
10.1016/j.knosys.2014.03.015
10.1016/j.knosys.2018.09.004
10.1016/j.ins.2020.03.032
10.1109/TCYB.2016.2609408
10.1016/S0004-3702(97)00043-X
10.1007/s00500-016-2128-8
10.1109/ICSMC.1997.637339
10.1007/s00500-016-2385-6
10.1109/TSMCB.2012.2227469
10.1016/j.cie.2020.106852
10.1109/TEVC.2015.2504420
10.1016/j.asoc.2018.11.001
10.1109/TCYB.2014.2322602
10.1016/j.eswa.2018.07.013
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107302
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107302
S1568494621002258
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-a145dae1bb51e39131ea15e084b8c810d5e5d990547e8e88463df9bcf3379c0a3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:12:03 EDT 2025
Tue Jul 01 01:50:09 EDT 2025
Fri Feb 23 02:41:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Initialization
Feature selection
Particle swarm optimization
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a145dae1bb51e39131ea15e084b8c810d5e5d990547e8e88463df9bcf3379c0a3
ORCID 0000-0002-2111-8724
0000-0003-4463-9538
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107302
crossref_primary_10_1016_j_asoc_2021_107302
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107302
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Xue, Zhang (b34) 2020; 523
Tabakhi, Moradi (b17) 2015; 48
Tran, Xue, Zhang (b42) 2018; 48
Gu, Cheng, Jin (b39) 2018; 22
Martin, Hirschberg (b57) 1995
Zhang, wei Gong, zhi Gao, Tian, yan Sun (b36) 2020; 507
Shunmugapriya, Kanmani (b37) 2017; 36
Kundu, Mitra (b2) 2017; 47
M.A. Khanesar, M. Teshnehlab, M.A. Shoorehdeli, A novel binary particle swarm optimization, in: 2007 Mediterranean Conference on Control Automation, 2007, pp. 1–6.
Deb, Agrawal, Pratap, Meyarivan (b56) 2002; 6
Zhang, Huang, Zhou (b9) 2019; 181
Xue, Zhang, Browne (b53) 2012
U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings of the 13th International Joint Conference on Artificial Intelligence. ChambÉRy, France, August 28 - September 3, 1993, 1993, pp. 1022–1029.
Jain, Jain, Jain (b51) 2018; 62
Yu, Liu (b5) 2004; 5
Chen, Zhou, Yuan (b27) 2019; 128
Xue, Zhang, Browne, Yao (b4) 2016; 20
Zhu, Liang, Chen, Ming (b33) 2017; 116
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (b61) 2009; 11
Gibbons, Chakraborti (b62) 2011
Tran, Xue, Zhang (b41) 2018; 23
Nguyen, Xue, Liu, Andreae, Zhang (b46) 2016; 20
Peng, Long, Ding (b7) 2005; 27
Oh, Lee, Moon (b13) 2004; 26
J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, 1997, pp. 4104–4108.
Liang, Qin, Suganthan, Baskar (b40) 2006; 10
Xue, Zhang, Browne (b45) 2013; 43
Xue, Zhang, Browne (b21) 2014; 18
L. Cervante, B. Xue, M. Zhang, L. Shang, Binary particle swarm optimisation for feature selection: A filter based approach, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2012), 2012, pp. 1–8.
Hancer, Xue, Karaboga, Zhang (b18) 2015; 36
Xue, Nguyen, Zhang (b23) 2014
Zhang, Gong, Hu, Zhang (b43) 2015; 148
Mafarja, Jarrar, Ahmad, Abusnaina (b49) 2018
Liu, Mei, Li (b58) 2016; 20
Moradi, Gholampour (b50) 2016; 43
Banka, Dara (b25) 2015; 52
Huang, Dun (b48) 2008; 8
Li, He, Wang, Zhang (b3) 2019; 274
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
Dheeru, Karra Taniskidou (b28) 2017
Kohavi, John (b12) 1997; 97
Zhang, Wang, Phillips, Ji (b22) 2014; 64
Ong, Lim, Chen (b55) 2010; 5
Yan, Jia (b8) 2019; 163
Aha, Kibler, Albert (b60) 1991; 6
Nag, Pal (b35) 2016; 46
Karakaya, Galelli, Ahipasaoglu, Taormina (b6) 2016; 46
Mistry, Zhang, Neoh, Lim, Fielding (b26) 2017; 47
Cheng, Jin (b38) 2015; 45
Shannon (b29) 1948; 27
J. Kennedy, Bare bones particle swarms, in: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706), 2003, pp. 80–87.
Amoozegar, Minaei-Bidgoli (b47) 2018; 113
Tao, Huiling, Wenwen, Xia (b32) 2019; 75
Jeong, Park, Jang, Lee (b59) 2010; 25
Robnik-Šikonja, Kononenko (b10) 2003; 53
Mirjalili, Lewis (b54) 2013; 9
Hancer, Xue, Zhang (b16) 2018; 140
Neshatian, Zhang, Andreae (b15) 2012; 16
Nguyen, Xue, Andreae (b24) 2017
Guyon, Elisseeff (b1) 2003; 3
Freeman, Kulić, Basir (b31) 2013; 43
Li, He (b11) 2020; 149
Shunmugapriya (10.1016/j.asoc.2021.107302_b37) 2017; 36
Deb (10.1016/j.asoc.2021.107302_b56) 2002; 6
10.1016/j.asoc.2021.107302_b52
Mirjalili (10.1016/j.asoc.2021.107302_b54) 2013; 9
Tao (10.1016/j.asoc.2021.107302_b32) 2019; 75
Hancer (10.1016/j.asoc.2021.107302_b18) 2015; 36
Mistry (10.1016/j.asoc.2021.107302_b26) 2017; 47
10.1016/j.asoc.2021.107302_b14
Xue (10.1016/j.asoc.2021.107302_b53) 2012
10.1016/j.asoc.2021.107302_b19
Shannon (10.1016/j.asoc.2021.107302_b29) 1948; 27
Nguyen (10.1016/j.asoc.2021.107302_b46) 2016; 20
Hall (10.1016/j.asoc.2021.107302_b61) 2009; 11
Tabakhi (10.1016/j.asoc.2021.107302_b17) 2015; 48
Tran (10.1016/j.asoc.2021.107302_b42) 2018; 48
Ong (10.1016/j.asoc.2021.107302_b55) 2010; 5
Chen (10.1016/j.asoc.2021.107302_b27) 2019; 128
Dheeru (10.1016/j.asoc.2021.107302_b28) 2017
Li (10.1016/j.asoc.2021.107302_b11) 2020; 149
Liang (10.1016/j.asoc.2021.107302_b40) 2006; 10
Hancer (10.1016/j.asoc.2021.107302_b16) 2018; 140
Li (10.1016/j.asoc.2021.107302_b34) 2020; 523
10.1016/j.asoc.2021.107302_b20
Zhang (10.1016/j.asoc.2021.107302_b22) 2014; 64
Robnik-Šikonja (10.1016/j.asoc.2021.107302_b10) 2003; 53
Zhu (10.1016/j.asoc.2021.107302_b33) 2017; 116
Xue (10.1016/j.asoc.2021.107302_b4) 2016; 20
Aha (10.1016/j.asoc.2021.107302_b60) 1991; 6
Banka (10.1016/j.asoc.2021.107302_b25) 2015; 52
Yan (10.1016/j.asoc.2021.107302_b8) 2019; 163
Mafarja (10.1016/j.asoc.2021.107302_b49) 2018
Oh (10.1016/j.asoc.2021.107302_b13) 2004; 26
Zhang (10.1016/j.asoc.2021.107302_b36) 2020; 507
Peng (10.1016/j.asoc.2021.107302_b7) 2005; 27
Jeong (10.1016/j.asoc.2021.107302_b59) 2010; 25
Zhang (10.1016/j.asoc.2021.107302_b9) 2019; 181
Gibbons (10.1016/j.asoc.2021.107302_b62) 2011
Nguyen (10.1016/j.asoc.2021.107302_b24) 2017
10.1016/j.asoc.2021.107302_b30
Jain (10.1016/j.asoc.2021.107302_b51) 2018; 62
Gu (10.1016/j.asoc.2021.107302_b39) 2018; 22
Huang (10.1016/j.asoc.2021.107302_b48) 2008; 8
Cheng (10.1016/j.asoc.2021.107302_b38) 2015; 45
Martin (10.1016/j.asoc.2021.107302_b57) 1995
Karakaya (10.1016/j.asoc.2021.107302_b6) 2016; 46
Li (10.1016/j.asoc.2021.107302_b3) 2019; 274
Nag (10.1016/j.asoc.2021.107302_b35) 2016; 46
10.1016/j.asoc.2021.107302_b44
Kundu (10.1016/j.asoc.2021.107302_b2) 2017; 47
Xue (10.1016/j.asoc.2021.107302_b23) 2014
Amoozegar (10.1016/j.asoc.2021.107302_b47) 2018; 113
Moradi (10.1016/j.asoc.2021.107302_b50) 2016; 43
Zhang (10.1016/j.asoc.2021.107302_b43) 2015; 148
Yu (10.1016/j.asoc.2021.107302_b5) 2004; 5
Guyon (10.1016/j.asoc.2021.107302_b1) 2003; 3
Neshatian (10.1016/j.asoc.2021.107302_b15) 2012; 16
Tran (10.1016/j.asoc.2021.107302_b41) 2018; 23
Xue (10.1016/j.asoc.2021.107302_b45) 2013; 43
Xue (10.1016/j.asoc.2021.107302_b21) 2014; 18
Liu (10.1016/j.asoc.2021.107302_b58) 2016; 20
Kohavi (10.1016/j.asoc.2021.107302_b12) 1997; 97
Freeman (10.1016/j.asoc.2021.107302_b31) 2013; 43
References_xml – year: 1995
  ident: b57
  article-title: The Time Complexity of Decision Tree Induction
– reference: M.A. Khanesar, M. Teshnehlab, M.A. Shoorehdeli, A novel binary particle swarm optimization, in: 2007 Mediterranean Conference on Control Automation, 2007, pp. 1–6.
– volume: 8
  start-page: 1381
  year: 2008
  end-page: 1391
  ident: b48
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 811
  year: 2018
  end-page: 822
  ident: b39
  article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer
  publication-title: Soft Comput.
– reference: J. Kennedy, Bare bones particle swarms, in: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706), 2003, pp. 80–87.
– volume: 46
  start-page: 1424
  year: 2016
  end-page: 1437
  ident: b6
  article-title: Identifying (quasi) equally informative subsets in feature selection problems for classification: A max-relevance min-redundancy approach
  publication-title: IEEE Trans. Cybern.
– volume: 62
  start-page: 203
  year: 2018
  end-page: 215
  ident: b51
  article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification
  publication-title: Appl. Soft Comput.
– volume: 45
  start-page: 191
  year: 2015
  end-page: 204
  ident: b38
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
– volume: 20
  start-page: 606
  year: 2016
  end-page: 626
  ident: b4
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
– volume: 274
  start-page: 978
  year: 2019
  end-page: 989
  ident: b3
  article-title: Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method
  publication-title: European J. Oper. Res.
– reference: J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, 1997, pp. 4104–4108.
– volume: 52
  start-page: 94
  year: 2015
  end-page: 100
  ident: b25
  article-title: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation
  publication-title: Pattern Recognit. Lett.
– volume: 128
  start-page: 140
  year: 2019
  end-page: 156
  ident: b27
  article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 27
  year: 2017
  end-page: 36
  ident: b37
  article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC hybrid)
  publication-title: Swarm Evol. Comput.
– volume: 46
  start-page: 499
  year: 2016
  end-page: 510
  ident: b35
  article-title: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification
  publication-title: IEEE Trans. Cybern.
– volume: 26
  start-page: 1424
  year: 2004
  end-page: 1437
  ident: b13
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 501
  year: 2014
  end-page: 513
  ident: b23
  article-title: A new binary particle swarm optimisation algorithm for feature selection
  publication-title: Applications of Evolutionary Computation
– volume: 48
  start-page: 1733
  year: 2018
  end-page: 1746
  ident: b42
  article-title: A new representation in PSO for discretization-based feature selection
  publication-title: IEEE Trans. Cybern.
– volume: 140
  start-page: 103
  year: 2018
  end-page: 119
  ident: b16
  article-title: Differential evolution for filter feature selection based on information theory and feature ranking
  publication-title: Knowl.-Based Syst.
– start-page: 81
  year: 2012
  end-page: 88
  ident: b53
  article-title: Multi-objective particle swarm optimisation (PSO) for feature selection
  publication-title: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO ’12
– volume: 64
  start-page: 22
  year: 2014
  end-page: 31
  ident: b22
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowl.-Based Syst.
– volume: 36
  start-page: 334
  year: 2015
  end-page: 348
  ident: b18
  article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 1205
  year: 2004
  end-page: 1224
  ident: b5
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: b12
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
– volume: 25
  start-page: 1486
  year: 2010
  end-page: 1495
  ident: b59
  article-title: A new quantum-inspired binary PSO: Application to unit commitment problems for power systems
  publication-title: IEEE Trans. Power Syst.
– year: 2017
  ident: b28
  article-title: UCI Machine Learning Repository
– volume: 43
  start-page: 1656
  year: 2013
  end-page: 1671
  ident: b45
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Trans. Cybern.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b56
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– reference: L. Cervante, B. Xue, M. Zhang, L. Shang, Binary particle swarm optimisation for feature selection: A filter based approach, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2012), 2012, pp. 1–8.
– volume: 5
  start-page: 24
  year: 2010
  end-page: 31
  ident: b55
  article-title: Memetic computation—Past, present future [Research Frontier]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 523
  start-page: 245
  year: 2020
  end-page: 265
  ident: b34
  article-title: Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection
  publication-title: Inform. Sci.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  ident: b21
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b7
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 37
  year: 1991
  end-page: 66
  ident: b60
  article-title: Instance-based learning algorithms
  publication-title: Mach. Learn.
– volume: 43
  start-page: 1990
  year: 2013
  end-page: 2004
  ident: b31
  article-title: Feature-selected tree-based classification
  publication-title: IEEE Trans. Cybern.
– volume: 75
  start-page: 323
  year: 2019
  end-page: 332
  ident: b32
  article-title: GA-SVM based feature selection and parameter optimization in hospitalization expense modeling
  publication-title: Appl. Soft Comput.
– volume: 507
  start-page: 67
  year: 2020
  end-page: 85
  ident: b36
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inform. Sci.
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: b40
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 113
  start-page: 499
  year: 2018
  end-page: 514
  ident: b47
  article-title: Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b1
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 473
  year: 2018
  end-page: 487
  ident: b41
  article-title: Variable-length particle swarm optimisation for feature selection on high-dimensional classification
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2018
  end-page: 9
  ident: b49
  article-title: Feature selection using binary particle swarm optimization with time varying inertia weight strategies
  publication-title: Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, Amman, Jordan, June 26-27, 2018
– start-page: 977
  year: 2011
  end-page: 979
  ident: b62
  article-title: Nonparametric statistical inference
  publication-title: International Encyclopedia of Statistical Science
– volume: 16
  start-page: 645
  year: 2012
  end-page: 661
  ident: b15
  article-title: A filter approach to multiple feature construction for symbolic learning classifiers using genetic programming
  publication-title: IEEE Trans. Evol. Comput.
– volume: 43
  start-page: 117
  year: 2016
  end-page: 130
  ident: b50
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 3927
  year: 2016
  end-page: 3946
  ident: b46
  article-title: New mechanism for archive maintenance in PSO-based multi-objective feature selection
  publication-title: Soft Comput.
– volume: 149
  year: 2020
  ident: b11
  article-title: Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm
  publication-title: Comput. Ind. Eng.
– volume: 53
  start-page: 23
  year: 2003
  end-page: 69
  ident: b10
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
– volume: 181
  year: 2019
  ident: b9
  article-title: Logistic local hyperplane-relief: A feature weighting method for classification
  publication-title: Knowl.-Based Syst.
– volume: 47
  start-page: 1496
  year: 2017
  end-page: 1509
  ident: b26
  article-title: A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: b29
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– reference: U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings of the 13th International Joint Conference on Artificial Intelligence. ChambÉRy, France, August 28 - September 3, 1993, 1993, pp. 1022–1029.
– volume: 148
  start-page: 150
  year: 2015
  end-page: 157
  ident: b43
  article-title: Feature selection algorithm based on bare bones particle swarm optimization
  publication-title: Neurocomputing
– volume: 163
  start-page: 450
  year: 2019
  end-page: 471
  ident: b8
  article-title: Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: b61
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 48
  start-page: 2798
  year: 2015
  end-page: 2811
  ident: b17
  article-title: Relevance–redundancy feature selection based on ant colony optimization
  publication-title: Pattern Recognit.
– volume: 47
  start-page: 4356
  year: 2017
  end-page: 4366
  ident: b2
  article-title: Feature selection through message passing
  publication-title: IEEE Trans. Cybern.
– volume: 20
  start-page: 666
  year: 2016
  end-page: 681
  ident: b58
  article-title: An analysis of the inertia weight parameter for binary particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 319
  year: 2017
  end-page: 332
  ident: b24
  article-title: A novel binary particle swarm optimization algorithm and its applications on knapsack and feature selection problems
  publication-title: Intelligent and Evolutionary Systems
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: b54
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
– volume: 116
  start-page: 74
  year: 2017
  end-page: 85
  ident: b33
  article-title: An improved NSGA-III algorithm for feature selection used in intrusion detection
  publication-title: Knowl.-Based Syst.
– volume: 148
  start-page: 150
  year: 2015
  ident: 10.1016/j.asoc.2021.107302_b43
  article-title: Feature selection algorithm based on bare bones particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.049
– volume: 46
  start-page: 1424
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2021.107302_b6
  article-title: Identifying (quasi) equally informative subsets in feature selection problems for classification: A max-relevance min-redundancy approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2444435
– volume: 6
  start-page: 37
  issue: 1
  year: 1991
  ident: 10.1016/j.asoc.2021.107302_b60
  article-title: Instance-based learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1007/BF00153759
– start-page: 319
  year: 2017
  ident: 10.1016/j.asoc.2021.107302_b24
  article-title: A novel binary particle swarm optimization algorithm and its applications on knapsack and feature selection problems
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.asoc.2021.107302_b7
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 18
  start-page: 261
  year: 2014
  ident: 10.1016/j.asoc.2021.107302_b21
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.018
– volume: 48
  start-page: 2798
  issue: 9
  year: 2015
  ident: 10.1016/j.asoc.2021.107302_b17
  article-title: Relevance–redundancy feature selection based on ant colony optimization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.03.020
– volume: 16
  start-page: 645
  issue: 5
  year: 2012
  ident: 10.1016/j.asoc.2021.107302_b15
  article-title: A filter approach to multiple feature construction for symbolic learning classifiers using genetic programming
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2166158
– volume: 140
  start-page: 103
  year: 2018
  ident: 10.1016/j.asoc.2021.107302_b16
  article-title: Differential evolution for filter feature selection based on information theory and feature ranking
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.028
– volume: 25
  start-page: 1486
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2021.107302_b59
  article-title: A new quantum-inspired binary PSO: Application to unit commitment problems for power systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2042472
– ident: 10.1016/j.asoc.2021.107302_b52
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2021.107302_b54
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 507
  start-page: 67
  year: 2020
  ident: 10.1016/j.asoc.2021.107302_b36
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.08.040
– ident: 10.1016/j.asoc.2021.107302_b19
  doi: 10.1109/ICNN.1995.488968
– start-page: 81
  year: 2012
  ident: 10.1016/j.asoc.2021.107302_b53
  article-title: Multi-objective particle swarm optimisation (PSO) for feature selection
– year: 2017
  ident: 10.1016/j.asoc.2021.107302_b28
– volume: 48
  start-page: 1733
  issue: 6
  year: 2018
  ident: 10.1016/j.asoc.2021.107302_b42
  article-title: A new representation in PSO for discretization-based feature selection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2714145
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2021.107302_b49
  article-title: Feature selection using binary particle swarm optimization with time varying inertia weight strategies
– ident: 10.1016/j.asoc.2021.107302_b14
  doi: 10.1109/CEC.2012.6256452
– volume: 5
  start-page: 24
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2021.107302_b55
  article-title: Memetic computation—Past, present future [Research Frontier]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2010.936309
– volume: 20
  start-page: 666
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2021.107302_b58
  article-title: An analysis of the inertia weight parameter for binary particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2503422
– volume: 116
  start-page: 74
  year: 2017
  ident: 10.1016/j.asoc.2021.107302_b33
  article-title: An improved NSGA-III algorithm for feature selection used in intrusion detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.10.030
– volume: 36
  start-page: 334
  year: 2015
  ident: 10.1016/j.asoc.2021.107302_b18
  article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.07.023
– volume: 53
  start-page: 23
  issue: 1
  year: 2003
  ident: 10.1016/j.asoc.2021.107302_b10
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
  doi: 10.1023/A:1025667309714
– volume: 36
  start-page: 27
  year: 2017
  ident: 10.1016/j.asoc.2021.107302_b37
  article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC hybrid)
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.04.002
– start-page: 501
  year: 2014
  ident: 10.1016/j.asoc.2021.107302_b23
  article-title: A new binary particle swarm optimisation algorithm for feature selection
– volume: 52
  start-page: 94
  year: 2015
  ident: 10.1016/j.asoc.2021.107302_b25
  article-title: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.10.007
– volume: 62
  start-page: 203
  year: 2018
  ident: 10.1016/j.asoc.2021.107302_b51
  article-title: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.038
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2021.107302_b56
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 23
  start-page: 473
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2021.107302_b41
  article-title: Variable-length particle swarm optimisation for feature selection on high-dimensional classification
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869405
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2021.107302_b61
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1656274.1656278
– volume: 5
  start-page: 1205
  issue: Oct.
  year: 2004
  ident: 10.1016/j.asoc.2021.107302_b5
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 1381
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2021.107302_b48
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.10.007
– ident: 10.1016/j.asoc.2021.107302_b44
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 10.1016/j.asoc.2021.107302_b29
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 128
  start-page: 140
  year: 2019
  ident: 10.1016/j.asoc.2021.107302_b27
  article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.039
– volume: 43
  start-page: 117
  year: 2016
  ident: 10.1016/j.asoc.2021.107302_b50
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.01.044
– volume: 43
  start-page: 1990
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2021.107302_b31
  article-title: Feature-selected tree-based classification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2237394
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2021.107302_b40
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.857610
– volume: 47
  start-page: 1496
  issue: 6
  year: 2017
  ident: 10.1016/j.asoc.2021.107302_b26
  article-title: A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2549639
– volume: 274
  start-page: 978
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2021.107302_b3
  article-title: Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2018.10.051
– volume: 181
  year: 2019
  ident: 10.1016/j.asoc.2021.107302_b9
  article-title: Logistic local hyperplane-relief: A feature weighting method for classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.04.011
– volume: 26
  start-page: 1424
  issue: 11
  year: 2004
  ident: 10.1016/j.asoc.2021.107302_b13
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.105
– year: 1995
  ident: 10.1016/j.asoc.2021.107302_b57
– volume: 46
  start-page: 499
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2021.107302_b35
  article-title: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2404806
– volume: 64
  start-page: 22
  year: 2014
  ident: 10.1016/j.asoc.2021.107302_b22
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.03.015
– start-page: 977
  year: 2011
  ident: 10.1016/j.asoc.2021.107302_b62
  article-title: Nonparametric statistical inference
– volume: 163
  start-page: 450
  year: 2019
  ident: 10.1016/j.asoc.2021.107302_b8
  article-title: Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.09.004
– volume: 523
  start-page: 245
  year: 2020
  ident: 10.1016/j.asoc.2021.107302_b34
  article-title: Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.03.032
– volume: 47
  start-page: 4356
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2021.107302_b2
  article-title: Feature selection through message passing
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2609408
– ident: 10.1016/j.asoc.2021.107302_b30
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2021.107302_b12
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 20
  start-page: 3927
  issue: 10
  year: 2016
  ident: 10.1016/j.asoc.2021.107302_b46
  article-title: New mechanism for archive maintenance in PSO-based multi-objective feature selection
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2128-8
– ident: 10.1016/j.asoc.2021.107302_b20
  doi: 10.1109/ICSMC.1997.637339
– volume: 22
  start-page: 811
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2021.107302_b39
  article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2385-6
– volume: 3
  start-page: 1157
  issue: Mar.
  year: 2003
  ident: 10.1016/j.asoc.2021.107302_b1
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 43
  start-page: 1656
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2021.107302_b45
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2227469
– volume: 149
  year: 2020
  ident: 10.1016/j.asoc.2021.107302_b11
  article-title: Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106852
– volume: 20
  start-page: 606
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2021.107302_b4
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504420
– volume: 75
  start-page: 323
  year: 2019
  ident: 10.1016/j.asoc.2021.107302_b32
  article-title: GA-SVM based feature selection and parameter optimization in hospitalization expense modeling
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.001
– volume: 45
  start-page: 191
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2021.107302_b38
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2322602
– volume: 113
  start-page: 499
  year: 2018
  ident: 10.1016/j.asoc.2021.107302_b47
  article-title: Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.013
SSID ssj0016928
Score 2.6117775
Snippet Feature selection (FS) is an important preprocessing technique for dimensionality reduction in classification problems. Particle swarm optimization (PSO)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107302
SubjectTerms Classification
Feature selection
Initialization
Particle swarm optimization
Title Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
URI https://dx.doi.org/10.1016/j.asoc.2021.107302
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSgMxMBS9ePEt1kfJwZusTZpkN3ssxVIfFFELvS15FSrttrQVb_rrTnazRUF68LRsMgNhZjKPMA-ErmKrFLXEe27JCAIUIiOtYhWlRPMklSy2tuj22Y97A34_FMMa6lS1MD6tMuj-UqcX2jqsNAM1m_PxuPkCkYfkKY9bvotoS_iCX84TL-U3n-s0DxqnxXxVDxx56FA4U-Z4KaAAxIgtCgsg6q2_jdMPg9PdR7vBU8Tt8jAHqObyQ7RXTWHA4VIeoa_yXcBZrIvaWjwP58fLD7WY4hkohWmotsTgouKRK5p54mUxAsev-sdYDP41HvtUIjWpoFVucXkVMCge4_DCN3ottparqsfEMRp0b187vSiMVYgMI2QVKcqFVY5qLahjKWXUKSockVxLIymxwgkLRkrwxEknwUFhdpRqM2IsSQ1R7ARt5bPcnSKcMNgmyhomgLTSKG40MN1ZGhMI2Xkd0YqemQk9x_3oi0lWJZe9ZZ4HmedBVvKgjq7XOPOy48ZGaFGxKfslNxmYhA14Z__EO0c7_q9M2L1AW6vFu7sEt2SlG4XcNdB2u_P8-OS_dw-9_jfm0uWm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gHPTi2_i2B29mQ0u3S_dojAQFuQgJt01fJBheAYxH_7rT3S7RxHjw2naS3Zl2Hu3MNwC3iVWKWeo9t-YIAxQqI60SFaVUx81U8sTaHO2zl7QH8fNQDCvwUNbC-LTKoPsLnZ5r6zBSD9ysL8bj-itGHjJO46ThUUQbQm5BzaNTiSrU7p867d7mMSFJ8xarfn3kCULtTJHmpZAJGCY2GA7gbm_8bp--2ZzWPuwGZ5HcF99zABU3O4S9shEDCefyCD6LqwFnic7La8ki_AJZfajllMxRL0xDwSVBL5WMXI7nSVZ5Fxw_6u9jCbrYZOyzidSkXK1mlhSngaDuMY4sPdZrPrValzATxzBoPfYf2lHorBAZTuk6UiwWVjmmtWCOp4wzp5hwVMZaGsmoFU5YtFPITiedRB-F21GqzYjzZmqo4idQnc1n7hRIk-M0VdZwgayVRsVGo9ydZQnFqD0-A1byMzMBdtx3v5hkZX7ZW-ZlkHkZZIUMzuBuQ7MoQDf-XC1KMWU_tk6GVuEPuvN_0t3Adrv_0s26T73OBez4mSJ_9xKq6-W7u0IvZa2vwy78ApNM5sI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+binary+particle+swarm+optimization+for+feature+selection+with+new+initialization+and+search+space+reduction+strategies&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+An-Da&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2021-07-01&rft.issn=1568-4946&rft.volume=106&rft.spage=107302&rft_id=info:doi/10.1016%2Fj.asoc.2021.107302&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon