MLIBT: A multi-level improvised binarization technique for Tamizhi inscriptions

[Display omitted] •To create standard Tamizhi dataset: capturing onsite inscriptions, collecting from various ASI, annotating the collected datasets by domain experts and validated by the subject experts.•To enlarge the custom dataset by data augmentation to test the suitability for deep learning ap...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 236; p. 121320
Main Authors Munivel, Monisha, Felix Enigo, V.S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •To create standard Tamizhi dataset: capturing onsite inscriptions, collecting from various ASI, annotating the collected datasets by domain experts and validated by the subject experts.•To enlarge the custom dataset by data augmentation to test the suitability for deep learning approach for Tamizhi inscription binaraization.•To develop a multi-level improvised binarization algorithm for the Tamizhi inscription to separate the foreground text from the stone background by applying improved median filtering, iterative thresholding and modified adaptive thresholding.•To perform post-processing optimization for the binarized results using swell and shrink filters. The Tamizhi inscriptions, one of the earliest ever discovered, is predominantly found on memorial stones and caves which dates 5th century BCE to 3rd century CE. Today’s generations need ways to interpret the script in order to know the historical figures and events because the Tamizhi script evolved into the modern Tamil script over time. Currently, only few epigraphists are available to manually decode the inscriptions into modern Tamil. Hence, there is a need for an alternate way to preserve this cultural heritage. Image processing is one such digital technology that enables binarization on inscription images, and the retrieved text may then be utilized to convert them to the needed target language. Nevertheless, binarization of Tamizhi inscription images are highly complex due to aging, environmental factors, handwritten, similar foreground & background and uneven size and shapes of the stones. Also, due to the small dataset, deep learning techniques are inapplicable. Furthermore, existing approaches produce poor results for Tamizhi inscriptions since they can only be used on flat stone backgrounds and require sufficient light illumination for effective binarization. This research suggests a multi-level improvised binarization solution for Tamizhi inscription images to address these challenges. It achieves this utilizing post-processing with shrink and swell filters together with an improved median filter with modified adaptive thresholding. Outperforming the current binarization techniques, which achieved a maximum accuracy of about 74%, MLIBT produced an accuracy of around 92.19%.
AbstractList [Display omitted] •To create standard Tamizhi dataset: capturing onsite inscriptions, collecting from various ASI, annotating the collected datasets by domain experts and validated by the subject experts.•To enlarge the custom dataset by data augmentation to test the suitability for deep learning approach for Tamizhi inscription binaraization.•To develop a multi-level improvised binarization algorithm for the Tamizhi inscription to separate the foreground text from the stone background by applying improved median filtering, iterative thresholding and modified adaptive thresholding.•To perform post-processing optimization for the binarized results using swell and shrink filters. The Tamizhi inscriptions, one of the earliest ever discovered, is predominantly found on memorial stones and caves which dates 5th century BCE to 3rd century CE. Today’s generations need ways to interpret the script in order to know the historical figures and events because the Tamizhi script evolved into the modern Tamil script over time. Currently, only few epigraphists are available to manually decode the inscriptions into modern Tamil. Hence, there is a need for an alternate way to preserve this cultural heritage. Image processing is one such digital technology that enables binarization on inscription images, and the retrieved text may then be utilized to convert them to the needed target language. Nevertheless, binarization of Tamizhi inscription images are highly complex due to aging, environmental factors, handwritten, similar foreground & background and uneven size and shapes of the stones. Also, due to the small dataset, deep learning techniques are inapplicable. Furthermore, existing approaches produce poor results for Tamizhi inscriptions since they can only be used on flat stone backgrounds and require sufficient light illumination for effective binarization. This research suggests a multi-level improvised binarization solution for Tamizhi inscription images to address these challenges. It achieves this utilizing post-processing with shrink and swell filters together with an improved median filter with modified adaptive thresholding. Outperforming the current binarization techniques, which achieved a maximum accuracy of about 74%, MLIBT produced an accuracy of around 92.19%.
ArticleNumber 121320
Author Munivel, Monisha
Felix Enigo, V.S.
Author_xml – sequence: 1
  givenname: Monisha
  orcidid: 0000-0002-5671-5094
  surname: Munivel
  fullname: Munivel, Monisha
  email: moni.munivel@outlook.com
– sequence: 2
  givenname: V.S.
  surname: Felix Enigo
  fullname: Felix Enigo, V.S.
  email: felixvs@ssn.edu.in
BookMark eNp9kMtOAjEUhhuDiYi-gKu-wIy9TOmMcYPECwmGDa6b0jkNh8wF2wEjTy8jrlyw-jf_d3L-75oMmrYBQu44Sznj4_tNCvHLpoIJmXLBpWAXZMhzLZOxLuSADFmhdJJxnV2R6xg3jHHNmB6Sxft89rR8oBNa76oOkwr2UFGst6HdY4SSrrCxAQ-2w7ahHbh1g587oL4NdGlrPKyRYhNdwG3fiDfk0tsqwu1fjsjHy_Ny-pbMF6-z6WSeOMlYlxTeaWfVKhPeioxJpzn3imWS5VwotoKy9Irb_PijU3lReBiX3vNSKusUcJAjIk53XWhjDODNNmBtw7fhzPRKzMb0SkyvxJyUHKH8H-Sw-13WBYvVefTxhMJx1B4hmOgQGgclBnCdKVs8h_8Aj4B_oA
CitedBy_id crossref_primary_10_1007_s00521_024_10137_x
Cites_doi 10.1016/S0031-3203(99)00055-2
10.1109/CGVIS.2015.7449883
10.1016/j.patcog.2005.09.010
10.1177/25.7.70454
10.7717/peerj-cs.623
10.1038/s41598-019-57247-4
10.1007/s10044-015-0520-0
10.1109/ICRITO.2016.7784945
10.1155/2021/2577375
10.1109/TWC.2021.3056597
10.1007/s00500-018-3610-2
10.1109/CVPR.2010.5539950
10.1109/ICAECC.2018.8479434
10.4304/jcp.7.4.838-841
10.1155/2013/735857
10.1007/s11042-020-09836-z
10.1109/ACCESS.2023.3282442
10.1109/CSSE.2008.206
10.1109/TIP.2021.3049346
10.1109/VCIP49819.2020.9301889
10.1109/CFIS54774.2022.9756490
10.1142/S0219477521500541
10.1109/WACVW52041.2021.00023
10.1167/tvst.11.2.23
10.1007/s40745-022-00428-2
10.3390/ijgi11010045
10.1109/TIP.2012.2219550
10.1016/0734-189X(85)90125-2
10.3390/jimaging8100272
10.5772/9776
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.121320
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_121320
S0957417423018225
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-9fc7ca5b42fa2403c711f5043081250beddf51a8007c5899fe6dff1d35ac5e1e3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Apr 24 23:01:13 EDT 2025
Tue Jul 01 04:06:13 EDT 2025
Fri Feb 23 02:37:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Modified adaptive thresholding
Cave inscriptions
Iterative thresholding
Tamizhi inscription images
Binarization
Memorial stones
Median filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-9fc7ca5b42fa2403c711f5043081250beddf51a8007c5899fe6dff1d35ac5e1e3
ORCID 0000-0002-5671-5094
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_121320
crossref_citationtrail_10_1016_j_eswa_2023_121320
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References 10.1109/CFIS54774.2022.9756490.
Bataineh, Abdullah, Omar (b0010) 2017; 20
Muller, Alonso-Caneiro, Read, Vincent, Collins (b0110) 2022; 11
Sreedevi, Pandey, Jayanthi, Bhola, Chaudhury (b0160) 2013; 2013
Sukanthi, S. S., & Hanis, S. (b0165) 2021; 20
(10). 10.3390/jimaging8100272.
11–16. 10.1109/CGVIS.2015.7449883.
Lins, R. D., Bernardino, R., Barboza, R. da S., & De Oliveira, R. C. (2022). Using Paper Texture for Choosing a Suitable Algorithm for Scanned Document Image Binarization.
Gatos, Pratikakis, Perantonis (b0050) 2006; 39
Xu, W., Souly, N., & Brahma, P. P. (2021). Reliability of GAN Generated Data to Train and Validate Perception Systems for Autonomous Vehicles.
J. Bernsen. (1986). Dynamic Thresholding of Gray Level Image. In
Saccenti, Hendriks, Smilde (b0145) 2020; 10
Rasheed, Ali, Alabdali, Shihab, Rashid, Rashid, Abed Hamad (b0135) 2021; 1999
Chicco, Warrens, Jurman (b0025) 2021; 7
Zhu, Wang (b0195) 2012; 7
171–180. 10.1109/WACVW52041.2021.00023.
Das, S., Mandal, S., & Das, A. K. (2016). Binarization of stone inscripted documents.
Ramaneswaran, Srinivasan, Vincent, Chang (b0130) 2021; 2021
,
Wang, Wang, Kwan Ng, Schober, Gao (b0175) 2021; 20
Bera, Ghosh, Bhowmik, Sarkar, Nasipuri (b0015) 2021; 80
.
Tran, Tran, Nguyen, Nguyen, Cheung (b0170) 2021; 30
(Issue January). 10.5772/9776.
2488–2495. 10.1109/CVPR.2010.5539950.
Iravatham (b0060) 2003
Davies (b0035) 2017
Hao, S., & Li, S. (2020). A Weighted Mean Absolute Error Metric for Image Quality Assessment.
Martín-Clemente, Hornillo-Mellado (b0095) 2006; 2006
88–101. https://uttamam.org/infitt_papers.php.
Fu, Yang, Zeng, Zhang, Zhou (b0045) 2022; 11
Bhat, S., & Seshikala, G. (2018). Preprocessing and Binarization of Inscription Images using Phase Based Features.
Zubair, Iqbal, Shil, Chowdhury, Moni, Sarker (b0200) 2022
Alginahi, Y. (2010). Preprocessing Techniques in Character Recognition. In
Durga Devi, Uma Maheswari (b0040) 2019; 23
Niblack (b0120) 1985
Ntirogiannis, Gatos, Pratikakis (b0125) 2013; 22
Iravatham (b0065) 2014
Monisha, M., & Felix Enigo, V. S. (2020). Complexities in Developing Tamil-Brahmi Script OCR: An Analysis.
330–333. 10.1109/VCIP49819.2020.9301889.
Zhang, J., & Hu, J. (2008). Image Segmentation Based on 2D Otsu Method with Histogram Analysis.
Nair, B. J. B., Anusha, M. U., & Anusha, J. (2022). A Novel Stage Wise Denoising Approach on Ancient Kannada script from Rock Images.
Shaus, Turkel, Piasetzky (b0155) 2012; 645
Kapur, Sahoo, Wong (b0085) 1985; 29
105–108. 10.1109/CSSE.2008.206.
Xing, Ren (b0180) 2023; 11
Mousavi, S. M. H., & Muhammad Hassan Mosavi, S. (2022). A New Edge and Pixel-Based Image Quality Assessment Metric for Colour and Depth Images.
Rogers, Zack (b0140) 1977; 25
1–6. 10.1109/ICAECC.2018.8479434.
1715–1723. 10.1109/ICCES54183.2022.9835997.
Jyotsna, Chauhan, S., Sharma, E., & Doegar, A. (2016). Binarization techniques for degraded document images-A review.
163–166. 10.1109/ICRITO.2016.7784945.
Sauvola, Pietikäinen (b0150) 2000; 33
Jain, V., Bollmann, B., Richardson, M., Berger, D. R., Helmstaedter, M. N., Briggman, K. L., Denk, W., Bowden, J. B., Mendenhall, J. M., Abraham, W. C., Harris, K. M., Kasthuri, N., Hayworth, K. J., Schalek, R., Tapia, J. C., Lichtman, J. W., & Seung, H. S. (2010). Boundary learning by optimization with topological constraints.
Durga Devi (10.1016/j.eswa.2023.121320_b0040) 2019; 23
Bataineh (10.1016/j.eswa.2023.121320_b0010) 2017; 20
10.1016/j.eswa.2023.121320_b0100
Tran (10.1016/j.eswa.2023.121320_b0170) 2021; 30
10.1016/j.eswa.2023.121320_b0020
10.1016/j.eswa.2023.121320_b0185
10.1016/j.eswa.2023.121320_b0080
Bera (10.1016/j.eswa.2023.121320_b0015) 2021; 80
Iravatham (10.1016/j.eswa.2023.121320_b0060) 2003
Ntirogiannis (10.1016/j.eswa.2023.121320_b0125) 2013; 22
Chicco (10.1016/j.eswa.2023.121320_b0025) 2021; 7
Sauvola (10.1016/j.eswa.2023.121320_b0150) 2000; 33
Wang (10.1016/j.eswa.2023.121320_b0175) 2021; 20
Sukanthi (10.1016/j.eswa.2023.121320_b0165) 2021; 20
Fu (10.1016/j.eswa.2023.121320_b0045) 2022; 11
Kapur (10.1016/j.eswa.2023.121320_b0085) 1985; 29
Martín-Clemente (10.1016/j.eswa.2023.121320_b0095) 2006; 2006
10.1016/j.eswa.2023.121320_b0115
10.1016/j.eswa.2023.121320_b0055
Muller (10.1016/j.eswa.2023.121320_b0110) 2022; 11
Sreedevi (10.1016/j.eswa.2023.121320_b0160) 2013; 2013
Ramaneswaran (10.1016/j.eswa.2023.121320_b0130) 2021; 2021
10.1016/j.eswa.2023.121320_b0030
Davies (10.1016/j.eswa.2023.121320_b0035) 2017
10.1016/j.eswa.2023.121320_b0075
10.1016/j.eswa.2023.121320_b0090
Rogers (10.1016/j.eswa.2023.121320_b0140) 1977; 25
Iravatham (10.1016/j.eswa.2023.121320_b0065) 2014
10.1016/j.eswa.2023.121320_b0190
10.1016/j.eswa.2023.121320_b0070
Gatos (10.1016/j.eswa.2023.121320_b0050) 2006; 39
Saccenti (10.1016/j.eswa.2023.121320_b0145) 2020; 10
Zubair (10.1016/j.eswa.2023.121320_b0200) 2022
Shaus (10.1016/j.eswa.2023.121320_b0155) 2012; 645
Rasheed (10.1016/j.eswa.2023.121320_b0135) 2021; 1999
Zhu (10.1016/j.eswa.2023.121320_b0195) 2012; 7
Niblack (10.1016/j.eswa.2023.121320_b0120) 1985
10.1016/j.eswa.2023.121320_b0005
Xing (10.1016/j.eswa.2023.121320_b0180) 2023; 11
10.1016/j.eswa.2023.121320_b0105
References_xml – volume: 645
  start-page: 645
  year: 2012
  end-page: 650
  ident: b0155
  article-title: Binarization of First Temple Period inscriptions - Performance of existing algorithms and a new registration based scheme
  publication-title: Proceedings - International Workshop on Frontiers in Handwriting Recognition, IWFHR
– volume: 11
  start-page: 55834
  year: 2023
  end-page: 55843
  ident: b0180
  article-title: Binary Inscription Character Inpainting Based on Improved Context Encoders
  publication-title: IEEE Access
– volume: 10
  start-page: 1
  year: 2020
  end-page: 19
  ident: b0145
  article-title: Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models
  publication-title: Scientific Reports
– volume: 39
  start-page: 317
  year: 2006
  end-page: 327
  ident: b0050
  article-title: Adaptive degraded document image binarization
  publication-title: Pattern Recognition
– volume: 11
  start-page: 1
  year: 2022
  end-page: 13
  ident: b0110
  article-title: Application of Deep Learning Methods for Binarization of the Choroid in Optical Coherence Tomography Images
  publication-title: Translational Vision Science and Technology
– volume: 1999
  year: 2021
  ident: b0135
  article-title: The Effectiveness of the Finite Differences Method on Physical and Medical Images Based on a Heat Diffusion Equation
  publication-title: Journal of Physics: Conference Series
– volume: 23
  start-page: 2611
  year: 2019
  end-page: 2626
  ident: b0040
  article-title: Digital acquisition and character extraction from stone inscription images using modified fuzzy entropy-based adaptive thresholding
  publication-title: Soft Computing
– year: 2003
  ident: b0060
  article-title: Early tamil epigraphy from the earliest times to the sixth century AD
– volume: 2021
  year: 2021
  ident: b0130
  article-title: Hybrid Inception v3 XGBoost Model for Acute Lymphoblastic Leukemia Classification
  publication-title: Computational and Mathematical Methods in Medicine
– reference: , 105–108. 10.1109/CSSE.2008.206.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 7
  ident: b0160
  article-title: NGFICA Based Digitization of Historic Inscription Images
  publication-title: ISRN Signal Processing
– year: 2014
  ident: b0065
  article-title: Early tamil epigraphy from the earliest times to the sixth century C.E
– reference: (10). 10.3390/jimaging8100272.
– reference: Das, S., Mandal, S., & Das, A. K. (2016). Binarization of stone inscripted documents.
– year: 2022
  ident: b0200
  article-title: An Improved K-means Clustering Algorithm Towards an Efficient Data-Driven Modeling
  publication-title: Annals of Data Science
– volume: 20
  start-page: 4221
  year: 2021
  end-page: 4237
  ident: b0175
  article-title: A Minimum Error Probability NOMA Design
  publication-title: IEEE Transactions on Wireless Communications
– reference: Nair, B. J. B., Anusha, M. U., & Anusha, J. (2022). A Novel Stage Wise Denoising Approach on Ancient Kannada script from Rock Images.
– reference: , 330–333. 10.1109/VCIP49819.2020.9301889.
– reference: , 2488–2495. 10.1109/CVPR.2010.5539950.
– reference: , 163–166. 10.1109/ICRITO.2016.7784945.
– volume: 22
  start-page: 595
  year: 2013
  end-page: 609
  ident: b0125
  article-title: Performance evaluation methodology for historical document image binarization
  publication-title: IEEE Transactions on Image Processing
– reference: Xu, W., Souly, N., & Brahma, P. P. (2021). Reliability of GAN Generated Data to Train and Validate Perception Systems for Autonomous Vehicles.
– volume: 11
  start-page: 1
  year: 2022
  end-page: 17
  ident: b0045
  article-title: Improvement of Oracle Bone Inscription Recognition Accuracy: A Deep Learning Perspective
  publication-title: ISPRS International Journal of Geo-Information
– year: 1985
  ident: b0120
  article-title: An Introduction to Digital Image Processing
– reference: Zhang, J., & Hu, J. (2008). Image Segmentation Based on 2D Otsu Method with Histogram Analysis.
– volume: 7
  start-page: 838
  year: 2012
  end-page: 841
  ident: b0195
  article-title: Application of improved median filter on image processing
  publication-title: Journal of Computers
– reference: Jain, V., Bollmann, B., Richardson, M., Berger, D. R., Helmstaedter, M. N., Briggman, K. L., Denk, W., Bowden, J. B., Mendenhall, J. M., Abraham, W. C., Harris, K. M., Kasthuri, N., Hayworth, K. J., Schalek, R., Tapia, J. C., Lichtman, J. W., & Seung, H. S. (2010). Boundary learning by optimization with topological constraints.
– volume: 25
  start-page: 741
  year: 1977
  end-page: 753
  ident: b0140
  article-title: Automatic measurement of sister chromatid exchange frequency
  publication-title: The Journal of Histochemistry and Cytochemistry
– reference: ,
– volume: 7
  start-page: 1
  year: 2021
  end-page: 24
  ident: b0025
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Computer Science
– reference: . 10.1109/CFIS54774.2022.9756490.
– reference: Monisha, M., & Felix Enigo, V. S. (2020). Complexities in Developing Tamil-Brahmi Script OCR: An Analysis.
– reference: Hao, S., & Li, S. (2020). A Weighted Mean Absolute Error Metric for Image Quality Assessment.
– reference: (Issue January). 10.5772/9776.
– reference: J. Bernsen. (1986). Dynamic Thresholding of Gray Level Image. In
– reference: Alginahi, Y. (2010). Preprocessing Techniques in Character Recognition. In
– year: 2017
  ident: b0035
  article-title: Computer Vision, Fifth Edition: Principles, Algorithms, Applications, Learning
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: b0085
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision, Graphics, & Image Processing
– reference: , 88–101. https://uttamam.org/infitt_papers.php.
– volume: 80
  start-page: 7653
  year: 2021
  end-page: 7673
  ident: b0015
  article-title: A non-parametric binarization method based on ensemble of clustering algorithms
  publication-title: Multimedia Tools and Applications
– volume: 33
  start-page: 225
  year: 2000
  end-page: 236
  ident: b0150
  article-title: Adaptive document image binarization
  publication-title: Pattern Recognition
– reference: Lins, R. D., Bernardino, R., Barboza, R. da S., & De Oliveira, R. C. (2022). Using Paper Texture for Choosing a Suitable Algorithm for Scanned Document Image Binarization.
– volume: 20
  year: 2021
  ident: b0165
  article-title: Binarization of Stone Inscription Images by Modified Bi-level Entropy Thresholding
  publication-title: Fluctuation and Noise Letters
– volume: 20
  start-page: 639
  year: 2017
  end-page: 652
  ident: b0010
  article-title: Adaptive binarization method for degraded document images based on surface contrast variation
  publication-title: Pattern Analysis and Applications
– reference: .
– reference: , 1–6. 10.1109/ICAECC.2018.8479434.
– reference: Mousavi, S. M. H., & Muhammad Hassan Mosavi, S. (2022). A New Edge and Pixel-Based Image Quality Assessment Metric for Colour and Depth Images.
– volume: 2006
  start-page: 502
  year: 2006
  end-page: 505
  ident: b0095
  article-title: Image processing using ICA: A new perspective
  publication-title: Proceedings of the Mediterranean Electrotechnical Conference - MELECON
– volume: 30
  start-page: 1882
  year: 2021
  end-page: 1897
  ident: b0170
  article-title: On Data Augmentation for GAN Training
  publication-title: IEEE Transactions on Image Processing
– reference: Jyotsna, Chauhan, S., Sharma, E., & Doegar, A. (2016). Binarization techniques for degraded document images-A review.
– reference: , 11–16. 10.1109/CGVIS.2015.7449883.
– reference: , 171–180. 10.1109/WACVW52041.2021.00023.
– reference: Bhat, S., & Seshikala, G. (2018). Preprocessing and Binarization of Inscription Images using Phase Based Features.
– reference: , 1715–1723. 10.1109/ICCES54183.2022.9835997.
– volume: 33
  start-page: 225
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2023.121320_b0150
  article-title: Adaptive document image binarization
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(99)00055-2
– ident: 10.1016/j.eswa.2023.121320_b0030
  doi: 10.1109/CGVIS.2015.7449883
– volume: 645
  start-page: 645
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2023.121320_b0155
  article-title: Binarization of First Temple Period inscriptions - Performance of existing algorithms and a new registration based scheme
  publication-title: Proceedings - International Workshop on Frontiers in Handwriting Recognition, IWFHR
– volume: 39
  start-page: 317
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2023.121320_b0050
  article-title: Adaptive degraded document image binarization
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2005.09.010
– volume: 25
  start-page: 741
  issue: 7
  year: 1977
  ident: 10.1016/j.eswa.2023.121320_b0140
  article-title: Automatic measurement of sister chromatid exchange frequency
  publication-title: The Journal of Histochemistry and Cytochemistry
  doi: 10.1177/25.7.70454
– volume: 7
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.121320_b0025
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.623
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.121320_b0145
  article-title: Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-57247-4
– volume: 20
  start-page: 639
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2023.121320_b0010
  article-title: Adaptive binarization method for degraded document images based on surface contrast variation
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-015-0520-0
– ident: 10.1016/j.eswa.2023.121320_b0080
  doi: 10.1109/ICRITO.2016.7784945
– volume: 2021
  year: 2021
  ident: 10.1016/j.eswa.2023.121320_b0130
  article-title: Hybrid Inception v3 XGBoost Model for Acute Lymphoblastic Leukemia Classification
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2021/2577375
– volume: 20
  start-page: 4221
  issue: 7
  year: 2021
  ident: 10.1016/j.eswa.2023.121320_b0175
  article-title: A Minimum Error Probability NOMA Design
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2021.3056597
– volume: 23
  start-page: 2611
  issue: 8
  year: 2019
  ident: 10.1016/j.eswa.2023.121320_b0040
  article-title: Digital acquisition and character extraction from stone inscription images using modified fuzzy entropy-based adaptive thresholding
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3610-2
– ident: 10.1016/j.eswa.2023.121320_b0075
  doi: 10.1109/CVPR.2010.5539950
– year: 2017
  ident: 10.1016/j.eswa.2023.121320_b0035
– volume: 2006
  start-page: 502
  year: 2006
  ident: 10.1016/j.eswa.2023.121320_b0095
  article-title: Image processing using ICA: A new perspective
  publication-title: Proceedings of the Mediterranean Electrotechnical Conference - MELECON
– ident: 10.1016/j.eswa.2023.121320_b0020
  doi: 10.1109/ICAECC.2018.8479434
– volume: 7
  start-page: 838
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2023.121320_b0195
  article-title: Application of improved median filter on image processing
  publication-title: Journal of Computers
  doi: 10.4304/jcp.7.4.838-841
– year: 1985
  ident: 10.1016/j.eswa.2023.121320_b0120
– year: 2003
  ident: 10.1016/j.eswa.2023.121320_b0060
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2023.121320_b0160
  article-title: NGFICA Based Digitization of Historic Inscription Images
  publication-title: ISRN Signal Processing
  doi: 10.1155/2013/735857
– volume: 80
  start-page: 7653
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2023.121320_b0015
  article-title: A non-parametric binarization method based on ensemble of clustering algorithms
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-09836-z
– volume: 1999
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.121320_b0135
  article-title: The Effectiveness of the Finite Differences Method on Physical and Medical Images Based on a Heat Diffusion Equation
  publication-title: Journal of Physics: Conference Series
– ident: 10.1016/j.eswa.2023.121320_b0115
– volume: 11
  start-page: 55834
  issue: June
  year: 2023
  ident: 10.1016/j.eswa.2023.121320_b0180
  article-title: Binary Inscription Character Inpainting Based on Improved Context Encoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3282442
– ident: 10.1016/j.eswa.2023.121320_b0190
  doi: 10.1109/CSSE.2008.206
– volume: 30
  start-page: 1882
  year: 2021
  ident: 10.1016/j.eswa.2023.121320_b0170
  article-title: On Data Augmentation for GAN Training
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2021.3049346
– ident: 10.1016/j.eswa.2023.121320_b0070
– ident: 10.1016/j.eswa.2023.121320_b0055
  doi: 10.1109/VCIP49819.2020.9301889
– ident: 10.1016/j.eswa.2023.121320_b0105
  doi: 10.1109/CFIS54774.2022.9756490
– volume: 20
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2023.121320_b0165
  article-title: Binarization of Stone Inscription Images by Modified Bi-level Entropy Thresholding
  publication-title: Fluctuation and Noise Letters
  doi: 10.1142/S0219477521500541
– ident: 10.1016/j.eswa.2023.121320_b0185
  doi: 10.1109/WACVW52041.2021.00023
– ident: 10.1016/j.eswa.2023.121320_b0100
– volume: 11
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2023.121320_b0110
  article-title: Application of Deep Learning Methods for Binarization of the Choroid in Optical Coherence Tomography Images
  publication-title: Translational Vision Science and Technology
  doi: 10.1167/tvst.11.2.23
– year: 2022
  ident: 10.1016/j.eswa.2023.121320_b0200
  article-title: An Improved K-means Clustering Algorithm Towards an Efficient Data-Driven Modeling
  publication-title: Annals of Data Science
  doi: 10.1007/s40745-022-00428-2
– volume: 11
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.121320_b0045
  article-title: Improvement of Oracle Bone Inscription Recognition Accuracy: A Deep Learning Perspective
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi11010045
– year: 2014
  ident: 10.1016/j.eswa.2023.121320_b0065
– volume: 22
  start-page: 595
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2023.121320_b0125
  article-title: Performance evaluation methodology for historical document image binarization
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2219550
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 10.1016/j.eswa.2023.121320_b0085
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision, Graphics, & Image Processing
  doi: 10.1016/0734-189X(85)90125-2
– ident: 10.1016/j.eswa.2023.121320_b0090
  doi: 10.3390/jimaging8100272
– ident: 10.1016/j.eswa.2023.121320_b0005
  doi: 10.5772/9776
SSID ssj0017007
Score 2.4235983
Snippet [Display omitted] •To create standard Tamizhi dataset: capturing onsite inscriptions, collecting from various ASI, annotating the collected datasets by domain...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121320
SubjectTerms Binarization
Cave inscriptions
Iterative thresholding
Median filter
Memorial stones
Modified adaptive thresholding
Tamizhi inscription images
Title MLIBT: A multi-level improvised binarization technique for Tamizhi inscriptions
URI https://dx.doi.org/10.1016/j.eswa.2023.121320
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5w_Rg7eJK5p07X1NodjUzcPbrBbSdMEK7MONxE8-Lf73poWBdnBY0sC5SV939f0e98j5DxSSQi4ZlgEKZIJwz0m3dRhqYwkoEkCq47nkMNRuz8Rt1N_WiPdshYGZZU29xc5fZWt7Z2WjWZrnmWtRyAHAIf4p9EBkuxiobkQAe7yy69K5oH2c0HhtxcwHG0LZwqNl158oPeQ66HJgoc9v_8Cpx-A09shW5Yp0k7xMLukpvM9sl12YaD2pdwnD8P7wfX4inboShzIZigDollxWLDQKU2w5NaWW9LKs5UCW6Vj-ZJ9PmU0y6vssTggk97NuNtntk0CU57jLFlkVKCknwjXSHTXUwHnBo3JAO2B4CQ6TY3PJTDDQPnweWV0OzWGp54vla-59g5JPX_N9RGhSZiERviwQi4XKlLS49oRRjqhBtzSvEF4GZ9YWQ9xbGUxi0ux2HOMMY0xpnER0wa5qObMCweNtaP9Muzxr30QQ4pfM-_4n_NOyCZciUKHfUrqy7d3fQY0Y5k0V_uoSTY6g7v-6BsHINDv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbAh0ziJm4StVFQttGUglbpFjmOLoBIqWoTEwG_nXDsRSIiBNYml6Gzfe3HevUPoPBJpCLimSAQpkviKeoS7mUMyHnFAkxRmXZ9DDket3ti_nbBJDXXKWhgtq7S53-T0Zba2V5o2ms1ZnjcfgBwAHOo_jQ6QZJetoFUftq9uY3D5Wek8tP9cYAz3AqIft5UzRuQl5-_afMj1tMuCp5t-_4ZO3xCnu4U2LFXEbfM226gmix20WbZhwHZX7qL74aB_HV_hNl6qA8lU64Bwbk4L5jLDqa65tfWWuDJtxUBXccyf84_HHOdFlT7me2jcvYk7PWL7JBDhOc6CREoEgrPUdxXX9noioFRpZzKAe2A4qcwyxSgHahgIBt9XSrYypWjmMS6YpNLbR_XipZAHCKdhGiqfwRS51BeR4B6Vjq-4E0oALkkbiJbxSYQ1Ede9LKZJqRZ7SnRMEx3TxMS0gS6qMTNjofHn06wMe_JjISSQ4_8Yd_jPcWdorRcPB8mgP7o7Qutwxzei7GNUX7y-yRPgHIv0dLmmvgD6BdJ9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLIBT%3A+A+multi-level+improvised+binarization+technique+for+Tamizhi+inscriptions&rft.jtitle=Expert+systems+with+applications&rft.au=Munivel%2C+Monisha&rft.au=Felix+Enigo%2C+V.S.&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=236&rft_id=info:doi/10.1016%2Fj.eswa.2023.121320&rft.externalDocID=S0957417423018225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon