An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces

•An efficient multi-scale CNN(MS-CNN) model has been proposed with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces.•Muti-scale convolution block (MSCB) has been designed which can extract the distinguishable features of several non-overlapping c...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 74; p. 103496
Main Author Roy, Arunabha M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2022
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2022.103496

Cover

Loading…
Abstract •An efficient multi-scale CNN(MS-CNN) model has been proposed with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces.•Muti-scale convolution block (MSCB) has been designed which can extract the distinguishable features of several non-overlapping canonical frequency bands of EEG signal from multiple scales, and enhance the overall model performance.•It is found that, proposed model records mean average accuracy of 93.74% which is 9.4% average increase (up to 18.1% in subject specific case) compared to the state-of-the art models in BCI competition IV2b dataset. Electroencephalogram (EEG) based motor imagery (MI) classification is an important aspect in brain-machine interfaces (BMIs) which bridges between neural system and computer devices decoding brain signals into recognizable machine commands. However, the MI classification task is challenging due to inherent complex properties, inter-subject variability, and low signal-to-noise ratio (SNR) of EEG signals. To overcome the above-mentioned issues, the current work proposes an efficient multi-scale convolutional neural network (MS-CNN) which can extract the distinguishable features of several non-overlapping canonical frequency bands of EEG signals from multiple scales for MI-BCI classification. In the framework, discriminant user-specific features have been extracted and integrated to improve the accuracy and performance of the CNN classifier. Additionally, different data augmentation methods have been implemented to further improve the accuracy and robustness of the model. The model achieves an average classification accuracy of 93.74% and Cohen’s kappa-coefficient of 0.92 on the BCI competition IV2b dataset outperforming several baseline and current state-of-the-art EEG-based MI classification models. The proposed algorithm effectively addresses the shortcoming of existing CNN-based EEG-MI classification models and significantly improves the classification accuracy. The current framework can provide a stimulus for designing efficient and robust real-time human-robot interaction.
AbstractList •An efficient multi-scale CNN(MS-CNN) model has been proposed with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces.•Muti-scale convolution block (MSCB) has been designed which can extract the distinguishable features of several non-overlapping canonical frequency bands of EEG signal from multiple scales, and enhance the overall model performance.•It is found that, proposed model records mean average accuracy of 93.74% which is 9.4% average increase (up to 18.1% in subject specific case) compared to the state-of-the art models in BCI competition IV2b dataset. Electroencephalogram (EEG) based motor imagery (MI) classification is an important aspect in brain-machine interfaces (BMIs) which bridges between neural system and computer devices decoding brain signals into recognizable machine commands. However, the MI classification task is challenging due to inherent complex properties, inter-subject variability, and low signal-to-noise ratio (SNR) of EEG signals. To overcome the above-mentioned issues, the current work proposes an efficient multi-scale convolutional neural network (MS-CNN) which can extract the distinguishable features of several non-overlapping canonical frequency bands of EEG signals from multiple scales for MI-BCI classification. In the framework, discriminant user-specific features have been extracted and integrated to improve the accuracy and performance of the CNN classifier. Additionally, different data augmentation methods have been implemented to further improve the accuracy and robustness of the model. The model achieves an average classification accuracy of 93.74% and Cohen’s kappa-coefficient of 0.92 on the BCI competition IV2b dataset outperforming several baseline and current state-of-the-art EEG-based MI classification models. The proposed algorithm effectively addresses the shortcoming of existing CNN-based EEG-MI classification models and significantly improves the classification accuracy. The current framework can provide a stimulus for designing efficient and robust real-time human-robot interaction.
ArticleNumber 103496
Author Roy, Arunabha M.
Author_xml – sequence: 1
  givenname: Arunabha M.
  surname: Roy
  fullname: Roy, Arunabha M.
  email: arunabhr.umich@gmail.com
  organization: University of Michigan, Aerospace Engineering, Ann Arbor, MI 48109, USA
BookMark eNp9kEtOAzEMQCNUJMrnAqxygSnJ_BokNlVVChKCDayjjMcprqYZlKQgLsGZyTCwYdGNY1l-jv1O2cT1Dhm7lGImhayvtrMmvMEsF3meCkV5XR-xqZyXdaakUJO_XFyXJ-w0hK0QpZrLcsq-Fo6jtQSELvLdvouUBTAd8uXjI9_1LXb8g-IrJxc9uUDALZq49zhUcONNpN5x2_vUHFOkndmg_-Sr1ZqHfbNFiBw6EwKlT8Zmcrzxhly2M_BKbpzkrQEM5-zYmi7gxe97xl5uV8_Lu-zhaX2_XDxkUAgRMyOaQs0raKEuizYvENq6hSQCsZSVkqCExAbnucVKWgWNspWom1yJ2jatkcUZU-Nc8H0IHq0Gij_bxbRZp6XQg1e91YNXPXjVo9eE5v_QN5-O9p-HoZsRwnTUO6HXYTAO2JJPhnTb0yH8G5R-l4M
CitedBy_id crossref_primary_10_1016_j_robot_2024_104899
crossref_primary_10_1016_j_bspc_2024_106333
crossref_primary_10_1016_j_asoc_2024_111771
crossref_primary_10_1111_exsy_13530
crossref_primary_10_1109_TNSRE_2023_3241241
crossref_primary_10_3390_app12052598
crossref_primary_10_1016_j_compbiomed_2023_107323
crossref_primary_10_3390_healthcare10101812
crossref_primary_10_1016_j_bspc_2025_107530
crossref_primary_10_1016_j_engappai_2022_105267
crossref_primary_10_3934_math_2024805
crossref_primary_10_1016_j_jneumeth_2023_109953
crossref_primary_10_1371_journal_pone_0311942
crossref_primary_10_3390_bios14040183
crossref_primary_10_3389_fnbot_2024_1485640
crossref_primary_10_1109_ACCESS_2023_3285236
crossref_primary_10_1080_10255842_2023_2298362
crossref_primary_10_3390_ai3020016
crossref_primary_10_1016_j_engappai_2022_105258
crossref_primary_10_1371_journal_pone_0309706
crossref_primary_10_1088_1741_2552_acf7f4
crossref_primary_10_1016_j_engappai_2022_105772
crossref_primary_10_1080_10255842_2023_2298369
crossref_primary_10_1016_j_compbiomed_2024_109534
crossref_primary_10_1080_10447318_2022_2139877
crossref_primary_10_3389_fnins_2022_1097660
crossref_primary_10_1016_j_engappai_2024_107913
crossref_primary_10_1088_1361_6501_adb5a8
crossref_primary_10_1080_09540091_2024_2426812
crossref_primary_10_1088_1741_2552_ac7257
crossref_primary_10_1016_j_neunet_2023_03_014
crossref_primary_10_1016_j_bspc_2023_105690
crossref_primary_10_3390_app12168052
crossref_primary_10_1016_j_measurement_2024_114157
crossref_primary_10_1109_TNSRE_2022_3229330
crossref_primary_10_1007_s11571_024_10127_8
crossref_primary_10_1371_journal_pone_0299271
crossref_primary_10_1016_j_knosys_2024_112270
crossref_primary_10_1016_j_bspc_2025_107706
crossref_primary_10_1016_j_rcim_2023_102610
crossref_primary_10_1109_ACCESS_2023_3299497
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1364_BOE_516063
crossref_primary_10_3390_bioengineering12010025
crossref_primary_10_1109_TNSRE_2022_3230250
crossref_primary_10_3390_ma17153685
crossref_primary_10_1016_j_engappai_2023_106049
crossref_primary_10_1007_s11571_024_10160_7
crossref_primary_10_1016_j_engappai_2022_105234
crossref_primary_10_1109_TNSRE_2022_3199363
crossref_primary_10_1016_j_ecoinf_2022_101919
crossref_primary_10_1016_j_engappai_2022_105112
crossref_primary_10_1016_j_jmps_2024_105570
crossref_primary_10_1080_10255842_2024_2404541
crossref_primary_10_1007_s10846_023_01988_y
crossref_primary_10_1016_j_brainres_2025_149484
crossref_primary_10_1109_TNSRE_2023_3329059
crossref_primary_10_4015_S1016237224500388
crossref_primary_10_1088_1741_2552_acbb2c
crossref_primary_10_1016_j_aej_2023_06_008
crossref_primary_10_3390_bios13100930
crossref_primary_10_1109_ACCESS_2024_3459866
crossref_primary_10_3390_sym14101976
crossref_primary_10_1007_s11042_023_15664_8
crossref_primary_10_1016_j_eswa_2024_125303
crossref_primary_10_1016_j_engappai_2022_105347
crossref_primary_10_1016_j_compag_2022_106694
crossref_primary_10_1109_JSEN_2024_3468951
crossref_primary_10_1109_TGRS_2024_3395438
crossref_primary_10_1016_j_neucom_2024_128902
crossref_primary_10_1088_1741_2552_ac93b4
crossref_primary_10_1109_ACCESS_2024_3371904
crossref_primary_10_1109_JBHI_2024_3411646
crossref_primary_10_3390_s24237690
crossref_primary_10_1007_s11277_023_10326_2
crossref_primary_10_1016_j_aej_2024_11_056
crossref_primary_10_1016_j_engappai_2022_105072
crossref_primary_10_1080_10255842_2023_2187662
crossref_primary_10_3390_drones7020081
crossref_primary_10_32604_cmc_2024_049186
crossref_primary_10_1016_j_bspc_2024_107163
crossref_primary_10_1007_s11571_023_09966_8
crossref_primary_10_4015_S1016237224500327
crossref_primary_10_2298_CSIS221222033H
crossref_primary_10_1016_j_engappai_2023_105858
crossref_primary_10_3390_math13030398
crossref_primary_10_1038_s41598_024_71536_7
crossref_primary_10_1109_JBHI_2022_3230793
crossref_primary_10_1088_1741_2552_ad5405
crossref_primary_10_1016_j_compbiomed_2023_106734
crossref_primary_10_1109_JBHI_2022_3185587
crossref_primary_10_1088_2057_1976_ad3647
crossref_primary_10_1016_j_aej_2025_02_001
crossref_primary_10_1016_j_dib_2023_109540
crossref_primary_10_1016_j_fbio_2025_106281
crossref_primary_10_1109_JSEN_2024_3389685
crossref_primary_10_1016_j_aei_2023_102007
crossref_primary_10_1109_JBHI_2023_3329742
crossref_primary_10_3390_bdcc7020097
crossref_primary_10_3390_e25030464
crossref_primary_10_1371_journal_pone_0313261
crossref_primary_10_3390_pr11051429
crossref_primary_10_3390_app12146881
Cites_doi 10.1002/hbm.23730
10.1109/TNSRE.2016.2601240
10.1016/j.neuroimage.2005.12.003
10.1016/j.neunet.2020.12.013
10.1109/JPROC.2015.2404941
10.1016/j.bspc.2021.102595
10.1016/j.eswa.2019.01.080
10.1007/s00521-021-06202-4
10.1038/s41593-020-0608-8
10.1016/j.eswa.2018.08.031
10.1016/j.neucom.2014.07.077
10.1109/ACCESS.2018.2889093
10.1016/j.eswa.2020.113285
10.1109/ICPR48806.2021.9412812
10.1016/j.jneumeth.2016.10.008
10.1016/j.bspc.2021.103101
10.1016/j.neucom.2011.04.029
10.1007/s11517-008-0345-8
10.3389/fnins.2012.00055
10.1186/1471-2202-11-S1-P127
10.1016/j.ijpsycho.2016.11.002
10.3390/ai2030026
10.1016/j.neucom.2020.03.048
10.1016/j.compag.2022.106694
10.1016/j.compbiomed.2016.03.004
10.1016/j.jneumeth.2019.05.011
10.1109/TBME.2015.2402283
10.3390/app7040390
10.1016/j.bspc.2020.101877
10.1038/s41593-020-00744-x
10.1016/j.bspc.2020.102020
10.3389/fnins.2014.00229
10.1088/1741-2560/14/1/016003
10.1016/j.bspc.2018.12.027
10.1016/j.bspc.2017.11.014
10.1142/S0129065716500398
10.1186/1743-0003-9-5
10.3389/fnins.2019.00210
10.1080/03772063.2021.1914204
10.1016/j.bspc.2021.103130
10.3389/fnins.2018.00680
10.1016/j.neuroimage.2016.01.005
10.1016/j.compbiomed.2019.02.009
10.1088/1741-2560/10/4/046003
10.1109/ACCESS.2019.2930958
10.1016/j.bspc.2020.102144
10.1016/j.cmpb.2018.04.012
10.1109/TNNLS.2019.2946869
10.1088/1741-2560/9/2/026020
10.3390/brainsci6030036
10.1088/1741-2552/ab405f
10.1007/s40846-018-0379-9
10.1038/nature14539
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103496
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103496
S1746809422000180
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-a0b3875cdc643d23ecd6dc016ee41581c801ebe72fe51f8cb8f506b2806fbda13
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:13 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
Fri Feb 23 02:40:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motor imagery (MI)
Feature extraction
Electroencephalogram (EEG)
Convolutional neural network (CNN)
Signal classification
Brain-computer interfaces (BCIs)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-a0b3875cdc643d23ecd6dc016ee41581c801ebe72fe51f8cb8f506b2806fbda13
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2022_103496
crossref_primary_10_1016_j_bspc_2022_103496
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Donoghue, Haller, Peterson, Varma, Sebastian, Gao, Noto, Lara, Wallis, Knight, Shestyuk (b0210) 2020; 23
Yu, Xiao, Wang, Zhang, Gu, Cichocki, Li (b0060) 2015; 62
Tangermann, Múller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz (b0175) 2012; 6
Kwon, Lee, Guan, Lee (b0335) 2019; 31
LaFleur, Cassady, Doud, Shades, Rogin, He (b0035) 2013; 10
Roy, Bose, Bhaduri (b9000) 2022
Sharma, Kim, Gupta (b0015) 2022; 71
NeuroDSP (2021) neurodsp-tools.github.io (https://neurodsp-tools.github.io/neurodsp).
Saa, Çetin (b0085) 2012; 9
Kawasaki, Yoshikawa, Furuhashi (b0405) 2015
Huang, Tian, Lan, Hao, Cheng, Peng, Che (b0095) 2019; 13
Xu, Zhang, Song, Wu, Li, Zhang, Xu, Li, Zeng (b0130) 2018; 7
Makin, Moses, Chang (b0045) 2020; 23
Luo, Feng, Zhang, Lu (b0075) 2016; 75
FOOOF: foof-tools.github.io/foof/(https://fooof-tools.github.io/fooof/).
Leeb R, Brunner C, MÃijller-PutzR G [Online]. Available: http://www.bbci.de/competition/iv/, Accessed on: March. 6, 2021.
Sturm, Lapuschkin, Samek, Müller (b0100) 2016; 274
Antoniades, Spyrou, Took, Sanei (b0385) 2016
Sun, Lo, Lo (b0120) 2019; 125
Fawzi, Samulowitz, Turaga, Frossard (b0270) 2016
Wang, Dong, Chen, Shi (b0025) 2015
Dagdevir, Tokmakci (b0185) 2021
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b0105) 2017; 38
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0140) 2016; 15
Nour, Öztürk, Polat (b0155) 2021
LeCun, Bengio, Hinton (b0190) 2015; 521
Vuckovic, Sepulveda (b0215) 2008; 46
Ang, Chin, Zhang, Guan (b0090) 2008
Xu, Shen, Chen, Zong, Zhang, Yue, Liu, Chen, Che (b0145) 2019; 7
Zhang, Zong, Dou, Zhao, Tang, Li (b0350) 2021; 63
Rajendra Acharya, Shu Lih, Hagiwara, Tan, Adeli, Puthankail, Subha (b0380) 2018; 161
Liu, Shore, Wang, Yuan, Buss, Zhao (b0005) 2021; 68
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention is all you need. In Advances in neural information processing systems (pp. 5998–6008).
Adam Page, Turner, Oates (b0370) 2014
Hossain, Amin, Alsulaiman, Muhammad (b0040) 2019
Klem, Lüders, Jasper, Elger (b0170) 1999; 52
Turner, Page, Mohsenin, Oates (b0375) 2014
Sreeja, Rabha, Nagarjuna, Samanta, Mitra, Sarma (b0260) 2017
Roy, Bhaduri (b9005) 2022; 193
Reza, Borhani, Sellers, Jiang, Zhao (b0220) 2019; 16
Li, Zhang, Khan, Mi (b0315) 2018; 41
Roy, Bhaduri (b0195) 2021; 2
Zhu, Li, Li, Yao, Zhang, Xu (b0125) 2019; 49
Tang, Li, Li, Ma, Dang (b0150) 2020; 149
Álvarez-Meza, Velásquez-Martínez, Castellanos-Dominguez (b0330) 2015; 151
Dornhege, Millán, Hinterberger, McFarland, Müller (b0310) 2007
Malan, Sharma (b0225) 2019; 107
Xing, Qiu, Ma, Wu, Li, Wang, He (b0050) 2020; 403
Suk, Wee, Lee, Shen (b0400) 2016; 129
Guennec, Malinowski, Tavenard (b0280) 2016
Francesco Carlo Morabito, Maurizio Campolo, Nadia Mammone, Mario Versaci, Silvana Francesche.i, Fabrizio Tagliavini, Vito Sofia, Daniela Fatuzzo, Antonio Gambardella, Angelo Labate, and others. 2017. Deep learning representation from electroencephalography of Early-Stage Creutzfeldt-Jakob disease and features for di.erentiation from rapidly progressive dementia. International journal of neural systems 27, 02 (2017), 1650039.
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0255) 2015
Dai, Zhou, Huang, Wang (b0160) 2020; 17
Wang, Zhong, Peng, Jiang, Liu (b0265) 2018
PyEEG (2021) https:// Pyeeg.sourceforge.net.
Luo, Wang, Xu, Xu (b0320) 2019; 323
Djemal, Bazyed, Belwafi, Gannouni, Kaaniche (b0235) 2016; 6
Lotte (b0275) 2015; 103
Pan, Mi, Lei, Deng (b0010) 2020; 58
B.K. Iwana, S. Uchida, Time series data augmentation for neural networks by time warping with a discriminative teacher. In 2020 25th International Conference on Pattern Recognition (ICPR), 2021. pp. 3558–3565.
Bashivan, Yeasin, Bidelman (b0410) 2015
Li, Zhu, Liu, Yang (b0080) 2017; 7
Dose, Møller, Iversen, Puthusserypady (b0115) 2018; 114
Sergey M Plis, Devon R Hjelm, Ruslan Salakhutdinov, Elena A Allen, Henry J Bockholt, Je.rey D Long, Hans J Johnson, Jane S Paulsen, Jessica A Turner, and Vince D Calhoun. 2014. Deep learning for neuroimaging: a validation study. Frontiers in neuroscience 8 (2014), 229.
Lu, Li, Ren, Miao (b0135) 2017; 25
Tabar, Halici (b0070) 2017; 14
Liu, Lin, Chou, Chang, Hsiao, Hsu (b0240) 2019; 39
Gandhi, Panigrahi, Anand (b0065) 2011; 74
Zhang, Sun, Chen (b0020) 2022; 71
Zhao, He (b0365) 2014
Shahid, Sinha, Prasad (b0230) 2010; 11
Jia, Li, Li, Zhang (b0345) 2014
Chu, Zhao, Zou, Xu, Han, Zhao (b0110) 2018; 12
Zhang, Robinson, Lee, Guan (b0340) 2021; 136
Leeb, Brunner, Müller-Putz, Schlögl, Pfurtscheller (b0180) 2008
Pfurtscheller, Brunner, Schlogl, Lopes da Silva (b0055) 2006; 31
Ruffini, Ibanez, Castellano, Dunne, Soria-Frisch (b0360) 2016
Liao, Chen, Wang, Chen, Li, Chen, Chang, Lin (b0030) 2012; 9
MNE v0.23 (2021) https://mne.tools/.
Bagh, Reddy (b0325) 2020; 62
Szegedy, Ioffe, Vanhoucke, Alemi (b0250) 2017
Weber, Doppelmayr (b0245) 2016; 110
Zhang, Yao, Sheng, Kanhere, Gu, Zhang (b0205) 2018
Reza (10.1016/j.bspc.2022.103496_b0220) 2019; 16
Xu (10.1016/j.bspc.2022.103496_b0130) 2018; 7
Dose (10.1016/j.bspc.2022.103496_b0115) 2018; 114
Sharma (10.1016/j.bspc.2022.103496_b0015) 2022; 71
Zhao (10.1016/j.bspc.2022.103496_b0365) 2014
Zhang (10.1016/j.bspc.2022.103496_b0020) 2022; 71
Malan (10.1016/j.bspc.2022.103496_b0225) 2019; 107
Li (10.1016/j.bspc.2022.103496_b0315) 2018; 41
Antoniades (10.1016/j.bspc.2022.103496_b0385) 2016
Hossain (10.1016/j.bspc.2022.103496_b0040) 2019
Ang (10.1016/j.bspc.2022.103496_b0090) 2008
Xu (10.1016/j.bspc.2022.103496_b0145) 2019; 7
Klem (10.1016/j.bspc.2022.103496_b0170) 1999; 52
Nour (10.1016/j.bspc.2022.103496_b0155) 2021
10.1016/j.bspc.2022.103496_b0300
Szegedy (10.1016/j.bspc.2022.103496_b0250) 2017
Álvarez-Meza (10.1016/j.bspc.2022.103496_b0330) 2015; 151
Zhang (10.1016/j.bspc.2022.103496_b0350) 2021; 63
Pan (10.1016/j.bspc.2022.103496_b0010) 2020; 58
Kawasaki (10.1016/j.bspc.2022.103496_b0405) 2015
10.1016/j.bspc.2022.103496_b0305
Sturm (10.1016/j.bspc.2022.103496_b0100) 2016; 274
Roy (10.1016/j.bspc.2022.103496_b9000) 2022
Lotte (10.1016/j.bspc.2022.103496_b0275) 2015; 103
Gandhi (10.1016/j.bspc.2022.103496_b0065) 2011; 74
Ruffini (10.1016/j.bspc.2022.103496_b0360) 2016
Rajendra Acharya (10.1016/j.bspc.2022.103496_b0380) 2018; 161
Wang (10.1016/j.bspc.2022.103496_b0025) 2015
Vuckovic (10.1016/j.bspc.2022.103496_b0215) 2008; 46
Saa (10.1016/j.bspc.2022.103496_b0085) 2012; 9
Lu (10.1016/j.bspc.2022.103496_b0135) 2017; 25
Lawhern (10.1016/j.bspc.2022.103496_b0140) 2016; 15
Liu (10.1016/j.bspc.2022.103496_b0005) 2021; 68
Sun (10.1016/j.bspc.2022.103496_b0120) 2019; 125
Guennec (10.1016/j.bspc.2022.103496_b0280) 2016
Dornhege (10.1016/j.bspc.2022.103496_b0310) 2007
Donoghue (10.1016/j.bspc.2022.103496_b0210) 2020; 23
10.1016/j.bspc.2022.103496_b0295
Huang (10.1016/j.bspc.2022.103496_b0095) 2019; 13
Roy (10.1016/j.bspc.2022.103496_b9005) 2022; 193
Li (10.1016/j.bspc.2022.103496_b0080) 2017; 7
LeCun (10.1016/j.bspc.2022.103496_b0190) 2015; 521
Yu (10.1016/j.bspc.2022.103496_b0060) 2015; 62
Wang (10.1016/j.bspc.2022.103496_b0265) 2018
Adam Page (10.1016/j.bspc.2022.103496_b0370) 2014
Luo (10.1016/j.bspc.2022.103496_b0320) 2019; 323
Bashivan (10.1016/j.bspc.2022.103496_b0410) 2015
Schirrmeister (10.1016/j.bspc.2022.103496_b0105) 2017; 38
Xing (10.1016/j.bspc.2022.103496_b0050) 2020; 403
Tang (10.1016/j.bspc.2022.103496_b0150) 2020; 149
Jia (10.1016/j.bspc.2022.103496_b0345) 2014
Fawzi (10.1016/j.bspc.2022.103496_b0270) 2016
10.1016/j.bspc.2022.103496_b0290
Turner (10.1016/j.bspc.2022.103496_b0375) 2014
Chu (10.1016/j.bspc.2022.103496_b0110) 2018; 12
Sreeja (10.1016/j.bspc.2022.103496_b0260) 2017
Kwon (10.1016/j.bspc.2022.103496_b0335) 2019; 31
Tangermann (10.1016/j.bspc.2022.103496_b0175) 2012; 6
10.1016/j.bspc.2022.103496_b0285
Makin (10.1016/j.bspc.2022.103496_b0045) 2020; 23
Szegedy (10.1016/j.bspc.2022.103496_b0255) 2015
10.1016/j.bspc.2022.103496_b0165
Zhang (10.1016/j.bspc.2022.103496_b0340) 2021; 136
Roy (10.1016/j.bspc.2022.103496_b0195) 2021; 2
Zhang (10.1016/j.bspc.2022.103496_b0205) 2018
Zhu (10.1016/j.bspc.2022.103496_b0125) 2019; 49
Luo (10.1016/j.bspc.2022.103496_b0075) 2016; 75
Leeb (10.1016/j.bspc.2022.103496_b0180) 2008
Djemal (10.1016/j.bspc.2022.103496_b0235) 2016; 6
Tabar (10.1016/j.bspc.2022.103496_b0070) 2017; 14
Dai (10.1016/j.bspc.2022.103496_b0160) 2020; 17
LaFleur (10.1016/j.bspc.2022.103496_b0035) 2013; 10
Pfurtscheller (10.1016/j.bspc.2022.103496_b0055) 2006; 31
Dagdevir (10.1016/j.bspc.2022.103496_b0185) 2021
10.1016/j.bspc.2022.103496_b0390
Liao (10.1016/j.bspc.2022.103496_b0030) 2012; 9
10.1016/j.bspc.2022.103496_b0395
Liu (10.1016/j.bspc.2022.103496_b0240) 2019; 39
Bagh (10.1016/j.bspc.2022.103496_b0325) 2020; 62
10.1016/j.bspc.2022.103496_b0355
Shahid (10.1016/j.bspc.2022.103496_b0230) 2010; 11
Suk (10.1016/j.bspc.2022.103496_b0400) 2016; 129
Weber (10.1016/j.bspc.2022.103496_b0245) 2016; 110
References_xml – volume: 193
  start-page: 1
  year: 2022
  end-page: 14
  ident: b9005
  article-title: Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4
  publication-title: Computers and Electronics in Agriculture
– volume: 403
  start-page: 452
  year: 2020
  end-page: 461
  ident: b0050
  article-title: A CNN-based comparing network for the detection of steady-state visual evoked potential responses
  publication-title: Neurocomputing
– reference: Leeb R, Brunner C, MÃijller-PutzR G [Online]. Available: http://www.bbci.de/competition/iv/, Accessed on: March. 6, 2021.
– volume: 46
  start-page: 529
  year: 2008
  end-page: 539
  ident: b0215
  article-title: Delta band contribution in cue based single trial classification of real and imaginary wrist movements
  publication-title: Medical Biological Engineering Computing
– volume: 74
  start-page: 3051
  year: 2011
  end-page: 3057
  ident: b0065
  article-title: A comparative study of wavelet families for EEG signal classification
  publication-title: Neurocomputing
– volume: 103
  start-page: 871
  year: 2015
  end-page: 890
  ident: b0275
  article-title: Signal Processing Approaches to Minimize or Suppress Calibration Time in Oscillatory Activity-Based Brain Computer Interfaces
  publication-title: Proceedings of the IEEE
– volume: 2
  start-page: 413
  year: 2021
  end-page: 428
  ident: b0195
  article-title: A Deep Learning Enabled Multi-Class Plant Disease Detection Model Based on Computer Vision
  publication-title: AI
– volume: 14
  year: 2017
  ident: b0070
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: Journal of Neural Engineering
– volume: 16
  year: 2019
  ident: b0220
  article-title: A comprehensive review of EEG-based brain-computer interface paradigms
  publication-title: Journal of Neural Engineering
– year: 2007
  ident: b0310
  article-title: Toward brain-computer interfacing
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0190
  article-title: Deep learning
  publication-title: Nature
– volume: 6
  start-page: 36
  year: 2016
  ident: b0235
  article-title: Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique
  publication-title: Brain Sciences
– volume: 149
  year: 2020
  ident: b0150
  article-title: Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2015
  end-page: 5
  ident: b0410
  article-title: Single trial prediction of normal and excessive cognitive load through EEG feature fusion
  publication-title: Signal Processing in Medicine and Biology Symposium (SPMB) 2015 IEEE
– start-page: 1
  year: 2022
  end-page: 27
  ident: b9000
  article-title: A fast accurate fine-grain object detection model based on YOLOv4 deep neural network
  publication-title: Neural Computing and Applications
– start-page: 3688
  year: 2016
  end-page: 3692
  ident: b0270
  article-title: Adaptive data augmentation for image classification
  publication-title: IEEE International Conference on Image Processing
– volume: 25
  start-page: 566
  year: 2017
  end-page: 576
  ident: b0135
  article-title: A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 11
  start-page: 127
  year: 2010
  ident: b0230
  article-title: Mu and beta rhythm modulations in motor imagery related post-stroke EEG: a study under BCI framework for post-stroke rehabilitation
  publication-title: BMC Neuroscience
– start-page: 1
  year: 2018
  end-page: 10
  ident: b0205
  article-title: Converting your thoughts to texts: Enabling brain typing via deep feature learning of EEG signals
  publication-title: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)
– volume: 31
  start-page: 153
  year: 2006
  end-page: 159
  ident: b0055
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: Neuroimage
– volume: 63
  year: 2021
  ident: b0350
  article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding
  publication-title: Biomedical Signal Processing and Control
– volume: 58
  year: 2020
  ident: b0010
  article-title: A closed-loop brain-machine interface framework design for motor rehabilitation
  publication-title: Biomedical Signal Processing and Control
– volume: 12
  start-page: 680
  year: 2018
  ident: b0110
  article-title: A decoding scheme for incomplete motor imagery EEG with deep belief network
  publication-title: Frontiers in Neuroscience
– volume: 9
  start-page: 5
  year: 2012
  ident: b0030
  article-title: Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors
  publication-title: Journal of Neuroengineering and Rehabilitation
– year: 2014
  ident: b0375
  article-title: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection
  publication-title: 2014 AAAI Spring Symposium Series
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention is all you need. In Advances in neural information processing systems (pp. 5998–6008).
– volume: 274
  start-page: 141
  year: 2016
  end-page: 145
  ident: b0100
  article-title: Interpretable deep neural networks for single-trial EEG classification
  publication-title: Journal of Neuroscience Methods
– volume: 52
  start-page: 3
  year: 1999
  end-page: 6
  ident: b0170
  article-title: The ten-twenty electrode system of the International Federation
  publication-title: The International Federation of Clinical Neurophysiology Electroencephalogr Clin Neurophysiol Suppl
– volume: 110
  start-page: 137
  year: 2016
  end-page: 145
  ident: b0245
  article-title: Kinesthetic motor imagery training modulates frontal midline theta during imagination of a dart throw
  publication-title: International Journal of Psychophysiology
– start-page: 30
  year: 2014
  end-page: 37
  ident: b0345
  article-title: A novel semi-supervised deep learning framework for active state recognition on eeg signals
  publication-title: In Bioinformatics and Bioengineering (BIBE), 2014 IEEE International Conference on
– year: 2021
  ident: b0155
  article-title: A novel classification framework using multiple bandwidth method with optimized CNN for brain-computer interfaces with EEG-fNIRS signals
  publication-title: Neural Computing and Applications
– reference: FOOOF: foof-tools.github.io/foof/(https://fooof-tools.github.io/fooof/).
– volume: 71
  year: 2022
  ident: b0015
  article-title: Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model
  publication-title: Biomedical Signal Processing and Control
– volume: 62
  year: 2020
  ident: b0325
  article-title: Hilbert transform-based event related patterns for motor imagery brain computer interface
  publication-title: Biomed Signal Process Control
– volume: 75
  start-page: 45
  year: 2016
  end-page: 53
  ident: b0075
  article-title: Dynamic frequency feature selection based approach for classification of motor imageries
  publication-title: Computers in Biology and Medicine
– volume: 7
  start-page: 390
  year: 2017
  ident: b0080
  article-title: Adaptive Feature Extraction of Motor Imagery EEG with Optimal Wavelet Packets and SE-Isomap
  publication-title: Applied Sciences
– volume: 129
  start-page: 292
  year: 2016
  end-page: 307
  ident: b0400
  article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI
  publication-title: NeuroImage
– volume: 136
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0340
  article-title: Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network
  publication-title: Neural Networks
– year: 2014
  ident: b0370
  article-title: Comparing Raw Data and Feature Extraction for Seizure Detection with Deep Learning Methods
  publication-title: FLAIRS Conference
– volume: 10
  year: 2013
  ident: b0035
  article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface
  publication-title: Journal of Neural Engineering
– start-page: 1
  year: 2008
  end-page: 6
  ident: b0180
  article-title: BCI Competition 2008-Graz data set B
– reference: NeuroDSP (2021) neurodsp-tools.github.io (https://neurodsp-tools.github.io/neurodsp).
– volume: 9
  year: 2012
  ident: b0085
  article-title: A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data
  publication-title: Journal of Neural Engineering
– start-page: 149
  year: 2015
  end-page: 154
  ident: b0405
  article-title: Visualizing extracted feature by deep learning in P300 discrimination task
  publication-title: Computing and Pattern Recognition (SoCPaR), 2015 7th International Conference of
– start-page: 1476
  year: 2015
  end-page: 1479
  ident: b0025
  article-title: Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task
  publication-title: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 161
  start-page: 103
  year: 2018
  end-page: 113
  ident: b0380
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Computer methods and programs in biomedicine
– year: 2017
  ident: b0250
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Thirty-First AAAI Conference on Artificial Intelligence 4278–4284
– start-page: 1
  year: 2016
  end-page: 6
  ident: b0385
  article-title: Deep learning for epileptic intracranial EEG data
  publication-title: Machine Learning for Signal Processing (MLSP), 2016 IEEE 26th International Workshop on
– volume: 125
  start-page: 259
  year: 2019
  end-page: 267
  ident: b0120
  article-title: EEG-based user identification system using 1D-convolutional long short-term memory neural networks
  publication-title: Expert Systems with Applications
– volume: 23
  start-page: 1655
  year: 2020
  end-page: 1665
  ident: b0210
  article-title: Parameterizing neural power spectra into periodic and aperiodic components
  publication-title: Nature Neuroscience
– volume: 23
  start-page: 575
  year: 2020
  end-page: 582
  ident: b0045
  article-title: Machine translation of cortical activity to text with an encoder-decoder framework
  publication-title: Nature Neuroscience
– volume: 17
  year: 2020
  ident: b0160
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: Journal of Neural Engineering
– reference: MNE v0.23 (2021) https://mne.tools/.
– reference: Sergey M Plis, Devon R Hjelm, Ruslan Salakhutdinov, Elena A Allen, Henry J Bockholt, Je.rey D Long, Hans J Johnson, Jane S Paulsen, Jessica A Turner, and Vince D Calhoun. 2014. Deep learning for neuroimaging: a validation study. Frontiers in neuroscience 8 (2014), 229.
– volume: 71
  year: 2022
  ident: b0020
  article-title: A new dynamically convergent differential neural network for brain signal recognition
  publication-title: Biomedical Signal Processing and Control
– start-page: 61
  year: 2017
  end-page: 66
  ident: b0260
  article-title: Motor imagery EEG signal processing and classification using machine learning approach
  publication-title: 2017 International Conference on New Trends in Computing Sciences (ICTCS)
– volume: 323
  start-page: 98
  year: 2019
  end-page: 107
  ident: b0320
  article-title: Class discrepancy guided sub-band filter-based common spatial pattern for motor imagery classification
  publication-title: Journal of Neuroscience Methods
– volume: 151
  start-page: 122
  year: 2015
  end-page: 129
  ident: b0330
  article-title: Time-series discrimination using feature relevance analysis in motor imagery classification
  publication-title: Neurocomputing
– volume: 39
  start-page: 54
  year: 2019
  end-page: 69
  ident: b0240
  article-title: Analysis of Electroencephalography Event-Related Desynchronisation and Synchronisation Induced by Lower-Limb Stepping Motor Imagery
  publication-title: Journal of Medical and Biological Engineering
– volume: 13
  start-page: 210
  year: 2019
  ident: b0095
  article-title: A new Pulse Coupled Neural Network (PCNN) for Brain Medical Image Fusion empowered by Shuffled Frog Leaping
  publication-title: Frontiers in Neuroscience
– reference: PyEEG (2021) https:// Pyeeg.sourceforge.net.
– volume: 62
  start-page: 1706
  year: 2015
  end-page: 1717
  ident: b0060
  article-title: Enhanced motor imagery training using a hybrid BCI with feedback
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: B.K. Iwana, S. Uchida, Time series data augmentation for neural networks by time warping with a discriminative teacher. In 2020 25th International Conference on Pattern Recognition (ICPR), 2021. pp. 3558–3565.
– volume: 107
  start-page: 118
  year: 2019
  end-page: 126
  ident: b0225
  article-title: Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals
  publication-title: Computers in Biology and Medicine
– volume: 31
  start-page: 3839
  year: 2019
  end-page: 3852
  ident: b0335
  article-title: Subject-independent brain computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0255
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 41
  start-page: 222
  year: 2018
  end-page: 232
  ident: b0315
  article-title: A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition
  publication-title: Biomed Signal Process Control
– start-page: 2390
  year: 2008
  end-page: 2397
  ident: b0090
  article-title: Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface
  publication-title: 2008 IEEE International Joint Conference on Neural Networks
– start-page: 82
  year: 2018
  end-page: 93
  ident: b0265
  article-title: Data augmentation for eeg-based emotion recognition with deep convolutional neural networks
  publication-title: International Conference on Multimedia Modeling
– start-page: 1
  year: 2019
  end-page: 17
  ident: b0040
  article-title: Applying deep learning for epilepsy seizure detection and brain mapping visualization. ACM Trans Multimedia
  publication-title: Comput Commun
– volume: 49
  start-page: 396
  year: 2019
  end-page: 403
  ident: b0125
  article-title: Separated channel convolutional neural network to realize the training free motor imagery BCI systems
  publication-title: Biomed Signal Process Control
– volume: 6
  start-page: 55
  year: 2012
  ident: b0175
  article-title: Review of the BCI competition IV
  publication-title: Frontiers in Neuroscience
– start-page: 1
  year: 2021
  end-page: 12
  ident: b0185
  article-title: Determination of Effective Signal Processing Stages for Brain Computer Interface on BCI Competition IV Data Set 2b: A Review Study
  publication-title: IETE Journal of Research
– start-page: 306
  year: 2016
  end-page: 313
  ident: b0360
  article-title: EEG-driven RNN classification for prognosis of neurodegeneration in at-risk patients
  publication-title: International Conference on Artificial Neural Networks
– start-page: 340
  year: 2014
  end-page: 353
  ident: b0365
  article-title: Deep learning in the EEG diagnosis of Alzheimers disease
  publication-title: Asian Conference on Computer Vision
– volume: 15
  start-page: 5
  year: 2016
  ident: b0140
  article-title: EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces
  publication-title: Journal of Neural Engineering
– year: 2016
  ident: b0280
  article-title: Data Augmentation for Time Series Classification using Convolutional Neural Networks
  publication-title: ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Sep 2016, Riva Del Garda, Italy
– volume: 114
  start-page: 532
  year: 2018
  end-page: 542
  ident: b0115
  article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs
  publication-title: Expert Systems with Applications
– volume: 68
  year: 2021
  ident: b0005
  article-title: A systematic review on hybrid EEG/fNIRS in brain-computer interface
  publication-title: Biomedical Signal Processing and Control
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: b0105
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
– volume: 7
  start-page: 6084
  year: 2018
  end-page: 6093
  ident: b0130
  article-title: Wavelet trans- form time-frequency image and convolutional network-based motor imagery EEG classification
  publication-title: IEEE Access
– volume: 7
  start-page: 112767
  year: 2019
  end-page: 112776
  ident: b0145
  article-title: A deep transfer convolutional neural network framework for EEG signal classification
  publication-title: IEEE Access
– reference: Francesco Carlo Morabito, Maurizio Campolo, Nadia Mammone, Mario Versaci, Silvana Francesche.i, Fabrizio Tagliavini, Vito Sofia, Daniela Fatuzzo, Antonio Gambardella, Angelo Labate, and others. 2017. Deep learning representation from electroencephalography of Early-Stage Creutzfeldt-Jakob disease and features for di.erentiation from rapidly progressive dementia. International journal of neural systems 27, 02 (2017), 1650039.
– ident: 10.1016/j.bspc.2022.103496_b0355
– volume: 38
  start-page: 5391
  year: 2017
  ident: 10.1016/j.bspc.2022.103496_b0105
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23730
– volume: 25
  start-page: 566
  year: 2017
  ident: 10.1016/j.bspc.2022.103496_b0135
  article-title: A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2016.2601240
– start-page: 1476
  year: 2015
  ident: 10.1016/j.bspc.2022.103496_b0025
  article-title: Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task
– volume: 31
  start-page: 153
  year: 2006
  ident: 10.1016/j.bspc.2022.103496_b0055
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.003
– ident: 10.1016/j.bspc.2022.103496_b0290
– volume: 136
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2022.103496_b0340
  article-title: Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.12.013
– volume: 16
  year: 2019
  ident: 10.1016/j.bspc.2022.103496_b0220
  article-title: A comprehensive review of EEG-based brain-computer interface paradigms
  publication-title: Journal of Neural Engineering
– volume: 103
  start-page: 871
  issue: 6
  year: 2015
  ident: 10.1016/j.bspc.2022.103496_b0275
  article-title: Signal Processing Approaches to Minimize or Suppress Calibration Time in Oscillatory Activity-Based Brain Computer Interfaces
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2015.2404941
– volume: 68
  year: 2021
  ident: 10.1016/j.bspc.2022.103496_b0005
  article-title: A systematic review on hybrid EEG/fNIRS in brain-computer interface
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102595
– volume: 125
  start-page: 259
  year: 2019
  ident: 10.1016/j.bspc.2022.103496_b0120
  article-title: EEG-based user identification system using 1D-convolutional long short-term memory neural networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.01.080
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2022.103496_b9000
  article-title: A fast accurate fine-grain object detection model based on YOLOv4 deep neural network
  publication-title: Neural Computing and Applications
– year: 2021
  ident: 10.1016/j.bspc.2022.103496_b0155
  article-title: A novel classification framework using multiple bandwidth method with optimized CNN for brain-computer interfaces with EEG-fNIRS signals
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06202-4
– volume: 23
  start-page: 575
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2022.103496_b0045
  article-title: Machine translation of cortical activity to text with an encoder-decoder framework
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-020-0608-8
– volume: 114
  start-page: 532
  year: 2018
  ident: 10.1016/j.bspc.2022.103496_b0115
  article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.031
– year: 2017
  ident: 10.1016/j.bspc.2022.103496_b0250
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
– volume: 151
  start-page: 122
  year: 2015
  ident: 10.1016/j.bspc.2022.103496_b0330
  article-title: Time-series discrimination using feature relevance analysis in motor imagery classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.077
– volume: 7
  start-page: 6084
  year: 2018
  ident: 10.1016/j.bspc.2022.103496_b0130
  article-title: Wavelet trans- form time-frequency image and convolutional network-based motor imagery EEG classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2889093
– volume: 149
  year: 2020
  ident: 10.1016/j.bspc.2022.103496_b0150
  article-title: Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113285
– ident: 10.1016/j.bspc.2022.103496_b0285
  doi: 10.1109/ICPR48806.2021.9412812
– ident: 10.1016/j.bspc.2022.103496_b0300
– volume: 274
  start-page: 141
  year: 2016
  ident: 10.1016/j.bspc.2022.103496_b0100
  article-title: Interpretable deep neural networks for single-trial EEG classification
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2016.10.008
– start-page: 1
  year: 2008
  ident: 10.1016/j.bspc.2022.103496_b0180
– volume: 71
  year: 2022
  ident: 10.1016/j.bspc.2022.103496_b0015
  article-title: Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.103101
– year: 2016
  ident: 10.1016/j.bspc.2022.103496_b0280
  article-title: Data Augmentation for Time Series Classification using Convolutional Neural Networks
– start-page: 30
  year: 2014
  ident: 10.1016/j.bspc.2022.103496_b0345
  article-title: A novel semi-supervised deep learning framework for active state recognition on eeg signals
– volume: 74
  start-page: 3051
  year: 2011
  ident: 10.1016/j.bspc.2022.103496_b0065
  article-title: A comparative study of wavelet families for EEG signal classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.029
– volume: 46
  start-page: 529
  issue: 6
  year: 2008
  ident: 10.1016/j.bspc.2022.103496_b0215
  article-title: Delta band contribution in cue based single trial classification of real and imaginary wrist movements
  publication-title: Medical Biological Engineering Computing
  doi: 10.1007/s11517-008-0345-8
– volume: 6
  start-page: 55
  year: 2012
  ident: 10.1016/j.bspc.2022.103496_b0175
  article-title: Review of the BCI competition IV
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2012.00055
– volume: 11
  start-page: 127
  year: 2010
  ident: 10.1016/j.bspc.2022.103496_b0230
  article-title: Mu and beta rhythm modulations in motor imagery related post-stroke EEG: a study under BCI framework for post-stroke rehabilitation
  publication-title: BMC Neuroscience
  doi: 10.1186/1471-2202-11-S1-P127
– volume: 110
  start-page: 137
  year: 2016
  ident: 10.1016/j.bspc.2022.103496_b0245
  article-title: Kinesthetic motor imagery training modulates frontal midline theta during imagination of a dart throw
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2016.11.002
– volume: 2
  start-page: 413
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2022.103496_b0195
  article-title: A Deep Learning Enabled Multi-Class Plant Disease Detection Model Based on Computer Vision
  publication-title: AI
  doi: 10.3390/ai2030026
– volume: 403
  start-page: 452
  year: 2020
  ident: 10.1016/j.bspc.2022.103496_b0050
  article-title: A CNN-based comparing network for the detection of steady-state visual evoked potential responses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.048
– volume: 193
  start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2022.103496_b9005
  article-title: Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.106694
– year: 2014
  ident: 10.1016/j.bspc.2022.103496_b0370
  article-title: Comparing Raw Data and Feature Extraction for Seizure Detection with Deep Learning Methods
– volume: 75
  start-page: 45
  year: 2016
  ident: 10.1016/j.bspc.2022.103496_b0075
  article-title: Dynamic frequency feature selection based approach for classification of motor imageries
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2016.03.004
– volume: 323
  start-page: 98
  year: 2019
  ident: 10.1016/j.bspc.2022.103496_b0320
  article-title: Class discrepancy guided sub-band filter-based common spatial pattern for motor imagery classification
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2019.05.011
– volume: 62
  start-page: 1706
  issue: 7
  year: 2015
  ident: 10.1016/j.bspc.2022.103496_b0060
  article-title: Enhanced motor imagery training using a hybrid BCI with feedback
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2015.2402283
– volume: 7
  start-page: 390
  year: 2017
  ident: 10.1016/j.bspc.2022.103496_b0080
  article-title: Adaptive Feature Extraction of Motor Imagery EEG with Optimal Wavelet Packets and SE-Isomap
  publication-title: Applied Sciences
  doi: 10.3390/app7040390
– volume: 58
  year: 2020
  ident: 10.1016/j.bspc.2022.103496_b0010
  article-title: A closed-loop brain-machine interface framework design for motor rehabilitation
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.101877
– start-page: 3688
  year: 2016
  ident: 10.1016/j.bspc.2022.103496_b0270
  article-title: Adaptive data augmentation for image classification
– volume: 23
  start-page: 1655
  issue: 12
  year: 2020
  ident: 10.1016/j.bspc.2022.103496_b0210
  article-title: Parameterizing neural power spectra into periodic and aperiodic components
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-020-00744-x
– volume: 62
  year: 2020
  ident: 10.1016/j.bspc.2022.103496_b0325
  article-title: Hilbert transform-based event related patterns for motor imagery brain computer interface
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102020
– ident: 10.1016/j.bspc.2022.103496_b0390
  doi: 10.3389/fnins.2014.00229
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2022.103496_b0040
  article-title: Applying deep learning for epilepsy seizure detection and brain mapping visualization. ACM Trans Multimedia
  publication-title: Comput Commun
– volume: 14
  year: 2017
  ident: 10.1016/j.bspc.2022.103496_b0070
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/14/1/016003
– ident: 10.1016/j.bspc.2022.103496_b0305
– volume: 49
  start-page: 396
  year: 2019
  ident: 10.1016/j.bspc.2022.103496_b0125
  article-title: Separated channel convolutional neural network to realize the training free motor imagery BCI systems
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.12.027
– volume: 41
  start-page: 222
  year: 2018
  ident: 10.1016/j.bspc.2022.103496_b0315
  article-title: A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.11.014
– ident: 10.1016/j.bspc.2022.103496_b0395
  doi: 10.1142/S0129065716500398
– start-page: 149
  year: 2015
  ident: 10.1016/j.bspc.2022.103496_b0405
  article-title: Visualizing extracted feature by deep learning in P300 discrimination task
– start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2022.103496_b0410
  article-title: Single trial prediction of normal and excessive cognitive load through EEG feature fusion
– volume: 9
  start-page: 5
  year: 2012
  ident: 10.1016/j.bspc.2022.103496_b0030
  article-title: Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors
  publication-title: Journal of Neuroengineering and Rehabilitation
  doi: 10.1186/1743-0003-9-5
– volume: 13
  start-page: 210
  year: 2019
  ident: 10.1016/j.bspc.2022.103496_b0095
  article-title: A new Pulse Coupled Neural Network (PCNN) for Brain Medical Image Fusion empowered by Shuffled Frog Leaping
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2019.00210
– start-page: 61
  year: 2017
  ident: 10.1016/j.bspc.2022.103496_b0260
  article-title: Motor imagery EEG signal processing and classification using machine learning approach
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2022.103496_b0185
  article-title: Determination of Effective Signal Processing Stages for Brain Computer Interface on BCI Competition IV Data Set 2b: A Review Study
  publication-title: IETE Journal of Research
  doi: 10.1080/03772063.2021.1914204
– volume: 71
  year: 2022
  ident: 10.1016/j.bspc.2022.103496_b0020
  article-title: A new dynamically convergent differential neural network for brain signal recognition
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.103130
– start-page: 340
  year: 2014
  ident: 10.1016/j.bspc.2022.103496_b0365
  article-title: Deep learning in the EEG diagnosis of Alzheimers disease
– volume: 52
  start-page: 3
  year: 1999
  ident: 10.1016/j.bspc.2022.103496_b0170
  article-title: The ten-twenty electrode system of the International Federation
  publication-title: The International Federation of Clinical Neurophysiology Electroencephalogr Clin Neurophysiol Suppl
– volume: 12
  start-page: 680
  year: 2018
  ident: 10.1016/j.bspc.2022.103496_b0110
  article-title: A decoding scheme for incomplete motor imagery EEG with deep belief network
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2018.00680
– start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103496_b0205
  article-title: Converting your thoughts to texts: Enabling brain typing via deep feature learning of EEG signals
– start-page: 82
  year: 2018
  ident: 10.1016/j.bspc.2022.103496_b0265
  article-title: Data augmentation for eeg-based emotion recognition with deep convolutional neural networks
– volume: 129
  start-page: 292
  issue: 2016
  year: 2016
  ident: 10.1016/j.bspc.2022.103496_b0400
  article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.005
– volume: 107
  start-page: 118
  year: 2019
  ident: 10.1016/j.bspc.2022.103496_b0225
  article-title: Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2019.02.009
– ident: 10.1016/j.bspc.2022.103496_b0295
– volume: 10
  issue: 4
  year: 2013
  ident: 10.1016/j.bspc.2022.103496_b0035
  article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/10/4/046003
– volume: 7
  start-page: 112767
  year: 2019
  ident: 10.1016/j.bspc.2022.103496_b0145
  article-title: A deep transfer convolutional neural network framework for EEG signal classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930958
– year: 2007
  ident: 10.1016/j.bspc.2022.103496_b0310
– start-page: 2390
  year: 2008
  ident: 10.1016/j.bspc.2022.103496_b0090
  article-title: Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface
– volume: 15
  start-page: 5
  year: 2016
  ident: 10.1016/j.bspc.2022.103496_b0140
  article-title: EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces
  publication-title: Journal of Neural Engineering
– volume: 63
  year: 2021
  ident: 10.1016/j.bspc.2022.103496_b0350
  article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.102144
– start-page: 306
  year: 2016
  ident: 10.1016/j.bspc.2022.103496_b0360
  article-title: EEG-driven RNN classification for prognosis of neurodegeneration in at-risk patients
– ident: 10.1016/j.bspc.2022.103496_b0165
– volume: 161
  start-page: 103
  issue: 2018
  year: 2018
  ident: 10.1016/j.bspc.2022.103496_b0380
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 31
  start-page: 3839
  issue: 10
  year: 2019
  ident: 10.1016/j.bspc.2022.103496_b0335
  article-title: Subject-independent brain computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2946869
– start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2022.103496_b0255
  article-title: Going deeper with convolutions
– volume: 9
  year: 2012
  ident: 10.1016/j.bspc.2022.103496_b0085
  article-title: A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/9/2/026020
– volume: 6
  start-page: 36
  issue: 3
  year: 2016
  ident: 10.1016/j.bspc.2022.103496_b0235
  article-title: Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique
  publication-title: Brain Sciences
  doi: 10.3390/brainsci6030036
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.103496_b0160
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ab405f
– volume: 39
  start-page: 54
  year: 2019
  ident: 10.1016/j.bspc.2022.103496_b0240
  article-title: Analysis of Electroencephalography Event-Related Desynchronisation and Synchronisation Induced by Lower-Limb Stepping Motor Imagery
  publication-title: Journal of Medical and Biological Engineering
  doi: 10.1007/s40846-018-0379-9
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.bspc.2022.103496_b0190
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2022.103496_b0385
  article-title: Deep learning for epileptic intracranial EEG data
– year: 2014
  ident: 10.1016/j.bspc.2022.103496_b0375
  article-title: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection
SSID ssj0048714
Score 2.6024957
Snippet •An efficient multi-scale CNN(MS-CNN) model has been proposed with intrinsic feature integration for motor imagery EEG subject classification in brain-machine...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103496
SubjectTerms Brain-computer interfaces (BCIs)
Convolutional neural network (CNN)
Electroencephalogram (EEG)
Feature extraction
Motor imagery (MI)
Signal classification
Title An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces
URI https://dx.doi.org/10.1016/j.bspc.2022.103496
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7V5bZocS2mtCrloobeQfUHExtKmBy_-BH-zM5ukVJAePCbMhLDfZmdm8823hNw6ngmVlFCm9jPOAtEXLNKZx1wexcLEsQqUVftMwsk0eJrxWYsMm14YpFXWa3-1ptvVur7Tq0ezt8jz3gvk0mEE1YmH3SZuhHU7qtfBnL7_2tA8IB-3-t5ozNC6bpypOF5itUAZQ8_D3vMAhfv_Ck5bAWd8RA7rTJEOqpc5Ji1dnJCDLf3AU_I9KKi2GhAQOqjlBrIVDLqmwySh9pAbihutNC9K8ABAqNFWyZM2MhEAC4W8FYyh-Kb5HCUtPulo9EBXa4F7NFRifo2Eoso4L6jAYyXY3NIwqyctDTK7zsh0PHodTlh9wAKTvuOULHOED_WKVBLyEuX5WioADoZGa4jrkSshfAHIfc9o7ppIishwJxT4M9YIlbn-OWkXH4W-IFT6XEsv5DLgAhD344zDl-1mSmsTRkJ2iNuMbCpr9XE8BOM9bWhmbymikSIaaYVGh9xtfBaV9sZOa94Alv6aQSkEhx1-l__0uyL7eFWxeK5Ju1yu9Q0kKKXo2hnYJXuDx-dJ8gPhwuge
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOKgH4zPicw_ezIa-tmyPhIAg2IuQcGu6292kRiqBcvBP-Jud6cNgYjx4bWeaZr7tPLYz3xJybznGT5SCMrUbc-bJrmRCxw6zuQikCYLESwq2z9Afzb2nBV80SL-ehcG2ysr3lz698NbVlU5lzc4qTTsvkEv7AqoTB6dNbAF1ewvZqbwmafXGk1FYO2RIyQuKb5RnqFDNzpRtXnKzQiZDx8Hxcw-5-3-LTzsxZ3hEDqtkkfbK9zkmDZ2dkIMdCsFT8tnLqC5oICB60KI9kG3A7pr2w5AW59xQ3GulaZaDBmBCjS7IPGnNFAHIUEhdQRjqb5oukdXigw4Gj3SzlbhNQxWm2NhTVAqnGZV4sgRbFp2Y5ZPWBpu7zsh8OJj1R6w6Y4Ep17JyFlvShZJFJQpSk8RxtUoAOzCN1hDaha0gggHOXcdobhuhpDDc8iX-jzUyiW33nDSz90xfEKpcrpXjc-VxCaC7Qczh47bjRGvjC6naxK4tG6mKgBzPwXiL6k6z1wjRiBCNqESjTR6-dVYl_caf0rwGLPqxiCKID3_oXf5T747sjWbP02g6DidXZB_vlE0916SZr7f6BvKVXN5W6_EL1cnqzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+multi-scale+CNN+model+with+intrinsic+feature+integration+for+motor+imagery+EEG+subject+classification+in+brain-machine+interfaces&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Roy%2C+Arunabha+M.&rft.date=2022-04-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=74&rft_id=info:doi/10.1016%2Fj.bspc.2022.103496&rft.externalDocID=S1746809422000180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon