Psychological stress detection using phonocardiography signal: An empirical mode decomposition approach
•ECG and PCG signals are temporally correlated, PCG signal used as an alternative to ECG for psychological stress detection.•The use of subject-specific template analysis to cater to characteristic cardiac behaviour of every individual.•The statistical significance analysis to find features that are...
Saved in:
Published in | Biomedical signal processing and control Vol. 49; pp. 493 - 505 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2018.12.028 |
Cover
Loading…
Abstract | •ECG and PCG signals are temporally correlated, PCG signal used as an alternative to ECG for psychological stress detection.•The use of subject-specific template analysis to cater to characteristic cardiac behaviour of every individual.•The statistical significance analysis to find features that are significant across subjects.•The comparative analysis identity features that are valuable for both subject-specific analysis and analysis across subjects.•The proposed method performed better than ECG-based LF/HF power ratio method on the available dataset.
Psychological stress is a part of the modern day lifestyle and affects human cognitive abilities. The well-established relation between stress and a host of behavioural and somatic pathological conditions emphasizes the need for timely detection of psychological stress. The purpose of this research work is to present a novel framework for psychological stress detection using Phonocardiography (PCG) signal based on Empirical Mode Decomposition (EMD) technique. The methods like Electroencephalography (EEG) and Electrocardiography (ECG) provide important biophysical measures for psychological stress detection but are expensive or require a proper clinical setup. Whereas, the acoustic heart sound or PCG signals carry significant information and can be easily acquired. In this research, pre-competitive (or exam related) psychological stress is detected from the S1-S1 interval of PCG signal referred as Inter-beat Interval (IBI). The IBI signal is decomposed to Intrinsic Mode Functions (IMF) using EMD technique which is suitable for non-linear and non-stationary signal analysis. The non-linear features namely Area of Analytic Signal Representation (AASR), Log of Area of ellipse from Second-order Difference Plot (LASODP), Root Mean Square value of IMF (RmsIMF), Shannon Entropy (ShEnt) and Fuzzy Entropy (FzEnt) were evaluated from IMFs of IBI signals. The first set of experiments comprises of deviation analysis in stressed signals from mean baseline values of the features in non-stressed signals. Thereafter, in the second set of experiments, Kruskal-Wallis statistical test has been used to check the significance and discrimination ability of the features. Then the features which showed maximum deviation and are statistically significant have been selected and fed to least-square support vector machine (LS-SVM) classifier. The 10-fold cross-validation has been used to make the system more reliable and robust. In this work, the average accuracy of 93.14% in classifying stressed and non-stressed signals has been achieved using Radial Basis Function (RBF) kernel. The results indicate that the proposed features provide better discrimination ability than well-known low-frequency to high-frequency power ratio (LF/HF) parameter of the ECG signal. The novelty of this study is the use of PCG signals for psychological stress detection and the use of subject-specific baseline template to incorporate the individual cardiovascular characteristic behaviour and stress responses. The proposed novel methodology of using PCG signals for psychological stress detection is cost-effective and is suitable for home-care, telemedicine and in rural health care centres especially in developing countries. |
---|---|
AbstractList | •ECG and PCG signals are temporally correlated, PCG signal used as an alternative to ECG for psychological stress detection.•The use of subject-specific template analysis to cater to characteristic cardiac behaviour of every individual.•The statistical significance analysis to find features that are significant across subjects.•The comparative analysis identity features that are valuable for both subject-specific analysis and analysis across subjects.•The proposed method performed better than ECG-based LF/HF power ratio method on the available dataset.
Psychological stress is a part of the modern day lifestyle and affects human cognitive abilities. The well-established relation between stress and a host of behavioural and somatic pathological conditions emphasizes the need for timely detection of psychological stress. The purpose of this research work is to present a novel framework for psychological stress detection using Phonocardiography (PCG) signal based on Empirical Mode Decomposition (EMD) technique. The methods like Electroencephalography (EEG) and Electrocardiography (ECG) provide important biophysical measures for psychological stress detection but are expensive or require a proper clinical setup. Whereas, the acoustic heart sound or PCG signals carry significant information and can be easily acquired. In this research, pre-competitive (or exam related) psychological stress is detected from the S1-S1 interval of PCG signal referred as Inter-beat Interval (IBI). The IBI signal is decomposed to Intrinsic Mode Functions (IMF) using EMD technique which is suitable for non-linear and non-stationary signal analysis. The non-linear features namely Area of Analytic Signal Representation (AASR), Log of Area of ellipse from Second-order Difference Plot (LASODP), Root Mean Square value of IMF (RmsIMF), Shannon Entropy (ShEnt) and Fuzzy Entropy (FzEnt) were evaluated from IMFs of IBI signals. The first set of experiments comprises of deviation analysis in stressed signals from mean baseline values of the features in non-stressed signals. Thereafter, in the second set of experiments, Kruskal-Wallis statistical test has been used to check the significance and discrimination ability of the features. Then the features which showed maximum deviation and are statistically significant have been selected and fed to least-square support vector machine (LS-SVM) classifier. The 10-fold cross-validation has been used to make the system more reliable and robust. In this work, the average accuracy of 93.14% in classifying stressed and non-stressed signals has been achieved using Radial Basis Function (RBF) kernel. The results indicate that the proposed features provide better discrimination ability than well-known low-frequency to high-frequency power ratio (LF/HF) parameter of the ECG signal. The novelty of this study is the use of PCG signals for psychological stress detection and the use of subject-specific baseline template to incorporate the individual cardiovascular characteristic behaviour and stress responses. The proposed novel methodology of using PCG signals for psychological stress detection is cost-effective and is suitable for home-care, telemedicine and in rural health care centres especially in developing countries. |
Author | Singh, Mandeep Cheema, Amandeep |
Author_xml | – sequence: 1 givenname: Amandeep surname: Cheema fullname: Cheema, Amandeep email: amandeep.cheema@thapar.edu – sequence: 2 givenname: Mandeep orcidid: 0000-0001-8134-5075 surname: Singh fullname: Singh, Mandeep email: mdsingh@thapar.edu |
BookMark | eNp90M9LwzAUwPEgE9ym_4Cn_gOtL2mXpuJlDH_BQA96Dtlr2ma0TUiqsP_edtOLh50SCJ_w3ndBZr3tNSG3FBIKlN_tk11wmDCgIqEsASYuyJzmGY8FBTH7u0ORXZFFCHuATOQ0m5P6PRywsa2tDao2CoPXIUSlHjQOxvbRVzB9HbnG9haVL42tvXLNIQqm7lV7H637SHfO-KPubKlHi7ZzNpijV855q7C5JpeVaoO--T2X5PPp8WPzEm_fnl83622MKcAQF1hgxRUyQVW2q7goFUMOKTK9qgq1A57meZFzyleccZGlOi0AxneacwUZpkvCTv-ityF4XUnnTaf8QVKQUyq5l1MqOaWSlMkx1YjEP4RmUNP8g1emPU8fTlSPS30b7WVAo3vUpfFjQllac47_ACbAiUQ |
CitedBy_id | crossref_primary_10_1038_s41598_024_84429_6 crossref_primary_10_1007_s13369_024_09927_1 crossref_primary_10_1016_j_compbiomed_2024_108722 crossref_primary_10_1016_j_bspc_2024_106135 crossref_primary_10_1016_j_bspc_2021_102694 crossref_primary_10_1007_s13369_023_08494_1 crossref_primary_10_1108_SR_10_2019_0235 crossref_primary_10_1016_j_bspc_2022_104006 crossref_primary_10_1109_MCI_2024_3401309 crossref_primary_10_1080_0144929X_2019_1673820 crossref_primary_10_1016_j_procs_2021_08_113 crossref_primary_10_1016_j_bbe_2024_09_004 crossref_primary_10_3390_bios12070465 crossref_primary_10_1080_15435075_2020_1779076 crossref_primary_10_1088_1361_6501_ac3aae crossref_primary_10_1155_2020_8860841 crossref_primary_10_1016_j_bspc_2023_104585 crossref_primary_10_1016_j_bspc_2020_102338 crossref_primary_10_7717_peerj_cs_635 crossref_primary_10_1016_j_eswa_2022_116634 crossref_primary_10_1007_s11042_024_19557_2 crossref_primary_10_1007_s13042_024_02142_2 crossref_primary_10_1016_j_partic_2021_05_002 crossref_primary_10_3390_diagnostics13111936 crossref_primary_10_3390_s21248370 |
Cites_doi | 10.1109/JSEN.2017.2694970 10.1016/j.bspc.2013.05.004 10.1109/TBME.2010.2071871 10.1134/S0362119708050101 10.1161/01.RES.59.2.178 10.1007/s13534-013-0084-0 10.1016/j.cmpb.2010.10.006 10.1109/TBME.2009.2028693 10.1016/j.bspc.2008.07.003 10.1109/TNSRE.2007.897025 10.1109/10.817627 10.1016/j.eswa.2014.11.046 10.1016/j.bspc.2016.10.004 10.1161/01.CIR.84.2.482 10.1023/A:1018628609742 10.1109/TITB.2011.2181403 10.1016/j.jocs.2017.03.022 10.1109/TBME.2016.2559800 10.1186/1475-925X-10-96 10.1016/j.aeue.2016.12.008 10.1016/j.patrec.2005.09.028 10.1161/01.CIR.93.6.1250 10.1109/51.537065 10.1007/s11517-007-0268-9 10.1016/S0169-2607(02)00111-6 10.1142/S0219519416400030 10.1098/rspa.1998.0193 10.1016/j.eswa.2015.01.051 10.1109/TBME.2014.2377695 10.1109/TBME.1985.325532 10.1016/j.cmpb.2011.03.009 10.3390/e19030092 10.1109/JBHI.2017.2753321 10.1161/hy0102.100784 10.1142/S0219519416400029 10.1109/10.867943 10.1007/BF02446718 10.1109/TNSRE.2007.906961 10.1016/j.physbeh.2018.08.010 10.1109/JBHI.2013.2294399 10.1504/IJMEI.2008.019473 10.1007/s10484-010-9141-y 10.3390/e17020669 10.1016/j.eswa.2016.06.038 10.1016/j.cmpb.2013.11.014 10.1109/TBME.2010.2051225 10.1109/TFUZZ.2006.889825 10.1016/j.bspc.2017.08.004 10.1016/j.eswa.2017.05.014 10.1016/j.knosys.2015.02.011 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2018.12.028 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
EndPage | 505 |
ExternalDocumentID | 10_1016_j_bspc_2018_12_028 S1746809418303276 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-9c9cf6ac281a4bf68da2c603c2e5f9ab06377976165626843e390003c176a04c3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:05 EDT 2025 Thu Apr 24 22:58:59 EDT 2025 Fri Feb 23 02:28:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Psychological stress Empirical mode decomposition Phonocardiography |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-9c9cf6ac281a4bf68da2c603c2e5f9ab06377976165626843e390003c176a04c3 |
ORCID | 0000-0001-8134-5075 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2018_12_028 crossref_citationtrail_10_1016_j_bspc_2018_12_028 elsevier_sciencedirect_doi_10_1016_j_bspc_2018_12_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cord, Ambroise, Cocquerez (bib0285) 2006; 27 Springer, Tarassenko, Clifford (bib0035) 2016; 63 Kovacs, Horváth, Balogh, Hosszú (bib0100) 2011; 58 Tang, Li, Qiu (bib0065) 2010; 57 Clifford, Liu, Moody, Springer, Silva, Li, Mark (bib0080) 2010; 43 Pagani, Lombardi, Guzzetti, Sandrone, Rimoldi, Malfatto, Cerutti, Malliani (bib0315) 1984; 2 Chrousos (bib0005) 2009; 5 Sharma, Pachori, Acharya (bib0265) 2015; 17 Patidar, Pachori (bib0055) 2013; 8 Spielberger, Gorsuch, Lushene, Vagg, Jacobs (bib0150) 1983 Lin, Chen, Lin, Yang, Chiang (bib0255) 2014; 3 Pachori, Kumar, Avinash, Shashank, Acharya (bib0215) 2016; 16 Chen, Yang, Ho, Tsai, Chen, Chang, Lai, Wang, Tsao, Wu (bib0050) 2017; 64 World Health Organisation (bib0010) 2013 Kumar, Pachori, Rajendra Acharya (bib0305) 2016; 63 Jain, Bajaj, Kumar (bib0230) 2018; 22 Kumar, Pachori, Acharya (bib0275) 2017; 19 Varghees, Ramachandran (bib0030) 2017; 17 Dutta, Singh, Kumar (bib0180) 2018; 39 Cohen, Hudson, Deedwania (bib0235) 1996; 15 Gururaj, Varghese, Benegal, Rao, Pathak, Singh, Mehta, Ram, Shibukumar, Kokane, Lenin Singh, Chavan, Sharma, Ramasubramanian, Dalal, Saha, Deuri, Giri, Kavishvar, Sinha, Thavody, Chatterji (bib0015) 2016 Papadaniil, Member, Hadjileontiadis, Member (bib0040) 2014; 18 Bajaj, Pachori (bib0200) 2013; 3 Várady, Wildt, Benyó, Hein (bib0090) 2003; 71 Tang, Li, Qiu (bib0060) 2010; 57 Patidar, Bilas, Acharya (bib0290) 2015; 82 Dimitriev, Dimitriev, Karpenko, Saperova (bib0140) 2008; 34 Pachori, Patidar (bib0205) 2013; 113 Ari, Saha (bib0220) 2008; 1 Zhang, Han, Deng (bib0045) 2017; 84 Suykens, Vandewalle (bib0295) 1999; 9 Sharma, Kumar, Pachori, Acharya (bib0280) 2017; 20 Singh, Cheema (bib0075) 2013; 77 Bailon, Mainardi, Laguna (bib0115) 2006 Mishra, Bajaj, Kumar, Sharma, Singh (bib0225) 2017; 72 Patidar, Bilas, Garg (bib0310) 2015; 42 Kovács, Horváth, Balogh, Hosszú (bib0095) 2010; 104 Pachori, Hewson, Snoussi, Duchene (bib0245) 2008 García, Sörnmo, Olmos, Laguna (bib0250) 2000; 47 Warlar (bib0165) 1991; 29 Lim, Acharya, Puthusserypady (bib0260) 2006; 80 Chen, Wang, Xie, Yu (bib0270) 2007; 15 Zhang, Han, Deng (bib0160) 2017; 32 Kovacs, Torok, Habermajer (bib0085) 2000; 47 Hindustan Times (bib0020) 2018 Huang, Shen, Long, Wu, Shih, Zheng, Tung, Liu (bib0175) 1998; 454 Herzig, Bickel, Eitan, Intrator (bib0070) 2015; 62 Pagani, Lombardi, Guzzetti, Rimoldi, Furlan, Pizzinelli, Sandrone, Malfatto, Dell’Orto, Piccaluga (bib0320) 1986; 59 Amit, Gavriely, Intrator (bib0155) 2009; 4 Pachori, Bajaj (bib0190) 2011; 104 Khandoker, Lai, Begg, Palaniswami (bib0300) 2007; 15 Hansen, Patil (bib0110) 2007 Thuraisingham, Tran, Boord, Craig (bib0185) 2007; 45 Pachori, Avinash, Shashank, Sharma, Acharya (bib0210) 2015; 42 Malliani, Pagani, Lombardi, Cerutti (bib0325) 1991; 84 Tan, Dao, Farmer, John, Richard (bib0130) 2011; 36 Sood, Kumar, Pachori, Acharya (bib0240) 2016; 16 Shriram, Sundhararajan, Daimiwal (bib0105) 2006 Bajaj, Pachori (bib0195) 2012; 16 Melillo, Bracale, Pecchia (bib0145) 2011; 10 Tavel (bib0025) 1996; 93 Pan, Tompkins (bib0170) 1985 Kumar, Weippert, Vilbrandt, Kreuzfeld, Stoll (bib0125) 2007; 15 Lucini, Norbiato, Clerici, Pagani (bib0135) 2002; 39 Azhari, Truzzi, Rigo, Bornstein, Esposito (bib0330) 2018; 196 Orini, Bailon, Laguna, Mainardi (bib0120) 2007 Chrousos (10.1016/j.bspc.2018.12.028_bib0005) 2009; 5 Mishra (10.1016/j.bspc.2018.12.028_bib0225) 2017; 72 Varghees (10.1016/j.bspc.2018.12.028_bib0030) 2017; 17 Melillo (10.1016/j.bspc.2018.12.028_bib0145) 2011; 10 Chen (10.1016/j.bspc.2018.12.028_bib0270) 2007; 15 Herzig (10.1016/j.bspc.2018.12.028_bib0070) 2015; 62 Pachori (10.1016/j.bspc.2018.12.028_bib0190) 2011; 104 Bajaj (10.1016/j.bspc.2018.12.028_bib0200) 2013; 3 Hindustan Times (10.1016/j.bspc.2018.12.028_bib0020) 2018 Sood (10.1016/j.bspc.2018.12.028_bib0240) 2016; 16 García (10.1016/j.bspc.2018.12.028_bib0250) 2000; 47 Lim (10.1016/j.bspc.2018.12.028_bib0260) 2006; 80 Clifford (10.1016/j.bspc.2018.12.028_bib0080) 2010; 43 Várady (10.1016/j.bspc.2018.12.028_bib0090) 2003; 71 Jain (10.1016/j.bspc.2018.12.028_bib0230) 2018; 22 Kumar (10.1016/j.bspc.2018.12.028_bib0305) 2016; 63 Patidar (10.1016/j.bspc.2018.12.028_bib0055) 2013; 8 Huang (10.1016/j.bspc.2018.12.028_bib0175) 1998; 454 Sharma (10.1016/j.bspc.2018.12.028_bib0280) 2017; 20 Papadaniil (10.1016/j.bspc.2018.12.028_bib0040) 2014; 18 Thuraisingham (10.1016/j.bspc.2018.12.028_bib0185) 2007; 45 Lucini (10.1016/j.bspc.2018.12.028_bib0135) 2002; 39 Ari (10.1016/j.bspc.2018.12.028_bib0220) 2008; 1 Pachori (10.1016/j.bspc.2018.12.028_bib0205) 2013; 113 Gururaj (10.1016/j.bspc.2018.12.028_bib0015) 2016 Pachori (10.1016/j.bspc.2018.12.028_bib0210) 2015; 42 Malliani (10.1016/j.bspc.2018.12.028_bib0325) 1991; 84 Tan (10.1016/j.bspc.2018.12.028_bib0130) 2011; 36 Pagani (10.1016/j.bspc.2018.12.028_bib0315) 1984; 2 Springer (10.1016/j.bspc.2018.12.028_bib0035) 2016; 63 Cord (10.1016/j.bspc.2018.12.028_bib0285) 2006; 27 World Health Organisation (10.1016/j.bspc.2018.12.028_bib0010) 2013 Orini (10.1016/j.bspc.2018.12.028_bib0120) 2007 Sharma (10.1016/j.bspc.2018.12.028_bib0265) 2015; 17 Kumar (10.1016/j.bspc.2018.12.028_bib0275) 2017; 19 Zhang (10.1016/j.bspc.2018.12.028_bib0045) 2017; 84 Warlar (10.1016/j.bspc.2018.12.028_bib0165) 1991; 29 Kovacs (10.1016/j.bspc.2018.12.028_bib0085) 2000; 47 Dutta (10.1016/j.bspc.2018.12.028_bib0180) 2018; 39 Bajaj (10.1016/j.bspc.2018.12.028_bib0195) 2012; 16 Amit (10.1016/j.bspc.2018.12.028_bib0155) 2009; 4 Hansen (10.1016/j.bspc.2018.12.028_bib0110) 2007 Pachori (10.1016/j.bspc.2018.12.028_bib0215) 2016; 16 Lin (10.1016/j.bspc.2018.12.028_bib0255) 2014; 3 Kumar (10.1016/j.bspc.2018.12.028_bib0125) 2007; 15 Suykens (10.1016/j.bspc.2018.12.028_bib0295) 1999; 9 Tavel (10.1016/j.bspc.2018.12.028_bib0025) 1996; 93 Azhari (10.1016/j.bspc.2018.12.028_bib0330) 2018; 196 Tang (10.1016/j.bspc.2018.12.028_bib0065) 2010; 57 Singh (10.1016/j.bspc.2018.12.028_bib0075) 2013; 77 Spielberger (10.1016/j.bspc.2018.12.028_bib0150) 1983 Bailon (10.1016/j.bspc.2018.12.028_bib0115) 2006 Cohen (10.1016/j.bspc.2018.12.028_bib0235) 1996; 15 Zhang (10.1016/j.bspc.2018.12.028_bib0160) 2017; 32 Pachori (10.1016/j.bspc.2018.12.028_bib0245) 2008 Tang (10.1016/j.bspc.2018.12.028_bib0060) 2010; 57 Dimitriev (10.1016/j.bspc.2018.12.028_bib0140) 2008; 34 Khandoker (10.1016/j.bspc.2018.12.028_bib0300) 2007; 15 Shriram (10.1016/j.bspc.2018.12.028_bib0105) 2006 Pagani (10.1016/j.bspc.2018.12.028_bib0320) 1986; 59 Kovács (10.1016/j.bspc.2018.12.028_bib0095) 2010; 104 Patidar (10.1016/j.bspc.2018.12.028_bib0310) 2015; 42 Kovacs (10.1016/j.bspc.2018.12.028_bib0100) 2011; 58 Patidar (10.1016/j.bspc.2018.12.028_bib0290) 2015; 82 Chen (10.1016/j.bspc.2018.12.028_bib0050) 2017; 64 Pan (10.1016/j.bspc.2018.12.028_bib0170) 1985 |
References_xml | – start-page: 169 year: 2006 end-page: 172 ident: bib0115 article-title: Time-frequency analysis of heart rate variability during stress testing using “a priori” information of respiratory frequency publication-title: Comput. Cardiol. – volume: 64 start-page: 372 year: 2017 end-page: 380 ident: bib0050 article-title: S1 and S2 heart sound recognition using deep neural networks publication-title: IEEE Trans. Biomed. Eng. – start-page: 10 year: 2018 ident: bib0020 article-title: Let the teachers do what they are hired for publication-title: The Plan to Utilise Them As Mental Health Counsellors for Students May Not Work – volume: 15 start-page: 266 year: 2007 end-page: 272 ident: bib0270 article-title: Characterization of surface EMG signal based on fuzzy entropy publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 82 start-page: 1 year: 2015 end-page: 10 ident: bib0290 article-title: Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals publication-title: Knowledge-Based Syst. – volume: 80 start-page: 187 year: 2006 end-page: 194 ident: bib0260 article-title: Entropies for detection of epilepsy in EEG publication-title: Comput. Methods Programs Biomed. – volume: 59 start-page: 178 year: 1986 end-page: 193 ident: bib0320 article-title: Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog publication-title: Circ. Res. – volume: 3 start-page: 17 year: 2013 end-page: 21 ident: bib0200 article-title: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals publication-title: Biomed. Eng. Lett. – volume: 84 start-page: 482 year: 1991 end-page: 492 ident: bib0325 article-title: Cardiovascular neural regulation explored in the frequency domain publication-title: Circulation – volume: 19 start-page: 1 year: 2017 end-page: 21 ident: bib0275 article-title: Use of accumulated entropies for automated detection of congestive heart failure in flexible analytic wavelet tranform framework based on short-term hrv signals publication-title: Entropy. – volume: 36 start-page: 27 year: 2011 end-page: 35 ident: bib0130 article-title: Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): a pilot study publication-title: Appl. Psychophysiol. Biofeedback – start-page: 230 year: 1985 end-page: 236 ident: bib0170 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. BME-32 – year: 1983 ident: bib0150 article-title: State-trait anxiety inventory for adults publication-title: Manual, Instrument and Scoring Guide – volume: 47 start-page: 124 year: 2000 end-page: 130 ident: bib0085 article-title: A rule-based phonocardiographic method for long-term fetal heart rate monitoring publication-title: IEEE Trans. Biomed. Eng. – year: 2016 ident: bib0015 article-title: National Mental Health Survey of India, 2015-16: Prevalence, Pattern and Outcomes – volume: 17 start-page: 669 year: 2015 end-page: 691 ident: bib0265 article-title: Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals publication-title: Entropy – volume: 113 start-page: 494 year: 2013 end-page: 502 ident: bib0205 article-title: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions publication-title: Comput. Methods Programs Biomed. – volume: 47 start-page: 1195 year: 2000 end-page: 1201 ident: bib0250 article-title: Automatic detection of ST-T complex changes on the ECG using filtered RMS difference series: application to ambulatory ischemia monitoring publication-title: IEEE Trans. Biomed. Eng. – volume: 42 start-page: 4567 year: 2015 end-page: 4581 ident: bib0210 article-title: Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals publication-title: Expert Syst. Appl. – volume: 104 start-page: 373 year: 2011 end-page: 381 ident: bib0190 article-title: Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition empirical mode decomposition publication-title: Comput. Methods Programs Biomed. – volume: 63 start-page: 165 year: 2016 end-page: 172 ident: bib0305 article-title: An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals publication-title: Expert Syst. Appl. – volume: 5 start-page: 374 year: 2009 end-page: 381 ident: bib0005 article-title: Stress and disorders of the stress system publication-title: Nat. Publ. Gr. – volume: 27 start-page: 627 year: 2006 end-page: 635 ident: bib0285 article-title: Feature selection in robust clustering based on Laplace mixture publication-title: Pattern Recogn. Lett. – volume: 39 start-page: 184 year: 2002 end-page: 188 ident: bib0135 article-title: Hemodynamic and autonomic adjustments to real life stress conditions in humans publication-title: Hypertension – volume: 43 start-page: 609 year: 2010 end-page: 612 ident: bib0080 article-title: Classification of normal / abnormal heart sound recordings : the PhysioNet / computing in cardiology challenge 2016 publication-title: Comput. Cardiol. – volume: 39 start-page: 378 year: 2018 end-page: 389 ident: bib0180 article-title: Classification of non-motor cognitive task in EEG based brain-computer interface using phase space features in multivariate empirical mode decomposition domain publication-title: Biomed. Signal Process. Control – volume: 4 start-page: 26 year: 2009 end-page: 36 ident: bib0155 article-title: Cluster analysis and classification of heart sounds publication-title: Biomed. Signal Process. Control – volume: 3 start-page: 257 year: 2014 end-page: 266 ident: bib0255 article-title: Individual identification based on chaotic electrocardiogram signals during muscular exercise publication-title: Inst. Eng. Technol. Biomet. – volume: 42 start-page: 3315 year: 2015 end-page: 3326 ident: bib0310 article-title: Automatic diagnosis of septal defects based on tunable- Q wavelet transform of cardiac sound signals publication-title: Expert Syst. Appl. – start-page: 108 year: 2007 end-page: 137 ident: bib0110 article-title: Speech under stress: analysis, modeling and recognition publication-title: Speak. Classif. I Fundam. Featur. Methods – volume: 32 start-page: 20 year: 2017 end-page: 28 ident: bib0160 article-title: Heart sound classification based on scaled spectrogram and partial least squares regression publication-title: Biomed. Signal Process. Control – volume: 62 start-page: 1169 year: 2015 end-page: 1178 ident: bib0070 article-title: Monitoring cardiac stress using features extracted from S1 heart sounds publication-title: IEEE Trans. Biomed. Eng. – start-page: 48 year: 2013 ident: bib0010 article-title: WHO Mental Health Action Plan 2013-2020 – volume: 104 start-page: 19 year: 2010 end-page: 25 ident: bib0095 article-title: Fetal phonocardiography — past and future possibilities publication-title: Comput. Methods Programs Biomed. – volume: 34 start-page: 617 year: 2008 end-page: 624 ident: bib0140 article-title: Influence of examination stress and psychoemotional characteristics on the blood pressure and heart rate regulation in female students publication-title: Hum. Physiol. – volume: 71 start-page: 283 year: 2003 end-page: 296 ident: bib0090 article-title: An advanced method in fetal phonocardiography publication-title: Comput. Methods Programs Biomed. – volume: 15 start-page: 97 year: 1996 end-page: 102 ident: bib0235 article-title: Applying continuous chaotic modeling to cardiac signal analysis publication-title: IEEE Eng. Med. Biol. Mag. – start-page: 34 year: 2006 end-page: 38 ident: bib0105 article-title: EEG based cognitive workload assessment for maximum efficiency publication-title: Second Int. Conf. Emerg. Trends Eng. – start-page: 1 year: 2008 end-page: 6 ident: bib0245 article-title: Analysis of center of pressure signals using empirical Mode decomposition and fourier-bessel expansion publication-title: TENCON 2008 - 2008 IEEE Reg. 10 Conf. – volume: 29 start-page: 333 year: 1991 end-page: 336 ident: bib0165 article-title: Integer coefficient bandpass filter for the simultaneous removal of baseline wander, 50 and 100 Hz interference from the ECG publication-title: Med. Biol. Eng. Comput. – volume: 57 start-page: 2438 year: 2010 end-page: 2447 ident: bib0060 article-title: Separation of heart sound signal from noise in joint cycle frequency – time – frequency domains based on fuzzy detection publication-title: IEEE Trans. Biomed. Eng. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib0175 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis analysis publication-title: R. Soc. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib0295 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 77 start-page: 13 year: 2013 end-page: 17 ident: bib0075 article-title: Heart sounds classification using feature extraction of phonocardiography signal publication-title: Int. J. Comput. Appl. – volume: 16 start-page: 1135 year: 2012 end-page: 1142 ident: bib0195 article-title: Classification of seizure and nonseizure EEG signals using empirical mode decomposition publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 15 start-page: 791 year: 2007 end-page: 808 ident: bib0125 article-title: Fuzzy evaluation of heart rate signals for mental stress assessment publication-title: IEEE Trans. Fuzzy Syst. – volume: 16 start-page: 1 year: 2016 end-page: 20 ident: bib0240 article-title: Application of empirical mode decomposition – based features for analysis of normal and CAD heart rate signals publication-title: J. Mech. Med. Biol. – volume: 196 start-page: 25 year: 2018 end-page: 32 ident: bib0330 article-title: Putting salient vocalizations in context: adults’ physiological arousal to emotive cues in domestic and external environments publication-title: Physiol. Behav. – volume: 84 start-page: 220 year: 2017 end-page: 231 ident: bib0045 article-title: Heart sound classification based on scaled spectrogram and tensor decomposition publication-title: Expert Syst. Appl. – volume: 2 start-page: 383 year: 1984 end-page: 385 ident: bib0315 article-title: Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects publication-title: J. Hypertens. Suppl. – volume: 8 start-page: 559 year: 2013 end-page: 567 ident: bib0055 article-title: Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform publication-title: Biomed. Signal Process. Control – start-page: 29 year: 2007 end-page: 32 ident: bib0120 article-title: Modeling and estimation of time varying heart rate variability during stress test by parametric and non parametric analysis publication-title: Comput. Cardiol. – volume: 72 start-page: 200 year: 2017 end-page: 209 ident: bib0225 article-title: An efficient method for analysis of EMG signals using improved empirical mode decomposition publication-title: AEU-Int. J. Electron. Commun. – volume: 63 start-page: 822 year: 2016 end-page: 832 ident: bib0035 article-title: Logistic regression-HSMM-based heart sound segmentation publication-title: IEEE Trans. Biomed. Eng. – volume: 18 start-page: 1138 year: 2014 end-page: 1152 ident: bib0040 article-title: Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features publication-title: IEEE J. Biomed. Heal. Informatics. – volume: 16 start-page: 1 year: 2016 end-page: 23 ident: bib0215 article-title: An improved online paradigm for screening of diabetic patients using RR-interval signals publication-title: J. Mech. Med. Biol. – volume: 45 start-page: 1243 year: 2007 end-page: 1249 ident: bib0185 article-title: Analysis of eyes open, eye closed EEG signals using second-order difference plot publication-title: Med. Biol. Eng. Comput. – volume: 1 year: 2008 ident: bib0220 article-title: Classification of heart sounds using empirical mode decomposition based features publication-title: Int. J. Med. Eng. Inform. – volume: 20 start-page: 52 year: 2017 ident: bib0280 article-title: Decision support system for focal EEG signals using tunable-Q wavelet transform publication-title: J. Comput. Sci. – volume: 15 start-page: 587 year: 2007 end-page: 597 ident: bib0300 article-title: Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 22 start-page: 1133 year: 2018 end-page: 1139 ident: bib0230 article-title: Riemann liouvelle fractional integral based empirical mode decomposition for ECG denoising publication-title: IEEE J. Biomed. Heal. Inform. – volume: 93 start-page: 1250 year: 1996 end-page: 1253 ident: bib0025 article-title: Cardiac auscultation publication-title: Circulation – volume: 58 start-page: 64 year: 2011 end-page: 70 ident: bib0100 article-title: Extended noninvasive fetal monitoring by detailed analysis of data measured with phonocardiography publication-title: IEEE Trans. Biomed. Eng. – volume: 10 start-page: 96 year: 2011 ident: bib0145 article-title: Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination publication-title: Biomed. Eng. Online – volume: 57 start-page: 325 year: 2010 end-page: 333 ident: bib0065 article-title: Noise and disturbance reduction for heart sounds in cycle-frequency domain based on nonlinear time scaling publication-title: IEEE Trans. Biomed. Eng. – volume: 17 start-page: 3861 year: 2017 end-page: 3872 ident: bib0030 article-title: Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope publication-title: IEEE Sens. J. – start-page: 29 year: 2007 ident: 10.1016/j.bspc.2018.12.028_bib0120 article-title: Modeling and estimation of time varying heart rate variability during stress test by parametric and non parametric analysis – volume: 17 start-page: 3861 year: 2017 ident: 10.1016/j.bspc.2018.12.028_bib0030 article-title: Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2694970 – volume: 8 start-page: 559 year: 2013 ident: 10.1016/j.bspc.2018.12.028_bib0055 article-title: Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.05.004 – volume: 58 start-page: 64 year: 2011 ident: 10.1016/j.bspc.2018.12.028_bib0100 article-title: Extended noninvasive fetal monitoring by detailed analysis of data measured with phonocardiography publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2071871 – volume: 34 start-page: 617 year: 2008 ident: 10.1016/j.bspc.2018.12.028_bib0140 article-title: Influence of examination stress and psychoemotional characteristics on the blood pressure and heart rate regulation in female students publication-title: Hum. Physiol. doi: 10.1134/S0362119708050101 – volume: 59 start-page: 178 year: 1986 ident: 10.1016/j.bspc.2018.12.028_bib0320 article-title: Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog publication-title: Circ. Res. doi: 10.1161/01.RES.59.2.178 – volume: 3 start-page: 17 year: 2013 ident: 10.1016/j.bspc.2018.12.028_bib0200 article-title: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-013-0084-0 – volume: 104 start-page: 19 year: 2010 ident: 10.1016/j.bspc.2018.12.028_bib0095 article-title: Fetal phonocardiography — past and future possibilities publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2010.10.006 – volume: 57 start-page: 325 year: 2010 ident: 10.1016/j.bspc.2018.12.028_bib0065 article-title: Noise and disturbance reduction for heart sounds in cycle-frequency domain based on nonlinear time scaling publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2028693 – volume: 4 start-page: 26 year: 2009 ident: 10.1016/j.bspc.2018.12.028_bib0155 article-title: Cluster analysis and classification of heart sounds publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2008.07.003 – volume: 15 start-page: 266 year: 2007 ident: 10.1016/j.bspc.2018.12.028_bib0270 article-title: Characterization of surface EMG signal based on fuzzy entropy publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.897025 – volume: 5 start-page: 374 year: 2009 ident: 10.1016/j.bspc.2018.12.028_bib0005 article-title: Stress and disorders of the stress system publication-title: Nat. Publ. Gr. – start-page: 34 year: 2006 ident: 10.1016/j.bspc.2018.12.028_bib0105 article-title: EEG based cognitive workload assessment for maximum efficiency – volume: 47 start-page: 124 year: 2000 ident: 10.1016/j.bspc.2018.12.028_bib0085 article-title: A rule-based phonocardiographic method for long-term fetal heart rate monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.817627 – volume: 77 start-page: 13 year: 2013 ident: 10.1016/j.bspc.2018.12.028_bib0075 article-title: Heart sounds classification using feature extraction of phonocardiography signal publication-title: Int. J. Comput. Appl. – volume: 42 start-page: 3315 year: 2015 ident: 10.1016/j.bspc.2018.12.028_bib0310 article-title: Automatic diagnosis of septal defects based on tunable- Q wavelet transform of cardiac sound signals publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.11.046 – start-page: 48 year: 2013 ident: 10.1016/j.bspc.2018.12.028_bib0010 – volume: 32 start-page: 20 year: 2017 ident: 10.1016/j.bspc.2018.12.028_bib0160 article-title: Heart sound classification based on scaled spectrogram and partial least squares regression publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.10.004 – volume: 84 start-page: 482 year: 1991 ident: 10.1016/j.bspc.2018.12.028_bib0325 article-title: Cardiovascular neural regulation explored in the frequency domain publication-title: Circulation doi: 10.1161/01.CIR.84.2.482 – volume: 9 start-page: 293 year: 1999 ident: 10.1016/j.bspc.2018.12.028_bib0295 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 16 start-page: 1135 year: 2012 ident: 10.1016/j.bspc.2018.12.028_bib0195 article-title: Classification of seizure and nonseizure EEG signals using empirical mode decomposition publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2181403 – volume: 20 start-page: 52 year: 2017 ident: 10.1016/j.bspc.2018.12.028_bib0280 article-title: Decision support system for focal EEG signals using tunable-Q wavelet transform publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.03.022 – volume: 64 start-page: 372 year: 2017 ident: 10.1016/j.bspc.2018.12.028_bib0050 article-title: S1 and S2 heart sound recognition using deep neural networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2559800 – start-page: 1 year: 2008 ident: 10.1016/j.bspc.2018.12.028_bib0245 article-title: Analysis of center of pressure signals using empirical Mode decomposition and fourier-bessel expansion publication-title: TENCON 2008 - 2008 IEEE Reg. 10 Conf. – volume: 63 start-page: 822 year: 2016 ident: 10.1016/j.bspc.2018.12.028_bib0035 article-title: Logistic regression-HSMM-based heart sound segmentation publication-title: IEEE Trans. Biomed. Eng. – volume: 10 start-page: 96 year: 2011 ident: 10.1016/j.bspc.2018.12.028_bib0145 article-title: Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-10-96 – volume: 72 start-page: 200 year: 2017 ident: 10.1016/j.bspc.2018.12.028_bib0225 article-title: An efficient method for analysis of EMG signals using improved empirical mode decomposition publication-title: AEU-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2016.12.008 – volume: 27 start-page: 627 year: 2006 ident: 10.1016/j.bspc.2018.12.028_bib0285 article-title: Feature selection in robust clustering based on Laplace mixture publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.09.028 – volume: 93 start-page: 1250 year: 1996 ident: 10.1016/j.bspc.2018.12.028_bib0025 article-title: Cardiac auscultation publication-title: Circulation doi: 10.1161/01.CIR.93.6.1250 – volume: 15 start-page: 97 year: 1996 ident: 10.1016/j.bspc.2018.12.028_bib0235 article-title: Applying continuous chaotic modeling to cardiac signal analysis publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.537065 – volume: 45 start-page: 1243 year: 2007 ident: 10.1016/j.bspc.2018.12.028_bib0185 article-title: Analysis of eyes open, eye closed EEG signals using second-order difference plot publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-007-0268-9 – year: 2016 ident: 10.1016/j.bspc.2018.12.028_bib0015 – volume: 43 start-page: 609 issue: 2016 year: 2010 ident: 10.1016/j.bspc.2018.12.028_bib0080 article-title: Classification of normal / abnormal heart sound recordings : the PhysioNet / computing in cardiology challenge 2016 publication-title: Comput. Cardiol. – volume: 71 start-page: 283 year: 2003 ident: 10.1016/j.bspc.2018.12.028_bib0090 article-title: An advanced method in fetal phonocardiography publication-title: Comput. Methods Programs Biomed. doi: 10.1016/S0169-2607(02)00111-6 – volume: 16 start-page: 1 year: 2016 ident: 10.1016/j.bspc.2018.12.028_bib0215 article-title: An improved online paradigm for screening of diabetic patients using RR-interval signals publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519416400030 – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.bspc.2018.12.028_bib0175 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis analysis publication-title: R. Soc. doi: 10.1098/rspa.1998.0193 – volume: 42 start-page: 4567 year: 2015 ident: 10.1016/j.bspc.2018.12.028_bib0210 article-title: Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.01.051 – volume: 62 start-page: 1169 year: 2015 ident: 10.1016/j.bspc.2018.12.028_bib0070 article-title: Monitoring cardiac stress using features extracted from S1 heart sounds publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2377695 – start-page: 230 year: 1985 ident: 10.1016/j.bspc.2018.12.028_bib0170 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. BME-32 doi: 10.1109/TBME.1985.325532 – volume: 104 start-page: 373 year: 2011 ident: 10.1016/j.bspc.2018.12.028_bib0190 article-title: Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition empirical mode decomposition publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.03.009 – volume: 19 start-page: 1 year: 2017 ident: 10.1016/j.bspc.2018.12.028_bib0275 article-title: Use of accumulated entropies for automated detection of congestive heart failure in flexible analytic wavelet tranform framework based on short-term hrv signals publication-title: Entropy. doi: 10.3390/e19030092 – start-page: 10 year: 2018 ident: 10.1016/j.bspc.2018.12.028_bib0020 article-title: Let the teachers do what they are hired for – start-page: 108 year: 2007 ident: 10.1016/j.bspc.2018.12.028_bib0110 article-title: Speech under stress: analysis, modeling and recognition – volume: 22 start-page: 1133 year: 2018 ident: 10.1016/j.bspc.2018.12.028_bib0230 article-title: Riemann liouvelle fractional integral based empirical mode decomposition for ECG denoising publication-title: IEEE J. Biomed. Heal. Inform. doi: 10.1109/JBHI.2017.2753321 – volume: 3 start-page: 257 year: 2014 ident: 10.1016/j.bspc.2018.12.028_bib0255 article-title: Individual identification based on chaotic electrocardiogram signals during muscular exercise publication-title: Inst. Eng. Technol. Biomet. – volume: 39 start-page: 184 year: 2002 ident: 10.1016/j.bspc.2018.12.028_bib0135 article-title: Hemodynamic and autonomic adjustments to real life stress conditions in humans publication-title: Hypertension doi: 10.1161/hy0102.100784 – volume: 16 start-page: 1 year: 2016 ident: 10.1016/j.bspc.2018.12.028_bib0240 article-title: Application of empirical mode decomposition – based features for analysis of normal and CAD heart rate signals publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519416400029 – volume: 47 start-page: 1195 year: 2000 ident: 10.1016/j.bspc.2018.12.028_bib0250 article-title: Automatic detection of ST-T complex changes on the ECG using filtered RMS difference series: application to ambulatory ischemia monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.867943 – volume: 29 start-page: 333 year: 1991 ident: 10.1016/j.bspc.2018.12.028_bib0165 article-title: Integer coefficient bandpass filter for the simultaneous removal of baseline wander, 50 and 100 Hz interference from the ECG publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02446718 – volume: 15 start-page: 587 year: 2007 ident: 10.1016/j.bspc.2018.12.028_bib0300 article-title: Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.906961 – volume: 196 start-page: 25 year: 2018 ident: 10.1016/j.bspc.2018.12.028_bib0330 article-title: Putting salient vocalizations in context: adults’ physiological arousal to emotive cues in domestic and external environments publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2018.08.010 – volume: 18 start-page: 1138 year: 2014 ident: 10.1016/j.bspc.2018.12.028_bib0040 article-title: Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features publication-title: IEEE J. Biomed. Heal. Informatics. doi: 10.1109/JBHI.2013.2294399 – start-page: 169 year: 2006 ident: 10.1016/j.bspc.2018.12.028_bib0115 article-title: Time-frequency analysis of heart rate variability during stress testing using “a priori” information of respiratory frequency – volume: 1 year: 2008 ident: 10.1016/j.bspc.2018.12.028_bib0220 article-title: Classification of heart sounds using empirical mode decomposition based features publication-title: Int. J. Med. Eng. Inform. doi: 10.1504/IJMEI.2008.019473 – volume: 36 start-page: 27 year: 2011 ident: 10.1016/j.bspc.2018.12.028_bib0130 article-title: Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): a pilot study publication-title: Appl. Psychophysiol. Biofeedback doi: 10.1007/s10484-010-9141-y – volume: 17 start-page: 669 year: 2015 ident: 10.1016/j.bspc.2018.12.028_bib0265 article-title: Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals publication-title: Entropy doi: 10.3390/e17020669 – year: 1983 ident: 10.1016/j.bspc.2018.12.028_bib0150 article-title: State-trait anxiety inventory for adults – volume: 63 start-page: 165 year: 2016 ident: 10.1016/j.bspc.2018.12.028_bib0305 article-title: An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.06.038 – volume: 113 start-page: 494 year: 2013 ident: 10.1016/j.bspc.2018.12.028_bib0205 article-title: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2013.11.014 – volume: 57 start-page: 2438 year: 2010 ident: 10.1016/j.bspc.2018.12.028_bib0060 article-title: Separation of heart sound signal from noise in joint cycle frequency – time – frequency domains based on fuzzy detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2051225 – volume: 15 start-page: 791 year: 2007 ident: 10.1016/j.bspc.2018.12.028_bib0125 article-title: Fuzzy evaluation of heart rate signals for mental stress assessment publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.889825 – volume: 39 start-page: 378 year: 2018 ident: 10.1016/j.bspc.2018.12.028_bib0180 article-title: Classification of non-motor cognitive task in EEG based brain-computer interface using phase space features in multivariate empirical mode decomposition domain publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.08.004 – volume: 80 start-page: 187 year: 2006 ident: 10.1016/j.bspc.2018.12.028_bib0260 article-title: Entropies for detection of epilepsy in EEG publication-title: Comput. Methods Programs Biomed. – volume: 84 start-page: 220 year: 2017 ident: 10.1016/j.bspc.2018.12.028_bib0045 article-title: Heart sound classification based on scaled spectrogram and tensor decomposition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.05.014 – volume: 82 start-page: 1 year: 2015 ident: 10.1016/j.bspc.2018.12.028_bib0290 article-title: Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2015.02.011 – volume: 2 start-page: 383 year: 1984 ident: 10.1016/j.bspc.2018.12.028_bib0315 article-title: Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects publication-title: J. Hypertens. Suppl. |
SSID | ssj0048714 |
Score | 2.2935896 |
Snippet | •ECG and PCG signals are temporally correlated, PCG signal used as an alternative to ECG for psychological stress detection.•The use of subject-specific... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 493 |
SubjectTerms | Empirical mode decomposition Phonocardiography Psychological stress |
Title | Psychological stress detection using phonocardiography signal: An empirical mode decomposition approach |
URI | https://dx.doi.org/10.1016/j.bspc.2018.12.028 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BTlo_LAhkwT23EctqqiKiC6QKVuluM4VVEJFYSV344vcapWQh0YE91J0eV095y8e4fQNTVUU2kkEVpHhMcZJ5KJnMjUUujoPMjgj-7zWIwm_HEaTVto0MzCAK3S1_66plfV2t_p-Wj2lvN578VhaSHd6cQlZcBoDLLbnMeQ5bc_K5qHw-OVvjcYE7D2gzM1xyv9WoKMYSirT4Kwkf2v5rTWcIYHaN8jRdyvH-YQtWxxhPbW9AOP0WyjfOF67gNntqz4VQUGUvsMA_vcdSzgndby1BhIG3pxh_sFtu_LeaUSgmEnjvMFjrkncuFGcPwETYb3r4MR8ZsTiGFBUJLEJCYX2lAZap7mQmaaGhEwQ22UJzp1uCSOHRAB6R2Qe2GWwfJQZsJY6IAbdoraxUdhzxB2rqlhEeeJzHkmhDtP5Q4l2ESmeWKo6KCwCZkyXlYctlssVMMfe1MQZgVhViFVLswddLPyWdaiGluto-ZNqI3UUK7qb_E7_6ffBdp1V0lNNLtE7fLz21455FGm3Sq1umin__A0Gv8C8xPZFQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BOwAD4lOUTw9sKGpiO47DVlWglo8uFKmb5TgOKiqhgvL_8SUOaiXEwJr4SdHFuntO3r0DuKSGaiqNDITWccCTnAeSiSKQmaVY0XmY4x_dx5EYPPO7STxZg37TC4OySp_765xeZWt_peuj2Z1Pp90nx6WFdKcTtylDRhOxDm10p4pb0O4N7wejJiE7Sl5ZfOP6AAG-d6aWeWWfc3QyjGT1VRCHsv9Wn5Zqzu0ObHuySHr18-zCmi33YGvJQnAfXlYyGKlbP0huF5XEqiSoa38hKEB3RQulp7VDNUHdhp5dk15J7Nt8WhmFEByL47AoM_daLtJ4jh_A8-3NuD8I_PCEwLAwXASpSU0htKEy0jwrhMw1NSJkhtq4SHXmqEmSOC6C7jvo-MIsw_mhzESJ0CE37BBa5Xtpj4A4aGZYzHkqC54L4Y5UhSMKNpVZkRoqOhA1IVPGO4vjgIuZaiRkrwrDrDDMKqLKhbkDVz-Yee2r8efquHkTamV3KJf4_8Ad_xN3ARuD8eODehiO7k9g091Ja93ZKbQWH1_2zBGRRXbuN9o3bR7bxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Psychological+stress+detection+using+phonocardiography+signal%3A+An+empirical+mode+decomposition+approach&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Cheema%2C+Amandeep&rft.au=Singh%2C+Mandeep&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=49&rft.spage=493&rft.epage=505&rft_id=info:doi/10.1016%2Fj.bspc.2018.12.028&rft.externalDocID=S1746809418303276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |