Detection approaches for android malware: Taxonomy and review analysis
The main objective of this review is to present an in-depth study of Android malware detection approaches. This article provides a comprehensive survey of 150 studies on Android malware detection from 2010 to 2022. Two broader categories like traditional signature-based and behavior-based approaches...
Saved in:
Published in | Expert systems with applications Vol. 238; p. 122255 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main objective of this review is to present an in-depth study of Android malware detection approaches. This article provides a comprehensive survey of 150 studies on Android malware detection from 2010 to 2022. Two broader categories like traditional signature-based and behavior-based approaches are discussed throughout the review process. The behavior-based detection approaches are further categorized in to static, dynamic, and hybrid analysis methods. The survey has conducted in different dimensions including detection approaches, datasets used, features, sustainability of the solutions, etc. Although researchers have proposed detection tools and techniques to develop efficient countermeasures against Android malware, there is a scarcity of a concise review for research practitioners in this subject area. The survey shows there is a great deal of interest in machine learning-based detection methods among the research community. The review not only provides an authentic assessment of the malware detection capabilities of different approaches but also presents observations and suggestions regarding various aspects of the Android malware ecosystem. These observations and suggestions are intended to assist researchers in enhancing further research towards the subject domain. |
---|---|
AbstractList | The main objective of this review is to present an in-depth study of Android malware detection approaches. This article provides a comprehensive survey of 150 studies on Android malware detection from 2010 to 2022. Two broader categories like traditional signature-based and behavior-based approaches are discussed throughout the review process. The behavior-based detection approaches are further categorized in to static, dynamic, and hybrid analysis methods. The survey has conducted in different dimensions including detection approaches, datasets used, features, sustainability of the solutions, etc. Although researchers have proposed detection tools and techniques to develop efficient countermeasures against Android malware, there is a scarcity of a concise review for research practitioners in this subject area. The survey shows there is a great deal of interest in machine learning-based detection methods among the research community. The review not only provides an authentic assessment of the malware detection capabilities of different approaches but also presents observations and suggestions regarding various aspects of the Android malware ecosystem. These observations and suggestions are intended to assist researchers in enhancing further research towards the subject domain. |
ArticleNumber | 122255 |
Author | Manohar Naik, S. Haidros Rahima Manzil, Hashida |
Author_xml | – sequence: 1 givenname: Hashida surname: Haidros Rahima Manzil fullname: Haidros Rahima Manzil, Hashida email: hashida.pcs071902@cukerala.ac.in – sequence: 2 givenname: S. surname: Manohar Naik fullname: Manohar Naik, S. email: manoharamen@cukerala.ac.in |
BookMark | eNp9kLFOwzAQhj0UibbwAkx5gYSzYycNYkGFAlIlljJb17MtXKVxZUeUvj2JysTQ6U46faf__2Zs0oXOMnbHoeDAq_tdYdMRCwGiLLgQQqkJm0Kj6lzyWl6zWUo7AF4D1FO2era9pd6HLsPDIQakL5syF2KGnYnBm2yP7RGjfcg2-BO6sD-Nlyzab2-Pw4rtKfl0w64ctsne_s05-1y9bJZv-frj9X35tM6pBOjzhoaEILgilM6pSjpSvFJqUVWcauMISClaWKNwa0qJwKnhsqpBUkMNbss5W5z_UgwpRes0-R7H-H1E32oOenSgd3p0oEcH-uxgQMU_9BD9HuPpMvR4huxQamgcdSJvO7LGx0GbNsFfwn8BgLp6VA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3523629 crossref_primary_10_3390_s25041153 crossref_primary_10_1186_s42400_024_00205_z crossref_primary_10_3390_app14114772 crossref_primary_10_1007_s00170_023_12725_y crossref_primary_10_3390_electronics14061151 crossref_primary_10_1109_JIOT_2024_3477442 crossref_primary_10_3389_fphy_2024_1349463 crossref_primary_10_3390_app15020499 crossref_primary_10_1007_s13198_024_02294_y crossref_primary_10_3390_bdcc8120171 crossref_primary_10_1007_s13198_024_02643_x |
Cites_doi | 10.4018/IJISP.2020100104 10.1155/2020/8861639 10.1145/3183440.3195004 10.1007/s10207-020-00489-5 10.1145/3338501.3357374 10.1109/ACCESS.2018.2874502 10.14569/IJACSA.2021.01212104 10.1016/j.cosrev.2020.100358 10.1109/BigData.2018.8622324 10.1145/2733306 10.1007/s00521-020-05309-4 10.1186/s42400-018-0006-7 10.1016/j.cose.2015.02.007 10.1145/3052973.3055156 10.1007/s10207-020-00509-4 10.1049/iet-ifs.2018.5316 10.1145/2046614.2046619 10.1109/TNSE.2020.2996379 10.1016/j.jisa.2018.07.003 10.1007/s10844-010-0148-x 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094 10.1007/s13042-020-01238-9 10.1155/2022/4908134 10.1109/ACCESS.2018.2792941 10.1016/j.future.2021.06.032 10.1145/3503463 10.1109/TSE.2016.2615307 10.1007/s11416-019-00346-7 10.1145/2016904.2016908 10.1016/j.jisa.2014.10.011 10.1016/j.infsof.2021.106736 10.1007/s10922-021-09634-4 10.1145/3439802 10.1109/TDSC.2016.2536605 10.5220/0009372308040814 10.1109/IJCNN.2017.7966078 10.1109/TIFS.2018.2866319 10.1007/s42044-019-00032-3 10.1109/ACCESS.2019.2896003 10.1145/3029806.3029825 10.1145/3387905.3388612 10.1007/s42044-020-00068-w 10.1145/3313391 10.1016/j.cose.2020.101792 10.1109/ICONAT53423.2022.9726024 10.1007/s42452-020-3132-2 10.14722/ndss.2017.23353 10.1016/j.infsof.2020.106291 10.1109/TII.2017.2789219 10.1109/COMST.2014.2386139 10.1002/spy2.164 10.1145/2133601.2133640 10.1145/2931037.2931054 10.1109/TIFS.2017.2771228 10.1109/TIFS.2018.2879302 10.1109/TSE.2020.2975176 10.1016/j.cose.2017.11.006 10.1109/ACCESS.2020.3007571 10.1145/3197231.3197255 10.1109/ACCESS.2018.2883975 10.1016/j.compeleceng.2017.11.028 10.1145/3041008.3041010 10.1145/2843859.2843866 10.1109/TST.2016.7399288 10.1049/iet-ifs.2019.0418 10.1587/transinf.2019INI0003 10.1016/j.microrel.2019.01.007 10.1145/2897845.2897860 10.1145/3264746.3264780 10.1007/s11416-014-0226-7 10.1109/TMC.2018.2861405 10.1016/j.engappai.2018.06.006 10.1016/j.neucom.2017.07.030 10.1016/j.eswa.2022.117833 10.1016/j.diin.2015.02.001 10.1145/3465361 10.1016/j.jpdc.2016.10.012 10.1109/TMC.2018.2889495 10.1007/s00521-020-05195-w 10.1016/j.jisa.2020.102483 10.1145/3133956.3138838 10.1145/2666356.2594299 10.1145/2804345.2804349 10.1049/iet-ifs.2014.0099 10.1016/j.engappai.2019.103303 10.1007/s42452-019-1124-x 10.1016/j.cosrev.2021.100365 10.14722/ndss.2014.23247 10.3390/electronics9060942 10.1016/j.cose.2019.101663 10.1145/3017427 10.1145/3194244.3194257 10.1016/j.future.2019.11.034 10.1007/s12243-017-0580-9 10.1016/j.future.2019.03.006 10.1145/3371924 10.1016/j.procs.2020.06.034 10.1080/15536548.2015.1073510 10.1016/j.inffus.2018.12.006 10.1016/j.seta.2022.102852 10.1016/j.future.2020.10.008 10.4018/IJISP.2017070102 10.1016/j.diin.2018.01.007 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2023.122255 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2023_122255 S0957417423027574 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-9c1010215ca4ff564fc516558661c7dfc0c55c8ed5abd34a01c9146704c9c9ab3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:16 EDT 2025 Thu Apr 24 22:49:22 EDT 2025 Sat Oct 19 15:54:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Behavior based analysis Android malware detection Signature based analysis Malware analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-9c1010215ca4ff564fc516558661c7dfc0c55c8ed5abd34a01c9146704c9c9ab3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_122255 crossref_primary_10_1016_j_eswa_2023_122255 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122255 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-15 |
PublicationDateYYYYMMDD | 2024-03-15 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (2), 1-28. Cai, Ryder (b0260) 2017 Gupta, Singh, Bhatia, Mohapatra (b0410) 2020; 14 Ding, Zhang, Hu, Xu (b0335) 2020 Smmarwar, Gupta, Kumar, Kumar (b0785) 2022; 54 Darem, Abawajy, Makkar, Alhashmi, Alanazi (b0310) 2021; 125 Faruki, Laxmi, Bharmal, Gaur, Ganmoor (b0375) 2015; 22 Afonso, D. A. (2015). de Geus, 2015 Afonso VM, de Amorim MF, Grégio ARA, Junquera GB, de Geus PL. Albakri, A., Fatima, H., Mohammed, M., Ahmed, A., Ali, A., Ali, A., & Elzein, N. M. (2022). Survey on Reverse-Engineering Tools for Android Mobile Devices. DroidBench (2022). Retrieved from https://github.com/secure-software-engineering/DroidBench/tree/develop. Accessed December 31, 2022. Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., & Stringhini, G. (2016). Mamadroid: Detecting android malware by building markov chains of behavioral models. Bläsing, Batyuk, Schmidt, Camtepe, Albayrak (b0225) 2010 Koodous. (2022). Retrieved from https://koodous.com/. Accessed December 31, 2022. Cai, Ryder (b0255) 2020; 47 Imtiaz, ur Rehman, S., Javed, A. R., Jalil, Z., Liu, X., & Alnumay, W. S. (b0440) 2021; 115 Tam, Feizollah, Anuar, Salleh, Cavallaro (b0835) 2017; 49 Zhu, You, Zhu, Shi, Chen, Cheng (b0950) 2018; 272 Ali-Gombe, Saltaformaggio, Xu, Richard (b0025) 2018; 73 (Vol. 52, pp. 128–142). Elsevier BV. https://doi.org/10.1016/j.inffus.2018.12.006. Li, Sun, Yan, Li, Srisa-An, Ye (b0530) 2018; 14 Gfan. (2022). Retrieved from http://apk.gfan.com/. Accessed December 31, 2022. Razgallah, Khoury, Hallé, Khanmohammadi (b0705) 2021; 39 Mercaldo, Santone (b0635) 2020; 16 Kaspersky. (2022). 2021 Mobile threats report: cybercriminals forego low hanging fruit to go after banking and gaming. Retrieved from https://www.kaspersky.com/about/press-releases/2022_2021-mobile-threats-report-cybercriminals-forego-low-hanging-fruit-to-go-after-banking-and-gaming. Accessed December 30, 2022. , Contagio Mini Dump (2020). Retrieved from http://contagiominidump.blogspot.com/. Accessed June 02, 2020. . (pp. 15-26). IccRE (2022). Retrieved from https://sites.google.com/site/icctawebpage/dataset. Accessed December 31, 2022. Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012, February). Detecting repackaged smartphone applications in third-party android marketplaces. In GooglePlay (2022). Retrieved from Arzt, Rasthofer, Bodden (b0175) 2013 Cai, Meng, Ryder, Yao (b0270) 2018; 14 Manzil, H. H. R., & Naik, M. S. (2022a, January). COVID-Themed Android Malware Analysis and Detection Framework Based on Permissions. In Sadeghi, A., Bagheri, H., Garcia, J., & Malek, S. (2017). A Taxonomy and Qualitative Comparison of Program Analysis Techniques for Security Assessment of Android Software. In APKPure (2022). Retrieved from https://m.apkpure.com/. Accessed December 31, 2022. Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., & Ahmadi, M. (2018). Microsoft malware classification challenge. Chen, S., Xue, M., Tang, Z., Xu, L., & Zhu, H. (2016, May). Stormdroid: A streaminglized machine learning-based system for detecting android malware. In Yuan, L. (2016). Xue, 2016 Yuan Z., Lu Y., Xue Y. Droiddetector: android malware characterization and detection using deep learning Wei, Li, Roy, Ou, Zhou (b0900) 2017 Alkharabsheh, Alawadi, Kebande, Crespo, Fernández-Delgado, Taboada (b0030) 2022; 143 Alzubaidi (b0080) 2021 (Vol. 14, pp. 23-26). Statista. (2021). Development of Android Malware Worldwide 2016-2020. Retrieved from https://www.statista.com/statistics/680705/global android-malware-volume/. Accessed January 7, 2021. Arora, Peddoju (b0160) 2018 Xu, Li, Deng, Chen, Xu (b0905) 2019 Martinelli, F., Mercaldo, F., & Saracino, A. (2017, April). Bridemaid: An hybrid tool for accurate detection of android malware. In Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. (2011, July). Malware images: visualization and automatic classification. In Aysan, Sakiz, Sen (b0200) 2019; 13 (pp. 2633-2642). IEEE. https://doi.org/10.1109/BigData.2018.8622324. Kouliaridis, Barmpatsalou, Kambourakis, Chen (b0505) 2020; 103 (Vol. 3, No. 2, p. 896). Damshenas, Dehghantanha, Choo, Mahmud (b0300) 2015; 11 Meng, Feng, Bai, Chen, Liu (b0630) 2018; 1 StatcounterGlobalStats (2022). Mobile Operating System Market Share World Wide. Retrieved from El-Zawawy (b0360) 2019; 2 (pp. 309-320). ACM. https://doi.org/10.1145/3029806.3029825. Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Giacinto, G., & Cavallaro, L. (2017, March). Droidsieve: Fast and accurate classification of obfuscated android malware. In AndroidPIT market (2022). Retrieved from Sandeep (b0745) 2019 Liu, Wang, Luo, Wang, Liu (b0545) 2021; 20 Kumawat, Sharma, Kumawat (b0515) 2017; 11 Moghaddam, Abbaspour (b0645) 2014 Maryam, A., Ahmed, U., Aleem, M., Lin, J. C. W., Arshad Islam, M., & Iqbal, M. A. (2020). cHybriDroid: a machine learning-based hybrid technique for securing the edge computing. Zhu, Li, Li, Li, You, Song (b0945) 2020; 8 Zhou, Jiang (b0940) 2012 Mumayi. (2022). Retrieved from http://www.mumayi.com/, Accessed December 31, 2022). Ünver, Bakour (b0870) 2020; 2 Martín, I., Hernández, J. A., & de los Santos, S. (2019). Machine-Learning based analysis and classification of Android malware signatures. In Karbab, Debbabi, Derhab, Mouheb (b0480) 2018; 24 Martín, A., Lara-Cabrera, R., & Camacho, D. (2019). Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset. In VirusShare. (2020). Retrieved from https://virusshare.com/. Accessed February 21, 2020. Arzt, Rasthofer, Fritz, Bodden, Bartel, Klein, McDaniel (b0180) 2014; 49 Kabakus (b0475) 2022; 206 (pp. 350-351). ACM. https://doi.org/10.1145/3183440.3195004. Manzil, Naik (b0580) 2022 Chawla (b0280) 2010 (pp. 2479-2481). ACM. https://doi.org/10.1145/3133956.3138838. Suarez-Tangil, G., & Stringhini, G. (2018). Eight years of rider measurement in the android malware ecosystem: evolution and lessons learned. Bhandari, Panihar, Naval, Laxmi, Zemmari, Gaur (b0220) 2018; 42 (pp. 1871-1878). IEEE. https://doi.org/10.1109/IJCNN.2017.7966078. Pandaapp. (2022). Retrieved from http://download.pandaapp.com/?app=soft&controller=android#.V-p3f4h97IU. Accessed December 31, 2022). Dex2jar. (2021). Retrieved from https://sourceforge.net/projects/dex2jar/. Accessed June 08, 2021. Cai, H. (2020.b, July). Embracing mobile app evolution via continuous ecosystem mining and characterization. In Pitolli, Laurenza, Aniello, Querzoni, Baldoni (b0700) 2021; 20 Alswaina, Elleithy (b0060) 2020; 9 (pp. 804-814). (1), 114-123. APKTool (2021). Retrieved from https://ibotpeaches.github.io/Apktool/. Accessed November 11, 2021. Anzhi Application store (2022). Retrieved from https://www.malavida.com/en/soft/anzhi-market/android/. Accessed December 31, 2022. (pp. 1-7). VirusTotal (2020). Retrieved from Ngamwitroj, S., & Limthanmaphon, B. (2018, February). Adaptive Android malware signature detection. In Martín, Rodríguez-Fernández, Camacho (b0605) 2018; 74 Almahmoud, Alzu’bi, D., & Yaseen, Q. (b0045) 2021; Volume. 184 Accessed February, 2021. (pp. 899-901). ACM. https://doi.org/10.1145/3052973.3055156. Accessed October 11, 2020. Alzaylaee, Yerima, Sezer (b0070) 2016 JADX. (2021). Retrieved from https://github.com/skylot/jadx. Accessed March 09, 2021. (pp. 13-20). ACM. https://doi.org/10.1145/2804345.2804349. TACYT. (2022). Retrieved from https://www.elevenpaths.com/es/tecnologia/tacyt/index.html. Accessed December 31, 2022. Fu, Cai (b0390) 2019 Bakour, Ünver (b0210) 2021; 33 Alzaylaee, Yerima, Sezer (b0065) 2020; 89 Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2017, March). Emulator vs real phone: Android malware detection using machine learning. In Wang, Yan, Chen, Yang, Zhao, Conti (b0890) 2017; 13 (pp. 1-9). ACM. https://doi.org/10.1145/2843859.2843866. Cai, H., & Jenkins, J. (2018, May). Towards sustainable android malware detection. In Feizollah, Anuar, Salleh, Wahab (b0385) 2015; 13 Android-Malware-Datasets (2020). Retrieved from https://github.com/traceflight/Android-Malware-Datasets . Accessed July 10, 2020. Rehman, Khan, Muhammad, Lee, Lv, Baik, Mehmood (b0710) 2018; 69 Onwuzurike, Mariconti, Andriotis, Cristofaro, Ross, Stringhini (b0685) 2019; 22 Wang, Li, Mo, Yang, Zhao (b0885) 2017; 72 (pp. 67-71). ACM. https://doi.org/10.1145/3197231.3197255. AndroidStudio (2022). Logcat command-line tool. Retrieved from Canfora, G., Medvet, E., Mercaldo, F., & Visaggio, C. A. (2015, August). Detecting android malware using sequences of system calls. In (1), 9-17. Ma, Ge, Liu, Zhao, Ma (b0550) 2019; 7 Ashawa, Morris (b0185) 2021; 4 (pp. 1-5). IEEE. https://doi.org/10.1109/ICONAT53423.2022.9726024. Deldar, Abadi, Ebrahimifard (b0320) 2022; 14 Accessed December 10, 2022. Slideme. (2022). Retrieved from http://slideme.org/. Accessed December 31, 2022. Tong, Yan (b0860) 2017; 103 Daoudi, Allix, Bissyandé, Klein (b0305) 2022; 25 Zhou, Yang, Pan, Guo (b0930) 2020; 8 Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani, A. A. (2020, August). Dynamic android malware category classification using semi-supervised deep learning. In Bakour, Ünver, Ghanem (b0215) 2019; 1 Yang, Wen (b0910) 2017 Amit, I., Matherly, J., Hewlett, W., Xu, Z., Meshi, Y., & Weinberger, Y. (2018). Machine learning in cyber-security-problems, challenges and data sets. (pp. 22-25). ACM. https://doi.org/10.1145/3194244.3194257. Kurniawan, Rosmansyah, Dabarsyah (b0520) 2015 Cai, Fu, Hamou-Lhadj (b0265) 2020; 122 Elayan, Mustafa (b0350) 2021; 184 Jung, J., Choi, J., Cho, S. J., Han, S., Park, M., & Hwang, Y. (2018, October). Android malware detection using convolutional neural networks and data section images. In Lee, D. H. (2013, June). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Liu, Cai, Wang, Yao, Elish, Ryder (b0540) 2017 Tarar, Sharma, Krishna (b0845) 2018 Duarte, J. (2020). A Survey of Android Attacks Detection Techniques. In Hiapk. (2022), Retrieved from http://apk.hiapk.com/. Accessed December 31, 2022. Jain, A., Gonzalez, H., & Stakhanova, N. (2015, December). Enriching reverse engineering through visual exploration of Android binar 10.1016/j.eswa.2023.122255_b0810 Taheri (10.1016/j.eswa.2023.122255_b0830) 2020; 105 Salem (10.1016/j.eswa.2023.122255_b0735) 2021; 24 10.1016/j.eswa.2023.122255_b0135 10.1016/j.eswa.2023.122255_b0775 Damshenas (10.1016/j.eswa.2023.122255_b0300) 2015; 11 10.1016/j.eswa.2023.122255_b0655 Saracino (10.1016/j.eswa.2023.122255_b0750) 2016; 15 Zhou (10.1016/j.eswa.2023.122255_b0930) 2020; 8 Liu (10.1016/j.eswa.2023.122255_b0545) 2021; 20 Fu (10.1016/j.eswa.2023.122255_b0390) 2019 Rosmansyah (10.1016/j.eswa.2023.122255_b0720) 2015 10.1016/j.eswa.2023.122255_b0935 Kurniawan (10.1016/j.eswa.2023.122255_b0520) 2015 Moghaddam (10.1016/j.eswa.2023.122255_b0645) 2014 10.1016/j.eswa.2023.122255_b0780 10.1016/j.eswa.2023.122255_b0660 10.1016/j.eswa.2023.122255_b0145 10.1016/j.eswa.2023.122255_b0380 10.1016/j.eswa.2023.122255_b0140 10.1016/j.eswa.2023.122255_b0020 10.1016/j.eswa.2023.122255_b0425 Shen (10.1016/j.eswa.2023.122255_b0765) 2018; 18 Maiorca (10.1016/j.eswa.2023.122255_b0575) 2015; 51 Geden (10.1016/j.eswa.2023.122255_b0395) 2015 10.1016/j.eswa.2023.122255_b0665 Atzeni (10.1016/j.eswa.2023.122255_b0190) 2018; 6 10.1016/j.eswa.2023.122255_b0820 Yerima (10.1016/j.eswa.2023.122255_b0920) 2015; 9 Cai (10.1016/j.eswa.2023.122255_b0255) 2020; 47 Tong (10.1016/j.eswa.2023.122255_b0860) 2017; 103 Zhu (10.1016/j.eswa.2023.122255_b0945) 2020; 8 10.1016/j.eswa.2023.122255_b0670 10.1016/j.eswa.2023.122255_b0275 10.1016/j.eswa.2023.122255_b0155 10.1016/j.eswa.2023.122255_b0430 Odusami (10.1016/j.eswa.2023.122255_b0680) 2018 Martín (10.1016/j.eswa.2023.122255_b0605) 2018; 74 10.1016/j.eswa.2023.122255_b0150 Bläsing (10.1016/j.eswa.2023.122255_b0225) 2010 Arora (10.1016/j.eswa.2023.122255_b0160) 2018 Bakour (10.1016/j.eswa.2023.122255_b0210) 2021; 33 Cai (10.1016/j.eswa.2023.122255_b0260) 2017 10.1016/j.eswa.2023.122255_b0795 10.1016/j.eswa.2023.122255_b0675 Shabtai (10.1016/j.eswa.2023.122255_b0760) 2012; 38 10.1016/j.eswa.2023.122255_b0435 10.1016/j.eswa.2023.122255_b0715 Acharya (10.1016/j.eswa.2023.122255_b0005) 2022 Kim (10.1016/j.eswa.2023.122255_b0495) 2018; 14 Bakour (10.1016/j.eswa.2023.122255_b0215) 2019; 1 Ali-Gombe (10.1016/j.eswa.2023.122255_b0025) 2018; 73 Karimi (10.1016/j.eswa.2023.122255_b0485) 2017 Tan (10.1016/j.eswa.2023.122255_b0840) 2015; 47 Surendran (10.1016/j.eswa.2023.122255_b0815) 2020; 54 10.1016/j.eswa.2023.122255_b0285 10.1016/j.eswa.2023.122255_b0560 Zhu (10.1016/j.eswa.2023.122255_b0950) 2018; 272 10.1016/j.eswa.2023.122255_b0165 Allix (10.1016/j.eswa.2023.122255_b0035) 2016 Ham (10.1016/j.eswa.2023.122255_b0420) 2013 Taheri (10.1016/j.eswa.2023.122255_b0825) 2019 Liu (10.1016/j.eswa.2023.122255_b0540) 2017 10.1016/j.eswa.2023.122255_b0205 Avdiienko (10.1016/j.eswa.2023.122255_b0195) 2015; Vol. 1 Elayan (10.1016/j.eswa.2023.122255_b0350) 2021; 184 10.1016/j.eswa.2023.122255_bib952 Razgallah (10.1016/j.eswa.2023.122255_b0705) 2021; 39 10.1016/j.eswa.2023.122255_b0445 Deldar (10.1016/j.eswa.2023.122255_b0320) 2022; 14 Yen (10.1016/j.eswa.2023.122255_b0915) 2019; 93 10.1016/j.eswa.2023.122255_b0325 10.1016/j.eswa.2023.122255_b0600 Mahindru (10.1016/j.eswa.2023.122255_b0570) 2021; 12 Dash (10.1016/j.eswa.2023.122255_b0315) 2016 Onwuzurike (10.1016/j.eswa.2023.122255_b0685) 2019; 22 10.1016/j.eswa.2023.122255_b0290 Bhandari (10.1016/j.eswa.2023.122255_b0220) 2018; 42 Martín (10.1016/j.eswa.2023.122255_b0615) 2018 Ünver (10.1016/j.eswa.2023.122255_b0870) 2020; 2 Fan (10.1016/j.eswa.2023.122255_b0365) 2016 10.1016/j.eswa.2023.122255_b0450 10.1016/j.eswa.2023.122255_b0330 Pitolli (10.1016/j.eswa.2023.122255_b0700) 2021; 20 Almahmoud (10.1016/j.eswa.2023.122255_b0045) 2021; Volume. 184 10.1016/j.eswa.2023.122255_b0690 Rehman (10.1016/j.eswa.2023.122255_b0710) 2018; 69 10.1016/j.eswa.2023.122255_b0295 Cai (10.1016/j.eswa.2023.122255_b0265) 2020; 122 Wang (10.1016/j.eswa.2023.122255_b0890) 2017; 13 Allix (10.1016/j.eswa.2023.122255_b0040) 2014 10.1016/j.eswa.2023.122255_b0455 10.1016/j.eswa.2023.122255_b0730 Kumaran (10.1016/j.eswa.2023.122255_b0510) 2016 10.1016/j.eswa.2023.122255_b0610 Kouliaridis (10.1016/j.eswa.2023.122255_b0505) 2020; 103 Aysan (10.1016/j.eswa.2023.122255_b0200) 2019; 13 Alswaina (10.1016/j.eswa.2023.122255_b0060) 2020; 9 Hadiprakoso (10.1016/j.eswa.2023.122255_b0415) 2020 Wang (10.1016/j.eswa.2023.122255_b0895) 2019 Yang (10.1016/j.eswa.2023.122255_b0910) 2017 Alzaylaee (10.1016/j.eswa.2023.122255_b0070) 2016 Chawla (10.1016/j.eswa.2023.122255_b0280) 2010 10.1016/j.eswa.2023.122255_b0340 10.1016/j.eswa.2023.122255_b0585 Mercaldo (10.1016/j.eswa.2023.122255_b0635) 2020; 16 Roy (10.1016/j.eswa.2023.122255_b0725) 2020; 173 10.1016/j.eswa.2023.122255_b0460 10.1016/j.eswa.2023.122255_b0865 Xu (10.1016/j.eswa.2023.122255_b0905) 2019 10.1016/j.eswa.2023.122255_b0625 10.1016/j.eswa.2023.122255_b0740 10.1016/j.eswa.2023.122255_b0345 10.1016/j.eswa.2023.122255_b0620 10.1016/j.eswa.2023.122255_b0500 10.1016/j.eswa.2023.122255_b0105 Alqahtani (10.1016/j.eswa.2023.122255_b0050) 2019 Zhou (10.1016/j.eswa.2023.122255_b0940) 2012 Jogsan (10.1016/j.eswa.2023.122255_b0465) 2020 Arshad (10.1016/j.eswa.2023.122255_b0170) 2018; 6 Tam (10.1016/j.eswa.2023.122255_b0835) 2017; 49 Feizollah (10.1016/j.eswa.2023.122255_b0385) 2015; 13 Thiyagarajan (10.1016/j.eswa.2023.122255_b0855) 2020; 14 Meng (10.1016/j.eswa.2023.122255_b0630) 2018; 1 10.1016/j.eswa.2023.122255_b0230 10.1016/j.eswa.2023.122255_b0110 Imtiaz (10.1016/j.eswa.2023.122255_b0440) 2021; 115 Manzil (10.1016/j.eswa.2023.122255_b0580) 2022 10.1016/j.eswa.2023.122255_b0595 Arzt (10.1016/j.eswa.2023.122255_b0180) 2014; 49 10.1016/j.eswa.2023.122255_b0590 10.1016/j.eswa.2023.122255_b0470 10.1016/j.eswa.2023.122255_b0075 Elish (10.1016/j.eswa.2023.122255_b0355) 2018; 19 Karbab (10.1016/j.eswa.2023.122255_b0480) 2018; 24 Tchakounté (10.1016/j.eswa.2023.122255_b0850) 2021; 4 Li (10.1016/j.eswa.2023.122255_b0535) 2021 10.1016/j.eswa.2023.122255_b0235 10.1016/j.eswa.2023.122255_b0115 Sandeep (10.1016/j.eswa.2023.122255_b0745) 2019 Alkharabsheh (10.1016/j.eswa.2023.122255_b0030) 2022; 143 10.1016/j.eswa.2023.122255_b0875 Sartea (10.1016/j.eswa.2023.122255_b0755) 2020; 87 Pei (10.1016/j.eswa.2023.122255_b0695) 2020; 93 Ami (10.1016/j.eswa.2023.122255_b0090) 2021; 24 Gupta (10.1016/j.eswa.2023.122255_b0410) 2020; 14 Ashawa (10.1016/j.eswa.2023.122255_b0185) 2021; 4 Mahdavifar (10.1016/j.eswa.2023.122255_b0555) 2022; 30 Alzubaidi (10.1016/j.eswa.2023.122255_b0085) 2021; 12 10.1016/j.eswa.2023.122255_b0120 Mahindru (10.1016/j.eswa.2023.122255_b0565) 2021; 33 Faruki (10.1016/j.eswa.2023.122255_b0370) 2014; 17 10.1016/j.eswa.2023.122255_b0880 10.1016/j.eswa.2023.122255_b0640 10.1016/j.eswa.2023.122255_b0240 10.1016/j.eswa.2023.122255_b0525 10.1016/j.eswa.2023.122255_b0800 10.1016/j.eswa.2023.122255_b0405 Smmarwar (10.1016/j.eswa.2023.122255_b0785) 2022; 54 10.1016/j.eswa.2023.122255_b0245 10.1016/j.eswa.2023.122255_b0125 10.1016/j.eswa.2023.122255_b0400 Daoudi (10.1016/j.eswa.2023.122255_b0305) 2022; 25 Anandhi (10.1016/j.eswa.2023.122255_b0100) 2021 Li (10.1016/j.eswa.2023.122255_b0530) 2018; 14 Wei (10.1016/j.eswa.2023.122255_b0900) 2017 Somarriba (10.1016/j.eswa.2023.122255_b0790) 2017 Arzt (10.1016/j.eswa.2023.122255_b0175) 2013 Cai (10.1016/j.eswa.2023.122255_b0270) 2018; 14 El-Zawawy (10.1016/j.eswa.2023.122255_b0360) 2019; 2 10.1016/j.eswa.2023.122255_b0925 10.1016/j.eswa.2023.122255_b0805 Alzaylaee (10.1016/j.eswa.2023.122255_b0065) 2020; 89 Ma (10.1016/j.eswa.2023.122255_b0550) 2019; 7 Alswaina (10.1016/j.eswa.2023.122255_b0055) 2018; 6 Ding (10.1016/j.eswa.2023.122255_b0335) 2020 Kabakus (10.1016/j.eswa.2023.122255_b0475) 2022; 206 Tarar (10.1016/j.eswa.2023.122255_b0845) 2018 Kumawat (10.1016/j.eswa.2023.122255_b0515) 2017; 11 Darem (10.1016/j.eswa.2023.122255_b0310) 2021; 125 10.1016/j.eswa.2023.122255_b0010 Wang (10.1016/j.eswa.2023.122255_b0885) 2017; 72 Sihag (10.1016/j.eswa.2023.122255_b0770) 2021; 39 10.1016/j.eswa.2023.122255_b0650 Alam (10.1016/j.eswa.2023.122255_b0015) 2021; 39 10.1016/j.eswa.2023.122255_b0490 Alzubaidi (10.1016/j.eswa.2023.122255_b0080) 2021 10.1016/j.eswa.2023.122255_b0095 10.1016/j.eswa.2023.122255_b0250 Faruki (10.1016/j.eswa.2023.122255_b0375) 2015; 22 10.1016/j.eswa.2023.122255_b0130 |
References_xml | – reference: Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Giacinto, G., & Cavallaro, L. (2017, March). Droidsieve: Fast and accurate classification of obfuscated android malware. In – volume: 9 start-page: 313 year: 2015 end-page: 320 ident: b0920 article-title: High accuracy android malware detection using ensemble learning publication-title: IET Information Security – reference: TACYT. (2022). Retrieved from https://www.elevenpaths.com/es/tecnologia/tacyt/index.html. Accessed December 31, 2022. – start-page: 468 year: 2016 end-page: 471 ident: b0035 article-title: Androzoo: Collecting millions of android apps for the research community publication-title: In 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR) – volume: 39 year: 2021 ident: b0705 article-title: A survey of malware detection in Android apps: Recommendations and perspectives for future research publication-title: Computer Science Review – reference: Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011, October). Crowdroid: behavior-based malware detection system for android. In – reference: Sadeghi, A., Bagheri, H., Garcia, J., & Malek, S. (2017). A Taxonomy and Qualitative Comparison of Program Analysis Techniques for Security Assessment of Android Software. In – reference: Android-Malware-Datasets (2020). Retrieved from https://github.com/traceflight/Android-Malware-Datasets . Accessed July 10, 2020. – volume: 14 start-page: 57 year: 2020 end-page: 73 ident: b0410 article-title: DecaDroid classification and characterization of malicious behaviour in android applications publication-title: International Journal of Information Security and Privacy (IJISP) – volume: 25 start-page: 1 year: 2022 end-page: 28 ident: b0305 article-title: A deep dive inside drebin: An explorative analysis beyond android malware detection scores publication-title: ACM Transactions on Privacy and Security – reference: (pp. 15-26). – start-page: 1 year: 2016 end-page: 8 ident: b0070 article-title: DynaLog: An automated dynamic analysis framework for characterizing android applications publication-title: In 2016 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security) – reference: Canfora, G., Medvet, E., Mercaldo, F., & Visaggio, C. A. (2015, August). Detecting android malware using sequences of system calls. In – volume: 20 start-page: 59 year: 2021 end-page: 71 ident: b0545 article-title: NSDroid: Efficient multi-classification of android malware using neighborhood signature in local function call graphs publication-title: International Journal of Information Security – reference: AndroidStudio (2022). Logcat command-line tool. Retrieved from – reference: VirusTotal (2020). Retrieved from – reference: Dex2jar. (2021). Retrieved from https://sourceforge.net/projects/dex2jar/. Accessed June 08, 2021. – volume: 9 start-page: 942 year: 2020 ident: b0060 article-title: Android malware family classification and analysis: Current status and future directions publication-title: Electronics – reference: . Procedia Computer Science. (Volume. 173, pp. 291-298). https://doi.org/10.1016/j.procs.2020.06.034. – volume: 20 start-page: 371 year: 2021 end-page: 386 ident: b0700 article-title: MalFamAware: Automatic family identification and malware classification through online clustering publication-title: International Journal of Information Security – reference: Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R. T. (2014, February). Drebin: Effective and explainable detection of android malware in your pocket. In – reference: Duarte, J. (2020). A Survey of Android Attacks Detection Techniques. In – volume: 24 start-page: S48 year: 2018 end-page: S59 ident: b0480 article-title: MalDozer: Automatic framework for android malware detection using deep learning publication-title: Digital Investigation – volume: 24 start-page: 1 year: 2021 end-page: 35 ident: b0735 article-title: Maat: Automatically analyzing virustotal for accurate labeling and effective malware detection publication-title: ACM Transactions on Privacy and Security (TOPS) – year: 2020 ident: b0465 article-title: A Survey on Permission Based Malware Detection in Android Applications. publication-title: Research. – volume: 14 start-page: 531 year: 2020 end-page: 541 ident: b0855 article-title: Improved real-time permission based malware detection and clustering approach using model independent pruning publication-title: IET Information Security – volume: 49 start-page: 259 year: 2014 end-page: 269 ident: b0180 article-title: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps publication-title: Acm Sigplan Notices – volume: 14 start-page: 3216 year: 2018 end-page: 3225 ident: b0530 article-title: Significant permission identification for machine-learning-based android malware detection publication-title: IEEE Transactions on Industrial Informatics – reference: Maryam, A., Ahmed, U., Aleem, M., Lin, J. C. W., Arshad Islam, M., & Iqbal, M. A. (2020). cHybriDroid: a machine learning-based hybrid technique for securing the edge computing. – reference: , 2022. Accessed October 11, 2022. – reference: Lee, D. H. (2013, June). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In – reference: MobiSec Lab Website. (2022). Retrieved from http://www.mobiseclab.org/. Accessed December 31, 2022. – reference: Gfan. (2022). Retrieved from http://apk.gfan.com/. Accessed December 31, 2022. – reference: (Vol. 97, pp. 295–305). Elsevier BV. https://doi.org/10.1016/j.future.2019.03.006. – start-page: 643 year: 2017 end-page: 647 ident: b0260 article-title: DroidFax: A toolkit for systematic characterization of Android applications publication-title: In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME) – reference: (Vol. 43, Issue 6, pp. 492–530). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tse.2016.2615307. – start-page: 738 year: 2018 end-page: 743 ident: b0845 article-title: Analysis and Classification of Android Malware using Machine Learning Algorithms publication-title: In 2018 3rd International Conference on Inventive Computation Technologies (ICICT) – start-page: 1 year: 2021 end-page: 17 ident: b0100 article-title: Malware visualization and detection using DenseNets publication-title: Personal and Ubiquitous Computing – reference: Cai, H., & Jenkins, J. (2018, May). Towards sustainable android malware detection. In – start-page: 920 year: 2014 end-page: 924 ident: b0645 publication-title: May). Sensitivity analysis of static features for Android malware detection – start-page: 24 year: 2016 end-page: 35 ident: b0365 article-title: Frequent subgraph based familial classification of android malware publication-title: In 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE) – reference: Martín, I., Hernández, J. A., & de los Santos, S. (2019). Machine-Learning based analysis and classification of Android malware signatures. In – start-page: 1 year: 2019 end-page: 5 ident: b0895 article-title: Multilevel permission extraction in android applications for malware detection publication-title: In 2019 International Conference on Computer, Information and Telecommunication Systems (CITS) – reference: Hsien-De Huang, T., & Kao, H. Y. (2018, December). R2-d2: Color-inspired convolutional neural network (cnn)-based android malware detections. In – volume: 13 start-page: 1096 year: 2017 end-page: 1109 ident: b0890 article-title: Detecting android malware leveraging text semantics of network flows publication-title: IEEE Transactions on Information Forensics and Security – volume: 54 year: 2020 ident: b0815 article-title: A TAN based hybrid model for android malware detection publication-title: Journal of Information Security and Applications – reference: Anzhi Application store (2022). Retrieved from https://www.malavida.com/en/soft/anzhi-market/android/. Accessed December 31, 2022. – start-page: 384 year: 2014 end-page: 393 ident: b0040 article-title: A Forensic Analysis of Android Malware-How is Malware Written and How it Could Be Detected? publication-title: In – reference: Dilhara, M., Cai, H., & Jenkins, J. (2018, May). Automated detection and repair of incompatible uses of runtime permissions in android apps. In – reference: Manzil, H. H. R., & Naik, M. S. (2022a, January). COVID-Themed Android Malware Analysis and Detection Framework Based on Permissions. In – reference: (pp. 309-320). ACM. https://doi.org/10.1145/3029806.3029825. – start-page: 841 year: 2019 end-page: 845 ident: b0745 publication-title: Static analysis of android malware detection using deep learning – reference: (pp. 1871-1878). IEEE. https://doi.org/10.1109/IJCNN.2017.7966078. – volume: 69 start-page: 828 year: 2018 end-page: 841 ident: b0710 article-title: Machine learning-assisted signature and heuristic-based detection of malwares in Android devices publication-title: Computers & Electrical Engineering – volume: 272 start-page: 638 year: 2018 end-page: 646 ident: b0950 article-title: Droiddet: Effective and robust detection of Android malware using static analysis along with Rotation Forest Model publication-title: Neurocomputing – reference: StatcounterGlobalStats (2022). Mobile Operating System Market Share World Wide. Retrieved from – reference: Oak, R., Du, M., Yan, D., Takawale, H., & Amit, I. (2019, November). Malware detection on highly imbalanced data through sequence modeling. In – volume: 72 start-page: 607 year: 2017 end-page: 615 ident: b0885 article-title: An android malware dynamic detection method based on service call co-occurrence matrices publication-title: Annals of Telecommunications – start-page: 808 year: 2018 end-page: 813 ident: b0160 article-title: NTPDroid: A hybrid android malware detector using network traffic and system permissions publication-title: In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE) – start-page: 1 year: 2022 end-page: 6 ident: b0580 publication-title: December). DynaMalDroid: Dynamic Analysis-Based Detection Framework for Android Malware Using Machine Learning Techniques – volume: 6 start-page: 4321 year: 2018 end-page: 4339 ident: b0170 article-title: SAMADroid: A novel 3-level hybrid malware detection model for android operating system publication-title: IEEE Access – reference: Cai, H. (2020.a). Assessing and improving malware detection sustainability through app evolution studies. – volume: 39 year: 2021 ident: b0770 article-title: A survey of android application and malware hardening publication-title: Computer Science Review – volume: 105 start-page: 230 year: 2020 end-page: 247 ident: b0830 article-title: Similarity-based Android malware detection using Hamming distance of static binary features publication-title: Future Generation Computer Systems – volume: 143 year: 2022 ident: b0030 article-title: A comparison of machine learning algorithms on design smell detection using balanced and imbalanced dataset: A study of God class publication-title: Information and Software Technology – reference: APKMirror (2022). Retrieved from https://www.apkmirror.com/. Accessed December 31, 2022. – start-page: 294 year: 2015 end-page: 297 ident: b0720 publication-title: Malware detection on android smartphones using API class and machine learning – volume: 93 start-page: 109 year: 2019 end-page: 114 ident: b0915 article-title: An Android mutation malware detection based on deep learning using visualization of importance from codes publication-title: Microelectronics Reliability – reference: (pp. 67-71). ACM. https://doi.org/10.1145/3197231.3197255. – reference: Samani, R. (2020). Contributions from the McAfee Advanced Threat Research and Mobile Malware Research team. Retrieved from https://www.mcafee.com/. Accessed July 10, 2020. – volume: 74 start-page: 121 year: 2018 end-page: 133 ident: b0605 article-title: CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains publication-title: Engineering Applications of Artificial Intelligence – volume: 16 start-page: 157 year: 2020 end-page: 171 ident: b0635 article-title: Deep learning for image-based mobile malware detection publication-title: Journal of Computer Virology and Hacking Techniques – reference: (pp. 94-105). ACM. https://doi.org/10.1145/2931037.2931054. – reference: (pp. 1-9). ACM. https://doi.org/10.1145/2843859.2843866. – reference: Cai, H. (2020.b, July). Embracing mobile app evolution via continuous ecosystem mining and characterization. In – reference: Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012, February). Detecting repackaged smartphone applications in third-party android marketplaces. In – volume: 12 year: 2021 ident: b0085 article-title: Sustainable Android Malware Detection Scheme using Deep Learning Algorithm publication-title: International Journal of Advanced Computer Science and Applications – volume: 1 start-page: 1 year: 2019 end-page: 42 ident: b0215 article-title: The Android malware detection systems between hope and reality publication-title: SN Applied Sciences – volume: 1 start-page: 1 year: 2018 end-page: 17 ident: b0630 article-title: DroidEcho: An in-depth dissection of malicious behaviors in Android applications publication-title: Cybersecurity – reference: (pp. 1-5). IEEE. https://doi.org/10.1109/ICONAT53423.2022.9726024. – reference: AndroTotal (2022). Retrieved from http://www.andrototal.org. Accessed December 31, 2022. – reference: (Vol. 14, pp. 23-26). – reference: IccRE (2022). Retrieved from https://sites.google.com/site/icctawebpage/dataset. Accessed December 31, 2022. – reference: TutorialsPoint (2021). Android Overview. Retrieved from – volume: 2 start-page: 1 year: 2020 end-page: 15 ident: b0870 article-title: Android malware detection based on image-based features and machine learning techniques publication-title: SN Applied Sciences – reference: Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., & Ahmadi, M. (2018). Microsoft malware classification challenge. – volume: 103 start-page: 22 year: 2017 end-page: 31 ident: b0860 article-title: A hybrid approach of mobile malware detection in Android publication-title: Journal of Parallel and Distributed computing – reference: Singh, A. K., Wadhwa, G., Ahuja, M., Soni, K., & Sharma, K. (2020). Android malware detection using LSI-based reduced opcode feature vector. In – start-page: 288 year: 2015 end-page: 293 ident: b0520 publication-title: August). Android anomaly detection system using machine learning classification – start-page: 364 year: 2013 end-page: 381 ident: b0175 article-title: Instrumenting android and java applications as easy as abc publication-title: International Conference on Runtime Verification – volume: Vol. 1 start-page: 426 year: 2015 end-page: 436 ident: b0195 article-title: Mining apps for abnormal usage of sensitive data publication-title: In – start-page: 875 year: 2010 end-page: 886 ident: b0280 article-title: Data mining for imbalanced datasets: An overview publication-title: Data mining and knowledge discovery handbook – start-page: 490 year: 2013 end-page: 495 ident: b0420 article-title: Analysis of android malware detection performance using machine learning classifiers publication-title: In 2013 international conference on ICT Convergence (ICTC) – start-page: 1 year: 2019 end-page: 8 ident: b0825 article-title: Extensible android malware detection and family classification using network-flows and API-calls publication-title: In 2019 International Carnahan Conference on Security Technology (ICCST) – reference: Statista. (2021). Development of Android Malware Worldwide 2016-2020. Retrieved from https://www.statista.com/statistics/680705/global android-malware-volume/. Accessed January 7, 2021. – volume: 4 start-page: e164 year: 2021 ident: b0185 article-title: Android Permission Classifier: A deep learning algorithmic framework based on protection and threat levels publication-title: Security and Privacy – reference: Contagio Mini Dump (2020). Retrieved from http://contagiominidump.blogspot.com/. Accessed June 02, 2020. – reference: Afonso, D. A. (2015). de Geus, 2015 Afonso VM, de Amorim MF, Grégio ARA, Junquera GB, de Geus PL. – volume: 6 start-page: 76217 year: 2018 end-page: 76227 ident: b0055 article-title: Android malware permission-based multi-class classification using extremely randomized trees publication-title: IEEE Access – start-page: 252 year: 2016 end-page: 261 ident: b0315 article-title: Droidscribe: Classifying android malware based on runtime behavior publication-title: In 2016 IEEE Security and Privacy Workshops (SPW) – volume: 17 start-page: 998 year: 2014 end-page: 1022 ident: b0370 article-title: Android security: A survey of issues, malware penetration, and defenses publication-title: IEEE communications surveys & tutorials – reference: . – volume: Volume. 184 start-page: 841 year: 2021 end-page: 846 ident: b0045 article-title: ReDroidDet: Android malware detection based on recurrent neural network publication-title: The 12th International Conference on Ambient Systems, Network and Technologies (ANT) / The 4th International Conference on Emerging Data and Industry 4.0 (EDI40) / Affiliated Workshops – volume: 47 start-page: 1 year: 2015 end-page: 45 ident: b0840 article-title: Securing android: A survey, taxonomy, and challenges publication-title: ACM Computing Surveys (CSUR) – volume: 115 start-page: 844 year: 2021 end-page: 856 ident: b0440 article-title: DeepAMD: Detection and identification of Android malware using high-efficient Deep Artificial Neural Network publication-title: Future Generation computer systems – reference: (2), 1-28. – volume: 47 start-page: 2934 year: 2020 end-page: 2955 ident: b0255 article-title: A longitudinal study of application structure and behaviors in android publication-title: IEEE Transactions on Software Engineering – reference: Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., & Stringhini, G. (2016). Mamadroid: Detecting android malware by building markov chains of behavioral models. – volume: 93 year: 2020 ident: b0695 article-title: AMalNet: A deep learning framework based on graph convolutional networks for malware detection publication-title: Computers & Security – volume: 173 start-page: 345 year: 2020 end-page: 353 ident: b0725 publication-title: Android malware detection based on vulnerable feature aggregation – reference: AndroidPIT market (2022). Retrieved from – reference: Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani, A. A. (2020, August). Dynamic android malware category classification using semi-supervised deep learning. In – reference: Martín, A., Lara-Cabrera, R., & Camacho, D. (2019). Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset. In – volume: 33 start-page: 5183 year: 2021 end-page: 5240 ident: b0565 article-title: MLDroid—Framework for Android malware detection using machine learning techniques publication-title: Neural Computing and Applications – reference: (pp. 149-153). ACM. https://doi.org/10.1145/3264746.3264780. – reference: (p. 106). DOI: 10.11228/dpsc.02.01. – volume: 4 start-page: 95 year: 2021 end-page: 114 ident: b0850 article-title: LimonDroid: A system coupling three signature-based schemes for profiling Android malware publication-title: Iran Journal of Computer Science – reference: APKTool (2021). Retrieved from https://ibotpeaches.github.io/Apktool/. Accessed November 11, 2021. – volume: 14 start-page: 1455 year: 2018 end-page: 1470 ident: b0270 article-title: Droidcat: Effective android malware detection and categorization via app-level profiling publication-title: IEEE Transactions on Information Forensics and Security – reference: (pp. 899-901). ACM. https://doi.org/10.1145/3052973.3055156. – reference: Hiapk. (2022), Retrieved from http://apk.hiapk.com/. Accessed December 31, 2022. – reference: . Accessed December 30, 2022. – volume: 38 start-page: 161 year: 2012 end-page: 190 ident: b0760 article-title: “Andromaly”: A behavioral malware detection framework for android devices publication-title: Journal of Intelligent Information Systems – volume: 73 start-page: 235 year: 2018 end-page: 248 ident: b0025 article-title: Toward a more dependable hybrid analysis of android malware using aspect-oriented programming publication-title: computers & security – reference: Kaspersky. (2022). 2021 Mobile threats report: cybercriminals forego low hanging fruit to go after banking and gaming. Retrieved from https://www.kaspersky.com/about/press-releases/2022_2021-mobile-threats-report-cybercriminals-forego-low-hanging-fruit-to-go-after-banking-and-gaming. Accessed December 30, 2022. – reference: Koodous. (2022). Retrieved from https://koodous.com/. Accessed December 31, 2022. – volume: 22 start-page: 1 year: 2019 end-page: 34 ident: b0685 article-title: Mamadroid: Detecting android malware by building markov chains of behavioral models (extended version) publication-title: ACM Transactions on Privacy and Security (TOPS) – reference: Slideme. (2022). Retrieved from http://slideme.org/. Accessed December 31, 2022. – volume: 6 start-page: 59540 year: 2018 end-page: 59556 ident: b0190 article-title: Countering android malware: A scalable semi-supervised approach for family-signature generation publication-title: IEEE Access – volume: 11 start-page: 15 year: 2017 end-page: 28 ident: b0515 article-title: Identification of cryptographic vulnerability and malware detection in Android publication-title: International Journal of Information Security and Privacy (IJISP) – volume: 14 year: 2022 ident: b0320 article-title: Android Malware Detection Using One-Class Graph Neural Networks publication-title: ISeCure – volume: 42 start-page: 46 year: 2018 end-page: 56 ident: b0220 article-title: Sword: Semantic aware android malware detector publication-title: Journal of information security and applications – reference: Android malware dataset. (2017) Retrieved from https://www.unb.ca/cic/datasets/andmal2017.html. Accessed December 31, 2022. – volume: 206 year: 2022 ident: b0475 article-title: DroidMalwareDetector: A novel Android malware detection framework based on convolutional neural network publication-title: Expert Systems with Applications – reference: (pp. 2633-2642). IEEE. https://doi.org/10.1109/BigData.2018.8622324. – reference: . Accessed December 31, 2022. – reference: Accessed October 11, 2020. – year: 2015 ident: b0395 article-title: Ngram and signature based malware detection in android platform – reference: Mumayi. (2022). Retrieved from http://www.mumayi.com/, Accessed December 31, 2022). – reference: Chen, S., Xue, M., Tang, Z., Xu, L., & Zhu, H. (2016, May). Stormdroid: A streaminglized machine learning-based system for detecting android malware. In – reference: , – volume: 19 start-page: 90 year: 2018 end-page: 102 ident: b0355 article-title: Identifying mobile inter-app communication risks publication-title: IEEE Transactions on Mobile Computing – volume: 8 start-page: 984 year: 2020 end-page: 994 ident: b0945 article-title: SEDMDroid: An enhanced stacking ensemble framework for Android malware detection publication-title: IEEE Transactions on Network Science and Engineering – reference: (pp. 13-20). ACM. https://doi.org/10.1145/2804345.2804349. – reference: (pp. 65-72). ACM. https://doi.org/10.1145/3041008.3041010. – reference: GooglePlay (2022). Retrieved from – reference: (pp. 22-25). ACM. https://doi.org/10.1145/3194244.3194257. – volume: 49 start-page: 1 year: 2017 end-page: 41 ident: b0835 article-title: The evolution of android malware and android analysis techniques publication-title: ACM Computing Surveys (CSUR) – volume: 15 start-page: 83 year: 2016 end-page: 97 ident: b0750 article-title: Madam: Effective and efficient behavior-based android malware detection and prevention publication-title: IEEE Transactions on Dependable and Secure Computing – reference: Suarez-Tangil, G., & Stringhini, G. (2018). Eight years of rider measurement in the android malware ecosystem: evolution and lessons learned. – start-page: 189 year: 2017 end-page: 198 ident: b0540 publication-title: May). MR-Droid: A scalable and prioritized analysis of inter-app communication risks – reference: (pp. 317-326). ACM. https://doi.org/10.1145/2133601.2133640. – reference: Albakri, A., Fatima, H., Mohammed, M., Ahmed, A., Ali, A., Ali, A., & Elzein, N. M. (2022). Survey on Reverse-Engineering Tools for Android Mobile Devices. – reference: Jain, A., Gonzalez, H., & Stakhanova, N. (2015, December). Enriching reverse engineering through visual exploration of Android binaries. In – reference: Jd-gui. (2021). Retrieved from https://github.com/java-decompiler/jd-gui. Accessed April 02, 2021. – start-page: 1 year: 2017 end-page: 6 ident: b0790 article-title: A collaborative framework for android malware detection using DNS & dynamic analysis publication-title: In 2017 IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII) – reference: AndroMalShare (2022). Retrieved from http://andromalshare.androidmalware:8080/#.com. Accessed December 31, 2022. – reference: Amit, I., Matherly, J., Hewlett, W., Xu, Z., Meshi, Y., & Weinberger, Y. (2018). Machine learning in cyber-security-problems, challenges and data sets. – reference: (pp. 31-35). – reference: Chen, L., Zhang, M., Yang, C. Y., & Sahita, R. (2017, October). POSTER: semi-supervised classification for dynamic android malware detection. In – volume: 89 year: 2020 ident: b0065 article-title: DL-Droid: Deep learning based android malware detection using real devices publication-title: Computers & Security – reference: DroidBench (2022). Retrieved from https://github.com/secure-software-engineering/DroidBench/tree/develop. Accessed December 31, 2022. – start-page: 8 year: 2020 end-page: 12 ident: b0415 article-title: Hybrid-based malware analysis for effective and efficiency android malware detection publication-title: In 2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS) – volume: 2 start-page: 113 year: 2019 end-page: 124 ident: b0360 article-title: A new technique for intent elicitation in Android applications publication-title: Iran Journal of Computer Science – reference: (pp. 515-522). IEEE. https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094. – reference: Yuan, L. (2016). Xue, 2016 Yuan Z., Lu Y., Xue Y. Droiddetector: android malware characterization and detection using deep learning, – volume: 125 start-page: 314 year: 2021 end-page: 323 ident: b0310 article-title: Visualization and deep-learning-based malware variant detection using OpCode-level features publication-title: Future Generation Computer Systems – start-page: 272 year: 2019 end-page: 273 ident: b0390 article-title: On the deterioration of learning-based malware detectors for Android publication-title: In 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion) – reference: Jung, J., Choi, J., Cho, S. J., Han, S., Park, M., & Hwang, Y. (2018, October). Android malware detection using convolutional neural networks and data section images. In – reference: (1), 114-123. – volume: 18 start-page: 1231 year: 2018 end-page: 1245 ident: b0765 article-title: Android malware detection using complex-flows publication-title: IEEE Transactions on Mobile Computing – volume: 12 start-page: 1369 year: 2021 end-page: 1411 ident: b0570 article-title: SemiDroid: A behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches publication-title: International Journal of Machine Learning and Cybernetics – start-page: 95 year: 2012 end-page: 109 ident: b0940 article-title: Dissecting android malware: Characterization and evolution publication-title: In – volume: 39 year: 2021 ident: b0015 article-title: Applying Natural Language Processing for detecting malicious patterns in Android applications publication-title: Forensic Science International: Digital Investigation – volume: 33 start-page: 3133 year: 2021 end-page: 3153 ident: b0210 article-title: VisDroid: Android malware classification based on local and global image features, bag of visual words and machine learning techniques publication-title: Neural Computing and Applications – volume: 14 start-page: 773 year: 2018 end-page: 788 ident: b0495 article-title: A multimodal deep learning method for android malware detection using various features publication-title: IEEE Transactions on Information Forensics and Security – reference: VirusShare. (2020). Retrieved from https://virusshare.com/. Accessed February 21, 2020. – start-page: 344 year: 2017 end-page: 347 ident: b0910 article-title: Detecting android malware by applying classification techniques on images patterns publication-title: In 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA) – reference: APKRepatcher (2022). Retrieved from https://github.com/csanuragjain/APKRepatcher. Accessed September 23, 2022. – volume: 13 start-page: 269 year: 2019 end-page: 277 ident: b0200 article-title: Analysis of dynamic code updating in Android with security perspective publication-title: IET Information Security – volume: 103 start-page: 204 year: 2020 end-page: 211 ident: b0505 article-title: A survey on mobile malware detection techniques publication-title: IEICE Transactions on Information and Systems – reference: Nix, R., & Zhang, J. (2017, May). Classification of Android apps and malware using deep neural networks. In – reference: Github.com. (2022). Retrieved from https://github.com/sk3ptre/AndroidMalware_2019. Accessed December 31, 2022. – start-page: 55 year: 2010 end-page: 62 ident: b0225 article-title: An android application sandbox system for suspicious software detection publication-title: In – volume: 11 start-page: 141 year: 2015 end-page: 157 ident: b0300 article-title: M0droid: An android behavioral-based malware detection model publication-title: Journal of Information Privacy and Security – reference: (pp. 2479-2481). ACM. https://doi.org/10.1145/3133956.3138838. – volume: 22 start-page: 66 year: 2015 end-page: 80 ident: b0375 article-title: AndroSimilar: Robust signature for detecting variants of Android malware publication-title: Journal of Information Security and Applications – reference: (pp. 1-7). – reference: (pp. 350-351). ACM. https://doi.org/10.1145/3183440.3195004. – volume: 8 start-page: 148404 year: 2020 end-page: 148410 ident: b0930 article-title: An android malware detection approach based on SIMGRU publication-title: IEEE Access – volume: 30 start-page: 1 year: 2022 end-page: 34 ident: b0555 article-title: Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder publication-title: Journal of Network and Systems Management – reference: . Accessed December 10, 2022. – reference: (1), 9-17. – reference: AppChina (2022). Retrieved from http://www.appchina.com/. Accessed December 31, 2022. – reference: JADX. (2021). Retrieved from https://github.com/skylot/jadx. Accessed March 09, 2021. – start-page: 47 year: 2019 end-page: 62 ident: b0905 article-title: Droidevolver: Self-evolving android malware detection system publication-title: In 2019 IEEE European Symposium on Security and Privacy (EuroS&P) – volume: 87 year: 2020 ident: b0755 article-title: Secur-ama: Active malware analysis based on monte carlo tree search for android systems publication-title: Engineering Applications of Artificial Intelligence – reference: Baidu App Store. (2022). Retrieved from https://baidu-app-store.en.softonic.com/. Accessed December 31, 2022. – reference: Fasano, F., Martinelli, F., Mercaldo, F., & Santone, A. (2020). Android Run-time Permission Exploitation User Awareness by Means of Formal Methods. In – year: 2018 ident: b0615 article-title: 2018 – volume: 184 start-page: 847 year: 2021 end-page: 852 ident: b0350 article-title: Android malware detection using deep learning publication-title: The 12th International Conference on Ambient Systems, Network and Technologies (ANT) / The 4th International Conference on Emerging Data and Industry 4.0 (EDI40) / Affiliated Workshops – start-page: 2022 year: 2022 ident: b0005 article-title: A Comprehensive Review of Android Security: Threats – volume: 51 start-page: 16 year: 2015 end-page: 31 ident: b0575 article-title: Stealth attacks: An extended insight into the obfuscation effects on android malware publication-title: Computers & Security – reference: CICInvesAndMal (2019). Retrieved from – reference: Pandaapp. (2022). Retrieved from http://download.pandaapp.com/?app=soft&controller=android#.V-p3f4h97IU. Accessed December 31, 2022). – start-page: 252 year: 2017 end-page: 276 ident: b0900 article-title: Deep ground truth analysis of current android malware publication-title: International conference on detection of intrusions and malware, and vulnerability assessment – volume: 13 start-page: 22 year: 2015 end-page: 37 ident: b0385 article-title: A review on feature selection in mobile malware detection publication-title: Digital investigation – start-page: 229 year: 2017 end-page: 234 ident: b0485 article-title: Android ransomware detection using reduced opcode sequence and image similarity publication-title: In 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE) – reference: Burris, A. (2020). G Data Mobile Malware Report 2019: New high for malicious Android apps. Retrieved from https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps. Accessed October 11, 2020. – start-page: 255 year: 2018 end-page: 266 ident: b0680 publication-title: November). Android malware detection: A survey – reference: (pp. 804-814). – reference: (Vol. 52, pp. 128–142). Elsevier BV. https://doi.org/10.1016/j.inffus.2018.12.006. – reference: Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. (2011, July). Malware images: visualization and automatic classification. In – reference: . Accessed February, 2021. – start-page: 570 year: 2021 end-page: 574 ident: b0535 publication-title: Androct: ten years of app call traces in android – start-page: 1 year: 2020 end-page: 10 ident: b0335 article-title: Android malware detection method based on bytecode image publication-title: Journal of Ambient Intelligence and Humanized Computing – reference: Martinelli, F., Mercaldo, F., & Saracino, A. (2017, April). Bridemaid: An hybrid tool for accurate detection of android malware. In – start-page: 1 year: 2016 end-page: 3 ident: b0510 publication-title: November). Lightweight malware detection based on machine learning algorithms and the android manifest file – start-page: 110 year: 2019 end-page: 117 ident: b0050 article-title: A Survey on Android Malware Detection Techniques Using Machine Learning Algorithms publication-title: In 2019 Sixth International Conference on Software Defined Systems (SDS) – year: 2021 ident: b0080 article-title: Recent advances in Android mobile malware detection: A systematic literature review – reference: (Vol. 3, No. 2, p. 896). – volume: 54 year: 2022 ident: b0785 article-title: An optimized and efficient android malware detection framework for future sustainable computing publication-title: Sustainable Energy Technologies and Assessments – reference: (pp. 377-388). ACM. https://doi.org/10.1145/2897845.2897860. – reference: Mao, K., Harman, M., & Jia, Y. (2016, July). Sapienz: Multi-objective automated testing for android applications. In – reference: (pp. 37-48). ACM. https://doi.org/10.1145/3338501.3357374. – volume: 122 year: 2020 ident: b0265 article-title: A study of run-time behavioral evolution of benign versus malicious apps in android publication-title: Information and Software Technology – volume: 7 start-page: 21235 year: 2019 end-page: 21245 ident: b0550 article-title: A combination method for android malware detection based on control flow graphs and machine learning algorithms publication-title: IEEE access – reference: Ngamwitroj, S., & Limthanmaphon, B. (2018, February). Adaptive Android malware signature detection. In – reference: Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2017, March). Emulator vs real phone: Android malware detection using machine learning. In – volume: 24 start-page: 1 year: 2021 end-page: 37 ident: b0090 article-title: Systematic mutation-based evaluation of the soundness of security-focused android static analysis techniques publication-title: ACM Transactions on Privacy and Security (TOPS) – reference: APKPure (2022). Retrieved from https://m.apkpure.com/. Accessed December 31, 2022. – volume: 14 start-page: 57 issue: 4 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0410 article-title: DecaDroid classification and characterization of malicious behaviour in android applications publication-title: International Journal of Information Security and Privacy (IJISP) doi: 10.4018/IJISP.2020100104 – ident: 10.1016/j.eswa.2023.122255_b0625 doi: 10.1155/2020/8861639 – start-page: 841 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0745 – ident: 10.1016/j.eswa.2023.122255_b0250 doi: 10.1145/3183440.3195004 – volume: 20 start-page: 59 issue: 1 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0545 article-title: NSDroid: Efficient multi-classification of android malware using neighborhood signature in local function call graphs publication-title: International Journal of Information Security doi: 10.1007/s10207-020-00489-5 – ident: 10.1016/j.eswa.2023.122255_b0675 doi: 10.1145/3338501.3357374 – ident: 10.1016/j.eswa.2023.122255_b0880 – volume: 6 start-page: 59540 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0190 article-title: Countering android malware: A scalable semi-supervised approach for family-signature generation publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2874502 – ident: 10.1016/j.eswa.2023.122255_b0450 – volume: 12 issue: 12 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0085 article-title: Sustainable Android Malware Detection Scheme using Deep Learning Algorithm publication-title: International Journal of Advanced Computer Science and Applications doi: 10.14569/IJACSA.2021.01212104 – volume: 39 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0705 article-title: A survey of malware detection in Android apps: Recommendations and perspectives for future research publication-title: Computer Science Review doi: 10.1016/j.cosrev.2020.100358 – start-page: 643 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0260 article-title: DroidFax: A toolkit for systematic characterization of Android applications – ident: 10.1016/j.eswa.2023.122255_b0430 doi: 10.1109/BigData.2018.8622324 – start-page: 364 year: 2013 ident: 10.1016/j.eswa.2023.122255_b0175 article-title: Instrumenting android and java applications as easy as abc – ident: 10.1016/j.eswa.2023.122255_b0780 – ident: 10.1016/j.eswa.2023.122255_b0865 – ident: 10.1016/j.eswa.2023.122255_bib952 – volume: 47 start-page: 1 issue: 4 year: 2015 ident: 10.1016/j.eswa.2023.122255_b0840 article-title: Securing android: A survey, taxonomy, and challenges publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/2733306 – volume: 33 start-page: 5183 issue: 10 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0565 article-title: MLDroid—Framework for Android malware detection using machine learning techniques publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05309-4 – volume: 1 start-page: 1 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0630 article-title: DroidEcho: An in-depth dissection of malicious behaviors in Android applications publication-title: Cybersecurity doi: 10.1186/s42400-018-0006-7 – volume: 51 start-page: 16 year: 2015 ident: 10.1016/j.eswa.2023.122255_b0575 article-title: Stealth attacks: An extended insight into the obfuscation effects on android malware publication-title: Computers & Security doi: 10.1016/j.cose.2015.02.007 – ident: 10.1016/j.eswa.2023.122255_b0620 doi: 10.1145/3052973.3055156 – volume: 20 start-page: 371 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0700 article-title: MalFamAware: Automatic family identification and malware classification through online clustering publication-title: International Journal of Information Security doi: 10.1007/s10207-020-00509-4 – ident: 10.1016/j.eswa.2023.122255_b0120 – start-page: 294 year: 2015 ident: 10.1016/j.eswa.2023.122255_b0720 – volume: 13 start-page: 269 issue: 3 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0200 article-title: Analysis of dynamic code updating in Android with security perspective publication-title: IET Information Security doi: 10.1049/iet-ifs.2018.5316 – ident: 10.1016/j.eswa.2023.122255_b0230 doi: 10.1145/2046614.2046619 – volume: 8 start-page: 984 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0945 article-title: SEDMDroid: An enhanced stacking ensemble framework for Android malware detection publication-title: IEEE Transactions on Network Science and Engineering doi: 10.1109/TNSE.2020.2996379 – volume: 42 start-page: 46 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0220 article-title: Sword: Semantic aware android malware detector publication-title: Journal of information security and applications doi: 10.1016/j.jisa.2018.07.003 – ident: 10.1016/j.eswa.2023.122255_b0435 – volume: 38 start-page: 161 issue: 1 year: 2012 ident: 10.1016/j.eswa.2023.122255_b0760 article-title: “Andromaly”: A behavioral malware detection framework for android devices publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-010-0148-x – ident: 10.1016/j.eswa.2023.122255_b0560 doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094 – ident: 10.1016/j.eswa.2023.122255_b0135 – year: 2018 ident: 10.1016/j.eswa.2023.122255_b0615 – ident: 10.1016/j.eswa.2023.122255_b0155 – volume: 12 start-page: 1369 issue: 5 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0570 article-title: SemiDroid: A behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-020-01238-9 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0335 article-title: Android malware detection method based on bytecode image publication-title: Journal of Ambient Intelligence and Humanized Computing – ident: 10.1016/j.eswa.2023.122255_b0095 – year: 2015 ident: 10.1016/j.eswa.2023.122255_b0395 – ident: 10.1016/j.eswa.2023.122255_b0020 doi: 10.1155/2022/4908134 – volume: 6 start-page: 4321 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0170 article-title: SAMADroid: A novel 3-level hybrid malware detection model for android operating system publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2792941 – volume: 125 start-page: 314 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0310 article-title: Visualization and deep-learning-based malware variant detection using OpCode-level features publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2021.06.032 – volume: 25 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.eswa.2023.122255_b0305 article-title: A deep dive inside drebin: An explorative analysis beyond android malware detection scores publication-title: ACM Transactions on Privacy and Security doi: 10.1145/3503463 – ident: 10.1016/j.eswa.2023.122255_b0730 doi: 10.1109/TSE.2016.2615307 – ident: 10.1016/j.eswa.2023.122255_b0660 – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0100 article-title: Malware visualization and detection using DenseNets publication-title: Personal and Ubiquitous Computing – ident: 10.1016/j.eswa.2023.122255_b0490 – volume: 16 start-page: 157 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0635 article-title: Deep learning for image-based mobile malware detection publication-title: Journal of Computer Virology and Hacking Techniques doi: 10.1007/s11416-019-00346-7 – start-page: 570 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0535 – ident: 10.1016/j.eswa.2023.122255_b0655 doi: 10.1145/2016904.2016908 – ident: 10.1016/j.eswa.2023.122255_b0150 – start-page: 738 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0845 article-title: Analysis and Classification of Android Malware using Machine Learning Algorithms – volume: 22 start-page: 66 year: 2015 ident: 10.1016/j.eswa.2023.122255_b0375 article-title: AndroSimilar: Robust signature for detecting variants of Android malware publication-title: Journal of Information Security and Applications doi: 10.1016/j.jisa.2014.10.011 – volume: 143 year: 2022 ident: 10.1016/j.eswa.2023.122255_b0030 article-title: A comparison of machine learning algorithms on design smell detection using balanced and imbalanced dataset: A study of God class publication-title: Information and Software Technology doi: 10.1016/j.infsof.2021.106736 – start-page: 1 year: 2016 ident: 10.1016/j.eswa.2023.122255_b0510 – ident: 10.1016/j.eswa.2023.122255_b0130 – start-page: 252 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0900 article-title: Deep ground truth analysis of current android malware – volume: 30 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.eswa.2023.122255_b0555 article-title: Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder publication-title: Journal of Network and Systems Management doi: 10.1007/s10922-021-09634-4 – start-page: 344 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0910 article-title: Detecting android malware by applying classification techniques on images patterns – ident: 10.1016/j.eswa.2023.122255_b0125 – ident: 10.1016/j.eswa.2023.122255_b0400 – start-page: 110 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0050 article-title: A Survey on Android Malware Detection Techniques Using Machine Learning Algorithms – volume: 24 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0090 article-title: Systematic mutation-based evaluation of the soundness of security-focused android static analysis techniques publication-title: ACM Transactions on Privacy and Security (TOPS) doi: 10.1145/3439802 – volume: 39 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0015 article-title: Applying Natural Language Processing for detecting malicious patterns in Android applications publication-title: Forensic Science International: Digital Investigation – start-page: 229 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0485 article-title: Android ransomware detection using reduced opcode sequence and image similarity – volume: 15 start-page: 83 issue: 1 year: 2016 ident: 10.1016/j.eswa.2023.122255_b0750 article-title: Madam: Effective and efficient behavior-based android malware detection and prevention publication-title: IEEE Transactions on Dependable and Secure Computing doi: 10.1109/TDSC.2016.2536605 – ident: 10.1016/j.eswa.2023.122255_b0380 doi: 10.5220/0009372308040814 – ident: 10.1016/j.eswa.2023.122255_b0670 doi: 10.1109/IJCNN.2017.7966078 – start-page: 2022 year: 2022 ident: 10.1016/j.eswa.2023.122255_b0005 – start-page: 490 year: 2013 ident: 10.1016/j.eswa.2023.122255_b0420 article-title: Analysis of android malware detection performance using machine learning classifiers – start-page: 55 year: 2010 ident: 10.1016/j.eswa.2023.122255_b0225 article-title: An android application sandbox system for suspicious software detection – ident: 10.1016/j.eswa.2023.122255_b0340 – start-page: 920 year: 2014 ident: 10.1016/j.eswa.2023.122255_b0645 – start-page: 95 year: 2012 ident: 10.1016/j.eswa.2023.122255_b0940 article-title: Dissecting android malware: Characterization and evolution – volume: 14 issue: 3 year: 2022 ident: 10.1016/j.eswa.2023.122255_b0320 article-title: Android Malware Detection Using One-Class Graph Neural Networks publication-title: ISeCure – ident: 10.1016/j.eswa.2023.122255_b0405 – volume: 14 start-page: 773 issue: 3 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0495 article-title: A multimodal deep learning method for android malware detection using various features publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2018.2866319 – ident: 10.1016/j.eswa.2023.122255_b0105 – volume: 2 start-page: 113 issue: 2 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0360 article-title: A new technique for intent elicitation in Android applications publication-title: Iran Journal of Computer Science doi: 10.1007/s42044-019-00032-3 – volume: 7 start-page: 21235 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0550 article-title: A combination method for android malware detection based on control flow graphs and machine learning algorithms publication-title: IEEE access doi: 10.1109/ACCESS.2019.2896003 – ident: 10.1016/j.eswa.2023.122255_b0810 doi: 10.1145/3029806.3029825 – ident: 10.1016/j.eswa.2023.122255_b0245 doi: 10.1145/3387905.3388612 – volume: 4 start-page: 95 issue: 2 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0850 article-title: LimonDroid: A system coupling three signature-based schemes for profiling Android malware publication-title: Iran Journal of Computer Science doi: 10.1007/s42044-020-00068-w – ident: 10.1016/j.eswa.2023.122255_b0640 – volume: 22 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0685 article-title: Mamadroid: Detecting android malware by building markov chains of behavioral models (extended version) publication-title: ACM Transactions on Privacy and Security (TOPS) doi: 10.1145/3313391 – ident: 10.1016/j.eswa.2023.122255_b0795 – ident: 10.1016/j.eswa.2023.122255_b0235 – volume: 93 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0695 article-title: AMalNet: A deep learning framework based on graph convolutional networks for malware detection publication-title: Computers & Security doi: 10.1016/j.cose.2020.101792 – ident: 10.1016/j.eswa.2023.122255_b0585 doi: 10.1109/ICONAT53423.2022.9726024 – start-page: 1 year: 2016 ident: 10.1016/j.eswa.2023.122255_b0070 article-title: DynaLog: An automated dynamic analysis framework for characterizing android applications – volume: 2 start-page: 1 issue: 7 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0870 article-title: Android malware detection based on image-based features and machine learning techniques publication-title: SN Applied Sciences doi: 10.1007/s42452-020-3132-2 – ident: 10.1016/j.eswa.2023.122255_b0595 doi: 10.14722/ndss.2017.23353 – volume: 122 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0265 article-title: A study of run-time behavioral evolution of benign versus malicious apps in android publication-title: Information and Software Technology doi: 10.1016/j.infsof.2020.106291 – volume: 14 start-page: 3216 issue: 7 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0530 article-title: Significant permission identification for machine-learning-based android malware detection publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2017.2789219 – start-page: 808 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0160 article-title: NTPDroid: A hybrid android malware detector using network traffic and system permissions – volume: 17 start-page: 998 issue: 2 year: 2014 ident: 10.1016/j.eswa.2023.122255_b0370 article-title: Android security: A survey of issues, malware penetration, and defenses publication-title: IEEE communications surveys & tutorials doi: 10.1109/COMST.2014.2386139 – start-page: 47 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0905 article-title: Droidevolver: Self-evolving android malware detection system – volume: 4 start-page: e164 issue: 5 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0185 article-title: Android Permission Classifier: A deep learning algorithmic framework based on protection and threat levels publication-title: Security and Privacy doi: 10.1002/spy2.164 – start-page: 288 year: 2015 ident: 10.1016/j.eswa.2023.122255_b0520 – ident: 10.1016/j.eswa.2023.122255_b0935 doi: 10.1145/2133601.2133640 – ident: 10.1016/j.eswa.2023.122255_b0590 doi: 10.1145/2931037.2931054 – volume: 13 start-page: 1096 issue: 5 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0890 article-title: Detecting android malware leveraging text semantics of network flows publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2017.2771228 – volume: 14 start-page: 1455 issue: 6 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0270 article-title: Droidcat: Effective android malware detection and categorization via app-level profiling publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2018.2879302 – volume: 47 start-page: 2934 issue: 12 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0255 article-title: A longitudinal study of application structure and behaviors in android publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2020.2975176 – volume: 73 start-page: 235 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0025 article-title: Toward a more dependable hybrid analysis of android malware using aspect-oriented programming publication-title: computers & security doi: 10.1016/j.cose.2017.11.006 – volume: 8 start-page: 148404 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0930 article-title: An android malware detection approach based on SIMGRU publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007571 – ident: 10.1016/j.eswa.2023.122255_b0345 – ident: 10.1016/j.eswa.2023.122255_b0330 doi: 10.1145/3197231.3197255 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0825 article-title: Extensible android malware detection and family classification using network-flows and API-calls – volume: 6 start-page: 76217 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0055 article-title: Android malware permission-based multi-class classification using extremely randomized trees publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2883975 – ident: 10.1016/j.eswa.2023.122255_b0425 – volume: 184 start-page: 847 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0350 article-title: Android malware detection using deep learning – volume: 69 start-page: 828 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0710 article-title: Machine learning-assisted signature and heuristic-based detection of malwares in Android devices publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2017.11.028 – ident: 10.1016/j.eswa.2023.122255_b0075 doi: 10.1145/3041008.3041010 – start-page: 875 year: 2010 ident: 10.1016/j.eswa.2023.122255_b0280 article-title: Data mining for imbalanced datasets: An overview publication-title: Data mining and knowledge discovery handbook – volume: Vol. 1 start-page: 426 year: 2015 ident: 10.1016/j.eswa.2023.122255_b0195 article-title: Mining apps for abnormal usage of sensitive data – ident: 10.1016/j.eswa.2023.122255_b0445 – ident: 10.1016/j.eswa.2023.122255_b0455 doi: 10.1145/2843859.2843866 – ident: 10.1016/j.eswa.2023.122255_b0875 – ident: 10.1016/j.eswa.2023.122255_b0925 doi: 10.1109/TST.2016.7399288 – ident: 10.1016/j.eswa.2023.122255_b0690 – volume: 14 start-page: 531 issue: 5 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0855 article-title: Improved real-time permission based malware detection and clustering approach using model independent pruning publication-title: IET Information Security doi: 10.1049/iet-ifs.2019.0418 – volume: 103 start-page: 204 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0505 article-title: A survey on mobile malware detection techniques publication-title: IEICE Transactions on Information and Systems doi: 10.1587/transinf.2019INI0003 – volume: 93 start-page: 109 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0915 article-title: An Android mutation malware detection based on deep learning using visualization of importance from codes publication-title: Microelectronics Reliability doi: 10.1016/j.microrel.2019.01.007 – ident: 10.1016/j.eswa.2023.122255_b0110 – ident: 10.1016/j.eswa.2023.122255_b0290 doi: 10.1145/2897845.2897860 – ident: 10.1016/j.eswa.2023.122255_b0325 – ident: 10.1016/j.eswa.2023.122255_b0470 doi: 10.1145/3264746.3264780 – ident: 10.1016/j.eswa.2023.122255_b0010 doi: 10.1007/s11416-014-0226-7 – start-page: 252 year: 2016 ident: 10.1016/j.eswa.2023.122255_b0315 article-title: Droidscribe: Classifying android malware based on runtime behavior – volume: 18 start-page: 1231 issue: 6 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0765 article-title: Android malware detection using complex-flows publication-title: IEEE Transactions on Mobile Computing doi: 10.1109/TMC.2018.2861405 – volume: 74 start-page: 121 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0605 article-title: CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2018.06.006 – volume: 272 start-page: 638 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0950 article-title: Droiddet: Effective and robust detection of Android malware using static analysis along with Rotation Forest Model publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.030 – ident: 10.1016/j.eswa.2023.122255_b0145 – start-page: 384 year: 2014 ident: 10.1016/j.eswa.2023.122255_b0040 article-title: A Forensic Analysis of Android Malware-How is Malware Written and How it Could Be Detected? – year: 2020 ident: 10.1016/j.eswa.2023.122255_b0465 article-title: A Survey on Permission Based Malware Detection in Android Applications. International Journal of Engineering publication-title: Research. – volume: 206 year: 2022 ident: 10.1016/j.eswa.2023.122255_b0475 article-title: DroidMalwareDetector: A novel Android malware detection framework based on convolutional neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117833 – volume: 13 start-page: 22 year: 2015 ident: 10.1016/j.eswa.2023.122255_b0385 article-title: A review on feature selection in mobile malware detection publication-title: Digital investigation doi: 10.1016/j.diin.2015.02.001 – ident: 10.1016/j.eswa.2023.122255_b0205 – ident: 10.1016/j.eswa.2023.122255_b0715 – volume: 24 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0735 article-title: Maat: Automatically analyzing virustotal for accurate labeling and effective malware detection publication-title: ACM Transactions on Privacy and Security (TOPS) doi: 10.1145/3465361 – ident: 10.1016/j.eswa.2023.122255_b0740 – volume: 103 start-page: 22 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0860 article-title: A hybrid approach of mobile malware detection in Android publication-title: Journal of Parallel and Distributed computing doi: 10.1016/j.jpdc.2016.10.012 – ident: 10.1016/j.eswa.2023.122255_b0805 – volume: 19 start-page: 90 issue: 1 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0355 article-title: Identifying mobile inter-app communication risks publication-title: IEEE Transactions on Mobile Computing doi: 10.1109/TMC.2018.2889495 – ident: 10.1016/j.eswa.2023.122255_b0650 – ident: 10.1016/j.eswa.2023.122255_b0115 – volume: 33 start-page: 3133 issue: 8 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0210 article-title: VisDroid: Android malware classification based on local and global image features, bag of visual words and machine learning techniques publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05195-w – volume: 54 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0815 article-title: A TAN based hybrid model for android malware detection publication-title: Journal of Information Security and Applications doi: 10.1016/j.jisa.2020.102483 – ident: 10.1016/j.eswa.2023.122255_b0820 – ident: 10.1016/j.eswa.2023.122255_b0285 doi: 10.1145/3133956.3138838 – start-page: 189 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0540 – volume: 49 start-page: 259 issue: 6 year: 2014 ident: 10.1016/j.eswa.2023.122255_b0180 article-title: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps publication-title: Acm Sigplan Notices doi: 10.1145/2666356.2594299 – ident: 10.1016/j.eswa.2023.122255_b0275 doi: 10.1145/2804345.2804349 – volume: 9 start-page: 313 issue: 6 year: 2015 ident: 10.1016/j.eswa.2023.122255_b0920 article-title: High accuracy android malware detection using ensemble learning publication-title: IET Information Security doi: 10.1049/iet-ifs.2014.0099 – start-page: 468 year: 2016 ident: 10.1016/j.eswa.2023.122255_b0035 article-title: Androzoo: Collecting millions of android apps for the research community – volume: 87 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0755 article-title: Secur-ama: Active malware analysis based on monte carlo tree search for android systems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2019.103303 – volume: 1 start-page: 1 issue: 9 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0215 article-title: The Android malware detection systems between hope and reality publication-title: SN Applied Sciences doi: 10.1007/s42452-019-1124-x – volume: 39 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0770 article-title: A survey of android application and malware hardening publication-title: Computer Science Review doi: 10.1016/j.cosrev.2021.100365 – ident: 10.1016/j.eswa.2023.122255_b0165 doi: 10.14722/ndss.2014.23247 – volume: 9 start-page: 942 issue: 6 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0060 article-title: Android malware family classification and analysis: Current status and future directions publication-title: Electronics doi: 10.3390/electronics9060942 – ident: 10.1016/j.eswa.2023.122255_b0140 – ident: 10.1016/j.eswa.2023.122255_b0295 – volume: 89 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0065 article-title: DL-Droid: Deep learning based android malware detection using real devices publication-title: Computers & Security doi: 10.1016/j.cose.2019.101663 – ident: 10.1016/j.eswa.2023.122255_b0525 – ident: 10.1016/j.eswa.2023.122255_b0800 – ident: 10.1016/j.eswa.2023.122255_b0500 – volume: 49 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0835 article-title: The evolution of android malware and android analysis techniques publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3017427 – ident: 10.1016/j.eswa.2023.122255_b0665 doi: 10.1145/3194244.3194257 – start-page: 272 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0390 article-title: On the deterioration of learning-based malware detectors for Android – volume: 105 start-page: 230 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0830 article-title: Similarity-based Android malware detection using Hamming distance of static binary features publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.11.034 – year: 2021 ident: 10.1016/j.eswa.2023.122255_b0080 – start-page: 8 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0415 article-title: Hybrid-based malware analysis for effective and efficiency android malware detection – volume: 72 start-page: 607 issue: 9 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0885 article-title: An android malware dynamic detection method based on service call co-occurrence matrices publication-title: Annals of Telecommunications doi: 10.1007/s12243-017-0580-9 – ident: 10.1016/j.eswa.2023.122255_b0610 doi: 10.1016/j.future.2019.03.006 – ident: 10.1016/j.eswa.2023.122255_b0240 doi: 10.1145/3371924 – ident: 10.1016/j.eswa.2023.122255_b0775 doi: 10.1016/j.procs.2020.06.034 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.122255_b0580 – volume: 173 start-page: 345 year: 2020 ident: 10.1016/j.eswa.2023.122255_b0725 publication-title: Android malware detection based on vulnerable feature aggregation – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2023.122255_b0895 article-title: Multilevel permission extraction in android applications for malware detection – volume: 11 start-page: 141 issue: 3 year: 2015 ident: 10.1016/j.eswa.2023.122255_b0300 article-title: M0droid: An android behavioral-based malware detection model publication-title: Journal of Information Privacy and Security doi: 10.1080/15536548.2015.1073510 – ident: 10.1016/j.eswa.2023.122255_b0600 doi: 10.1016/j.inffus.2018.12.006 – start-page: 255 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0680 – start-page: 24 year: 2016 ident: 10.1016/j.eswa.2023.122255_b0365 article-title: Frequent subgraph based familial classification of android malware – volume: 54 year: 2022 ident: 10.1016/j.eswa.2023.122255_b0785 article-title: An optimized and efficient android malware detection framework for future sustainable computing publication-title: Sustainable Energy Technologies and Assessments doi: 10.1016/j.seta.2022.102852 – volume: 115 start-page: 844 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0440 article-title: DeepAMD: Detection and identification of Android malware using high-efficient Deep Artificial Neural Network publication-title: Future Generation computer systems doi: 10.1016/j.future.2020.10.008 – volume: Volume. 184 start-page: 841 year: 2021 ident: 10.1016/j.eswa.2023.122255_b0045 article-title: ReDroidDet: Android malware detection based on recurrent neural network – start-page: 1 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0790 article-title: A collaborative framework for android malware detection using DNS & dynamic analysis – ident: 10.1016/j.eswa.2023.122255_b0460 – volume: 11 start-page: 15 issue: 3 year: 2017 ident: 10.1016/j.eswa.2023.122255_b0515 article-title: Identification of cryptographic vulnerability and malware detection in Android publication-title: International Journal of Information Security and Privacy (IJISP) doi: 10.4018/IJISP.2017070102 – volume: 24 start-page: S48 year: 2018 ident: 10.1016/j.eswa.2023.122255_b0480 article-title: MalDozer: Automatic framework for android malware detection using deep learning publication-title: Digital Investigation doi: 10.1016/j.diin.2018.01.007 |
SSID | ssj0017007 |
Score | 2.5032883 |
SecondaryResourceType | review_article |
Snippet | The main objective of this review is to present an in-depth study of Android malware detection approaches. This article provides a comprehensive survey of 150... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122255 |
SubjectTerms | Android malware detection Behavior based analysis Malware analysis Signature based analysis |
Title | Detection approaches for android malware: Taxonomy and review analysis |
URI | https://dx.doi.org/10.1016/j.eswa.2023.122255 |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENpY0bO2nYqkJVQHShlbpF9sWRikqo2qAy8dvxxU4FEurAloctRZ-du7Puu-8IudYyhFgr6amQa4-bU63XDWPuYeggwHjcDDCj-zwKhxP-OBXTGulXtTBIq3S239r00lq7J22HZnsxm7VfTHBg3CFmGjH1FqEmKOcR7vLW14bmgfJzkdXbizwc7QpnLMdLr9aoPdQJWgzPPeJv5_TD4QwOyJ6LFGnPfswhqen8iOxXXRio-ymPyeBOFyWfKqeVQLheUROLUoliBLOUvsn5Wi71LR3Lz7KGAd9QW7RiLq0qyQmZDO7H_aHnuiN4EPh-4cXAyr7cAiTPMhHyDAQLhegajwtRmoEPQkBXp0KqNODSZxCjWfQ5xBBLFZySev6e6zNCeRT5inW0iT4U551UgmYMUplF2tdaqQZhFSwJOOlw7GAxTyqO2GuCUCYIZWKhbJCbzZyFFc7YOlpUaCe_lj8xln3LvPN_zrsgu-aOI5mMiUtSL5Yf-spEF4VqltunSXZ6D0_D0Td2S86o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71caAXoIWqhT72UE7IjdfeteNKPVSUKH1eSKTc3N3xWAoKpmqCAhf-FH-wO_Y6KhLKAak3y-u1vJ9XM7Oab74BOCKTYEbWBDZRFCh3qg26SaYCDh00Oo9bImd0b26T_lBdjvRoBf60tTBMq_S2v7HptbX2dzoezc79eNz54oID5w4508ipt1R5ZuUV_Zq7c9v09OLc_eQPUdT7PPjUD3xrgQDjMJwFGcq6qbVGo8pSJ6pELROtu85dYVqUGKLW2KVCG1vEyoQSM7YpocIMM2Nj995VWFfOXHDbhOPfC14J692ljcBfGvDn-UqdhlRG0zmLHUXxseSDlv63N3zi4Xqv4aUPTcVZs_pNWKFqC161bR-EtwJvoHdOs5rAVYlWkZymwgW_wrD6wbgQ38xkbh7oRAzMz7pogkdEUyXjLhsZlLcwfBbMtmGt-l7RDgiVpqGVEblwxyoVFQZJSixMmVJIZO0uyBaWHL1WObfMmOQtKe1rzlDmDGXeQLkLHxdz7huljqVP6xbt_K_9ljtXsmTeu_-cdwgv-oOb6_z64vbqPWy4EcVMNqn3YG328IP2XWgzswf1VhJw99x79xEbiQnv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+approaches+for+android+malware%3A+Taxonomy+and+review+analysis&rft.jtitle=Expert+systems+with+applications&rft.au=Haidros+Rahima+Manzil%2C+Hashida&rft.au=Manohar+Naik%2C+S.&rft.date=2024-03-15&rft.issn=0957-4174&rft.volume=238&rft.spage=122255&rft_id=info:doi/10.1016%2Fj.eswa.2023.122255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_122255 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |