Remarks on stochastic permanence of population models

This paper examines the asymptotic behavior of the stochastic Lotka–Volterra model under Markovian switching. We show that the stochastic Lotka–Volterra model is stochastically permanent. Moreover, we give another type of stochastic permanence, and consider the relationship of two types of stochasti...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical analysis and applications Vol. 408; no. 2; pp. 561 - 571
Main Authors Lv, Jingliang, Wang, Ke, Zou, Xiaoling
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper examines the asymptotic behavior of the stochastic Lotka–Volterra model under Markovian switching. We show that the stochastic Lotka–Volterra model is stochastically permanent. Moreover, we give another type of stochastic permanence, and consider the relationship of two types of stochastic permanence under white noise perturbation.
AbstractList This paper examines the asymptotic behavior of the stochastic Lotka–Volterra model under Markovian switching. We show that the stochastic Lotka–Volterra model is stochastically permanent. Moreover, we give another type of stochastic permanence, and consider the relationship of two types of stochastic permanence under white noise perturbation.
Author Zou, Xiaoling
Wang, Ke
Lv, Jingliang
Author_xml – sequence: 1
  givenname: Jingliang
  surname: Lv
  fullname: Lv, Jingliang
  email: yxmliang@yahoo.com.cn, ljl3188@163.com
  organization: Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
– sequence: 2
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
– sequence: 3
  givenname: Xiaoling
  surname: Zou
  fullname: Zou, Xiaoling
  organization: Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
BookMark eNp9j8FKxDAURYOM4MzoD7jqD7S-lzZpC25kUEcYEETBXUiTV0ydNiWpgn9vy7j2bt7mnsc9G7Ya_ECMXSNkCChvuqzrtc44YJ6BzADFGVsj1DKFCvMVWwNwnvKifL9gmxg7AERR4pqJF-p1-IyJH5I4efOh4-RMMlLo9UCDocS3yejHr6Oe3NzpvaVjvGTnrT5Guvq7W_b2cP-626eH58en3d0hNTnAlNZUltLyObo2GqSpWqqBhIQib3kpaiGawgpT1dY0TdW0WBQSjMW81KIinm8ZP_01wccYqFVjcPPeH4WgFnHVqUVcLeIKpJrFZ-j2BM1D6dtRUNG4RcW6QGZS1rv_8F_5L2Mu
CitedBy_id crossref_primary_10_1515_apam_2018_0039
crossref_primary_10_1142_S0219493722500162
crossref_primary_10_1016_j_apm_2015_04_016
crossref_primary_10_1142_S1793524515500254
crossref_primary_10_1007_s00332_016_9337_2
crossref_primary_10_1016_j_jmaa_2014_09_017
crossref_primary_10_1016_j_spl_2016_03_024
Cites_doi 10.1016/j.cam.2009.06.021
10.3934/dcds.2009.24.523
10.1016/S0022-247X(03)00539-0
10.1016/j.jmaa.2009.02.010
10.1016/j.jmaa.2005.11.064
10.1016/j.jmaa.2007.08.014
10.1155/2011/518719
10.1016/j.jmaa.2009.03.066
10.1016/j.camwa.2008.01.006
10.1016/S0304-4149(01)00126-0
10.1016/j.jmaa.2009.05.039
10.1016/j.cam.2010.08.021
10.1016/j.jmaa.2010.09.058
10.1016/j.jmaa.2010.10.053
10.1016/j.jmaa.2006.12.032
10.1016/S0025-5564(97)00029-1
10.1016/j.na.2009.01.166
10.1016/j.cnsns.2011.01.015
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jmaa.2013.06.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 571
ExternalDocumentID 10_1016_j_jmaa_2013_06_015
S0022247X1300560X
GrantInformation_xml – fundername: Scientific Research Foundation of Harbin Institute of Technology at Weihai
  grantid: HIT (WH) ZB201103
– fundername: National Natural Science Foundation of China
  grantid: 11171081; 11171056
– fundername: Natural Scientific Research Innovation Foundation in Harbin Institute of Technology
  grantid: HIT.NSRIF.2011094
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
4.4
457
4G.
5GY
5VS
6I.
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
WH7
XPP
YQT
ZMT
ZU3
~G-
1~5
29L
6TJ
7-5
AAQXK
AAXKI
AAYXX
ABEFU
ABFNM
ADFGL
ADIYS
ADMUD
ADVLN
AFFNX
AFJKZ
AGHFR
AI.
AKRWK
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FGOYB
G-2
G8K
HZ~
H~9
MVM
OHT
R2-
SEW
VH1
VOH
WUQ
XOL
YYP
ZCG
ID FETCH-LOGICAL-c300t-9e776d2222a9ca06c8fe90e56043f275955b4d5c89dcbb8bf14460cd137a58e23
IEDL.DBID AIKHN
ISSN 0022-247X
IngestDate Thu Sep 26 15:55:12 EDT 2024
Fri Feb 23 02:33:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Almost sure stochastic permanence
Lotka–Volterra
Stochastic permanence
Chebyshev inequality
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-9e776d2222a9ca06c8fe90e56043f275955b4d5c89dcbb8bf14460cd137a58e23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0022247X1300560X
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_jmaa_2013_06_015
elsevier_sciencedirect_doi_10_1016_j_jmaa_2013_06_015
PublicationCentury 2000
PublicationDate 2013-12-15
PublicationDateYYYYMMDD 2013-12-15
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mao, Sabanis, Renshaw (br000085) 2003; 287
Jiang, Shi, Li (br000030) 2008; 340
Du, Sam (br000010) 2006; 324
Luo, Mao (br000065) 2009; 355
Ji, Jiang, Shi (br000025) 2009; 359
Zhu, Yin (br000100) 2009; 357
Li, Gray, Jiang, Mao (br000035) 2011; 376
Liu, Wang (br000050) 2011; 375
Mao, Yuan (br000090) 2006
Ji, Jiang, Li (br000020) 2010; 235
Li, Mao (br000045) 2009; 24
Mao, Marion, Renshaw (br000080) 2002; 97
Lv, Wang (br000075) 2011; 2011
Ikeda, Wantanabe (br000015) 1981
Braumann (br000005) 2008; 56
Li, Jiang, Mao (br000040) 2009; 232
Lungu, Øksendal (br000055) 1997; 145
Luo, Mao (br000060) 2007; 334
Zhu, Yin (br000095) 2009; 71
Lv, Wang (br000070) 2011; 16
Lv (10.1016/j.jmaa.2013.06.015_br000070) 2011; 16
Ikeda (10.1016/j.jmaa.2013.06.015_br000015) 1981
Ji (10.1016/j.jmaa.2013.06.015_br000025) 2009; 359
Liu (10.1016/j.jmaa.2013.06.015_br000050) 2011; 375
Luo (10.1016/j.jmaa.2013.06.015_br000060) 2007; 334
Zhu (10.1016/j.jmaa.2013.06.015_br000095) 2009; 71
Lv (10.1016/j.jmaa.2013.06.015_br000075) 2011; 2011
Li (10.1016/j.jmaa.2013.06.015_br000035) 2011; 376
Luo (10.1016/j.jmaa.2013.06.015_br000065) 2009; 355
Du (10.1016/j.jmaa.2013.06.015_br000010) 2006; 324
Jiang (10.1016/j.jmaa.2013.06.015_br000030) 2008; 340
Lungu (10.1016/j.jmaa.2013.06.015_br000055) 1997; 145
Mao (10.1016/j.jmaa.2013.06.015_br000090) 2006
Braumann (10.1016/j.jmaa.2013.06.015_br000005) 2008; 56
Ji (10.1016/j.jmaa.2013.06.015_br000020) 2010; 235
Li (10.1016/j.jmaa.2013.06.015_br000040) 2009; 232
Li (10.1016/j.jmaa.2013.06.015_br000045) 2009; 24
Mao (10.1016/j.jmaa.2013.06.015_br000080) 2002; 97
Zhu (10.1016/j.jmaa.2013.06.015_br000100) 2009; 357
Mao (10.1016/j.jmaa.2013.06.015_br000085) 2003; 287
References_xml – volume: 324
  start-page: 82
  year: 2006
  end-page: 97
  ident: br000010
  article-title: Dynamics of a stochastic Lotka–Volterra model perturbed by white noise
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Sam
– volume: 56
  start-page: 631
  year: 2008
  end-page: 644
  ident: br000005
  article-title: Growth and extinction of populations in randomly varying environments
  publication-title: Comput. Math. Appl.
  contributor:
    fullname: Braumann
– volume: 375
  start-page: 443
  year: 2011
  end-page: 457
  ident: br000050
  article-title: Persistence and extinction in stochastic non-autonomous logistic systems
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Wang
– volume: 235
  start-page: 1326
  year: 2010
  end-page: 1341
  ident: br000020
  article-title: Qualitative analysis of a stochastic ratio-dependent predator–prey system
  publication-title: J. Comput. Appl. Math.
  contributor:
    fullname: Li
– volume: 2011
  start-page: 16
  year: 2011
  ident: br000075
  article-title: Analysis on a stochastic predator–prey model with modified Leslie–Gower response
  publication-title: Abstr. Appl. Anal.
  contributor:
    fullname: Wang
– volume: 340
  start-page: 588
  year: 2008
  end-page: 597
  ident: br000030
  article-title: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Li
– volume: 376
  start-page: 11
  year: 2011
  end-page: 28
  ident: br000035
  article-title: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Mao
– volume: 359
  start-page: 482
  year: 2009
  end-page: 498
  ident: br000025
  article-title: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Shi
– volume: 24
  start-page: 523
  year: 2009
  end-page: 545
  ident: br000045
  article-title: Population dynamical behavior of nonautonomous Lotka–Volterra competitive system with random perturbation
  publication-title: Discrete Contin. Dyn. Syst.
  contributor:
    fullname: Mao
– year: 1981
  ident: br000015
  article-title: Stochastic Differential Equations and Diffusion Processes
  contributor:
    fullname: Wantanabe
– volume: 232
  start-page: 427
  year: 2009
  end-page: 448
  ident: br000040
  article-title: Population dynamical behavoir of Lotka–Volterra system under regime switching
  publication-title: J. Comput. Appl. Math.
  contributor:
    fullname: Mao
– volume: 145
  start-page: 47
  year: 1997
  end-page: 75
  ident: br000055
  article-title: Optimal harvesting from a population in a stochastic crowded environment
  publication-title: Math. Biosci.
  contributor:
    fullname: Øksendal
– volume: 334
  start-page: 69
  year: 2007
  end-page: 84
  ident: br000060
  article-title: Stochastic population dynamics under regime switching
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Mao
– volume: 287
  start-page: 141
  year: 2003
  end-page: 156
  ident: br000085
  article-title: Asymptotic behaviour of stochastic Lotka–Volterra model
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Renshaw
– volume: 355
  start-page: 577
  year: 2009
  end-page: 593
  ident: br000065
  article-title: Stochastic population dynamics under regime switching II
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Mao
– volume: 97
  start-page: 95
  year: 2002
  end-page: 110
  ident: br000080
  article-title: Environmental Brownian noise suppresses explosions in population dynamics
  publication-title: Stoch. Proc. Appl.
  contributor:
    fullname: Renshaw
– year: 2006
  ident: br000090
  article-title: Stochastic Differential Equations with Markovian Switching
  contributor:
    fullname: Yuan
– volume: 71
  start-page: e1370
  year: 2009
  end-page: e1379
  ident: br000095
  article-title: On hybrid competitive Lotka–Volterra ecosystems
  publication-title: Nonlinear Anal.
  contributor:
    fullname: Yin
– volume: 357
  start-page: 154
  year: 2009
  end-page: 170
  ident: br000100
  article-title: On competitive Lotka–Volterra model in random environments
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Yin
– volume: 16
  start-page: 4037
  year: 2011
  end-page: 4048
  ident: br000070
  article-title: Asymptotic properties of a stochastic predator–prey system with Holling II functional response
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  contributor:
    fullname: Wang
– volume: 232
  start-page: 427
  year: 2009
  ident: 10.1016/j.jmaa.2013.06.015_br000040
  article-title: Population dynamical behavoir of Lotka–Volterra system under regime switching
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.06.021
  contributor:
    fullname: Li
– volume: 24
  start-page: 523
  year: 2009
  ident: 10.1016/j.jmaa.2013.06.015_br000045
  article-title: Population dynamical behavior of nonautonomous Lotka–Volterra competitive system with random perturbation
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2009.24.523
  contributor:
    fullname: Li
– year: 1981
  ident: 10.1016/j.jmaa.2013.06.015_br000015
  contributor:
    fullname: Ikeda
– volume: 287
  start-page: 141
  year: 2003
  ident: 10.1016/j.jmaa.2013.06.015_br000085
  article-title: Asymptotic behaviour of stochastic Lotka–Volterra model
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(03)00539-0
  contributor:
    fullname: Mao
– volume: 355
  start-page: 577
  year: 2009
  ident: 10.1016/j.jmaa.2013.06.015_br000065
  article-title: Stochastic population dynamics under regime switching II
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2009.02.010
  contributor:
    fullname: Luo
– volume: 324
  start-page: 82
  year: 2006
  ident: 10.1016/j.jmaa.2013.06.015_br000010
  article-title: Dynamics of a stochastic Lotka–Volterra model perturbed by white noise
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.11.064
  contributor:
    fullname: Du
– volume: 340
  start-page: 588
  year: 2008
  ident: 10.1016/j.jmaa.2013.06.015_br000030
  article-title: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.08.014
  contributor:
    fullname: Jiang
– volume: 2011
  start-page: 16
  year: 2011
  ident: 10.1016/j.jmaa.2013.06.015_br000075
  article-title: Analysis on a stochastic predator–prey model with modified Leslie–Gower response
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/2011/518719
  contributor:
    fullname: Lv
– year: 2006
  ident: 10.1016/j.jmaa.2013.06.015_br000090
  contributor:
    fullname: Mao
– volume: 357
  start-page: 154
  year: 2009
  ident: 10.1016/j.jmaa.2013.06.015_br000100
  article-title: On competitive Lotka–Volterra model in random environments
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2009.03.066
  contributor:
    fullname: Zhu
– volume: 56
  start-page: 631
  year: 2008
  ident: 10.1016/j.jmaa.2013.06.015_br000005
  article-title: Growth and extinction of populations in randomly varying environments
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.01.006
  contributor:
    fullname: Braumann
– volume: 97
  start-page: 95
  year: 2002
  ident: 10.1016/j.jmaa.2013.06.015_br000080
  article-title: Environmental Brownian noise suppresses explosions in population dynamics
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/S0304-4149(01)00126-0
  contributor:
    fullname: Mao
– volume: 359
  start-page: 482
  year: 2009
  ident: 10.1016/j.jmaa.2013.06.015_br000025
  article-title: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2009.05.039
  contributor:
    fullname: Ji
– volume: 235
  start-page: 1326
  year: 2010
  ident: 10.1016/j.jmaa.2013.06.015_br000020
  article-title: Qualitative analysis of a stochastic ratio-dependent predator–prey system
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.08.021
  contributor:
    fullname: Ji
– volume: 375
  start-page: 443
  year: 2011
  ident: 10.1016/j.jmaa.2013.06.015_br000050
  article-title: Persistence and extinction in stochastic non-autonomous logistic systems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.09.058
  contributor:
    fullname: Liu
– volume: 376
  start-page: 11
  year: 2011
  ident: 10.1016/j.jmaa.2013.06.015_br000035
  article-title: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.10.053
  contributor:
    fullname: Li
– volume: 334
  start-page: 69
  year: 2007
  ident: 10.1016/j.jmaa.2013.06.015_br000060
  article-title: Stochastic population dynamics under regime switching
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.12.032
  contributor:
    fullname: Luo
– volume: 145
  start-page: 47
  year: 1997
  ident: 10.1016/j.jmaa.2013.06.015_br000055
  article-title: Optimal harvesting from a population in a stochastic crowded environment
  publication-title: Math. Biosci.
  doi: 10.1016/S0025-5564(97)00029-1
  contributor:
    fullname: Lungu
– volume: 71
  start-page: e1370
  year: 2009
  ident: 10.1016/j.jmaa.2013.06.015_br000095
  article-title: On hybrid competitive Lotka–Volterra ecosystems
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.01.166
  contributor:
    fullname: Zhu
– volume: 16
  start-page: 4037
  year: 2011
  ident: 10.1016/j.jmaa.2013.06.015_br000070
  article-title: Asymptotic properties of a stochastic predator–prey system with Holling II functional response
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.01.015
  contributor:
    fullname: Lv
SSID ssj0011571
Score 2.1725824
Snippet This paper examines the asymptotic behavior of the stochastic Lotka–Volterra model under Markovian switching. We show that the stochastic Lotka–Volterra model...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 561
SubjectTerms Almost sure stochastic permanence
Chebyshev inequality
Lotka–Volterra
Stochastic permanence
Title Remarks on stochastic permanence of population models
URI https://dx.doi.org/10.1016/j.jmaa.2013.06.015
Volume 408
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gXPRgfEZ8kB68mUofu93uEYgE5BFDxPTW7G67EYyFAF797e7QlmhiPHjqK5N0vm1nZjMz3wDcCo4pVlfawhHaJmEQ2EJpYbOUB5KIwPEUNiePxkFvSh4jGlWgU_bCYFllYftzm7611sWdZoFmczmbYY-v8W2ERZiQMX472oPaNklUhVqrP-iNd8kElzK3JA1HgaJ3Ji_zmr8LpB9y_S2NJ07H_c0_ffM53SM4LIJFq5W_zzFU0uwEDkY7ptX1KdCJOV29ra1FZpk4Tr0KJF62lmhwM9TGWmhruZvSZW0n36zPYNp9eO707GIUgq2Mdhubp4wFidHXE1wJJ1ChTrmTGrWJrz1GOaWSJFSFPFFShlLjNs9RieszQcPU88-hmi2y9AIs46tIYv5yQikjoRQy0cJnOuCSJ0JwXYe7EoB4mTNexGUp2DxGuGKEK8Z6OJfWgZYYxT_WLTYm-Q-5y3_KXcE-XmFBiUuvobpZfaQ3JizYyAbs3X-6DbP47ZfBEI-dyfCpUXwM5mk_an8BSwq6sQ
link.rule.ids 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdgAOiKcYzxy4oWrtmkdzHBPTYI8D2lBvVZImYkN01Tb-P_HaTiAhDtyqVJZip7Ud-fNnhO6kgBJroDzpS-uRiDFPais9bgRTRDK_raE5eTRm_Sl5jmlcQ92qFwZglaXvL3z6xluXK63Smq18NoMeXxfbCI-hIOPidryDGi4b4O4G1ug8vA6G22JCQHlQkYaDQNk7U8C85h8S6IeCcEPjCdNxf4tP32JO7xAdlMki7hT7OUI1kx2j_dGWaXV1guiLe1y-r_Aiwy6P028SiJdxDg43A23wwuJ8O6ULbybfrE7RtPc46fa9chSCp512a08Yzlnq9G1LoaXPdGSN8I1Tm4S2zamgVJGU6kikWqlIWbjm-ToNQi5pZNrhGapni8ycI-xiFUndX04o5SRSUqVWhtwyoUQqpbBNdF8ZIMkLxoukgoLNEzBXAuZKAA8X0CailY2SH-eWOJf8h9zFP-Vu0W5_Mhomw6fx4BLtwRsAlwT0CtXXy09z7VKEtbopP4Ev_xK4jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remarks+on+stochastic+permanence+of+population+models&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Lv%2C+Jingliang&rft.au=Wang%2C+Ke&rft.au=Zou%2C+Xiaoling&rft.date=2013-12-15&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=408&rft.issue=2&rft.spage=561&rft.epage=571&rft_id=info:doi/10.1016%2Fj.jmaa.2013.06.015&rft.externalDocID=S0022247X1300560X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon