Remarks on stochastic permanence of population models
This paper examines the asymptotic behavior of the stochastic Lotka–Volterra model under Markovian switching. We show that the stochastic Lotka–Volterra model is stochastically permanent. Moreover, we give another type of stochastic permanence, and consider the relationship of two types of stochasti...
Saved in:
Published in | Journal of mathematical analysis and applications Vol. 408; no. 2; pp. 561 - 571 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper examines the asymptotic behavior of the stochastic Lotka–Volterra model under Markovian switching. We show that the stochastic Lotka–Volterra model is stochastically permanent. Moreover, we give another type of stochastic permanence, and consider the relationship of two types of stochastic permanence under white noise perturbation. |
---|---|
AbstractList | This paper examines the asymptotic behavior of the stochastic Lotka–Volterra model under Markovian switching. We show that the stochastic Lotka–Volterra model is stochastically permanent. Moreover, we give another type of stochastic permanence, and consider the relationship of two types of stochastic permanence under white noise perturbation. |
Author | Zou, Xiaoling Wang, Ke Lv, Jingliang |
Author_xml | – sequence: 1 givenname: Jingliang surname: Lv fullname: Lv, Jingliang email: yxmliang@yahoo.com.cn, ljl3188@163.com organization: Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai 264209, PR China – sequence: 2 givenname: Ke surname: Wang fullname: Wang, Ke organization: Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai 264209, PR China – sequence: 3 givenname: Xiaoling surname: Zou fullname: Zou, Xiaoling organization: Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai 264209, PR China |
BookMark | eNp9j8FKxDAURYOM4MzoD7jqD7S-lzZpC25kUEcYEETBXUiTV0ydNiWpgn9vy7j2bt7mnsc9G7Ya_ECMXSNkCChvuqzrtc44YJ6BzADFGVsj1DKFCvMVWwNwnvKifL9gmxg7AERR4pqJF-p1-IyJH5I4efOh4-RMMlLo9UCDocS3yejHr6Oe3NzpvaVjvGTnrT5Guvq7W_b2cP-626eH58en3d0hNTnAlNZUltLyObo2GqSpWqqBhIQib3kpaiGawgpT1dY0TdW0WBQSjMW81KIinm8ZP_01wccYqFVjcPPeH4WgFnHVqUVcLeIKpJrFZ-j2BM1D6dtRUNG4RcW6QGZS1rv_8F_5L2Mu |
CitedBy_id | crossref_primary_10_1515_apam_2018_0039 crossref_primary_10_1142_S0219493722500162 crossref_primary_10_1016_j_apm_2015_04_016 crossref_primary_10_1142_S1793524515500254 crossref_primary_10_1007_s00332_016_9337_2 crossref_primary_10_1016_j_jmaa_2014_09_017 crossref_primary_10_1016_j_spl_2016_03_024 |
Cites_doi | 10.1016/j.cam.2009.06.021 10.3934/dcds.2009.24.523 10.1016/S0022-247X(03)00539-0 10.1016/j.jmaa.2009.02.010 10.1016/j.jmaa.2005.11.064 10.1016/j.jmaa.2007.08.014 10.1155/2011/518719 10.1016/j.jmaa.2009.03.066 10.1016/j.camwa.2008.01.006 10.1016/S0304-4149(01)00126-0 10.1016/j.jmaa.2009.05.039 10.1016/j.cam.2010.08.021 10.1016/j.jmaa.2010.09.058 10.1016/j.jmaa.2010.10.053 10.1016/j.jmaa.2006.12.032 10.1016/S0025-5564(97)00029-1 10.1016/j.na.2009.01.166 10.1016/j.cnsns.2011.01.015 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jmaa.2013.06.015 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0813 |
EndPage | 571 |
ExternalDocumentID | 10_1016_j_jmaa_2013_06_015 S0022247X1300560X |
GrantInformation_xml | – fundername: Scientific Research Foundation of Harbin Institute of Technology at Weihai grantid: HIT (WH) ZB201103 – fundername: National Natural Science Foundation of China grantid: 11171081; 11171056 – fundername: Natural Scientific Research Innovation Foundation in Harbin Institute of Technology grantid: HIT.NSRIF.2011094 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 4.4 457 4G. 5GY 5VS 6I. 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AASFE AAXUO ABAOU ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 TWZ UPT WH7 XPP YQT ZMT ZU3 ~G- 1~5 29L 6TJ 7-5 AAQXK AAXKI AAYXX ABEFU ABFNM ADFGL ADIYS ADMUD ADVLN AFFNX AFJKZ AGHFR AI. AKRWK ASPBG AVWKF AZFZN CAG CITATION COF FGOYB G-2 G8K HZ~ H~9 MVM OHT R2- SEW VH1 VOH WUQ XOL YYP ZCG |
ID | FETCH-LOGICAL-c300t-9e776d2222a9ca06c8fe90e56043f275955b4d5c89dcbb8bf14460cd137a58e23 |
IEDL.DBID | AIKHN |
ISSN | 0022-247X |
IngestDate | Thu Sep 26 15:55:12 EDT 2024 Fri Feb 23 02:33:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Almost sure stochastic permanence Lotka–Volterra Stochastic permanence Chebyshev inequality |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-9e776d2222a9ca06c8fe90e56043f275955b4d5c89dcbb8bf14460cd137a58e23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022247X1300560X |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_jmaa_2013_06_015 elsevier_sciencedirect_doi_10_1016_j_jmaa_2013_06_015 |
PublicationCentury | 2000 |
PublicationDate | 2013-12-15 |
PublicationDateYYYYMMDD | 2013-12-15 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of mathematical analysis and applications |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Mao, Sabanis, Renshaw (br000085) 2003; 287 Jiang, Shi, Li (br000030) 2008; 340 Du, Sam (br000010) 2006; 324 Luo, Mao (br000065) 2009; 355 Ji, Jiang, Shi (br000025) 2009; 359 Zhu, Yin (br000100) 2009; 357 Li, Gray, Jiang, Mao (br000035) 2011; 376 Liu, Wang (br000050) 2011; 375 Mao, Yuan (br000090) 2006 Ji, Jiang, Li (br000020) 2010; 235 Li, Mao (br000045) 2009; 24 Mao, Marion, Renshaw (br000080) 2002; 97 Lv, Wang (br000075) 2011; 2011 Ikeda, Wantanabe (br000015) 1981 Braumann (br000005) 2008; 56 Li, Jiang, Mao (br000040) 2009; 232 Lungu, Øksendal (br000055) 1997; 145 Luo, Mao (br000060) 2007; 334 Zhu, Yin (br000095) 2009; 71 Lv, Wang (br000070) 2011; 16 Lv (10.1016/j.jmaa.2013.06.015_br000070) 2011; 16 Ikeda (10.1016/j.jmaa.2013.06.015_br000015) 1981 Ji (10.1016/j.jmaa.2013.06.015_br000025) 2009; 359 Liu (10.1016/j.jmaa.2013.06.015_br000050) 2011; 375 Luo (10.1016/j.jmaa.2013.06.015_br000060) 2007; 334 Zhu (10.1016/j.jmaa.2013.06.015_br000095) 2009; 71 Lv (10.1016/j.jmaa.2013.06.015_br000075) 2011; 2011 Li (10.1016/j.jmaa.2013.06.015_br000035) 2011; 376 Luo (10.1016/j.jmaa.2013.06.015_br000065) 2009; 355 Du (10.1016/j.jmaa.2013.06.015_br000010) 2006; 324 Jiang (10.1016/j.jmaa.2013.06.015_br000030) 2008; 340 Lungu (10.1016/j.jmaa.2013.06.015_br000055) 1997; 145 Mao (10.1016/j.jmaa.2013.06.015_br000090) 2006 Braumann (10.1016/j.jmaa.2013.06.015_br000005) 2008; 56 Ji (10.1016/j.jmaa.2013.06.015_br000020) 2010; 235 Li (10.1016/j.jmaa.2013.06.015_br000040) 2009; 232 Li (10.1016/j.jmaa.2013.06.015_br000045) 2009; 24 Mao (10.1016/j.jmaa.2013.06.015_br000080) 2002; 97 Zhu (10.1016/j.jmaa.2013.06.015_br000100) 2009; 357 Mao (10.1016/j.jmaa.2013.06.015_br000085) 2003; 287 |
References_xml | – volume: 324 start-page: 82 year: 2006 end-page: 97 ident: br000010 article-title: Dynamics of a stochastic Lotka–Volterra model perturbed by white noise publication-title: J. Math. Anal. Appl. contributor: fullname: Sam – volume: 56 start-page: 631 year: 2008 end-page: 644 ident: br000005 article-title: Growth and extinction of populations in randomly varying environments publication-title: Comput. Math. Appl. contributor: fullname: Braumann – volume: 375 start-page: 443 year: 2011 end-page: 457 ident: br000050 article-title: Persistence and extinction in stochastic non-autonomous logistic systems publication-title: J. Math. Anal. Appl. contributor: fullname: Wang – volume: 235 start-page: 1326 year: 2010 end-page: 1341 ident: br000020 article-title: Qualitative analysis of a stochastic ratio-dependent predator–prey system publication-title: J. Comput. Appl. Math. contributor: fullname: Li – volume: 2011 start-page: 16 year: 2011 ident: br000075 article-title: Analysis on a stochastic predator–prey model with modified Leslie–Gower response publication-title: Abstr. Appl. Anal. contributor: fullname: Wang – volume: 340 start-page: 588 year: 2008 end-page: 597 ident: br000030 article-title: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation publication-title: J. Math. Anal. Appl. contributor: fullname: Li – volume: 376 start-page: 11 year: 2011 end-page: 28 ident: br000035 article-title: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching publication-title: J. Math. Anal. Appl. contributor: fullname: Mao – volume: 359 start-page: 482 year: 2009 end-page: 498 ident: br000025 article-title: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation publication-title: J. Math. Anal. Appl. contributor: fullname: Shi – volume: 24 start-page: 523 year: 2009 end-page: 545 ident: br000045 article-title: Population dynamical behavior of nonautonomous Lotka–Volterra competitive system with random perturbation publication-title: Discrete Contin. Dyn. Syst. contributor: fullname: Mao – year: 1981 ident: br000015 article-title: Stochastic Differential Equations and Diffusion Processes contributor: fullname: Wantanabe – volume: 232 start-page: 427 year: 2009 end-page: 448 ident: br000040 article-title: Population dynamical behavoir of Lotka–Volterra system under regime switching publication-title: J. Comput. Appl. Math. contributor: fullname: Mao – volume: 145 start-page: 47 year: 1997 end-page: 75 ident: br000055 article-title: Optimal harvesting from a population in a stochastic crowded environment publication-title: Math. Biosci. contributor: fullname: Øksendal – volume: 334 start-page: 69 year: 2007 end-page: 84 ident: br000060 article-title: Stochastic population dynamics under regime switching publication-title: J. Math. Anal. Appl. contributor: fullname: Mao – volume: 287 start-page: 141 year: 2003 end-page: 156 ident: br000085 article-title: Asymptotic behaviour of stochastic Lotka–Volterra model publication-title: J. Math. Anal. Appl. contributor: fullname: Renshaw – volume: 355 start-page: 577 year: 2009 end-page: 593 ident: br000065 article-title: Stochastic population dynamics under regime switching II publication-title: J. Math. Anal. Appl. contributor: fullname: Mao – volume: 97 start-page: 95 year: 2002 end-page: 110 ident: br000080 article-title: Environmental Brownian noise suppresses explosions in population dynamics publication-title: Stoch. Proc. Appl. contributor: fullname: Renshaw – year: 2006 ident: br000090 article-title: Stochastic Differential Equations with Markovian Switching contributor: fullname: Yuan – volume: 71 start-page: e1370 year: 2009 end-page: e1379 ident: br000095 article-title: On hybrid competitive Lotka–Volterra ecosystems publication-title: Nonlinear Anal. contributor: fullname: Yin – volume: 357 start-page: 154 year: 2009 end-page: 170 ident: br000100 article-title: On competitive Lotka–Volterra model in random environments publication-title: J. Math. Anal. Appl. contributor: fullname: Yin – volume: 16 start-page: 4037 year: 2011 end-page: 4048 ident: br000070 article-title: Asymptotic properties of a stochastic predator–prey system with Holling II functional response publication-title: Commun. Nonlinear Sci. Numer. Simul. contributor: fullname: Wang – volume: 232 start-page: 427 year: 2009 ident: 10.1016/j.jmaa.2013.06.015_br000040 article-title: Population dynamical behavoir of Lotka–Volterra system under regime switching publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.06.021 contributor: fullname: Li – volume: 24 start-page: 523 year: 2009 ident: 10.1016/j.jmaa.2013.06.015_br000045 article-title: Population dynamical behavior of nonautonomous Lotka–Volterra competitive system with random perturbation publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2009.24.523 contributor: fullname: Li – year: 1981 ident: 10.1016/j.jmaa.2013.06.015_br000015 contributor: fullname: Ikeda – volume: 287 start-page: 141 year: 2003 ident: 10.1016/j.jmaa.2013.06.015_br000085 article-title: Asymptotic behaviour of stochastic Lotka–Volterra model publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(03)00539-0 contributor: fullname: Mao – volume: 355 start-page: 577 year: 2009 ident: 10.1016/j.jmaa.2013.06.015_br000065 article-title: Stochastic population dynamics under regime switching II publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2009.02.010 contributor: fullname: Luo – volume: 324 start-page: 82 year: 2006 ident: 10.1016/j.jmaa.2013.06.015_br000010 article-title: Dynamics of a stochastic Lotka–Volterra model perturbed by white noise publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.11.064 contributor: fullname: Du – volume: 340 start-page: 588 year: 2008 ident: 10.1016/j.jmaa.2013.06.015_br000030 article-title: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2007.08.014 contributor: fullname: Jiang – volume: 2011 start-page: 16 year: 2011 ident: 10.1016/j.jmaa.2013.06.015_br000075 article-title: Analysis on a stochastic predator–prey model with modified Leslie–Gower response publication-title: Abstr. Appl. Anal. doi: 10.1155/2011/518719 contributor: fullname: Lv – year: 2006 ident: 10.1016/j.jmaa.2013.06.015_br000090 contributor: fullname: Mao – volume: 357 start-page: 154 year: 2009 ident: 10.1016/j.jmaa.2013.06.015_br000100 article-title: On competitive Lotka–Volterra model in random environments publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2009.03.066 contributor: fullname: Zhu – volume: 56 start-page: 631 year: 2008 ident: 10.1016/j.jmaa.2013.06.015_br000005 article-title: Growth and extinction of populations in randomly varying environments publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.01.006 contributor: fullname: Braumann – volume: 97 start-page: 95 year: 2002 ident: 10.1016/j.jmaa.2013.06.015_br000080 article-title: Environmental Brownian noise suppresses explosions in population dynamics publication-title: Stoch. Proc. Appl. doi: 10.1016/S0304-4149(01)00126-0 contributor: fullname: Mao – volume: 359 start-page: 482 year: 2009 ident: 10.1016/j.jmaa.2013.06.015_br000025 article-title: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2009.05.039 contributor: fullname: Ji – volume: 235 start-page: 1326 year: 2010 ident: 10.1016/j.jmaa.2013.06.015_br000020 article-title: Qualitative analysis of a stochastic ratio-dependent predator–prey system publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.08.021 contributor: fullname: Ji – volume: 375 start-page: 443 year: 2011 ident: 10.1016/j.jmaa.2013.06.015_br000050 article-title: Persistence and extinction in stochastic non-autonomous logistic systems publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.09.058 contributor: fullname: Liu – volume: 376 start-page: 11 year: 2011 ident: 10.1016/j.jmaa.2013.06.015_br000035 article-title: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.10.053 contributor: fullname: Li – volume: 334 start-page: 69 year: 2007 ident: 10.1016/j.jmaa.2013.06.015_br000060 article-title: Stochastic population dynamics under regime switching publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.12.032 contributor: fullname: Luo – volume: 145 start-page: 47 year: 1997 ident: 10.1016/j.jmaa.2013.06.015_br000055 article-title: Optimal harvesting from a population in a stochastic crowded environment publication-title: Math. Biosci. doi: 10.1016/S0025-5564(97)00029-1 contributor: fullname: Lungu – volume: 71 start-page: e1370 year: 2009 ident: 10.1016/j.jmaa.2013.06.015_br000095 article-title: On hybrid competitive Lotka–Volterra ecosystems publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.01.166 contributor: fullname: Zhu – volume: 16 start-page: 4037 year: 2011 ident: 10.1016/j.jmaa.2013.06.015_br000070 article-title: Asymptotic properties of a stochastic predator–prey system with Holling II functional response publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.01.015 contributor: fullname: Lv |
SSID | ssj0011571 |
Score | 2.1725824 |
Snippet | This paper examines the asymptotic behavior of the stochastic Lotka–Volterra model under Markovian switching. We show that the stochastic Lotka–Volterra model... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 561 |
SubjectTerms | Almost sure stochastic permanence Chebyshev inequality Lotka–Volterra Stochastic permanence |
Title | Remarks on stochastic permanence of population models |
URI | https://dx.doi.org/10.1016/j.jmaa.2013.06.015 |
Volume | 408 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gXPRgfEZ8kB68mUofu93uEYgE5BFDxPTW7G67EYyFAF797e7QlmhiPHjqK5N0vm1nZjMz3wDcCo4pVlfawhHaJmEQ2EJpYbOUB5KIwPEUNiePxkFvSh4jGlWgU_bCYFllYftzm7611sWdZoFmczmbYY-v8W2ERZiQMX472oPaNklUhVqrP-iNd8kElzK3JA1HgaJ3Ji_zmr8LpB9y_S2NJ07H_c0_ffM53SM4LIJFq5W_zzFU0uwEDkY7ptX1KdCJOV29ra1FZpk4Tr0KJF62lmhwM9TGWmhruZvSZW0n36zPYNp9eO707GIUgq2Mdhubp4wFidHXE1wJJ1ChTrmTGrWJrz1GOaWSJFSFPFFShlLjNs9RieszQcPU88-hmi2y9AIs46tIYv5yQikjoRQy0cJnOuCSJ0JwXYe7EoB4mTNexGUp2DxGuGKEK8Z6OJfWgZYYxT_WLTYm-Q-5y3_KXcE-XmFBiUuvobpZfaQ3JizYyAbs3X-6DbP47ZfBEI-dyfCpUXwM5mk_an8BSwq6sQ |
link.rule.ids | 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdgAOiKcYzxy4oWrtmkdzHBPTYI8D2lBvVZImYkN01Tb-P_HaTiAhDtyqVJZip7Ud-fNnhO6kgBJroDzpS-uRiDFPais9bgRTRDK_raE5eTRm_Sl5jmlcQ92qFwZglaXvL3z6xluXK63Smq18NoMeXxfbCI-hIOPidryDGi4b4O4G1ug8vA6G22JCQHlQkYaDQNk7U8C85h8S6IeCcEPjCdNxf4tP32JO7xAdlMki7hT7OUI1kx2j_dGWaXV1guiLe1y-r_Aiwy6P028SiJdxDg43A23wwuJ8O6ULbybfrE7RtPc46fa9chSCp512a08Yzlnq9G1LoaXPdGSN8I1Tm4S2zamgVJGU6kikWqlIWbjm-ToNQi5pZNrhGapni8ycI-xiFUndX04o5SRSUqVWhtwyoUQqpbBNdF8ZIMkLxoukgoLNEzBXAuZKAA8X0CailY2SH-eWOJf8h9zFP-Vu0W5_Mhomw6fx4BLtwRsAlwT0CtXXy09z7VKEtbopP4Ev_xK4jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remarks+on+stochastic+permanence+of+population+models&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Lv%2C+Jingliang&rft.au=Wang%2C+Ke&rft.au=Zou%2C+Xiaoling&rft.date=2013-12-15&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=408&rft.issue=2&rft.spage=561&rft.epage=571&rft_id=info:doi/10.1016%2Fj.jmaa.2013.06.015&rft.externalDocID=S0022247X1300560X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |