An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces
•An efficient multi-scale CNN(MS-CNN) model has been proposed with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces.•Muti-scale convolution block (MSCB) has been designed which can extract the distinguishable features of several non-overlapping c...
Saved in:
Published in | Biomedical signal processing and control Vol. 74; p. 103496 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2022.103496 |
Cover
Loading…
Abstract | •An efficient multi-scale CNN(MS-CNN) model has been proposed with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces.•Muti-scale convolution block (MSCB) has been designed which can extract the distinguishable features of several non-overlapping canonical frequency bands of EEG signal from multiple scales, and enhance the overall model performance.•It is found that, proposed model records mean average accuracy of 93.74% which is 9.4% average increase (up to 18.1% in subject specific case) compared to the state-of-the art models in BCI competition IV2b dataset.
Electroencephalogram (EEG) based motor imagery (MI) classification is an important aspect in brain-machine interfaces (BMIs) which bridges between neural system and computer devices decoding brain signals into recognizable machine commands. However, the MI classification task is challenging due to inherent complex properties, inter-subject variability, and low signal-to-noise ratio (SNR) of EEG signals. To overcome the above-mentioned issues, the current work proposes an efficient multi-scale convolutional neural network (MS-CNN) which can extract the distinguishable features of several non-overlapping canonical frequency bands of EEG signals from multiple scales for MI-BCI classification.
In the framework, discriminant user-specific features have been extracted and integrated to improve the accuracy and performance of the CNN classifier. Additionally, different data augmentation methods have been implemented to further improve the accuracy and robustness of the model.
The model achieves an average classification accuracy of 93.74% and Cohen’s kappa-coefficient of 0.92 on the BCI competition IV2b dataset outperforming several baseline and current state-of-the-art EEG-based MI classification models.
The proposed algorithm effectively addresses the shortcoming of existing CNN-based EEG-MI classification models and significantly improves the classification accuracy. The current framework can provide a stimulus for designing efficient and robust real-time human-robot interaction. |
---|---|
AbstractList | •An efficient multi-scale CNN(MS-CNN) model has been proposed with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces.•Muti-scale convolution block (MSCB) has been designed which can extract the distinguishable features of several non-overlapping canonical frequency bands of EEG signal from multiple scales, and enhance the overall model performance.•It is found that, proposed model records mean average accuracy of 93.74% which is 9.4% average increase (up to 18.1% in subject specific case) compared to the state-of-the art models in BCI competition IV2b dataset.
Electroencephalogram (EEG) based motor imagery (MI) classification is an important aspect in brain-machine interfaces (BMIs) which bridges between neural system and computer devices decoding brain signals into recognizable machine commands. However, the MI classification task is challenging due to inherent complex properties, inter-subject variability, and low signal-to-noise ratio (SNR) of EEG signals. To overcome the above-mentioned issues, the current work proposes an efficient multi-scale convolutional neural network (MS-CNN) which can extract the distinguishable features of several non-overlapping canonical frequency bands of EEG signals from multiple scales for MI-BCI classification.
In the framework, discriminant user-specific features have been extracted and integrated to improve the accuracy and performance of the CNN classifier. Additionally, different data augmentation methods have been implemented to further improve the accuracy and robustness of the model.
The model achieves an average classification accuracy of 93.74% and Cohen’s kappa-coefficient of 0.92 on the BCI competition IV2b dataset outperforming several baseline and current state-of-the-art EEG-based MI classification models.
The proposed algorithm effectively addresses the shortcoming of existing CNN-based EEG-MI classification models and significantly improves the classification accuracy. The current framework can provide a stimulus for designing efficient and robust real-time human-robot interaction. |
ArticleNumber | 103496 |
Author | Roy, Arunabha M. |
Author_xml | – sequence: 1 givenname: Arunabha M. surname: Roy fullname: Roy, Arunabha M. email: arunabhr.umich@gmail.com organization: University of Michigan, Aerospace Engineering, Ann Arbor, MI 48109, USA |
BookMark | eNp9kEtOAzEMQCNUJMrnAqxygSnJ_BokNlVVChKCDayjjMcprqYZlKQgLsGZyTCwYdGNY1l-jv1O2cT1Dhm7lGImhayvtrMmvMEsF3meCkV5XR-xqZyXdaakUJO_XFyXJ-w0hK0QpZrLcsq-Fo6jtQSELvLdvouUBTAd8uXjI9_1LXb8g-IrJxc9uUDALZq49zhUcONNpN5x2_vUHFOkndmg_-Sr1ZqHfbNFiBw6EwKlT8Zmcrzxhly2M_BKbpzkrQEM5-zYmi7gxe97xl5uV8_Lu-zhaX2_XDxkUAgRMyOaQs0raKEuizYvENq6hSQCsZSVkqCExAbnucVKWgWNspWom1yJ2jatkcUZU-Nc8H0IHq0Gij_bxbRZp6XQg1e91YNXPXjVo9eE5v_QN5-O9p-HoZsRwnTUO6HXYTAO2JJPhnTb0yH8G5R-l4M |
CitedBy_id | crossref_primary_10_1016_j_robot_2024_104899 crossref_primary_10_1016_j_bspc_2024_106333 crossref_primary_10_1016_j_asoc_2024_111771 crossref_primary_10_1111_exsy_13530 crossref_primary_10_1109_TNSRE_2023_3241241 crossref_primary_10_3390_app12052598 crossref_primary_10_1016_j_compbiomed_2023_107323 crossref_primary_10_3390_healthcare10101812 crossref_primary_10_1016_j_bspc_2025_107530 crossref_primary_10_1016_j_engappai_2022_105267 crossref_primary_10_3934_math_2024805 crossref_primary_10_1016_j_jneumeth_2023_109953 crossref_primary_10_1371_journal_pone_0311942 crossref_primary_10_3390_bios14040183 crossref_primary_10_3389_fnbot_2024_1485640 crossref_primary_10_1109_ACCESS_2023_3285236 crossref_primary_10_1080_10255842_2023_2298362 crossref_primary_10_3390_ai3020016 crossref_primary_10_1016_j_engappai_2022_105258 crossref_primary_10_1371_journal_pone_0309706 crossref_primary_10_1088_1741_2552_acf7f4 crossref_primary_10_1016_j_engappai_2022_105772 crossref_primary_10_1080_10255842_2023_2298369 crossref_primary_10_1016_j_compbiomed_2024_109534 crossref_primary_10_1080_10447318_2022_2139877 crossref_primary_10_3389_fnins_2022_1097660 crossref_primary_10_1016_j_engappai_2024_107913 crossref_primary_10_1088_1361_6501_adb5a8 crossref_primary_10_1080_09540091_2024_2426812 crossref_primary_10_1088_1741_2552_ac7257 crossref_primary_10_1016_j_neunet_2023_03_014 crossref_primary_10_1016_j_bspc_2023_105690 crossref_primary_10_3390_app12168052 crossref_primary_10_1016_j_measurement_2024_114157 crossref_primary_10_1109_TNSRE_2022_3229330 crossref_primary_10_1007_s11571_024_10127_8 crossref_primary_10_1371_journal_pone_0299271 crossref_primary_10_1016_j_knosys_2024_112270 crossref_primary_10_1016_j_bspc_2025_107706 crossref_primary_10_1016_j_rcim_2023_102610 crossref_primary_10_1109_ACCESS_2023_3299497 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_1364_BOE_516063 crossref_primary_10_3390_bioengineering12010025 crossref_primary_10_1109_TNSRE_2022_3230250 crossref_primary_10_3390_ma17153685 crossref_primary_10_1016_j_engappai_2023_106049 crossref_primary_10_1007_s11571_024_10160_7 crossref_primary_10_1016_j_engappai_2022_105234 crossref_primary_10_1109_TNSRE_2022_3199363 crossref_primary_10_1016_j_ecoinf_2022_101919 crossref_primary_10_1016_j_engappai_2022_105112 crossref_primary_10_1016_j_jmps_2024_105570 crossref_primary_10_1080_10255842_2024_2404541 crossref_primary_10_1007_s10846_023_01988_y crossref_primary_10_1016_j_brainres_2025_149484 crossref_primary_10_1109_TNSRE_2023_3329059 crossref_primary_10_4015_S1016237224500388 crossref_primary_10_1088_1741_2552_acbb2c crossref_primary_10_1016_j_aej_2023_06_008 crossref_primary_10_3390_bios13100930 crossref_primary_10_1109_ACCESS_2024_3459866 crossref_primary_10_3390_sym14101976 crossref_primary_10_1007_s11042_023_15664_8 crossref_primary_10_1016_j_eswa_2024_125303 crossref_primary_10_1016_j_engappai_2022_105347 crossref_primary_10_1016_j_compag_2022_106694 crossref_primary_10_1109_JSEN_2024_3468951 crossref_primary_10_1109_TGRS_2024_3395438 crossref_primary_10_1016_j_neucom_2024_128902 crossref_primary_10_1088_1741_2552_ac93b4 crossref_primary_10_1109_ACCESS_2024_3371904 crossref_primary_10_1109_JBHI_2024_3411646 crossref_primary_10_3390_s24237690 crossref_primary_10_1007_s11277_023_10326_2 crossref_primary_10_1016_j_aej_2024_11_056 crossref_primary_10_1016_j_engappai_2022_105072 crossref_primary_10_1080_10255842_2023_2187662 crossref_primary_10_3390_drones7020081 crossref_primary_10_32604_cmc_2024_049186 crossref_primary_10_1016_j_bspc_2024_107163 crossref_primary_10_1007_s11571_023_09966_8 crossref_primary_10_4015_S1016237224500327 crossref_primary_10_2298_CSIS221222033H crossref_primary_10_1016_j_engappai_2023_105858 crossref_primary_10_3390_math13030398 crossref_primary_10_1038_s41598_024_71536_7 crossref_primary_10_1109_JBHI_2022_3230793 crossref_primary_10_1088_1741_2552_ad5405 crossref_primary_10_1016_j_compbiomed_2023_106734 crossref_primary_10_1109_JBHI_2022_3185587 crossref_primary_10_1088_2057_1976_ad3647 crossref_primary_10_1016_j_aej_2025_02_001 crossref_primary_10_1016_j_dib_2023_109540 crossref_primary_10_1016_j_fbio_2025_106281 crossref_primary_10_1109_JSEN_2024_3389685 crossref_primary_10_1016_j_aei_2023_102007 crossref_primary_10_1109_JBHI_2023_3329742 crossref_primary_10_3390_bdcc7020097 crossref_primary_10_3390_e25030464 crossref_primary_10_1371_journal_pone_0313261 crossref_primary_10_3390_pr11051429 crossref_primary_10_3390_app12146881 |
Cites_doi | 10.1002/hbm.23730 10.1109/TNSRE.2016.2601240 10.1016/j.neuroimage.2005.12.003 10.1016/j.neunet.2020.12.013 10.1109/JPROC.2015.2404941 10.1016/j.bspc.2021.102595 10.1016/j.eswa.2019.01.080 10.1007/s00521-021-06202-4 10.1038/s41593-020-0608-8 10.1016/j.eswa.2018.08.031 10.1016/j.neucom.2014.07.077 10.1109/ACCESS.2018.2889093 10.1016/j.eswa.2020.113285 10.1109/ICPR48806.2021.9412812 10.1016/j.jneumeth.2016.10.008 10.1016/j.bspc.2021.103101 10.1016/j.neucom.2011.04.029 10.1007/s11517-008-0345-8 10.3389/fnins.2012.00055 10.1186/1471-2202-11-S1-P127 10.1016/j.ijpsycho.2016.11.002 10.3390/ai2030026 10.1016/j.neucom.2020.03.048 10.1016/j.compag.2022.106694 10.1016/j.compbiomed.2016.03.004 10.1016/j.jneumeth.2019.05.011 10.1109/TBME.2015.2402283 10.3390/app7040390 10.1016/j.bspc.2020.101877 10.1038/s41593-020-00744-x 10.1016/j.bspc.2020.102020 10.3389/fnins.2014.00229 10.1088/1741-2560/14/1/016003 10.1016/j.bspc.2018.12.027 10.1016/j.bspc.2017.11.014 10.1142/S0129065716500398 10.1186/1743-0003-9-5 10.3389/fnins.2019.00210 10.1080/03772063.2021.1914204 10.1016/j.bspc.2021.103130 10.3389/fnins.2018.00680 10.1016/j.neuroimage.2016.01.005 10.1016/j.compbiomed.2019.02.009 10.1088/1741-2560/10/4/046003 10.1109/ACCESS.2019.2930958 10.1016/j.bspc.2020.102144 10.1016/j.cmpb.2018.04.012 10.1109/TNNLS.2019.2946869 10.1088/1741-2560/9/2/026020 10.3390/brainsci6030036 10.1088/1741-2552/ab405f 10.1007/s40846-018-0379-9 10.1038/nature14539 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2022.103496 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2022_103496 S1746809422000180 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-a0b3875cdc643d23ecd6dc016ee41581c801ebe72fe51f8cb8f506b2806fbda13 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:13 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 Fri Feb 23 02:40:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Motor imagery (MI) Feature extraction Electroencephalogram (EEG) Convolutional neural network (CNN) Signal classification Brain-computer interfaces (BCIs) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-a0b3875cdc643d23ecd6dc016ee41581c801ebe72fe51f8cb8f506b2806fbda13 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2022_103496 crossref_primary_10_1016_j_bspc_2022_103496 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Donoghue, Haller, Peterson, Varma, Sebastian, Gao, Noto, Lara, Wallis, Knight, Shestyuk (b0210) 2020; 23 Yu, Xiao, Wang, Zhang, Gu, Cichocki, Li (b0060) 2015; 62 Tangermann, Múller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz (b0175) 2012; 6 Kwon, Lee, Guan, Lee (b0335) 2019; 31 LaFleur, Cassady, Doud, Shades, Rogin, He (b0035) 2013; 10 Roy, Bose, Bhaduri (b9000) 2022 Sharma, Kim, Gupta (b0015) 2022; 71 NeuroDSP (2021) neurodsp-tools.github.io (https://neurodsp-tools.github.io/neurodsp). Saa, Çetin (b0085) 2012; 9 Kawasaki, Yoshikawa, Furuhashi (b0405) 2015 Huang, Tian, Lan, Hao, Cheng, Peng, Che (b0095) 2019; 13 Xu, Zhang, Song, Wu, Li, Zhang, Xu, Li, Zeng (b0130) 2018; 7 Makin, Moses, Chang (b0045) 2020; 23 Luo, Feng, Zhang, Lu (b0075) 2016; 75 FOOOF: foof-tools.github.io/foof/(https://fooof-tools.github.io/fooof/). Leeb R, Brunner C, MÃijller-PutzR G [Online]. Available: http://www.bbci.de/competition/iv/, Accessed on: March. 6, 2021. Sturm, Lapuschkin, Samek, Müller (b0100) 2016; 274 Antoniades, Spyrou, Took, Sanei (b0385) 2016 Sun, Lo, Lo (b0120) 2019; 125 Fawzi, Samulowitz, Turaga, Frossard (b0270) 2016 Wang, Dong, Chen, Shi (b0025) 2015 Dagdevir, Tokmakci (b0185) 2021 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b0105) 2017; 38 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0140) 2016; 15 Nour, Öztürk, Polat (b0155) 2021 LeCun, Bengio, Hinton (b0190) 2015; 521 Vuckovic, Sepulveda (b0215) 2008; 46 Ang, Chin, Zhang, Guan (b0090) 2008 Xu, Shen, Chen, Zong, Zhang, Yue, Liu, Chen, Che (b0145) 2019; 7 Zhang, Zong, Dou, Zhao, Tang, Li (b0350) 2021; 63 Rajendra Acharya, Shu Lih, Hagiwara, Tan, Adeli, Puthankail, Subha (b0380) 2018; 161 Liu, Shore, Wang, Yuan, Buss, Zhao (b0005) 2021; 68 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention is all you need. In Advances in neural information processing systems (pp. 5998–6008). Adam Page, Turner, Oates (b0370) 2014 Hossain, Amin, Alsulaiman, Muhammad (b0040) 2019 Klem, Lüders, Jasper, Elger (b0170) 1999; 52 Turner, Page, Mohsenin, Oates (b0375) 2014 Sreeja, Rabha, Nagarjuna, Samanta, Mitra, Sarma (b0260) 2017 Roy, Bhaduri (b9005) 2022; 193 Reza, Borhani, Sellers, Jiang, Zhao (b0220) 2019; 16 Li, Zhang, Khan, Mi (b0315) 2018; 41 Roy, Bhaduri (b0195) 2021; 2 Zhu, Li, Li, Yao, Zhang, Xu (b0125) 2019; 49 Tang, Li, Li, Ma, Dang (b0150) 2020; 149 Álvarez-Meza, Velásquez-Martínez, Castellanos-Dominguez (b0330) 2015; 151 Dornhege, Millán, Hinterberger, McFarland, Müller (b0310) 2007 Malan, Sharma (b0225) 2019; 107 Xing, Qiu, Ma, Wu, Li, Wang, He (b0050) 2020; 403 Suk, Wee, Lee, Shen (b0400) 2016; 129 Guennec, Malinowski, Tavenard (b0280) 2016 Francesco Carlo Morabito, Maurizio Campolo, Nadia Mammone, Mario Versaci, Silvana Francesche.i, Fabrizio Tagliavini, Vito Sofia, Daniela Fatuzzo, Antonio Gambardella, Angelo Labate, and others. 2017. Deep learning representation from electroencephalography of Early-Stage Creutzfeldt-Jakob disease and features for di.erentiation from rapidly progressive dementia. International journal of neural systems 27, 02 (2017), 1650039. Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0255) 2015 Dai, Zhou, Huang, Wang (b0160) 2020; 17 Wang, Zhong, Peng, Jiang, Liu (b0265) 2018 PyEEG (2021) https:// Pyeeg.sourceforge.net. Luo, Wang, Xu, Xu (b0320) 2019; 323 Djemal, Bazyed, Belwafi, Gannouni, Kaaniche (b0235) 2016; 6 Lotte (b0275) 2015; 103 Pan, Mi, Lei, Deng (b0010) 2020; 58 B.K. Iwana, S. Uchida, Time series data augmentation for neural networks by time warping with a discriminative teacher. In 2020 25th International Conference on Pattern Recognition (ICPR), 2021. pp. 3558–3565. Bashivan, Yeasin, Bidelman (b0410) 2015 Li, Zhu, Liu, Yang (b0080) 2017; 7 Dose, Møller, Iversen, Puthusserypady (b0115) 2018; 114 Sergey M Plis, Devon R Hjelm, Ruslan Salakhutdinov, Elena A Allen, Henry J Bockholt, Je.rey D Long, Hans J Johnson, Jane S Paulsen, Jessica A Turner, and Vince D Calhoun. 2014. Deep learning for neuroimaging: a validation study. Frontiers in neuroscience 8 (2014), 229. Lu, Li, Ren, Miao (b0135) 2017; 25 Tabar, Halici (b0070) 2017; 14 Liu, Lin, Chou, Chang, Hsiao, Hsu (b0240) 2019; 39 Gandhi, Panigrahi, Anand (b0065) 2011; 74 Zhang, Sun, Chen (b0020) 2022; 71 Zhao, He (b0365) 2014 Shahid, Sinha, Prasad (b0230) 2010; 11 Jia, Li, Li, Zhang (b0345) 2014 Chu, Zhao, Zou, Xu, Han, Zhao (b0110) 2018; 12 Zhang, Robinson, Lee, Guan (b0340) 2021; 136 Leeb, Brunner, Müller-Putz, Schlögl, Pfurtscheller (b0180) 2008 Pfurtscheller, Brunner, Schlogl, Lopes da Silva (b0055) 2006; 31 Ruffini, Ibanez, Castellano, Dunne, Soria-Frisch (b0360) 2016 Liao, Chen, Wang, Chen, Li, Chen, Chang, Lin (b0030) 2012; 9 MNE v0.23 (2021) https://mne.tools/. Bagh, Reddy (b0325) 2020; 62 Szegedy, Ioffe, Vanhoucke, Alemi (b0250) 2017 Weber, Doppelmayr (b0245) 2016; 110 Zhang, Yao, Sheng, Kanhere, Gu, Zhang (b0205) 2018 Reza (10.1016/j.bspc.2022.103496_b0220) 2019; 16 Xu (10.1016/j.bspc.2022.103496_b0130) 2018; 7 Dose (10.1016/j.bspc.2022.103496_b0115) 2018; 114 Sharma (10.1016/j.bspc.2022.103496_b0015) 2022; 71 Zhao (10.1016/j.bspc.2022.103496_b0365) 2014 Zhang (10.1016/j.bspc.2022.103496_b0020) 2022; 71 Malan (10.1016/j.bspc.2022.103496_b0225) 2019; 107 Li (10.1016/j.bspc.2022.103496_b0315) 2018; 41 Antoniades (10.1016/j.bspc.2022.103496_b0385) 2016 Hossain (10.1016/j.bspc.2022.103496_b0040) 2019 Ang (10.1016/j.bspc.2022.103496_b0090) 2008 Xu (10.1016/j.bspc.2022.103496_b0145) 2019; 7 Klem (10.1016/j.bspc.2022.103496_b0170) 1999; 52 Nour (10.1016/j.bspc.2022.103496_b0155) 2021 10.1016/j.bspc.2022.103496_b0300 Szegedy (10.1016/j.bspc.2022.103496_b0250) 2017 Álvarez-Meza (10.1016/j.bspc.2022.103496_b0330) 2015; 151 Zhang (10.1016/j.bspc.2022.103496_b0350) 2021; 63 Pan (10.1016/j.bspc.2022.103496_b0010) 2020; 58 Kawasaki (10.1016/j.bspc.2022.103496_b0405) 2015 10.1016/j.bspc.2022.103496_b0305 Sturm (10.1016/j.bspc.2022.103496_b0100) 2016; 274 Roy (10.1016/j.bspc.2022.103496_b9000) 2022 Lotte (10.1016/j.bspc.2022.103496_b0275) 2015; 103 Gandhi (10.1016/j.bspc.2022.103496_b0065) 2011; 74 Ruffini (10.1016/j.bspc.2022.103496_b0360) 2016 Rajendra Acharya (10.1016/j.bspc.2022.103496_b0380) 2018; 161 Wang (10.1016/j.bspc.2022.103496_b0025) 2015 Vuckovic (10.1016/j.bspc.2022.103496_b0215) 2008; 46 Saa (10.1016/j.bspc.2022.103496_b0085) 2012; 9 Lu (10.1016/j.bspc.2022.103496_b0135) 2017; 25 Lawhern (10.1016/j.bspc.2022.103496_b0140) 2016; 15 Liu (10.1016/j.bspc.2022.103496_b0005) 2021; 68 Sun (10.1016/j.bspc.2022.103496_b0120) 2019; 125 Guennec (10.1016/j.bspc.2022.103496_b0280) 2016 Dornhege (10.1016/j.bspc.2022.103496_b0310) 2007 Donoghue (10.1016/j.bspc.2022.103496_b0210) 2020; 23 10.1016/j.bspc.2022.103496_b0295 Huang (10.1016/j.bspc.2022.103496_b0095) 2019; 13 Roy (10.1016/j.bspc.2022.103496_b9005) 2022; 193 Li (10.1016/j.bspc.2022.103496_b0080) 2017; 7 LeCun (10.1016/j.bspc.2022.103496_b0190) 2015; 521 Yu (10.1016/j.bspc.2022.103496_b0060) 2015; 62 Wang (10.1016/j.bspc.2022.103496_b0265) 2018 Adam Page (10.1016/j.bspc.2022.103496_b0370) 2014 Luo (10.1016/j.bspc.2022.103496_b0320) 2019; 323 Bashivan (10.1016/j.bspc.2022.103496_b0410) 2015 Schirrmeister (10.1016/j.bspc.2022.103496_b0105) 2017; 38 Xing (10.1016/j.bspc.2022.103496_b0050) 2020; 403 Tang (10.1016/j.bspc.2022.103496_b0150) 2020; 149 Jia (10.1016/j.bspc.2022.103496_b0345) 2014 Fawzi (10.1016/j.bspc.2022.103496_b0270) 2016 10.1016/j.bspc.2022.103496_b0290 Turner (10.1016/j.bspc.2022.103496_b0375) 2014 Chu (10.1016/j.bspc.2022.103496_b0110) 2018; 12 Sreeja (10.1016/j.bspc.2022.103496_b0260) 2017 Kwon (10.1016/j.bspc.2022.103496_b0335) 2019; 31 Tangermann (10.1016/j.bspc.2022.103496_b0175) 2012; 6 10.1016/j.bspc.2022.103496_b0285 Makin (10.1016/j.bspc.2022.103496_b0045) 2020; 23 Szegedy (10.1016/j.bspc.2022.103496_b0255) 2015 10.1016/j.bspc.2022.103496_b0165 Zhang (10.1016/j.bspc.2022.103496_b0340) 2021; 136 Roy (10.1016/j.bspc.2022.103496_b0195) 2021; 2 Zhang (10.1016/j.bspc.2022.103496_b0205) 2018 Zhu (10.1016/j.bspc.2022.103496_b0125) 2019; 49 Luo (10.1016/j.bspc.2022.103496_b0075) 2016; 75 Leeb (10.1016/j.bspc.2022.103496_b0180) 2008 Djemal (10.1016/j.bspc.2022.103496_b0235) 2016; 6 Tabar (10.1016/j.bspc.2022.103496_b0070) 2017; 14 Dai (10.1016/j.bspc.2022.103496_b0160) 2020; 17 LaFleur (10.1016/j.bspc.2022.103496_b0035) 2013; 10 Pfurtscheller (10.1016/j.bspc.2022.103496_b0055) 2006; 31 Dagdevir (10.1016/j.bspc.2022.103496_b0185) 2021 10.1016/j.bspc.2022.103496_b0390 Liao (10.1016/j.bspc.2022.103496_b0030) 2012; 9 10.1016/j.bspc.2022.103496_b0395 Liu (10.1016/j.bspc.2022.103496_b0240) 2019; 39 Bagh (10.1016/j.bspc.2022.103496_b0325) 2020; 62 10.1016/j.bspc.2022.103496_b0355 Shahid (10.1016/j.bspc.2022.103496_b0230) 2010; 11 Suk (10.1016/j.bspc.2022.103496_b0400) 2016; 129 Weber (10.1016/j.bspc.2022.103496_b0245) 2016; 110 |
References_xml | – volume: 193 start-page: 1 year: 2022 end-page: 14 ident: b9005 article-title: Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4 publication-title: Computers and Electronics in Agriculture – volume: 403 start-page: 452 year: 2020 end-page: 461 ident: b0050 article-title: A CNN-based comparing network for the detection of steady-state visual evoked potential responses publication-title: Neurocomputing – reference: Leeb R, Brunner C, MÃijller-PutzR G [Online]. Available: http://www.bbci.de/competition/iv/, Accessed on: March. 6, 2021. – volume: 46 start-page: 529 year: 2008 end-page: 539 ident: b0215 article-title: Delta band contribution in cue based single trial classification of real and imaginary wrist movements publication-title: Medical Biological Engineering Computing – volume: 74 start-page: 3051 year: 2011 end-page: 3057 ident: b0065 article-title: A comparative study of wavelet families for EEG signal classification publication-title: Neurocomputing – volume: 103 start-page: 871 year: 2015 end-page: 890 ident: b0275 article-title: Signal Processing Approaches to Minimize or Suppress Calibration Time in Oscillatory Activity-Based Brain Computer Interfaces publication-title: Proceedings of the IEEE – volume: 2 start-page: 413 year: 2021 end-page: 428 ident: b0195 article-title: A Deep Learning Enabled Multi-Class Plant Disease Detection Model Based on Computer Vision publication-title: AI – volume: 14 year: 2017 ident: b0070 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: Journal of Neural Engineering – volume: 16 year: 2019 ident: b0220 article-title: A comprehensive review of EEG-based brain-computer interface paradigms publication-title: Journal of Neural Engineering – year: 2007 ident: b0310 article-title: Toward brain-computer interfacing – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0190 article-title: Deep learning publication-title: Nature – volume: 6 start-page: 36 year: 2016 ident: b0235 article-title: Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique publication-title: Brain Sciences – volume: 149 year: 2020 ident: b0150 article-title: Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network publication-title: Expert Systems with Applications – start-page: 1 year: 2015 end-page: 5 ident: b0410 article-title: Single trial prediction of normal and excessive cognitive load through EEG feature fusion publication-title: Signal Processing in Medicine and Biology Symposium (SPMB) 2015 IEEE – start-page: 1 year: 2022 end-page: 27 ident: b9000 article-title: A fast accurate fine-grain object detection model based on YOLOv4 deep neural network publication-title: Neural Computing and Applications – start-page: 3688 year: 2016 end-page: 3692 ident: b0270 article-title: Adaptive data augmentation for image classification publication-title: IEEE International Conference on Image Processing – volume: 25 start-page: 566 year: 2017 end-page: 576 ident: b0135 article-title: A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 11 start-page: 127 year: 2010 ident: b0230 article-title: Mu and beta rhythm modulations in motor imagery related post-stroke EEG: a study under BCI framework for post-stroke rehabilitation publication-title: BMC Neuroscience – start-page: 1 year: 2018 end-page: 10 ident: b0205 article-title: Converting your thoughts to texts: Enabling brain typing via deep feature learning of EEG signals publication-title: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom) – volume: 31 start-page: 153 year: 2006 end-page: 159 ident: b0055 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: Neuroimage – volume: 63 year: 2021 ident: b0350 article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding publication-title: Biomedical Signal Processing and Control – volume: 58 year: 2020 ident: b0010 article-title: A closed-loop brain-machine interface framework design for motor rehabilitation publication-title: Biomedical Signal Processing and Control – volume: 12 start-page: 680 year: 2018 ident: b0110 article-title: A decoding scheme for incomplete motor imagery EEG with deep belief network publication-title: Frontiers in Neuroscience – volume: 9 start-page: 5 year: 2012 ident: b0030 article-title: Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors publication-title: Journal of Neuroengineering and Rehabilitation – year: 2014 ident: b0375 article-title: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection publication-title: 2014 AAAI Spring Symposium Series – reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention is all you need. In Advances in neural information processing systems (pp. 5998–6008). – volume: 274 start-page: 141 year: 2016 end-page: 145 ident: b0100 article-title: Interpretable deep neural networks for single-trial EEG classification publication-title: Journal of Neuroscience Methods – volume: 52 start-page: 3 year: 1999 end-page: 6 ident: b0170 article-title: The ten-twenty electrode system of the International Federation publication-title: The International Federation of Clinical Neurophysiology Electroencephalogr Clin Neurophysiol Suppl – volume: 110 start-page: 137 year: 2016 end-page: 145 ident: b0245 article-title: Kinesthetic motor imagery training modulates frontal midline theta during imagination of a dart throw publication-title: International Journal of Psychophysiology – start-page: 30 year: 2014 end-page: 37 ident: b0345 article-title: A novel semi-supervised deep learning framework for active state recognition on eeg signals publication-title: In Bioinformatics and Bioengineering (BIBE), 2014 IEEE International Conference on – year: 2021 ident: b0155 article-title: A novel classification framework using multiple bandwidth method with optimized CNN for brain-computer interfaces with EEG-fNIRS signals publication-title: Neural Computing and Applications – reference: FOOOF: foof-tools.github.io/foof/(https://fooof-tools.github.io/fooof/). – volume: 71 year: 2022 ident: b0015 article-title: Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model publication-title: Biomedical Signal Processing and Control – volume: 62 year: 2020 ident: b0325 article-title: Hilbert transform-based event related patterns for motor imagery brain computer interface publication-title: Biomed Signal Process Control – volume: 75 start-page: 45 year: 2016 end-page: 53 ident: b0075 article-title: Dynamic frequency feature selection based approach for classification of motor imageries publication-title: Computers in Biology and Medicine – volume: 7 start-page: 390 year: 2017 ident: b0080 article-title: Adaptive Feature Extraction of Motor Imagery EEG with Optimal Wavelet Packets and SE-Isomap publication-title: Applied Sciences – volume: 129 start-page: 292 year: 2016 end-page: 307 ident: b0400 article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI publication-title: NeuroImage – volume: 136 start-page: 1 year: 2021 end-page: 10 ident: b0340 article-title: Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network publication-title: Neural Networks – year: 2014 ident: b0370 article-title: Comparing Raw Data and Feature Extraction for Seizure Detection with Deep Learning Methods publication-title: FLAIRS Conference – volume: 10 year: 2013 ident: b0035 article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface publication-title: Journal of Neural Engineering – start-page: 1 year: 2008 end-page: 6 ident: b0180 article-title: BCI Competition 2008-Graz data set B – reference: NeuroDSP (2021) neurodsp-tools.github.io (https://neurodsp-tools.github.io/neurodsp). – volume: 9 year: 2012 ident: b0085 article-title: A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data publication-title: Journal of Neural Engineering – start-page: 149 year: 2015 end-page: 154 ident: b0405 article-title: Visualizing extracted feature by deep learning in P300 discrimination task publication-title: Computing and Pattern Recognition (SoCPaR), 2015 7th International Conference of – start-page: 1476 year: 2015 end-page: 1479 ident: b0025 article-title: Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task publication-title: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 161 start-page: 103 year: 2018 end-page: 113 ident: b0380 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Computer methods and programs in biomedicine – year: 2017 ident: b0250 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: Thirty-First AAAI Conference on Artificial Intelligence 4278–4284 – start-page: 1 year: 2016 end-page: 6 ident: b0385 article-title: Deep learning for epileptic intracranial EEG data publication-title: Machine Learning for Signal Processing (MLSP), 2016 IEEE 26th International Workshop on – volume: 125 start-page: 259 year: 2019 end-page: 267 ident: b0120 article-title: EEG-based user identification system using 1D-convolutional long short-term memory neural networks publication-title: Expert Systems with Applications – volume: 23 start-page: 1655 year: 2020 end-page: 1665 ident: b0210 article-title: Parameterizing neural power spectra into periodic and aperiodic components publication-title: Nature Neuroscience – volume: 23 start-page: 575 year: 2020 end-page: 582 ident: b0045 article-title: Machine translation of cortical activity to text with an encoder-decoder framework publication-title: Nature Neuroscience – volume: 17 year: 2020 ident: b0160 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: Journal of Neural Engineering – reference: MNE v0.23 (2021) https://mne.tools/. – reference: Sergey M Plis, Devon R Hjelm, Ruslan Salakhutdinov, Elena A Allen, Henry J Bockholt, Je.rey D Long, Hans J Johnson, Jane S Paulsen, Jessica A Turner, and Vince D Calhoun. 2014. Deep learning for neuroimaging: a validation study. Frontiers in neuroscience 8 (2014), 229. – volume: 71 year: 2022 ident: b0020 article-title: A new dynamically convergent differential neural network for brain signal recognition publication-title: Biomedical Signal Processing and Control – start-page: 61 year: 2017 end-page: 66 ident: b0260 article-title: Motor imagery EEG signal processing and classification using machine learning approach publication-title: 2017 International Conference on New Trends in Computing Sciences (ICTCS) – volume: 323 start-page: 98 year: 2019 end-page: 107 ident: b0320 article-title: Class discrepancy guided sub-band filter-based common spatial pattern for motor imagery classification publication-title: Journal of Neuroscience Methods – volume: 151 start-page: 122 year: 2015 end-page: 129 ident: b0330 article-title: Time-series discrimination using feature relevance analysis in motor imagery classification publication-title: Neurocomputing – volume: 39 start-page: 54 year: 2019 end-page: 69 ident: b0240 article-title: Analysis of Electroencephalography Event-Related Desynchronisation and Synchronisation Induced by Lower-Limb Stepping Motor Imagery publication-title: Journal of Medical and Biological Engineering – volume: 13 start-page: 210 year: 2019 ident: b0095 article-title: A new Pulse Coupled Neural Network (PCNN) for Brain Medical Image Fusion empowered by Shuffled Frog Leaping publication-title: Frontiers in Neuroscience – reference: PyEEG (2021) https:// Pyeeg.sourceforge.net. – volume: 62 start-page: 1706 year: 2015 end-page: 1717 ident: b0060 article-title: Enhanced motor imagery training using a hybrid BCI with feedback publication-title: IEEE Transactions on Biomedical Engineering – reference: B.K. Iwana, S. Uchida, Time series data augmentation for neural networks by time warping with a discriminative teacher. In 2020 25th International Conference on Pattern Recognition (ICPR), 2021. pp. 3558–3565. – volume: 107 start-page: 118 year: 2019 end-page: 126 ident: b0225 article-title: Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals publication-title: Computers in Biology and Medicine – volume: 31 start-page: 3839 year: 2019 end-page: 3852 ident: b0335 article-title: Subject-independent brain computer interfaces based on deep convolutional neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 1 year: 2015 end-page: 9 ident: b0255 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 41 start-page: 222 year: 2018 end-page: 232 ident: b0315 article-title: A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition publication-title: Biomed Signal Process Control – start-page: 2390 year: 2008 end-page: 2397 ident: b0090 article-title: Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface publication-title: 2008 IEEE International Joint Conference on Neural Networks – start-page: 82 year: 2018 end-page: 93 ident: b0265 article-title: Data augmentation for eeg-based emotion recognition with deep convolutional neural networks publication-title: International Conference on Multimedia Modeling – start-page: 1 year: 2019 end-page: 17 ident: b0040 article-title: Applying deep learning for epilepsy seizure detection and brain mapping visualization. ACM Trans Multimedia publication-title: Comput Commun – volume: 49 start-page: 396 year: 2019 end-page: 403 ident: b0125 article-title: Separated channel convolutional neural network to realize the training free motor imagery BCI systems publication-title: Biomed Signal Process Control – volume: 6 start-page: 55 year: 2012 ident: b0175 article-title: Review of the BCI competition IV publication-title: Frontiers in Neuroscience – start-page: 1 year: 2021 end-page: 12 ident: b0185 article-title: Determination of Effective Signal Processing Stages for Brain Computer Interface on BCI Competition IV Data Set 2b: A Review Study publication-title: IETE Journal of Research – start-page: 306 year: 2016 end-page: 313 ident: b0360 article-title: EEG-driven RNN classification for prognosis of neurodegeneration in at-risk patients publication-title: International Conference on Artificial Neural Networks – start-page: 340 year: 2014 end-page: 353 ident: b0365 article-title: Deep learning in the EEG diagnosis of Alzheimers disease publication-title: Asian Conference on Computer Vision – volume: 15 start-page: 5 year: 2016 ident: b0140 article-title: EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces publication-title: Journal of Neural Engineering – year: 2016 ident: b0280 article-title: Data Augmentation for Time Series Classification using Convolutional Neural Networks publication-title: ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Sep 2016, Riva Del Garda, Italy – volume: 114 start-page: 532 year: 2018 end-page: 542 ident: b0115 article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs publication-title: Expert Systems with Applications – volume: 68 year: 2021 ident: b0005 article-title: A systematic review on hybrid EEG/fNIRS in brain-computer interface publication-title: Biomedical Signal Processing and Control – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: b0105 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping – volume: 7 start-page: 6084 year: 2018 end-page: 6093 ident: b0130 article-title: Wavelet trans- form time-frequency image and convolutional network-based motor imagery EEG classification publication-title: IEEE Access – volume: 7 start-page: 112767 year: 2019 end-page: 112776 ident: b0145 article-title: A deep transfer convolutional neural network framework for EEG signal classification publication-title: IEEE Access – reference: Francesco Carlo Morabito, Maurizio Campolo, Nadia Mammone, Mario Versaci, Silvana Francesche.i, Fabrizio Tagliavini, Vito Sofia, Daniela Fatuzzo, Antonio Gambardella, Angelo Labate, and others. 2017. Deep learning representation from electroencephalography of Early-Stage Creutzfeldt-Jakob disease and features for di.erentiation from rapidly progressive dementia. International journal of neural systems 27, 02 (2017), 1650039. – ident: 10.1016/j.bspc.2022.103496_b0355 – volume: 38 start-page: 5391 year: 2017 ident: 10.1016/j.bspc.2022.103496_b0105 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping doi: 10.1002/hbm.23730 – volume: 25 start-page: 566 year: 2017 ident: 10.1016/j.bspc.2022.103496_b0135 article-title: A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2016.2601240 – start-page: 1476 year: 2015 ident: 10.1016/j.bspc.2022.103496_b0025 article-title: Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task – volume: 31 start-page: 153 year: 2006 ident: 10.1016/j.bspc.2022.103496_b0055 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.003 – ident: 10.1016/j.bspc.2022.103496_b0290 – volume: 136 start-page: 1 year: 2021 ident: 10.1016/j.bspc.2022.103496_b0340 article-title: Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network publication-title: Neural Networks doi: 10.1016/j.neunet.2020.12.013 – volume: 16 year: 2019 ident: 10.1016/j.bspc.2022.103496_b0220 article-title: A comprehensive review of EEG-based brain-computer interface paradigms publication-title: Journal of Neural Engineering – volume: 103 start-page: 871 issue: 6 year: 2015 ident: 10.1016/j.bspc.2022.103496_b0275 article-title: Signal Processing Approaches to Minimize or Suppress Calibration Time in Oscillatory Activity-Based Brain Computer Interfaces publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2015.2404941 – volume: 68 year: 2021 ident: 10.1016/j.bspc.2022.103496_b0005 article-title: A systematic review on hybrid EEG/fNIRS in brain-computer interface publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.102595 – volume: 125 start-page: 259 year: 2019 ident: 10.1016/j.bspc.2022.103496_b0120 article-title: EEG-based user identification system using 1D-convolutional long short-term memory neural networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.01.080 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2022.103496_b9000 article-title: A fast accurate fine-grain object detection model based on YOLOv4 deep neural network publication-title: Neural Computing and Applications – year: 2021 ident: 10.1016/j.bspc.2022.103496_b0155 article-title: A novel classification framework using multiple bandwidth method with optimized CNN for brain-computer interfaces with EEG-fNIRS signals publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06202-4 – volume: 23 start-page: 575 issue: 4 year: 2020 ident: 10.1016/j.bspc.2022.103496_b0045 article-title: Machine translation of cortical activity to text with an encoder-decoder framework publication-title: Nature Neuroscience doi: 10.1038/s41593-020-0608-8 – volume: 114 start-page: 532 year: 2018 ident: 10.1016/j.bspc.2022.103496_b0115 article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.031 – year: 2017 ident: 10.1016/j.bspc.2022.103496_b0250 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning – volume: 151 start-page: 122 year: 2015 ident: 10.1016/j.bspc.2022.103496_b0330 article-title: Time-series discrimination using feature relevance analysis in motor imagery classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.077 – volume: 7 start-page: 6084 year: 2018 ident: 10.1016/j.bspc.2022.103496_b0130 article-title: Wavelet trans- form time-frequency image and convolutional network-based motor imagery EEG classification publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2889093 – volume: 149 year: 2020 ident: 10.1016/j.bspc.2022.103496_b0150 article-title: Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113285 – ident: 10.1016/j.bspc.2022.103496_b0285 doi: 10.1109/ICPR48806.2021.9412812 – ident: 10.1016/j.bspc.2022.103496_b0300 – volume: 274 start-page: 141 year: 2016 ident: 10.1016/j.bspc.2022.103496_b0100 article-title: Interpretable deep neural networks for single-trial EEG classification publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2016.10.008 – start-page: 1 year: 2008 ident: 10.1016/j.bspc.2022.103496_b0180 – volume: 71 year: 2022 ident: 10.1016/j.bspc.2022.103496_b0015 article-title: Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.103101 – year: 2016 ident: 10.1016/j.bspc.2022.103496_b0280 article-title: Data Augmentation for Time Series Classification using Convolutional Neural Networks – start-page: 30 year: 2014 ident: 10.1016/j.bspc.2022.103496_b0345 article-title: A novel semi-supervised deep learning framework for active state recognition on eeg signals – volume: 74 start-page: 3051 year: 2011 ident: 10.1016/j.bspc.2022.103496_b0065 article-title: A comparative study of wavelet families for EEG signal classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.04.029 – volume: 46 start-page: 529 issue: 6 year: 2008 ident: 10.1016/j.bspc.2022.103496_b0215 article-title: Delta band contribution in cue based single trial classification of real and imaginary wrist movements publication-title: Medical Biological Engineering Computing doi: 10.1007/s11517-008-0345-8 – volume: 6 start-page: 55 year: 2012 ident: 10.1016/j.bspc.2022.103496_b0175 article-title: Review of the BCI competition IV publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2012.00055 – volume: 11 start-page: 127 year: 2010 ident: 10.1016/j.bspc.2022.103496_b0230 article-title: Mu and beta rhythm modulations in motor imagery related post-stroke EEG: a study under BCI framework for post-stroke rehabilitation publication-title: BMC Neuroscience doi: 10.1186/1471-2202-11-S1-P127 – volume: 110 start-page: 137 year: 2016 ident: 10.1016/j.bspc.2022.103496_b0245 article-title: Kinesthetic motor imagery training modulates frontal midline theta during imagination of a dart throw publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2016.11.002 – volume: 2 start-page: 413 issue: 3 year: 2021 ident: 10.1016/j.bspc.2022.103496_b0195 article-title: A Deep Learning Enabled Multi-Class Plant Disease Detection Model Based on Computer Vision publication-title: AI doi: 10.3390/ai2030026 – volume: 403 start-page: 452 year: 2020 ident: 10.1016/j.bspc.2022.103496_b0050 article-title: A CNN-based comparing network for the detection of steady-state visual evoked potential responses publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.048 – volume: 193 start-page: 1 year: 2022 ident: 10.1016/j.bspc.2022.103496_b9005 article-title: Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2022.106694 – year: 2014 ident: 10.1016/j.bspc.2022.103496_b0370 article-title: Comparing Raw Data and Feature Extraction for Seizure Detection with Deep Learning Methods – volume: 75 start-page: 45 year: 2016 ident: 10.1016/j.bspc.2022.103496_b0075 article-title: Dynamic frequency feature selection based approach for classification of motor imageries publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2016.03.004 – volume: 323 start-page: 98 year: 2019 ident: 10.1016/j.bspc.2022.103496_b0320 article-title: Class discrepancy guided sub-band filter-based common spatial pattern for motor imagery classification publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2019.05.011 – volume: 62 start-page: 1706 issue: 7 year: 2015 ident: 10.1016/j.bspc.2022.103496_b0060 article-title: Enhanced motor imagery training using a hybrid BCI with feedback publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2015.2402283 – volume: 7 start-page: 390 year: 2017 ident: 10.1016/j.bspc.2022.103496_b0080 article-title: Adaptive Feature Extraction of Motor Imagery EEG with Optimal Wavelet Packets and SE-Isomap publication-title: Applied Sciences doi: 10.3390/app7040390 – volume: 58 year: 2020 ident: 10.1016/j.bspc.2022.103496_b0010 article-title: A closed-loop brain-machine interface framework design for motor rehabilitation publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2020.101877 – start-page: 3688 year: 2016 ident: 10.1016/j.bspc.2022.103496_b0270 article-title: Adaptive data augmentation for image classification – volume: 23 start-page: 1655 issue: 12 year: 2020 ident: 10.1016/j.bspc.2022.103496_b0210 article-title: Parameterizing neural power spectra into periodic and aperiodic components publication-title: Nature Neuroscience doi: 10.1038/s41593-020-00744-x – volume: 62 year: 2020 ident: 10.1016/j.bspc.2022.103496_b0325 article-title: Hilbert transform-based event related patterns for motor imagery brain computer interface publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102020 – ident: 10.1016/j.bspc.2022.103496_b0390 doi: 10.3389/fnins.2014.00229 – start-page: 1 year: 2019 ident: 10.1016/j.bspc.2022.103496_b0040 article-title: Applying deep learning for epilepsy seizure detection and brain mapping visualization. ACM Trans Multimedia publication-title: Comput Commun – volume: 14 year: 2017 ident: 10.1016/j.bspc.2022.103496_b0070 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/14/1/016003 – ident: 10.1016/j.bspc.2022.103496_b0305 – volume: 49 start-page: 396 year: 2019 ident: 10.1016/j.bspc.2022.103496_b0125 article-title: Separated channel convolutional neural network to realize the training free motor imagery BCI systems publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.12.027 – volume: 41 start-page: 222 year: 2018 ident: 10.1016/j.bspc.2022.103496_b0315 article-title: A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.11.014 – ident: 10.1016/j.bspc.2022.103496_b0395 doi: 10.1142/S0129065716500398 – start-page: 149 year: 2015 ident: 10.1016/j.bspc.2022.103496_b0405 article-title: Visualizing extracted feature by deep learning in P300 discrimination task – start-page: 1 year: 2015 ident: 10.1016/j.bspc.2022.103496_b0410 article-title: Single trial prediction of normal and excessive cognitive load through EEG feature fusion – volume: 9 start-page: 5 year: 2012 ident: 10.1016/j.bspc.2022.103496_b0030 article-title: Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors publication-title: Journal of Neuroengineering and Rehabilitation doi: 10.1186/1743-0003-9-5 – volume: 13 start-page: 210 year: 2019 ident: 10.1016/j.bspc.2022.103496_b0095 article-title: A new Pulse Coupled Neural Network (PCNN) for Brain Medical Image Fusion empowered by Shuffled Frog Leaping publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2019.00210 – start-page: 61 year: 2017 ident: 10.1016/j.bspc.2022.103496_b0260 article-title: Motor imagery EEG signal processing and classification using machine learning approach – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2022.103496_b0185 article-title: Determination of Effective Signal Processing Stages for Brain Computer Interface on BCI Competition IV Data Set 2b: A Review Study publication-title: IETE Journal of Research doi: 10.1080/03772063.2021.1914204 – volume: 71 year: 2022 ident: 10.1016/j.bspc.2022.103496_b0020 article-title: A new dynamically convergent differential neural network for brain signal recognition publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.103130 – start-page: 340 year: 2014 ident: 10.1016/j.bspc.2022.103496_b0365 article-title: Deep learning in the EEG diagnosis of Alzheimers disease – volume: 52 start-page: 3 year: 1999 ident: 10.1016/j.bspc.2022.103496_b0170 article-title: The ten-twenty electrode system of the International Federation publication-title: The International Federation of Clinical Neurophysiology Electroencephalogr Clin Neurophysiol Suppl – volume: 12 start-page: 680 year: 2018 ident: 10.1016/j.bspc.2022.103496_b0110 article-title: A decoding scheme for incomplete motor imagery EEG with deep belief network publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2018.00680 – start-page: 1 year: 2018 ident: 10.1016/j.bspc.2022.103496_b0205 article-title: Converting your thoughts to texts: Enabling brain typing via deep feature learning of EEG signals – start-page: 82 year: 2018 ident: 10.1016/j.bspc.2022.103496_b0265 article-title: Data augmentation for eeg-based emotion recognition with deep convolutional neural networks – volume: 129 start-page: 292 issue: 2016 year: 2016 ident: 10.1016/j.bspc.2022.103496_b0400 article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.01.005 – volume: 107 start-page: 118 year: 2019 ident: 10.1016/j.bspc.2022.103496_b0225 article-title: Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2019.02.009 – ident: 10.1016/j.bspc.2022.103496_b0295 – volume: 10 issue: 4 year: 2013 ident: 10.1016/j.bspc.2022.103496_b0035 article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/10/4/046003 – volume: 7 start-page: 112767 year: 2019 ident: 10.1016/j.bspc.2022.103496_b0145 article-title: A deep transfer convolutional neural network framework for EEG signal classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2930958 – year: 2007 ident: 10.1016/j.bspc.2022.103496_b0310 – start-page: 2390 year: 2008 ident: 10.1016/j.bspc.2022.103496_b0090 article-title: Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface – volume: 15 start-page: 5 year: 2016 ident: 10.1016/j.bspc.2022.103496_b0140 article-title: EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces publication-title: Journal of Neural Engineering – volume: 63 year: 2021 ident: 10.1016/j.bspc.2022.103496_b0350 article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2020.102144 – start-page: 306 year: 2016 ident: 10.1016/j.bspc.2022.103496_b0360 article-title: EEG-driven RNN classification for prognosis of neurodegeneration in at-risk patients – ident: 10.1016/j.bspc.2022.103496_b0165 – volume: 161 start-page: 103 issue: 2018 year: 2018 ident: 10.1016/j.bspc.2022.103496_b0380 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2018.04.012 – volume: 31 start-page: 3839 issue: 10 year: 2019 ident: 10.1016/j.bspc.2022.103496_b0335 article-title: Subject-independent brain computer interfaces based on deep convolutional neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2946869 – start-page: 1 year: 2015 ident: 10.1016/j.bspc.2022.103496_b0255 article-title: Going deeper with convolutions – volume: 9 year: 2012 ident: 10.1016/j.bspc.2022.103496_b0085 article-title: A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/9/2/026020 – volume: 6 start-page: 36 issue: 3 year: 2016 ident: 10.1016/j.bspc.2022.103496_b0235 article-title: Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique publication-title: Brain Sciences doi: 10.3390/brainsci6030036 – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.bspc.2022.103496_b0160 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/ab405f – volume: 39 start-page: 54 year: 2019 ident: 10.1016/j.bspc.2022.103496_b0240 article-title: Analysis of Electroencephalography Event-Related Desynchronisation and Synchronisation Induced by Lower-Limb Stepping Motor Imagery publication-title: Journal of Medical and Biological Engineering doi: 10.1007/s40846-018-0379-9 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.bspc.2022.103496_b0190 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 1 year: 2016 ident: 10.1016/j.bspc.2022.103496_b0385 article-title: Deep learning for epileptic intracranial EEG data – year: 2014 ident: 10.1016/j.bspc.2022.103496_b0375 article-title: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection |
SSID | ssj0048714 |
Score | 2.6024957 |
Snippet | •An efficient multi-scale CNN(MS-CNN) model has been proposed with intrinsic feature integration for motor imagery EEG subject classification in brain-machine... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103496 |
SubjectTerms | Brain-computer interfaces (BCIs) Convolutional neural network (CNN) Electroencephalogram (EEG) Feature extraction Motor imagery (MI) Signal classification |
Title | An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces |
URI | https://dx.doi.org/10.1016/j.bspc.2022.103496 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7V5bZocS2mtCrloobeQfUHExtKmBy_-BH-zM5ukVJAePCbMhLDfZmdm8823hNw6ngmVlFCm9jPOAtEXLNKZx1wexcLEsQqUVftMwsk0eJrxWYsMm14YpFXWa3-1ptvVur7Tq0ezt8jz3gvk0mEE1YmH3SZuhHU7qtfBnL7_2tA8IB-3-t5ozNC6bpypOF5itUAZQ8_D3vMAhfv_Ck5bAWd8RA7rTJEOqpc5Ji1dnJCDLf3AU_I9KKi2GhAQOqjlBrIVDLqmwySh9pAbihutNC9K8ABAqNFWyZM2MhEAC4W8FYyh-Kb5HCUtPulo9EBXa4F7NFRifo2Eoso4L6jAYyXY3NIwqyctDTK7zsh0PHodTlh9wAKTvuOULHOED_WKVBLyEuX5WioADoZGa4jrkSshfAHIfc9o7ppIishwJxT4M9YIlbn-OWkXH4W-IFT6XEsv5DLgAhD344zDl-1mSmsTRkJ2iNuMbCpr9XE8BOM9bWhmbymikSIaaYVGh9xtfBaV9sZOa94Alv6aQSkEhx1-l__0uyL7eFWxeK5Ju1yu9Q0kKKXo2hnYJXuDx-dJ8gPhwuge |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOKgH4zPicw_ezIa-tmyPhIAg2IuQcGu6292kRiqBcvBP-Jud6cNgYjx4bWeaZr7tPLYz3xJybznGT5SCMrUbc-bJrmRCxw6zuQikCYLESwq2z9Afzb2nBV80SL-ehcG2ysr3lz698NbVlU5lzc4qTTsvkEv7AqoTB6dNbAF1ewvZqbwmafXGk1FYO2RIyQuKb5RnqFDNzpRtXnKzQiZDx8Hxcw-5-3-LTzsxZ3hEDqtkkfbK9zkmDZ2dkIMdCsFT8tnLqC5oICB60KI9kG3A7pr2w5AW59xQ3GulaZaDBmBCjS7IPGnNFAHIUEhdQRjqb5oukdXigw4Gj3SzlbhNQxWm2NhTVAqnGZV4sgRbFp2Y5ZPWBpu7zsh8OJj1R6w6Y4Ep17JyFlvShZJFJQpSk8RxtUoAOzCN1hDaha0gggHOXcdobhuhpDDc8iX-jzUyiW33nDSz90xfEKpcrpXjc-VxCaC7Qczh47bjRGvjC6naxK4tG6mKgBzPwXiL6k6z1wjRiBCNqESjTR6-dVYl_caf0rwGLPqxiCKID3_oXf5T747sjWbP02g6DidXZB_vlE0916SZr7f6BvKVXN5W6_EL1cnqzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+multi-scale+CNN+model+with+intrinsic+feature+integration+for+motor+imagery+EEG+subject+classification+in+brain-machine+interfaces&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Roy%2C+Arunabha+M.&rft.date=2022-04-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=74&rft_id=info:doi/10.1016%2Fj.bspc.2022.103496&rft.externalDocID=S1746809422000180 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |