Psychological stress detection using phonocardiography signal: An empirical mode decomposition approach

•ECG and PCG signals are temporally correlated, PCG signal used as an alternative to ECG for psychological stress detection.•The use of subject-specific template analysis to cater to characteristic cardiac behaviour of every individual.•The statistical significance analysis to find features that are...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 49; pp. 493 - 505
Main Authors Cheema, Amandeep, Singh, Mandeep
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2019
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2018.12.028

Cover

Loading…
Abstract •ECG and PCG signals are temporally correlated, PCG signal used as an alternative to ECG for psychological stress detection.•The use of subject-specific template analysis to cater to characteristic cardiac behaviour of every individual.•The statistical significance analysis to find features that are significant across subjects.•The comparative analysis identity features that are valuable for both subject-specific analysis and analysis across subjects.•The proposed method performed better than ECG-based LF/HF power ratio method on the available dataset. Psychological stress is a part of the modern day lifestyle and affects human cognitive abilities. The well-established relation between stress and a host of behavioural and somatic pathological conditions emphasizes the need for timely detection of psychological stress. The purpose of this research work is to present a novel framework for psychological stress detection using Phonocardiography (PCG) signal based on Empirical Mode Decomposition (EMD) technique. The methods like Electroencephalography (EEG) and Electrocardiography (ECG) provide important biophysical measures for psychological stress detection but are expensive or require a proper clinical setup. Whereas, the acoustic heart sound or PCG signals carry significant information and can be easily acquired. In this research, pre-competitive (or exam related) psychological stress is detected from the S1-S1 interval of PCG signal referred as Inter-beat Interval (IBI). The IBI signal is decomposed to Intrinsic Mode Functions (IMF) using EMD technique which is suitable for non-linear and non-stationary signal analysis. The non-linear features namely Area of Analytic Signal Representation (AASR), Log of Area of ellipse from Second-order Difference Plot (LASODP), Root Mean Square value of IMF (RmsIMF), Shannon Entropy (ShEnt) and Fuzzy Entropy (FzEnt) were evaluated from IMFs of IBI signals. The first set of experiments comprises of deviation analysis in stressed signals from mean baseline values of the features in non-stressed signals. Thereafter, in the second set of experiments, Kruskal-Wallis statistical test has been used to check the significance and discrimination ability of the features. Then the features which showed maximum deviation and are statistically significant have been selected and fed to least-square support vector machine (LS-SVM) classifier. The 10-fold cross-validation has been used to make the system more reliable and robust. In this work, the average accuracy of 93.14% in classifying stressed and non-stressed signals has been achieved using Radial Basis Function (RBF) kernel. The results indicate that the proposed features provide better discrimination ability than well-known low-frequency to high-frequency power ratio (LF/HF) parameter of the ECG signal. The novelty of this study is the use of PCG signals for psychological stress detection and the use of subject-specific baseline template to incorporate the individual cardiovascular characteristic behaviour and stress responses. The proposed novel methodology of using PCG signals for psychological stress detection is cost-effective and is suitable for home-care, telemedicine and in rural health care centres especially in developing countries.
AbstractList •ECG and PCG signals are temporally correlated, PCG signal used as an alternative to ECG for psychological stress detection.•The use of subject-specific template analysis to cater to characteristic cardiac behaviour of every individual.•The statistical significance analysis to find features that are significant across subjects.•The comparative analysis identity features that are valuable for both subject-specific analysis and analysis across subjects.•The proposed method performed better than ECG-based LF/HF power ratio method on the available dataset. Psychological stress is a part of the modern day lifestyle and affects human cognitive abilities. The well-established relation between stress and a host of behavioural and somatic pathological conditions emphasizes the need for timely detection of psychological stress. The purpose of this research work is to present a novel framework for psychological stress detection using Phonocardiography (PCG) signal based on Empirical Mode Decomposition (EMD) technique. The methods like Electroencephalography (EEG) and Electrocardiography (ECG) provide important biophysical measures for psychological stress detection but are expensive or require a proper clinical setup. Whereas, the acoustic heart sound or PCG signals carry significant information and can be easily acquired. In this research, pre-competitive (or exam related) psychological stress is detected from the S1-S1 interval of PCG signal referred as Inter-beat Interval (IBI). The IBI signal is decomposed to Intrinsic Mode Functions (IMF) using EMD technique which is suitable for non-linear and non-stationary signal analysis. The non-linear features namely Area of Analytic Signal Representation (AASR), Log of Area of ellipse from Second-order Difference Plot (LASODP), Root Mean Square value of IMF (RmsIMF), Shannon Entropy (ShEnt) and Fuzzy Entropy (FzEnt) were evaluated from IMFs of IBI signals. The first set of experiments comprises of deviation analysis in stressed signals from mean baseline values of the features in non-stressed signals. Thereafter, in the second set of experiments, Kruskal-Wallis statistical test has been used to check the significance and discrimination ability of the features. Then the features which showed maximum deviation and are statistically significant have been selected and fed to least-square support vector machine (LS-SVM) classifier. The 10-fold cross-validation has been used to make the system more reliable and robust. In this work, the average accuracy of 93.14% in classifying stressed and non-stressed signals has been achieved using Radial Basis Function (RBF) kernel. The results indicate that the proposed features provide better discrimination ability than well-known low-frequency to high-frequency power ratio (LF/HF) parameter of the ECG signal. The novelty of this study is the use of PCG signals for psychological stress detection and the use of subject-specific baseline template to incorporate the individual cardiovascular characteristic behaviour and stress responses. The proposed novel methodology of using PCG signals for psychological stress detection is cost-effective and is suitable for home-care, telemedicine and in rural health care centres especially in developing countries.
Author Singh, Mandeep
Cheema, Amandeep
Author_xml – sequence: 1
  givenname: Amandeep
  surname: Cheema
  fullname: Cheema, Amandeep
  email: amandeep.cheema@thapar.edu
– sequence: 2
  givenname: Mandeep
  orcidid: 0000-0001-8134-5075
  surname: Singh
  fullname: Singh, Mandeep
  email: mdsingh@thapar.edu
BookMark eNp90M9LwzAUwPEgE9ym_4Cn_gOtL2mXpuJlDH_BQA96Dtlr2ma0TUiqsP_edtOLh50SCJ_w3ndBZr3tNSG3FBIKlN_tk11wmDCgIqEsASYuyJzmGY8FBTH7u0ORXZFFCHuATOQ0m5P6PRywsa2tDao2CoPXIUSlHjQOxvbRVzB9HbnG9haVL42tvXLNIQqm7lV7H637SHfO-KPubKlHi7ZzNpijV855q7C5JpeVaoO--T2X5PPp8WPzEm_fnl83622MKcAQF1hgxRUyQVW2q7goFUMOKTK9qgq1A57meZFzyleccZGlOi0AxneacwUZpkvCTv-ityF4XUnnTaf8QVKQUyq5l1MqOaWSlMkx1YjEP4RmUNP8g1emPU8fTlSPS30b7WVAo3vUpfFjQllac47_ACbAiUQ
CitedBy_id crossref_primary_10_1038_s41598_024_84429_6
crossref_primary_10_1007_s13369_024_09927_1
crossref_primary_10_1016_j_compbiomed_2024_108722
crossref_primary_10_1016_j_bspc_2024_106135
crossref_primary_10_1016_j_bspc_2021_102694
crossref_primary_10_1007_s13369_023_08494_1
crossref_primary_10_1108_SR_10_2019_0235
crossref_primary_10_1016_j_bspc_2022_104006
crossref_primary_10_1109_MCI_2024_3401309
crossref_primary_10_1080_0144929X_2019_1673820
crossref_primary_10_1016_j_procs_2021_08_113
crossref_primary_10_1016_j_bbe_2024_09_004
crossref_primary_10_3390_bios12070465
crossref_primary_10_1080_15435075_2020_1779076
crossref_primary_10_1088_1361_6501_ac3aae
crossref_primary_10_1155_2020_8860841
crossref_primary_10_1016_j_bspc_2023_104585
crossref_primary_10_1016_j_bspc_2020_102338
crossref_primary_10_7717_peerj_cs_635
crossref_primary_10_1016_j_eswa_2022_116634
crossref_primary_10_1007_s11042_024_19557_2
crossref_primary_10_1007_s13042_024_02142_2
crossref_primary_10_1016_j_partic_2021_05_002
crossref_primary_10_3390_diagnostics13111936
crossref_primary_10_3390_s21248370
Cites_doi 10.1109/JSEN.2017.2694970
10.1016/j.bspc.2013.05.004
10.1109/TBME.2010.2071871
10.1134/S0362119708050101
10.1161/01.RES.59.2.178
10.1007/s13534-013-0084-0
10.1016/j.cmpb.2010.10.006
10.1109/TBME.2009.2028693
10.1016/j.bspc.2008.07.003
10.1109/TNSRE.2007.897025
10.1109/10.817627
10.1016/j.eswa.2014.11.046
10.1016/j.bspc.2016.10.004
10.1161/01.CIR.84.2.482
10.1023/A:1018628609742
10.1109/TITB.2011.2181403
10.1016/j.jocs.2017.03.022
10.1109/TBME.2016.2559800
10.1186/1475-925X-10-96
10.1016/j.aeue.2016.12.008
10.1016/j.patrec.2005.09.028
10.1161/01.CIR.93.6.1250
10.1109/51.537065
10.1007/s11517-007-0268-9
10.1016/S0169-2607(02)00111-6
10.1142/S0219519416400030
10.1098/rspa.1998.0193
10.1016/j.eswa.2015.01.051
10.1109/TBME.2014.2377695
10.1109/TBME.1985.325532
10.1016/j.cmpb.2011.03.009
10.3390/e19030092
10.1109/JBHI.2017.2753321
10.1161/hy0102.100784
10.1142/S0219519416400029
10.1109/10.867943
10.1007/BF02446718
10.1109/TNSRE.2007.906961
10.1016/j.physbeh.2018.08.010
10.1109/JBHI.2013.2294399
10.1504/IJMEI.2008.019473
10.1007/s10484-010-9141-y
10.3390/e17020669
10.1016/j.eswa.2016.06.038
10.1016/j.cmpb.2013.11.014
10.1109/TBME.2010.2051225
10.1109/TFUZZ.2006.889825
10.1016/j.bspc.2017.08.004
10.1016/j.eswa.2017.05.014
10.1016/j.knosys.2015.02.011
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2018.12.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
EndPage 505
ExternalDocumentID 10_1016_j_bspc_2018_12_028
S1746809418303276
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-9c9cf6ac281a4bf68da2c603c2e5f9ab06377976165626843e390003c176a04c3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:05 EDT 2025
Thu Apr 24 22:58:59 EDT 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Psychological stress
Empirical mode decomposition
Phonocardiography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-9c9cf6ac281a4bf68da2c603c2e5f9ab06377976165626843e390003c176a04c3
ORCID 0000-0001-8134-5075
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_bspc_2018_12_028
crossref_citationtrail_10_1016_j_bspc_2018_12_028
elsevier_sciencedirect_doi_10_1016_j_bspc_2018_12_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle Biomedical signal processing and control
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cord, Ambroise, Cocquerez (bib0285) 2006; 27
Springer, Tarassenko, Clifford (bib0035) 2016; 63
Kovacs, Horváth, Balogh, Hosszú (bib0100) 2011; 58
Tang, Li, Qiu (bib0065) 2010; 57
Clifford, Liu, Moody, Springer, Silva, Li, Mark (bib0080) 2010; 43
Pagani, Lombardi, Guzzetti, Sandrone, Rimoldi, Malfatto, Cerutti, Malliani (bib0315) 1984; 2
Chrousos (bib0005) 2009; 5
Sharma, Pachori, Acharya (bib0265) 2015; 17
Patidar, Pachori (bib0055) 2013; 8
Spielberger, Gorsuch, Lushene, Vagg, Jacobs (bib0150) 1983
Lin, Chen, Lin, Yang, Chiang (bib0255) 2014; 3
Pachori, Kumar, Avinash, Shashank, Acharya (bib0215) 2016; 16
Chen, Yang, Ho, Tsai, Chen, Chang, Lai, Wang, Tsao, Wu (bib0050) 2017; 64
World Health Organisation (bib0010) 2013
Kumar, Pachori, Rajendra Acharya (bib0305) 2016; 63
Jain, Bajaj, Kumar (bib0230) 2018; 22
Kumar, Pachori, Acharya (bib0275) 2017; 19
Varghees, Ramachandran (bib0030) 2017; 17
Dutta, Singh, Kumar (bib0180) 2018; 39
Cohen, Hudson, Deedwania (bib0235) 1996; 15
Gururaj, Varghese, Benegal, Rao, Pathak, Singh, Mehta, Ram, Shibukumar, Kokane, Lenin Singh, Chavan, Sharma, Ramasubramanian, Dalal, Saha, Deuri, Giri, Kavishvar, Sinha, Thavody, Chatterji (bib0015) 2016
Papadaniil, Member, Hadjileontiadis, Member (bib0040) 2014; 18
Bajaj, Pachori (bib0200) 2013; 3
Várady, Wildt, Benyó, Hein (bib0090) 2003; 71
Tang, Li, Qiu (bib0060) 2010; 57
Patidar, Bilas, Acharya (bib0290) 2015; 82
Dimitriev, Dimitriev, Karpenko, Saperova (bib0140) 2008; 34
Pachori, Patidar (bib0205) 2013; 113
Ari, Saha (bib0220) 2008; 1
Zhang, Han, Deng (bib0045) 2017; 84
Suykens, Vandewalle (bib0295) 1999; 9
Sharma, Kumar, Pachori, Acharya (bib0280) 2017; 20
Singh, Cheema (bib0075) 2013; 77
Bailon, Mainardi, Laguna (bib0115) 2006
Mishra, Bajaj, Kumar, Sharma, Singh (bib0225) 2017; 72
Patidar, Bilas, Garg (bib0310) 2015; 42
Kovács, Horváth, Balogh, Hosszú (bib0095) 2010; 104
Pachori, Hewson, Snoussi, Duchene (bib0245) 2008
García, Sörnmo, Olmos, Laguna (bib0250) 2000; 47
Warlar (bib0165) 1991; 29
Lim, Acharya, Puthusserypady (bib0260) 2006; 80
Chen, Wang, Xie, Yu (bib0270) 2007; 15
Zhang, Han, Deng (bib0160) 2017; 32
Kovacs, Torok, Habermajer (bib0085) 2000; 47
Hindustan Times (bib0020) 2018
Huang, Shen, Long, Wu, Shih, Zheng, Tung, Liu (bib0175) 1998; 454
Herzig, Bickel, Eitan, Intrator (bib0070) 2015; 62
Pagani, Lombardi, Guzzetti, Rimoldi, Furlan, Pizzinelli, Sandrone, Malfatto, Dell’Orto, Piccaluga (bib0320) 1986; 59
Amit, Gavriely, Intrator (bib0155) 2009; 4
Pachori, Bajaj (bib0190) 2011; 104
Khandoker, Lai, Begg, Palaniswami (bib0300) 2007; 15
Hansen, Patil (bib0110) 2007
Thuraisingham, Tran, Boord, Craig (bib0185) 2007; 45
Pachori, Avinash, Shashank, Sharma, Acharya (bib0210) 2015; 42
Malliani, Pagani, Lombardi, Cerutti (bib0325) 1991; 84
Tan, Dao, Farmer, John, Richard (bib0130) 2011; 36
Sood, Kumar, Pachori, Acharya (bib0240) 2016; 16
Shriram, Sundhararajan, Daimiwal (bib0105) 2006
Bajaj, Pachori (bib0195) 2012; 16
Melillo, Bracale, Pecchia (bib0145) 2011; 10
Tavel (bib0025) 1996; 93
Pan, Tompkins (bib0170) 1985
Kumar, Weippert, Vilbrandt, Kreuzfeld, Stoll (bib0125) 2007; 15
Lucini, Norbiato, Clerici, Pagani (bib0135) 2002; 39
Azhari, Truzzi, Rigo, Bornstein, Esposito (bib0330) 2018; 196
Orini, Bailon, Laguna, Mainardi (bib0120) 2007
Chrousos (10.1016/j.bspc.2018.12.028_bib0005) 2009; 5
Mishra (10.1016/j.bspc.2018.12.028_bib0225) 2017; 72
Varghees (10.1016/j.bspc.2018.12.028_bib0030) 2017; 17
Melillo (10.1016/j.bspc.2018.12.028_bib0145) 2011; 10
Chen (10.1016/j.bspc.2018.12.028_bib0270) 2007; 15
Herzig (10.1016/j.bspc.2018.12.028_bib0070) 2015; 62
Pachori (10.1016/j.bspc.2018.12.028_bib0190) 2011; 104
Bajaj (10.1016/j.bspc.2018.12.028_bib0200) 2013; 3
Hindustan Times (10.1016/j.bspc.2018.12.028_bib0020) 2018
Sood (10.1016/j.bspc.2018.12.028_bib0240) 2016; 16
García (10.1016/j.bspc.2018.12.028_bib0250) 2000; 47
Lim (10.1016/j.bspc.2018.12.028_bib0260) 2006; 80
Clifford (10.1016/j.bspc.2018.12.028_bib0080) 2010; 43
Várady (10.1016/j.bspc.2018.12.028_bib0090) 2003; 71
Jain (10.1016/j.bspc.2018.12.028_bib0230) 2018; 22
Kumar (10.1016/j.bspc.2018.12.028_bib0305) 2016; 63
Patidar (10.1016/j.bspc.2018.12.028_bib0055) 2013; 8
Huang (10.1016/j.bspc.2018.12.028_bib0175) 1998; 454
Sharma (10.1016/j.bspc.2018.12.028_bib0280) 2017; 20
Papadaniil (10.1016/j.bspc.2018.12.028_bib0040) 2014; 18
Thuraisingham (10.1016/j.bspc.2018.12.028_bib0185) 2007; 45
Lucini (10.1016/j.bspc.2018.12.028_bib0135) 2002; 39
Ari (10.1016/j.bspc.2018.12.028_bib0220) 2008; 1
Pachori (10.1016/j.bspc.2018.12.028_bib0205) 2013; 113
Gururaj (10.1016/j.bspc.2018.12.028_bib0015) 2016
Pachori (10.1016/j.bspc.2018.12.028_bib0210) 2015; 42
Malliani (10.1016/j.bspc.2018.12.028_bib0325) 1991; 84
Tan (10.1016/j.bspc.2018.12.028_bib0130) 2011; 36
Pagani (10.1016/j.bspc.2018.12.028_bib0315) 1984; 2
Springer (10.1016/j.bspc.2018.12.028_bib0035) 2016; 63
Cord (10.1016/j.bspc.2018.12.028_bib0285) 2006; 27
World Health Organisation (10.1016/j.bspc.2018.12.028_bib0010) 2013
Orini (10.1016/j.bspc.2018.12.028_bib0120) 2007
Sharma (10.1016/j.bspc.2018.12.028_bib0265) 2015; 17
Kumar (10.1016/j.bspc.2018.12.028_bib0275) 2017; 19
Zhang (10.1016/j.bspc.2018.12.028_bib0045) 2017; 84
Warlar (10.1016/j.bspc.2018.12.028_bib0165) 1991; 29
Kovacs (10.1016/j.bspc.2018.12.028_bib0085) 2000; 47
Dutta (10.1016/j.bspc.2018.12.028_bib0180) 2018; 39
Bajaj (10.1016/j.bspc.2018.12.028_bib0195) 2012; 16
Amit (10.1016/j.bspc.2018.12.028_bib0155) 2009; 4
Hansen (10.1016/j.bspc.2018.12.028_bib0110) 2007
Pachori (10.1016/j.bspc.2018.12.028_bib0215) 2016; 16
Lin (10.1016/j.bspc.2018.12.028_bib0255) 2014; 3
Kumar (10.1016/j.bspc.2018.12.028_bib0125) 2007; 15
Suykens (10.1016/j.bspc.2018.12.028_bib0295) 1999; 9
Tavel (10.1016/j.bspc.2018.12.028_bib0025) 1996; 93
Azhari (10.1016/j.bspc.2018.12.028_bib0330) 2018; 196
Tang (10.1016/j.bspc.2018.12.028_bib0065) 2010; 57
Singh (10.1016/j.bspc.2018.12.028_bib0075) 2013; 77
Spielberger (10.1016/j.bspc.2018.12.028_bib0150) 1983
Bailon (10.1016/j.bspc.2018.12.028_bib0115) 2006
Cohen (10.1016/j.bspc.2018.12.028_bib0235) 1996; 15
Zhang (10.1016/j.bspc.2018.12.028_bib0160) 2017; 32
Pachori (10.1016/j.bspc.2018.12.028_bib0245) 2008
Tang (10.1016/j.bspc.2018.12.028_bib0060) 2010; 57
Dimitriev (10.1016/j.bspc.2018.12.028_bib0140) 2008; 34
Khandoker (10.1016/j.bspc.2018.12.028_bib0300) 2007; 15
Shriram (10.1016/j.bspc.2018.12.028_bib0105) 2006
Pagani (10.1016/j.bspc.2018.12.028_bib0320) 1986; 59
Kovács (10.1016/j.bspc.2018.12.028_bib0095) 2010; 104
Patidar (10.1016/j.bspc.2018.12.028_bib0310) 2015; 42
Kovacs (10.1016/j.bspc.2018.12.028_bib0100) 2011; 58
Patidar (10.1016/j.bspc.2018.12.028_bib0290) 2015; 82
Chen (10.1016/j.bspc.2018.12.028_bib0050) 2017; 64
Pan (10.1016/j.bspc.2018.12.028_bib0170) 1985
References_xml – start-page: 169
  year: 2006
  end-page: 172
  ident: bib0115
  article-title: Time-frequency analysis of heart rate variability during stress testing using “a priori” information of respiratory frequency
  publication-title: Comput. Cardiol.
– volume: 64
  start-page: 372
  year: 2017
  end-page: 380
  ident: bib0050
  article-title: S1 and S2 heart sound recognition using deep neural networks
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 10
  year: 2018
  ident: bib0020
  article-title: Let the teachers do what they are hired for
  publication-title: The Plan to Utilise Them As Mental Health Counsellors for Students May Not Work
– volume: 15
  start-page: 266
  year: 2007
  end-page: 272
  ident: bib0270
  article-title: Characterization of surface EMG signal based on fuzzy entropy
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 82
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib0290
  article-title: Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals
  publication-title: Knowledge-Based Syst.
– volume: 80
  start-page: 187
  year: 2006
  end-page: 194
  ident: bib0260
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Programs Biomed.
– volume: 59
  start-page: 178
  year: 1986
  end-page: 193
  ident: bib0320
  article-title: Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog
  publication-title: Circ. Res.
– volume: 3
  start-page: 17
  year: 2013
  end-page: 21
  ident: bib0200
  article-title: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals
  publication-title: Biomed. Eng. Lett.
– volume: 84
  start-page: 482
  year: 1991
  end-page: 492
  ident: bib0325
  article-title: Cardiovascular neural regulation explored in the frequency domain
  publication-title: Circulation
– volume: 19
  start-page: 1
  year: 2017
  end-page: 21
  ident: bib0275
  article-title: Use of accumulated entropies for automated detection of congestive heart failure in flexible analytic wavelet tranform framework based on short-term hrv signals
  publication-title: Entropy.
– volume: 36
  start-page: 27
  year: 2011
  end-page: 35
  ident: bib0130
  article-title: Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): a pilot study
  publication-title: Appl. Psychophysiol. Biofeedback
– start-page: 230
  year: 1985
  end-page: 236
  ident: bib0170
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng. BME-32
– year: 1983
  ident: bib0150
  article-title: State-trait anxiety inventory for adults
  publication-title: Manual, Instrument and Scoring Guide
– volume: 47
  start-page: 124
  year: 2000
  end-page: 130
  ident: bib0085
  article-title: A rule-based phonocardiographic method for long-term fetal heart rate monitoring
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2016
  ident: bib0015
  article-title: National Mental Health Survey of India, 2015-16: Prevalence, Pattern and Outcomes
– volume: 17
  start-page: 669
  year: 2015
  end-page: 691
  ident: bib0265
  article-title: Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals
  publication-title: Entropy
– volume: 113
  start-page: 494
  year: 2013
  end-page: 502
  ident: bib0205
  article-title: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions
  publication-title: Comput. Methods Programs Biomed.
– volume: 47
  start-page: 1195
  year: 2000
  end-page: 1201
  ident: bib0250
  article-title: Automatic detection of ST-T complex changes on the ECG using filtered RMS difference series: application to ambulatory ischemia monitoring
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 42
  start-page: 4567
  year: 2015
  end-page: 4581
  ident: bib0210
  article-title: Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals
  publication-title: Expert Syst. Appl.
– volume: 104
  start-page: 373
  year: 2011
  end-page: 381
  ident: bib0190
  article-title: Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition empirical mode decomposition
  publication-title: Comput. Methods Programs Biomed.
– volume: 63
  start-page: 165
  year: 2016
  end-page: 172
  ident: bib0305
  article-title: An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 374
  year: 2009
  end-page: 381
  ident: bib0005
  article-title: Stress and disorders of the stress system
  publication-title: Nat. Publ. Gr.
– volume: 27
  start-page: 627
  year: 2006
  end-page: 635
  ident: bib0285
  article-title: Feature selection in robust clustering based on Laplace mixture
  publication-title: Pattern Recogn. Lett.
– volume: 39
  start-page: 184
  year: 2002
  end-page: 188
  ident: bib0135
  article-title: Hemodynamic and autonomic adjustments to real life stress conditions in humans
  publication-title: Hypertension
– volume: 43
  start-page: 609
  year: 2010
  end-page: 612
  ident: bib0080
  article-title: Classification of normal / abnormal heart sound recordings : the PhysioNet / computing in cardiology challenge 2016
  publication-title: Comput. Cardiol.
– volume: 39
  start-page: 378
  year: 2018
  end-page: 389
  ident: bib0180
  article-title: Classification of non-motor cognitive task in EEG based brain-computer interface using phase space features in multivariate empirical mode decomposition domain
  publication-title: Biomed. Signal Process. Control
– volume: 4
  start-page: 26
  year: 2009
  end-page: 36
  ident: bib0155
  article-title: Cluster analysis and classification of heart sounds
  publication-title: Biomed. Signal Process. Control
– volume: 3
  start-page: 257
  year: 2014
  end-page: 266
  ident: bib0255
  article-title: Individual identification based on chaotic electrocardiogram signals during muscular exercise
  publication-title: Inst. Eng. Technol. Biomet.
– volume: 42
  start-page: 3315
  year: 2015
  end-page: 3326
  ident: bib0310
  article-title: Automatic diagnosis of septal defects based on tunable- Q wavelet transform of cardiac sound signals
  publication-title: Expert Syst. Appl.
– start-page: 108
  year: 2007
  end-page: 137
  ident: bib0110
  article-title: Speech under stress: analysis, modeling and recognition
  publication-title: Speak. Classif. I Fundam. Featur. Methods
– volume: 32
  start-page: 20
  year: 2017
  end-page: 28
  ident: bib0160
  article-title: Heart sound classification based on scaled spectrogram and partial least squares regression
  publication-title: Biomed. Signal Process. Control
– volume: 62
  start-page: 1169
  year: 2015
  end-page: 1178
  ident: bib0070
  article-title: Monitoring cardiac stress using features extracted from S1 heart sounds
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 48
  year: 2013
  ident: bib0010
  article-title: WHO Mental Health Action Plan 2013-2020
– volume: 104
  start-page: 19
  year: 2010
  end-page: 25
  ident: bib0095
  article-title: Fetal phonocardiography — past and future possibilities
  publication-title: Comput. Methods Programs Biomed.
– volume: 34
  start-page: 617
  year: 2008
  end-page: 624
  ident: bib0140
  article-title: Influence of examination stress and psychoemotional characteristics on the blood pressure and heart rate regulation in female students
  publication-title: Hum. Physiol.
– volume: 71
  start-page: 283
  year: 2003
  end-page: 296
  ident: bib0090
  article-title: An advanced method in fetal phonocardiography
  publication-title: Comput. Methods Programs Biomed.
– volume: 15
  start-page: 97
  year: 1996
  end-page: 102
  ident: bib0235
  article-title: Applying continuous chaotic modeling to cardiac signal analysis
  publication-title: IEEE Eng. Med. Biol. Mag.
– start-page: 34
  year: 2006
  end-page: 38
  ident: bib0105
  article-title: EEG based cognitive workload assessment for maximum efficiency
  publication-title: Second Int. Conf. Emerg. Trends Eng.
– start-page: 1
  year: 2008
  end-page: 6
  ident: bib0245
  article-title: Analysis of center of pressure signals using empirical Mode decomposition and fourier-bessel expansion
  publication-title: TENCON 2008 - 2008 IEEE Reg. 10 Conf.
– volume: 29
  start-page: 333
  year: 1991
  end-page: 336
  ident: bib0165
  article-title: Integer coefficient bandpass filter for the simultaneous removal of baseline wander, 50 and 100 Hz interference from the ECG
  publication-title: Med. Biol. Eng. Comput.
– volume: 57
  start-page: 2438
  year: 2010
  end-page: 2447
  ident: bib0060
  article-title: Separation of heart sound signal from noise in joint cycle frequency – time – frequency domains based on fuzzy detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib0175
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis analysis
  publication-title: R. Soc.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib0295
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 77
  start-page: 13
  year: 2013
  end-page: 17
  ident: bib0075
  article-title: Heart sounds classification using feature extraction of phonocardiography signal
  publication-title: Int. J. Comput. Appl.
– volume: 16
  start-page: 1135
  year: 2012
  end-page: 1142
  ident: bib0195
  article-title: Classification of seizure and nonseizure EEG signals using empirical mode decomposition
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 15
  start-page: 791
  year: 2007
  end-page: 808
  ident: bib0125
  article-title: Fuzzy evaluation of heart rate signals for mental stress assessment
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 16
  start-page: 1
  year: 2016
  end-page: 20
  ident: bib0240
  article-title: Application of empirical mode decomposition – based features for analysis of normal and CAD heart rate signals
  publication-title: J. Mech. Med. Biol.
– volume: 196
  start-page: 25
  year: 2018
  end-page: 32
  ident: bib0330
  article-title: Putting salient vocalizations in context: adults’ physiological arousal to emotive cues in domestic and external environments
  publication-title: Physiol. Behav.
– volume: 84
  start-page: 220
  year: 2017
  end-page: 231
  ident: bib0045
  article-title: Heart sound classification based on scaled spectrogram and tensor decomposition
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 383
  year: 1984
  end-page: 385
  ident: bib0315
  article-title: Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects
  publication-title: J. Hypertens. Suppl.
– volume: 8
  start-page: 559
  year: 2013
  end-page: 567
  ident: bib0055
  article-title: Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform
  publication-title: Biomed. Signal Process. Control
– start-page: 29
  year: 2007
  end-page: 32
  ident: bib0120
  article-title: Modeling and estimation of time ­ varying heart rate variability during stress test by parametric and non parametric analysis
  publication-title: Comput. Cardiol.
– volume: 72
  start-page: 200
  year: 2017
  end-page: 209
  ident: bib0225
  article-title: An efficient method for analysis of EMG signals using improved empirical mode decomposition
  publication-title: AEU-Int. J. Electron. Commun.
– volume: 63
  start-page: 822
  year: 2016
  end-page: 832
  ident: bib0035
  article-title: Logistic regression-HSMM-based heart sound segmentation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 18
  start-page: 1138
  year: 2014
  end-page: 1152
  ident: bib0040
  article-title: Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features
  publication-title: IEEE J. Biomed. Heal. Informatics.
– volume: 16
  start-page: 1
  year: 2016
  end-page: 23
  ident: bib0215
  article-title: An improved online paradigm for screening of diabetic patients using RR-interval signals
  publication-title: J. Mech. Med. Biol.
– volume: 45
  start-page: 1243
  year: 2007
  end-page: 1249
  ident: bib0185
  article-title: Analysis of eyes open, eye closed EEG signals using second-order difference plot
  publication-title: Med. Biol. Eng. Comput.
– volume: 1
  year: 2008
  ident: bib0220
  article-title: Classification of heart sounds using empirical mode decomposition based features
  publication-title: Int. J. Med. Eng. Inform.
– volume: 20
  start-page: 52
  year: 2017
  ident: bib0280
  article-title: Decision support system for focal EEG signals using tunable-Q wavelet transform
  publication-title: J. Comput. Sci.
– volume: 15
  start-page: 587
  year: 2007
  end-page: 597
  ident: bib0300
  article-title: Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 22
  start-page: 1133
  year: 2018
  end-page: 1139
  ident: bib0230
  article-title: Riemann liouvelle fractional integral based empirical mode decomposition for ECG denoising
  publication-title: IEEE J. Biomed. Heal. Inform.
– volume: 93
  start-page: 1250
  year: 1996
  end-page: 1253
  ident: bib0025
  article-title: Cardiac auscultation
  publication-title: Circulation
– volume: 58
  start-page: 64
  year: 2011
  end-page: 70
  ident: bib0100
  article-title: Extended noninvasive fetal monitoring by detailed analysis of data measured with phonocardiography
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  start-page: 96
  year: 2011
  ident: bib0145
  article-title: Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination
  publication-title: Biomed. Eng. Online
– volume: 57
  start-page: 325
  year: 2010
  end-page: 333
  ident: bib0065
  article-title: Noise and disturbance reduction for heart sounds in cycle-frequency domain based on nonlinear time scaling
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 3861
  year: 2017
  end-page: 3872
  ident: bib0030
  article-title: Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope
  publication-title: IEEE Sens. J.
– start-page: 29
  year: 2007
  ident: 10.1016/j.bspc.2018.12.028_bib0120
  article-title: Modeling and estimation of time ­ varying heart rate variability during stress test by parametric and non parametric analysis
– volume: 17
  start-page: 3861
  year: 2017
  ident: 10.1016/j.bspc.2018.12.028_bib0030
  article-title: Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2694970
– volume: 8
  start-page: 559
  year: 2013
  ident: 10.1016/j.bspc.2018.12.028_bib0055
  article-title: Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.05.004
– volume: 58
  start-page: 64
  year: 2011
  ident: 10.1016/j.bspc.2018.12.028_bib0100
  article-title: Extended noninvasive fetal monitoring by detailed analysis of data measured with phonocardiography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2071871
– volume: 34
  start-page: 617
  year: 2008
  ident: 10.1016/j.bspc.2018.12.028_bib0140
  article-title: Influence of examination stress and psychoemotional characteristics on the blood pressure and heart rate regulation in female students
  publication-title: Hum. Physiol.
  doi: 10.1134/S0362119708050101
– volume: 59
  start-page: 178
  year: 1986
  ident: 10.1016/j.bspc.2018.12.028_bib0320
  article-title: Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.59.2.178
– volume: 3
  start-page: 17
  year: 2013
  ident: 10.1016/j.bspc.2018.12.028_bib0200
  article-title: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-013-0084-0
– volume: 104
  start-page: 19
  year: 2010
  ident: 10.1016/j.bspc.2018.12.028_bib0095
  article-title: Fetal phonocardiography — past and future possibilities
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2010.10.006
– volume: 57
  start-page: 325
  year: 2010
  ident: 10.1016/j.bspc.2018.12.028_bib0065
  article-title: Noise and disturbance reduction for heart sounds in cycle-frequency domain based on nonlinear time scaling
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2028693
– volume: 4
  start-page: 26
  year: 2009
  ident: 10.1016/j.bspc.2018.12.028_bib0155
  article-title: Cluster analysis and classification of heart sounds
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2008.07.003
– volume: 15
  start-page: 266
  year: 2007
  ident: 10.1016/j.bspc.2018.12.028_bib0270
  article-title: Characterization of surface EMG signal based on fuzzy entropy
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.897025
– volume: 5
  start-page: 374
  year: 2009
  ident: 10.1016/j.bspc.2018.12.028_bib0005
  article-title: Stress and disorders of the stress system
  publication-title: Nat. Publ. Gr.
– start-page: 34
  year: 2006
  ident: 10.1016/j.bspc.2018.12.028_bib0105
  article-title: EEG based cognitive workload assessment for maximum efficiency
– volume: 47
  start-page: 124
  year: 2000
  ident: 10.1016/j.bspc.2018.12.028_bib0085
  article-title: A rule-based phonocardiographic method for long-term fetal heart rate monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.817627
– volume: 77
  start-page: 13
  year: 2013
  ident: 10.1016/j.bspc.2018.12.028_bib0075
  article-title: Heart sounds classification using feature extraction of phonocardiography signal
  publication-title: Int. J. Comput. Appl.
– volume: 42
  start-page: 3315
  year: 2015
  ident: 10.1016/j.bspc.2018.12.028_bib0310
  article-title: Automatic diagnosis of septal defects based on tunable- Q wavelet transform of cardiac sound signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.046
– start-page: 48
  year: 2013
  ident: 10.1016/j.bspc.2018.12.028_bib0010
– volume: 32
  start-page: 20
  year: 2017
  ident: 10.1016/j.bspc.2018.12.028_bib0160
  article-title: Heart sound classification based on scaled spectrogram and partial least squares regression
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.10.004
– volume: 84
  start-page: 482
  year: 1991
  ident: 10.1016/j.bspc.2018.12.028_bib0325
  article-title: Cardiovascular neural regulation explored in the frequency domain
  publication-title: Circulation
  doi: 10.1161/01.CIR.84.2.482
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.bspc.2018.12.028_bib0295
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 16
  start-page: 1135
  year: 2012
  ident: 10.1016/j.bspc.2018.12.028_bib0195
  article-title: Classification of seizure and nonseizure EEG signals using empirical mode decomposition
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2181403
– volume: 20
  start-page: 52
  year: 2017
  ident: 10.1016/j.bspc.2018.12.028_bib0280
  article-title: Decision support system for focal EEG signals using tunable-Q wavelet transform
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.03.022
– volume: 64
  start-page: 372
  year: 2017
  ident: 10.1016/j.bspc.2018.12.028_bib0050
  article-title: S1 and S2 heart sound recognition using deep neural networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2559800
– start-page: 1
  year: 2008
  ident: 10.1016/j.bspc.2018.12.028_bib0245
  article-title: Analysis of center of pressure signals using empirical Mode decomposition and fourier-bessel expansion
  publication-title: TENCON 2008 - 2008 IEEE Reg. 10 Conf.
– volume: 63
  start-page: 822
  year: 2016
  ident: 10.1016/j.bspc.2018.12.028_bib0035
  article-title: Logistic regression-HSMM-based heart sound segmentation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  start-page: 96
  year: 2011
  ident: 10.1016/j.bspc.2018.12.028_bib0145
  article-title: Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-10-96
– volume: 72
  start-page: 200
  year: 2017
  ident: 10.1016/j.bspc.2018.12.028_bib0225
  article-title: An efficient method for analysis of EMG signals using improved empirical mode decomposition
  publication-title: AEU-Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2016.12.008
– volume: 27
  start-page: 627
  year: 2006
  ident: 10.1016/j.bspc.2018.12.028_bib0285
  article-title: Feature selection in robust clustering based on Laplace mixture
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.09.028
– volume: 93
  start-page: 1250
  year: 1996
  ident: 10.1016/j.bspc.2018.12.028_bib0025
  article-title: Cardiac auscultation
  publication-title: Circulation
  doi: 10.1161/01.CIR.93.6.1250
– volume: 15
  start-page: 97
  year: 1996
  ident: 10.1016/j.bspc.2018.12.028_bib0235
  article-title: Applying continuous chaotic modeling to cardiac signal analysis
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.537065
– volume: 45
  start-page: 1243
  year: 2007
  ident: 10.1016/j.bspc.2018.12.028_bib0185
  article-title: Analysis of eyes open, eye closed EEG signals using second-order difference plot
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-007-0268-9
– year: 2016
  ident: 10.1016/j.bspc.2018.12.028_bib0015
– volume: 43
  start-page: 609
  issue: 2016
  year: 2010
  ident: 10.1016/j.bspc.2018.12.028_bib0080
  article-title: Classification of normal / abnormal heart sound recordings : the PhysioNet / computing in cardiology challenge 2016
  publication-title: Comput. Cardiol.
– volume: 71
  start-page: 283
  year: 2003
  ident: 10.1016/j.bspc.2018.12.028_bib0090
  article-title: An advanced method in fetal phonocardiography
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/S0169-2607(02)00111-6
– volume: 16
  start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2018.12.028_bib0215
  article-title: An improved online paradigm for screening of diabetic patients using RR-interval signals
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519416400030
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.bspc.2018.12.028_bib0175
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis analysis
  publication-title: R. Soc.
  doi: 10.1098/rspa.1998.0193
– volume: 42
  start-page: 4567
  year: 2015
  ident: 10.1016/j.bspc.2018.12.028_bib0210
  article-title: Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.01.051
– volume: 62
  start-page: 1169
  year: 2015
  ident: 10.1016/j.bspc.2018.12.028_bib0070
  article-title: Monitoring cardiac stress using features extracted from S1 heart sounds
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2377695
– start-page: 230
  year: 1985
  ident: 10.1016/j.bspc.2018.12.028_bib0170
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng. BME-32
  doi: 10.1109/TBME.1985.325532
– volume: 104
  start-page: 373
  year: 2011
  ident: 10.1016/j.bspc.2018.12.028_bib0190
  article-title: Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition empirical mode decomposition
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.03.009
– volume: 19
  start-page: 1
  year: 2017
  ident: 10.1016/j.bspc.2018.12.028_bib0275
  article-title: Use of accumulated entropies for automated detection of congestive heart failure in flexible analytic wavelet tranform framework based on short-term hrv signals
  publication-title: Entropy.
  doi: 10.3390/e19030092
– start-page: 10
  year: 2018
  ident: 10.1016/j.bspc.2018.12.028_bib0020
  article-title: Let the teachers do what they are hired for
– start-page: 108
  year: 2007
  ident: 10.1016/j.bspc.2018.12.028_bib0110
  article-title: Speech under stress: analysis, modeling and recognition
– volume: 22
  start-page: 1133
  year: 2018
  ident: 10.1016/j.bspc.2018.12.028_bib0230
  article-title: Riemann liouvelle fractional integral based empirical mode decomposition for ECG denoising
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2017.2753321
– volume: 3
  start-page: 257
  year: 2014
  ident: 10.1016/j.bspc.2018.12.028_bib0255
  article-title: Individual identification based on chaotic electrocardiogram signals during muscular exercise
  publication-title: Inst. Eng. Technol. Biomet.
– volume: 39
  start-page: 184
  year: 2002
  ident: 10.1016/j.bspc.2018.12.028_bib0135
  article-title: Hemodynamic and autonomic adjustments to real life stress conditions in humans
  publication-title: Hypertension
  doi: 10.1161/hy0102.100784
– volume: 16
  start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2018.12.028_bib0240
  article-title: Application of empirical mode decomposition – based features for analysis of normal and CAD heart rate signals
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519416400029
– volume: 47
  start-page: 1195
  year: 2000
  ident: 10.1016/j.bspc.2018.12.028_bib0250
  article-title: Automatic detection of ST-T complex changes on the ECG using filtered RMS difference series: application to ambulatory ischemia monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.867943
– volume: 29
  start-page: 333
  year: 1991
  ident: 10.1016/j.bspc.2018.12.028_bib0165
  article-title: Integer coefficient bandpass filter for the simultaneous removal of baseline wander, 50 and 100 Hz interference from the ECG
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02446718
– volume: 15
  start-page: 587
  year: 2007
  ident: 10.1016/j.bspc.2018.12.028_bib0300
  article-title: Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.906961
– volume: 196
  start-page: 25
  year: 2018
  ident: 10.1016/j.bspc.2018.12.028_bib0330
  article-title: Putting salient vocalizations in context: adults’ physiological arousal to emotive cues in domestic and external environments
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2018.08.010
– volume: 18
  start-page: 1138
  year: 2014
  ident: 10.1016/j.bspc.2018.12.028_bib0040
  article-title: Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features
  publication-title: IEEE J. Biomed. Heal. Informatics.
  doi: 10.1109/JBHI.2013.2294399
– start-page: 169
  year: 2006
  ident: 10.1016/j.bspc.2018.12.028_bib0115
  article-title: Time-frequency analysis of heart rate variability during stress testing using “a priori” information of respiratory frequency
– volume: 1
  year: 2008
  ident: 10.1016/j.bspc.2018.12.028_bib0220
  article-title: Classification of heart sounds using empirical mode decomposition based features
  publication-title: Int. J. Med. Eng. Inform.
  doi: 10.1504/IJMEI.2008.019473
– volume: 36
  start-page: 27
  year: 2011
  ident: 10.1016/j.bspc.2018.12.028_bib0130
  article-title: Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): a pilot study
  publication-title: Appl. Psychophysiol. Biofeedback
  doi: 10.1007/s10484-010-9141-y
– volume: 17
  start-page: 669
  year: 2015
  ident: 10.1016/j.bspc.2018.12.028_bib0265
  article-title: Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals
  publication-title: Entropy
  doi: 10.3390/e17020669
– year: 1983
  ident: 10.1016/j.bspc.2018.12.028_bib0150
  article-title: State-trait anxiety inventory for adults
– volume: 63
  start-page: 165
  year: 2016
  ident: 10.1016/j.bspc.2018.12.028_bib0305
  article-title: An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.06.038
– volume: 113
  start-page: 494
  year: 2013
  ident: 10.1016/j.bspc.2018.12.028_bib0205
  article-title: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.11.014
– volume: 57
  start-page: 2438
  year: 2010
  ident: 10.1016/j.bspc.2018.12.028_bib0060
  article-title: Separation of heart sound signal from noise in joint cycle frequency – time – frequency domains based on fuzzy detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2051225
– volume: 15
  start-page: 791
  year: 2007
  ident: 10.1016/j.bspc.2018.12.028_bib0125
  article-title: Fuzzy evaluation of heart rate signals for mental stress assessment
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2006.889825
– volume: 39
  start-page: 378
  year: 2018
  ident: 10.1016/j.bspc.2018.12.028_bib0180
  article-title: Classification of non-motor cognitive task in EEG based brain-computer interface using phase space features in multivariate empirical mode decomposition domain
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.08.004
– volume: 80
  start-page: 187
  year: 2006
  ident: 10.1016/j.bspc.2018.12.028_bib0260
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Programs Biomed.
– volume: 84
  start-page: 220
  year: 2017
  ident: 10.1016/j.bspc.2018.12.028_bib0045
  article-title: Heart sound classification based on scaled spectrogram and tensor decomposition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.05.014
– volume: 82
  start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2018.12.028_bib0290
  article-title: Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2015.02.011
– volume: 2
  start-page: 383
  year: 1984
  ident: 10.1016/j.bspc.2018.12.028_bib0315
  article-title: Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects
  publication-title: J. Hypertens. Suppl.
SSID ssj0048714
Score 2.2935896
Snippet •ECG and PCG signals are temporally correlated, PCG signal used as an alternative to ECG for psychological stress detection.•The use of subject-specific...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 493
SubjectTerms Empirical mode decomposition
Phonocardiography
Psychological stress
Title Psychological stress detection using phonocardiography signal: An empirical mode decomposition approach
URI https://dx.doi.org/10.1016/j.bspc.2018.12.028
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BTlo_LAhkwT23EctqqiKiC6QKVuluM4VVEJFYSV344vcapWQh0YE91J0eV095y8e4fQNTVUU2kkEVpHhMcZJ5KJnMjUUujoPMjgj-7zWIwm_HEaTVto0MzCAK3S1_66plfV2t_p-Wj2lvN578VhaSHd6cQlZcBoDLLbnMeQ5bc_K5qHw-OVvjcYE7D2gzM1xyv9WoKMYSirT4Kwkf2v5rTWcIYHaN8jRdyvH-YQtWxxhPbW9AOP0WyjfOF67gNntqz4VQUGUvsMA_vcdSzgndby1BhIG3pxh_sFtu_LeaUSgmEnjvMFjrkncuFGcPwETYb3r4MR8ZsTiGFBUJLEJCYX2lAZap7mQmaaGhEwQ22UJzp1uCSOHRAB6R2Qe2GWwfJQZsJY6IAbdoraxUdhzxB2rqlhEeeJzHkmhDtP5Q4l2ESmeWKo6KCwCZkyXlYctlssVMMfe1MQZgVhViFVLswddLPyWdaiGluto-ZNqI3UUK7qb_E7_6ffBdp1V0lNNLtE7fLz21455FGm3Sq1umin__A0Gv8C8xPZFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BOwAD4lOUTw9sKGpiO47DVlWglo8uFKmb5TgOKiqhgvL_8SUOaiXEwJr4SdHFuntO3r0DuKSGaiqNDITWccCTnAeSiSKQmaVY0XmY4x_dx5EYPPO7STxZg37TC4OySp_765xeZWt_peuj2Z1Pp90nx6WFdKcTtylDRhOxDm10p4pb0O4N7wejJiE7Sl5ZfOP6AAG-d6aWeWWfc3QyjGT1VRCHsv9Wn5Zqzu0ObHuySHr18-zCmi33YGvJQnAfXlYyGKlbP0huF5XEqiSoa38hKEB3RQulp7VDNUHdhp5dk15J7Nt8WhmFEByL47AoM_daLtJ4jh_A8-3NuD8I_PCEwLAwXASpSU0htKEy0jwrhMw1NSJkhtq4SHXmqEmSOC6C7jvo-MIsw_mhzESJ0CE37BBa5Xtpj4A4aGZYzHkqC54L4Y5UhSMKNpVZkRoqOhA1IVPGO4vjgIuZaiRkrwrDrDDMKqLKhbkDVz-Yee2r8efquHkTamV3KJf4_8Ad_xN3ARuD8eODehiO7k9g091Ja93ZKbQWH1_2zBGRRXbuN9o3bR7bxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Psychological+stress+detection+using+phonocardiography+signal%3A+An+empirical+mode+decomposition+approach&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Cheema%2C+Amandeep&rft.au=Singh%2C+Mandeep&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=49&rft.spage=493&rft.epage=505&rft_id=info:doi/10.1016%2Fj.bspc.2018.12.028&rft.externalDocID=S1746809418303276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon