Detection approaches for android malware: Taxonomy and review analysis

The main objective of this review is to present an in-depth study of Android malware detection approaches. This article provides a comprehensive survey of 150 studies on Android malware detection from 2010 to 2022. Two broader categories like traditional signature-based and behavior-based approaches...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 238; p. 122255
Main Authors Haidros Rahima Manzil, Hashida, Manohar Naik, S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main objective of this review is to present an in-depth study of Android malware detection approaches. This article provides a comprehensive survey of 150 studies on Android malware detection from 2010 to 2022. Two broader categories like traditional signature-based and behavior-based approaches are discussed throughout the review process. The behavior-based detection approaches are further categorized in to static, dynamic, and hybrid analysis methods. The survey has conducted in different dimensions including detection approaches, datasets used, features, sustainability of the solutions, etc. Although researchers have proposed detection tools and techniques to develop efficient countermeasures against Android malware, there is a scarcity of a concise review for research practitioners in this subject area. The survey shows there is a great deal of interest in machine learning-based detection methods among the research community. The review not only provides an authentic assessment of the malware detection capabilities of different approaches but also presents observations and suggestions regarding various aspects of the Android malware ecosystem. These observations and suggestions are intended to assist researchers in enhancing further research towards the subject domain.
AbstractList The main objective of this review is to present an in-depth study of Android malware detection approaches. This article provides a comprehensive survey of 150 studies on Android malware detection from 2010 to 2022. Two broader categories like traditional signature-based and behavior-based approaches are discussed throughout the review process. The behavior-based detection approaches are further categorized in to static, dynamic, and hybrid analysis methods. The survey has conducted in different dimensions including detection approaches, datasets used, features, sustainability of the solutions, etc. Although researchers have proposed detection tools and techniques to develop efficient countermeasures against Android malware, there is a scarcity of a concise review for research practitioners in this subject area. The survey shows there is a great deal of interest in machine learning-based detection methods among the research community. The review not only provides an authentic assessment of the malware detection capabilities of different approaches but also presents observations and suggestions regarding various aspects of the Android malware ecosystem. These observations and suggestions are intended to assist researchers in enhancing further research towards the subject domain.
ArticleNumber 122255
Author Manohar Naik, S.
Haidros Rahima Manzil, Hashida
Author_xml – sequence: 1
  givenname: Hashida
  surname: Haidros Rahima Manzil
  fullname: Haidros Rahima Manzil, Hashida
  email: hashida.pcs071902@cukerala.ac.in
– sequence: 2
  givenname: S.
  surname: Manohar Naik
  fullname: Manohar Naik, S.
  email: manoharamen@cukerala.ac.in
BookMark eNp9kLFOwzAQhj0UibbwAkx5gYSzYycNYkGFAlIlljJb17MtXKVxZUeUvj2JysTQ6U46faf__2Zs0oXOMnbHoeDAq_tdYdMRCwGiLLgQQqkJm0Kj6lzyWl6zWUo7AF4D1FO2era9pd6HLsPDIQakL5syF2KGnYnBm2yP7RGjfcg2-BO6sD-Nlyzab2-Pw4rtKfl0w64ctsne_s05-1y9bJZv-frj9X35tM6pBOjzhoaEILgilM6pSjpSvFJqUVWcauMISClaWKNwa0qJwKnhsqpBUkMNbss5W5z_UgwpRes0-R7H-H1E32oOenSgd3p0oEcH-uxgQMU_9BD9HuPpMvR4huxQamgcdSJvO7LGx0GbNsFfwn8BgLp6VA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3523629
crossref_primary_10_3390_s25041153
crossref_primary_10_1186_s42400_024_00205_z
crossref_primary_10_3390_app14114772
crossref_primary_10_1007_s00170_023_12725_y
crossref_primary_10_3390_electronics14061151
crossref_primary_10_1109_JIOT_2024_3477442
crossref_primary_10_3389_fphy_2024_1349463
crossref_primary_10_3390_app15020499
crossref_primary_10_1007_s13198_024_02294_y
crossref_primary_10_3390_bdcc8120171
crossref_primary_10_1007_s13198_024_02643_x
Cites_doi 10.4018/IJISP.2020100104
10.1155/2020/8861639
10.1145/3183440.3195004
10.1007/s10207-020-00489-5
10.1145/3338501.3357374
10.1109/ACCESS.2018.2874502
10.14569/IJACSA.2021.01212104
10.1016/j.cosrev.2020.100358
10.1109/BigData.2018.8622324
10.1145/2733306
10.1007/s00521-020-05309-4
10.1186/s42400-018-0006-7
10.1016/j.cose.2015.02.007
10.1145/3052973.3055156
10.1007/s10207-020-00509-4
10.1049/iet-ifs.2018.5316
10.1145/2046614.2046619
10.1109/TNSE.2020.2996379
10.1016/j.jisa.2018.07.003
10.1007/s10844-010-0148-x
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
10.1007/s13042-020-01238-9
10.1155/2022/4908134
10.1109/ACCESS.2018.2792941
10.1016/j.future.2021.06.032
10.1145/3503463
10.1109/TSE.2016.2615307
10.1007/s11416-019-00346-7
10.1145/2016904.2016908
10.1016/j.jisa.2014.10.011
10.1016/j.infsof.2021.106736
10.1007/s10922-021-09634-4
10.1145/3439802
10.1109/TDSC.2016.2536605
10.5220/0009372308040814
10.1109/IJCNN.2017.7966078
10.1109/TIFS.2018.2866319
10.1007/s42044-019-00032-3
10.1109/ACCESS.2019.2896003
10.1145/3029806.3029825
10.1145/3387905.3388612
10.1007/s42044-020-00068-w
10.1145/3313391
10.1016/j.cose.2020.101792
10.1109/ICONAT53423.2022.9726024
10.1007/s42452-020-3132-2
10.14722/ndss.2017.23353
10.1016/j.infsof.2020.106291
10.1109/TII.2017.2789219
10.1109/COMST.2014.2386139
10.1002/spy2.164
10.1145/2133601.2133640
10.1145/2931037.2931054
10.1109/TIFS.2017.2771228
10.1109/TIFS.2018.2879302
10.1109/TSE.2020.2975176
10.1016/j.cose.2017.11.006
10.1109/ACCESS.2020.3007571
10.1145/3197231.3197255
10.1109/ACCESS.2018.2883975
10.1016/j.compeleceng.2017.11.028
10.1145/3041008.3041010
10.1145/2843859.2843866
10.1109/TST.2016.7399288
10.1049/iet-ifs.2019.0418
10.1587/transinf.2019INI0003
10.1016/j.microrel.2019.01.007
10.1145/2897845.2897860
10.1145/3264746.3264780
10.1007/s11416-014-0226-7
10.1109/TMC.2018.2861405
10.1016/j.engappai.2018.06.006
10.1016/j.neucom.2017.07.030
10.1016/j.eswa.2022.117833
10.1016/j.diin.2015.02.001
10.1145/3465361
10.1016/j.jpdc.2016.10.012
10.1109/TMC.2018.2889495
10.1007/s00521-020-05195-w
10.1016/j.jisa.2020.102483
10.1145/3133956.3138838
10.1145/2666356.2594299
10.1145/2804345.2804349
10.1049/iet-ifs.2014.0099
10.1016/j.engappai.2019.103303
10.1007/s42452-019-1124-x
10.1016/j.cosrev.2021.100365
10.14722/ndss.2014.23247
10.3390/electronics9060942
10.1016/j.cose.2019.101663
10.1145/3017427
10.1145/3194244.3194257
10.1016/j.future.2019.11.034
10.1007/s12243-017-0580-9
10.1016/j.future.2019.03.006
10.1145/3371924
10.1016/j.procs.2020.06.034
10.1080/15536548.2015.1073510
10.1016/j.inffus.2018.12.006
10.1016/j.seta.2022.102852
10.1016/j.future.2020.10.008
10.4018/IJISP.2017070102
10.1016/j.diin.2018.01.007
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.122255
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2023_122255
S0957417423027574
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-9c1010215ca4ff564fc516558661c7dfc0c55c8ed5abd34a01c9146704c9c9ab3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:16 EDT 2025
Thu Apr 24 22:49:22 EDT 2025
Sat Oct 19 15:54:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Behavior based analysis
Android malware detection
Signature based analysis
Malware analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-9c1010215ca4ff564fc516558661c7dfc0c55c8ed5abd34a01c9146704c9c9ab3
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_122255
crossref_primary_10_1016_j_eswa_2023_122255
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (2), 1-28.
Cai, Ryder (b0260) 2017
Gupta, Singh, Bhatia, Mohapatra (b0410) 2020; 14
Ding, Zhang, Hu, Xu (b0335) 2020
Smmarwar, Gupta, Kumar, Kumar (b0785) 2022; 54
Darem, Abawajy, Makkar, Alhashmi, Alanazi (b0310) 2021; 125
Faruki, Laxmi, Bharmal, Gaur, Ganmoor (b0375) 2015; 22
Afonso, D. A. (2015). de Geus, 2015 Afonso VM, de Amorim MF, Grégio ARA, Junquera GB, de Geus PL.
Albakri, A., Fatima, H., Mohammed, M., Ahmed, A., Ali, A., Ali, A., & Elzein, N. M. (2022). Survey on Reverse-Engineering Tools for Android Mobile Devices.
DroidBench (2022). Retrieved from https://github.com/secure-software-engineering/DroidBench/tree/develop. Accessed December 31, 2022.
Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., & Stringhini, G. (2016). Mamadroid: Detecting android malware by building markov chains of behavioral models.
Bläsing, Batyuk, Schmidt, Camtepe, Albayrak (b0225) 2010
Koodous. (2022). Retrieved from https://koodous.com/. Accessed December 31, 2022.
Cai, Ryder (b0255) 2020; 47
Imtiaz, ur Rehman, S., Javed, A. R., Jalil, Z., Liu, X., & Alnumay, W. S. (b0440) 2021; 115
Tam, Feizollah, Anuar, Salleh, Cavallaro (b0835) 2017; 49
Zhu, You, Zhu, Shi, Chen, Cheng (b0950) 2018; 272
Ali-Gombe, Saltaformaggio, Xu, Richard (b0025) 2018; 73
(Vol. 52, pp. 128–142). Elsevier BV. https://doi.org/10.1016/j.inffus.2018.12.006.
Li, Sun, Yan, Li, Srisa-An, Ye (b0530) 2018; 14
Gfan. (2022). Retrieved from http://apk.gfan.com/. Accessed December 31, 2022.
Razgallah, Khoury, Hallé, Khanmohammadi (b0705) 2021; 39
Mercaldo, Santone (b0635) 2020; 16
Kaspersky. (2022). 2021 Mobile threats report: cybercriminals forego low hanging fruit to go after banking and gaming. Retrieved from https://www.kaspersky.com/about/press-releases/2022_2021-mobile-threats-report-cybercriminals-forego-low-hanging-fruit-to-go-after-banking-and-gaming. Accessed December 30, 2022.
,
Contagio Mini Dump (2020). Retrieved from http://contagiominidump.blogspot.com/. Accessed June 02, 2020.
.
(pp. 15-26).
IccRE (2022). Retrieved from https://sites.google.com/site/icctawebpage/dataset. Accessed December 31, 2022.
Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012, February). Detecting repackaged smartphone applications in third-party android marketplaces. In
GooglePlay (2022). Retrieved from
Arzt, Rasthofer, Bodden (b0175) 2013
Cai, Meng, Ryder, Yao (b0270) 2018; 14
Manzil, H. H. R., & Naik, M. S. (2022a, January). COVID-Themed Android Malware Analysis and Detection Framework Based on Permissions. In
Sadeghi, A., Bagheri, H., Garcia, J., & Malek, S. (2017). A Taxonomy and Qualitative Comparison of Program Analysis Techniques for Security Assessment of Android Software. In
APKPure (2022). Retrieved from https://m.apkpure.com/. Accessed December 31, 2022.
Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., & Ahmadi, M. (2018). Microsoft malware classification challenge.
Chen, S., Xue, M., Tang, Z., Xu, L., & Zhu, H. (2016, May). Stormdroid: A streaminglized machine learning-based system for detecting android malware. In
Yuan, L. (2016). Xue, 2016 Yuan Z., Lu Y., Xue Y. Droiddetector: android malware characterization and detection using deep learning
Wei, Li, Roy, Ou, Zhou (b0900) 2017
Alkharabsheh, Alawadi, Kebande, Crespo, Fernández-Delgado, Taboada (b0030) 2022; 143
Alzubaidi (b0080) 2021
(Vol. 14, pp. 23-26).
Statista. (2021). Development of Android Malware Worldwide 2016-2020. Retrieved from https://www.statista.com/statistics/680705/global android-malware-volume/. Accessed January 7, 2021.
Arora, Peddoju (b0160) 2018
Xu, Li, Deng, Chen, Xu (b0905) 2019
Martinelli, F., Mercaldo, F., & Saracino, A. (2017, April). Bridemaid: An hybrid tool for accurate detection of android malware. In
Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. (2011, July). Malware images: visualization and automatic classification. In
Aysan, Sakiz, Sen (b0200) 2019; 13
(pp. 2633-2642). IEEE. https://doi.org/10.1109/BigData.2018.8622324.
Kouliaridis, Barmpatsalou, Kambourakis, Chen (b0505) 2020; 103
(Vol. 3, No. 2, p. 896).
Damshenas, Dehghantanha, Choo, Mahmud (b0300) 2015; 11
Meng, Feng, Bai, Chen, Liu (b0630) 2018; 1
StatcounterGlobalStats (2022). Mobile Operating System Market Share World Wide. Retrieved from
El-Zawawy (b0360) 2019; 2
(pp. 309-320). ACM. https://doi.org/10.1145/3029806.3029825.
Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Giacinto, G., & Cavallaro, L. (2017, March). Droidsieve: Fast and accurate classification of obfuscated android malware. In
AndroidPIT market (2022). Retrieved from
Sandeep (b0745) 2019
Liu, Wang, Luo, Wang, Liu (b0545) 2021; 20
Kumawat, Sharma, Kumawat (b0515) 2017; 11
Moghaddam, Abbaspour (b0645) 2014
Maryam, A., Ahmed, U., Aleem, M., Lin, J. C. W., Arshad Islam, M., & Iqbal, M. A. (2020). cHybriDroid: a machine learning-based hybrid technique for securing the edge computing.
Zhu, Li, Li, Li, You, Song (b0945) 2020; 8
Zhou, Jiang (b0940) 2012
Mumayi. (2022). Retrieved from http://www.mumayi.com/, Accessed December 31, 2022).
Ünver, Bakour (b0870) 2020; 2
Martín, I., Hernández, J. A., & de los Santos, S. (2019). Machine-Learning based analysis and classification of Android malware signatures. In
Karbab, Debbabi, Derhab, Mouheb (b0480) 2018; 24
Martín, A., Lara-Cabrera, R., & Camacho, D. (2019). Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset. In
VirusShare. (2020). Retrieved from https://virusshare.com/. Accessed February 21, 2020.
Arzt, Rasthofer, Fritz, Bodden, Bartel, Klein, McDaniel (b0180) 2014; 49
Kabakus (b0475) 2022; 206
(pp. 350-351). ACM. https://doi.org/10.1145/3183440.3195004.
Manzil, Naik (b0580) 2022
Chawla (b0280) 2010
(pp. 2479-2481). ACM. https://doi.org/10.1145/3133956.3138838.
Suarez-Tangil, G., & Stringhini, G. (2018). Eight years of rider measurement in the android malware ecosystem: evolution and lessons learned.
Bhandari, Panihar, Naval, Laxmi, Zemmari, Gaur (b0220) 2018; 42
(pp. 1871-1878). IEEE. https://doi.org/10.1109/IJCNN.2017.7966078.
Pandaapp. (2022). Retrieved from http://download.pandaapp.com/?app=soft&controller=android#.V-p3f4h97IU. Accessed December 31, 2022).
Dex2jar. (2021). Retrieved from https://sourceforge.net/projects/dex2jar/. Accessed June 08, 2021.
Cai, H. (2020.b, July). Embracing mobile app evolution via continuous ecosystem mining and characterization. In
Pitolli, Laurenza, Aniello, Querzoni, Baldoni (b0700) 2021; 20
Alswaina, Elleithy (b0060) 2020; 9
(pp. 804-814).
(1), 114-123.
APKTool (2021). Retrieved from https://ibotpeaches.github.io/Apktool/. Accessed November 11, 2021.
Anzhi Application store (2022). Retrieved from https://www.malavida.com/en/soft/anzhi-market/android/. Accessed December 31, 2022.
(pp. 1-7).
VirusTotal (2020). Retrieved from
Ngamwitroj, S., & Limthanmaphon, B. (2018, February). Adaptive Android malware signature detection. In
Martín, Rodríguez-Fernández, Camacho (b0605) 2018; 74
Almahmoud, Alzu’bi, D., & Yaseen, Q. (b0045) 2021; Volume. 184
Accessed February, 2021.
(pp. 899-901). ACM. https://doi.org/10.1145/3052973.3055156.
Accessed October 11, 2020.
Alzaylaee, Yerima, Sezer (b0070) 2016
JADX. (2021). Retrieved from https://github.com/skylot/jadx. Accessed March 09, 2021.
(pp. 13-20). ACM. https://doi.org/10.1145/2804345.2804349.
TACYT. (2022). Retrieved from https://www.elevenpaths.com/es/tecnologia/tacyt/index.html. Accessed December 31, 2022.
Fu, Cai (b0390) 2019
Bakour, Ünver (b0210) 2021; 33
Alzaylaee, Yerima, Sezer (b0065) 2020; 89
Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2017, March). Emulator vs real phone: Android malware detection using machine learning. In
Wang, Yan, Chen, Yang, Zhao, Conti (b0890) 2017; 13
(pp. 1-9). ACM. https://doi.org/10.1145/2843859.2843866.
Cai, H., & Jenkins, J. (2018, May). Towards sustainable android malware detection. In
Feizollah, Anuar, Salleh, Wahab (b0385) 2015; 13
Android-Malware-Datasets (2020). Retrieved from https://github.com/traceflight/Android-Malware-Datasets . Accessed July 10, 2020.
Rehman, Khan, Muhammad, Lee, Lv, Baik, Mehmood (b0710) 2018; 69
Onwuzurike, Mariconti, Andriotis, Cristofaro, Ross, Stringhini (b0685) 2019; 22
Wang, Li, Mo, Yang, Zhao (b0885) 2017; 72
(pp. 67-71). ACM. https://doi.org/10.1145/3197231.3197255.
AndroidStudio (2022). Logcat command-line tool. Retrieved from
Canfora, G., Medvet, E., Mercaldo, F., & Visaggio, C. A. (2015, August). Detecting android malware using sequences of system calls. In
(1), 9-17.
Ma, Ge, Liu, Zhao, Ma (b0550) 2019; 7
Ashawa, Morris (b0185) 2021; 4
(pp. 1-5). IEEE. https://doi.org/10.1109/ICONAT53423.2022.9726024.
Deldar, Abadi, Ebrahimifard (b0320) 2022; 14
Accessed December 10, 2022.
Slideme. (2022). Retrieved from http://slideme.org/. Accessed December 31, 2022.
Tong, Yan (b0860) 2017; 103
Daoudi, Allix, Bissyandé, Klein (b0305) 2022; 25
Zhou, Yang, Pan, Guo (b0930) 2020; 8
Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani, A. A. (2020, August). Dynamic android malware category classification using semi-supervised deep learning. In
Bakour, Ünver, Ghanem (b0215) 2019; 1
Yang, Wen (b0910) 2017
Amit, I., Matherly, J., Hewlett, W., Xu, Z., Meshi, Y., & Weinberger, Y. (2018). Machine learning in cyber-security-problems, challenges and data sets.
(pp. 22-25). ACM. https://doi.org/10.1145/3194244.3194257.
Kurniawan, Rosmansyah, Dabarsyah (b0520) 2015
Cai, Fu, Hamou-Lhadj (b0265) 2020; 122
Elayan, Mustafa (b0350) 2021; 184
Jung, J., Choi, J., Cho, S. J., Han, S., Park, M., & Hwang, Y. (2018, October). Android malware detection using convolutional neural networks and data section images. In
Lee, D. H. (2013, June). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In
Liu, Cai, Wang, Yao, Elish, Ryder (b0540) 2017
Tarar, Sharma, Krishna (b0845) 2018
Duarte, J. (2020). A Survey of Android Attacks Detection Techniques. In
Hiapk. (2022), Retrieved from http://apk.hiapk.com/. Accessed December 31, 2022.
Jain, A., Gonzalez, H., & Stakhanova, N. (2015, December). Enriching reverse engineering through visual exploration of Android binar
10.1016/j.eswa.2023.122255_b0810
Taheri (10.1016/j.eswa.2023.122255_b0830) 2020; 105
Salem (10.1016/j.eswa.2023.122255_b0735) 2021; 24
10.1016/j.eswa.2023.122255_b0135
10.1016/j.eswa.2023.122255_b0775
Damshenas (10.1016/j.eswa.2023.122255_b0300) 2015; 11
10.1016/j.eswa.2023.122255_b0655
Saracino (10.1016/j.eswa.2023.122255_b0750) 2016; 15
Zhou (10.1016/j.eswa.2023.122255_b0930) 2020; 8
Liu (10.1016/j.eswa.2023.122255_b0545) 2021; 20
Fu (10.1016/j.eswa.2023.122255_b0390) 2019
Rosmansyah (10.1016/j.eswa.2023.122255_b0720) 2015
10.1016/j.eswa.2023.122255_b0935
Kurniawan (10.1016/j.eswa.2023.122255_b0520) 2015
Moghaddam (10.1016/j.eswa.2023.122255_b0645) 2014
10.1016/j.eswa.2023.122255_b0780
10.1016/j.eswa.2023.122255_b0660
10.1016/j.eswa.2023.122255_b0145
10.1016/j.eswa.2023.122255_b0380
10.1016/j.eswa.2023.122255_b0140
10.1016/j.eswa.2023.122255_b0020
10.1016/j.eswa.2023.122255_b0425
Shen (10.1016/j.eswa.2023.122255_b0765) 2018; 18
Maiorca (10.1016/j.eswa.2023.122255_b0575) 2015; 51
Geden (10.1016/j.eswa.2023.122255_b0395) 2015
10.1016/j.eswa.2023.122255_b0665
Atzeni (10.1016/j.eswa.2023.122255_b0190) 2018; 6
10.1016/j.eswa.2023.122255_b0820
Yerima (10.1016/j.eswa.2023.122255_b0920) 2015; 9
Cai (10.1016/j.eswa.2023.122255_b0255) 2020; 47
Tong (10.1016/j.eswa.2023.122255_b0860) 2017; 103
Zhu (10.1016/j.eswa.2023.122255_b0945) 2020; 8
10.1016/j.eswa.2023.122255_b0670
10.1016/j.eswa.2023.122255_b0275
10.1016/j.eswa.2023.122255_b0155
10.1016/j.eswa.2023.122255_b0430
Odusami (10.1016/j.eswa.2023.122255_b0680) 2018
Martín (10.1016/j.eswa.2023.122255_b0605) 2018; 74
10.1016/j.eswa.2023.122255_b0150
Bläsing (10.1016/j.eswa.2023.122255_b0225) 2010
Arora (10.1016/j.eswa.2023.122255_b0160) 2018
Bakour (10.1016/j.eswa.2023.122255_b0210) 2021; 33
Cai (10.1016/j.eswa.2023.122255_b0260) 2017
10.1016/j.eswa.2023.122255_b0795
10.1016/j.eswa.2023.122255_b0675
Shabtai (10.1016/j.eswa.2023.122255_b0760) 2012; 38
10.1016/j.eswa.2023.122255_b0435
10.1016/j.eswa.2023.122255_b0715
Acharya (10.1016/j.eswa.2023.122255_b0005) 2022
Kim (10.1016/j.eswa.2023.122255_b0495) 2018; 14
Bakour (10.1016/j.eswa.2023.122255_b0215) 2019; 1
Ali-Gombe (10.1016/j.eswa.2023.122255_b0025) 2018; 73
Karimi (10.1016/j.eswa.2023.122255_b0485) 2017
Tan (10.1016/j.eswa.2023.122255_b0840) 2015; 47
Surendran (10.1016/j.eswa.2023.122255_b0815) 2020; 54
10.1016/j.eswa.2023.122255_b0285
10.1016/j.eswa.2023.122255_b0560
Zhu (10.1016/j.eswa.2023.122255_b0950) 2018; 272
10.1016/j.eswa.2023.122255_b0165
Allix (10.1016/j.eswa.2023.122255_b0035) 2016
Ham (10.1016/j.eswa.2023.122255_b0420) 2013
Taheri (10.1016/j.eswa.2023.122255_b0825) 2019
Liu (10.1016/j.eswa.2023.122255_b0540) 2017
10.1016/j.eswa.2023.122255_b0205
Avdiienko (10.1016/j.eswa.2023.122255_b0195) 2015; Vol. 1
Elayan (10.1016/j.eswa.2023.122255_b0350) 2021; 184
10.1016/j.eswa.2023.122255_bib952
Razgallah (10.1016/j.eswa.2023.122255_b0705) 2021; 39
10.1016/j.eswa.2023.122255_b0445
Deldar (10.1016/j.eswa.2023.122255_b0320) 2022; 14
Yen (10.1016/j.eswa.2023.122255_b0915) 2019; 93
10.1016/j.eswa.2023.122255_b0325
10.1016/j.eswa.2023.122255_b0600
Mahindru (10.1016/j.eswa.2023.122255_b0570) 2021; 12
Dash (10.1016/j.eswa.2023.122255_b0315) 2016
Onwuzurike (10.1016/j.eswa.2023.122255_b0685) 2019; 22
10.1016/j.eswa.2023.122255_b0290
Bhandari (10.1016/j.eswa.2023.122255_b0220) 2018; 42
Martín (10.1016/j.eswa.2023.122255_b0615) 2018
Ünver (10.1016/j.eswa.2023.122255_b0870) 2020; 2
Fan (10.1016/j.eswa.2023.122255_b0365) 2016
10.1016/j.eswa.2023.122255_b0450
10.1016/j.eswa.2023.122255_b0330
Pitolli (10.1016/j.eswa.2023.122255_b0700) 2021; 20
Almahmoud (10.1016/j.eswa.2023.122255_b0045) 2021; Volume. 184
10.1016/j.eswa.2023.122255_b0690
Rehman (10.1016/j.eswa.2023.122255_b0710) 2018; 69
10.1016/j.eswa.2023.122255_b0295
Cai (10.1016/j.eswa.2023.122255_b0265) 2020; 122
Wang (10.1016/j.eswa.2023.122255_b0890) 2017; 13
Allix (10.1016/j.eswa.2023.122255_b0040) 2014
10.1016/j.eswa.2023.122255_b0455
10.1016/j.eswa.2023.122255_b0730
Kumaran (10.1016/j.eswa.2023.122255_b0510) 2016
10.1016/j.eswa.2023.122255_b0610
Kouliaridis (10.1016/j.eswa.2023.122255_b0505) 2020; 103
Aysan (10.1016/j.eswa.2023.122255_b0200) 2019; 13
Alswaina (10.1016/j.eswa.2023.122255_b0060) 2020; 9
Hadiprakoso (10.1016/j.eswa.2023.122255_b0415) 2020
Wang (10.1016/j.eswa.2023.122255_b0895) 2019
Yang (10.1016/j.eswa.2023.122255_b0910) 2017
Alzaylaee (10.1016/j.eswa.2023.122255_b0070) 2016
Chawla (10.1016/j.eswa.2023.122255_b0280) 2010
10.1016/j.eswa.2023.122255_b0340
10.1016/j.eswa.2023.122255_b0585
Mercaldo (10.1016/j.eswa.2023.122255_b0635) 2020; 16
Roy (10.1016/j.eswa.2023.122255_b0725) 2020; 173
10.1016/j.eswa.2023.122255_b0460
10.1016/j.eswa.2023.122255_b0865
Xu (10.1016/j.eswa.2023.122255_b0905) 2019
10.1016/j.eswa.2023.122255_b0625
10.1016/j.eswa.2023.122255_b0740
10.1016/j.eswa.2023.122255_b0345
10.1016/j.eswa.2023.122255_b0620
10.1016/j.eswa.2023.122255_b0500
10.1016/j.eswa.2023.122255_b0105
Alqahtani (10.1016/j.eswa.2023.122255_b0050) 2019
Zhou (10.1016/j.eswa.2023.122255_b0940) 2012
Jogsan (10.1016/j.eswa.2023.122255_b0465) 2020
Arshad (10.1016/j.eswa.2023.122255_b0170) 2018; 6
Tam (10.1016/j.eswa.2023.122255_b0835) 2017; 49
Feizollah (10.1016/j.eswa.2023.122255_b0385) 2015; 13
Thiyagarajan (10.1016/j.eswa.2023.122255_b0855) 2020; 14
Meng (10.1016/j.eswa.2023.122255_b0630) 2018; 1
10.1016/j.eswa.2023.122255_b0230
10.1016/j.eswa.2023.122255_b0110
Imtiaz (10.1016/j.eswa.2023.122255_b0440) 2021; 115
Manzil (10.1016/j.eswa.2023.122255_b0580) 2022
10.1016/j.eswa.2023.122255_b0595
Arzt (10.1016/j.eswa.2023.122255_b0180) 2014; 49
10.1016/j.eswa.2023.122255_b0590
10.1016/j.eswa.2023.122255_b0470
10.1016/j.eswa.2023.122255_b0075
Elish (10.1016/j.eswa.2023.122255_b0355) 2018; 19
Karbab (10.1016/j.eswa.2023.122255_b0480) 2018; 24
Tchakounté (10.1016/j.eswa.2023.122255_b0850) 2021; 4
Li (10.1016/j.eswa.2023.122255_b0535) 2021
10.1016/j.eswa.2023.122255_b0235
10.1016/j.eswa.2023.122255_b0115
Sandeep (10.1016/j.eswa.2023.122255_b0745) 2019
Alkharabsheh (10.1016/j.eswa.2023.122255_b0030) 2022; 143
10.1016/j.eswa.2023.122255_b0875
Sartea (10.1016/j.eswa.2023.122255_b0755) 2020; 87
Pei (10.1016/j.eswa.2023.122255_b0695) 2020; 93
Ami (10.1016/j.eswa.2023.122255_b0090) 2021; 24
Gupta (10.1016/j.eswa.2023.122255_b0410) 2020; 14
Ashawa (10.1016/j.eswa.2023.122255_b0185) 2021; 4
Mahdavifar (10.1016/j.eswa.2023.122255_b0555) 2022; 30
Alzubaidi (10.1016/j.eswa.2023.122255_b0085) 2021; 12
10.1016/j.eswa.2023.122255_b0120
Mahindru (10.1016/j.eswa.2023.122255_b0565) 2021; 33
Faruki (10.1016/j.eswa.2023.122255_b0370) 2014; 17
10.1016/j.eswa.2023.122255_b0880
10.1016/j.eswa.2023.122255_b0640
10.1016/j.eswa.2023.122255_b0240
10.1016/j.eswa.2023.122255_b0525
10.1016/j.eswa.2023.122255_b0800
10.1016/j.eswa.2023.122255_b0405
Smmarwar (10.1016/j.eswa.2023.122255_b0785) 2022; 54
10.1016/j.eswa.2023.122255_b0245
10.1016/j.eswa.2023.122255_b0125
10.1016/j.eswa.2023.122255_b0400
Daoudi (10.1016/j.eswa.2023.122255_b0305) 2022; 25
Anandhi (10.1016/j.eswa.2023.122255_b0100) 2021
Li (10.1016/j.eswa.2023.122255_b0530) 2018; 14
Wei (10.1016/j.eswa.2023.122255_b0900) 2017
Somarriba (10.1016/j.eswa.2023.122255_b0790) 2017
Arzt (10.1016/j.eswa.2023.122255_b0175) 2013
Cai (10.1016/j.eswa.2023.122255_b0270) 2018; 14
El-Zawawy (10.1016/j.eswa.2023.122255_b0360) 2019; 2
10.1016/j.eswa.2023.122255_b0925
10.1016/j.eswa.2023.122255_b0805
Alzaylaee (10.1016/j.eswa.2023.122255_b0065) 2020; 89
Ma (10.1016/j.eswa.2023.122255_b0550) 2019; 7
Alswaina (10.1016/j.eswa.2023.122255_b0055) 2018; 6
Ding (10.1016/j.eswa.2023.122255_b0335) 2020
Kabakus (10.1016/j.eswa.2023.122255_b0475) 2022; 206
Tarar (10.1016/j.eswa.2023.122255_b0845) 2018
Kumawat (10.1016/j.eswa.2023.122255_b0515) 2017; 11
Darem (10.1016/j.eswa.2023.122255_b0310) 2021; 125
10.1016/j.eswa.2023.122255_b0010
Wang (10.1016/j.eswa.2023.122255_b0885) 2017; 72
Sihag (10.1016/j.eswa.2023.122255_b0770) 2021; 39
10.1016/j.eswa.2023.122255_b0650
Alam (10.1016/j.eswa.2023.122255_b0015) 2021; 39
10.1016/j.eswa.2023.122255_b0490
Alzubaidi (10.1016/j.eswa.2023.122255_b0080) 2021
10.1016/j.eswa.2023.122255_b0095
10.1016/j.eswa.2023.122255_b0250
Faruki (10.1016/j.eswa.2023.122255_b0375) 2015; 22
10.1016/j.eswa.2023.122255_b0130
References_xml – reference: Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Giacinto, G., & Cavallaro, L. (2017, March). Droidsieve: Fast and accurate classification of obfuscated android malware. In
– volume: 9
  start-page: 313
  year: 2015
  end-page: 320
  ident: b0920
  article-title: High accuracy android malware detection using ensemble learning
  publication-title: IET Information Security
– reference: TACYT. (2022). Retrieved from https://www.elevenpaths.com/es/tecnologia/tacyt/index.html. Accessed December 31, 2022.
– start-page: 468
  year: 2016
  end-page: 471
  ident: b0035
  article-title: Androzoo: Collecting millions of android apps for the research community
  publication-title: In 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)
– volume: 39
  year: 2021
  ident: b0705
  article-title: A survey of malware detection in Android apps: Recommendations and perspectives for future research
  publication-title: Computer Science Review
– reference: Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011, October). Crowdroid: behavior-based malware detection system for android. In
– reference: Sadeghi, A., Bagheri, H., Garcia, J., & Malek, S. (2017). A Taxonomy and Qualitative Comparison of Program Analysis Techniques for Security Assessment of Android Software. In
– reference: Android-Malware-Datasets (2020). Retrieved from https://github.com/traceflight/Android-Malware-Datasets . Accessed July 10, 2020.
– volume: 14
  start-page: 57
  year: 2020
  end-page: 73
  ident: b0410
  article-title: DecaDroid classification and characterization of malicious behaviour in android applications
  publication-title: International Journal of Information Security and Privacy (IJISP)
– volume: 25
  start-page: 1
  year: 2022
  end-page: 28
  ident: b0305
  article-title: A deep dive inside drebin: An explorative analysis beyond android malware detection scores
  publication-title: ACM Transactions on Privacy and Security
– reference: (pp. 15-26).
– start-page: 1
  year: 2016
  end-page: 8
  ident: b0070
  article-title: DynaLog: An automated dynamic analysis framework for characterizing android applications
  publication-title: In 2016 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security)
– reference: Canfora, G., Medvet, E., Mercaldo, F., & Visaggio, C. A. (2015, August). Detecting android malware using sequences of system calls. In
– volume: 20
  start-page: 59
  year: 2021
  end-page: 71
  ident: b0545
  article-title: NSDroid: Efficient multi-classification of android malware using neighborhood signature in local function call graphs
  publication-title: International Journal of Information Security
– reference: AndroidStudio (2022). Logcat command-line tool. Retrieved from
– reference: VirusTotal (2020). Retrieved from
– reference: Dex2jar. (2021). Retrieved from https://sourceforge.net/projects/dex2jar/. Accessed June 08, 2021.
– volume: 9
  start-page: 942
  year: 2020
  ident: b0060
  article-title: Android malware family classification and analysis: Current status and future directions
  publication-title: Electronics
– reference: . Procedia Computer Science. (Volume. 173, pp. 291-298). https://doi.org/10.1016/j.procs.2020.06.034.
– volume: 20
  start-page: 371
  year: 2021
  end-page: 386
  ident: b0700
  article-title: MalFamAware: Automatic family identification and malware classification through online clustering
  publication-title: International Journal of Information Security
– reference: Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R. T. (2014, February). Drebin: Effective and explainable detection of android malware in your pocket. In
– reference: Duarte, J. (2020). A Survey of Android Attacks Detection Techniques. In
– volume: 24
  start-page: S48
  year: 2018
  end-page: S59
  ident: b0480
  article-title: MalDozer: Automatic framework for android malware detection using deep learning
  publication-title: Digital Investigation
– volume: 24
  start-page: 1
  year: 2021
  end-page: 35
  ident: b0735
  article-title: Maat: Automatically analyzing virustotal for accurate labeling and effective malware detection
  publication-title: ACM Transactions on Privacy and Security (TOPS)
– year: 2020
  ident: b0465
  article-title: A Survey on Permission Based Malware Detection in Android Applications.
  publication-title: Research.
– volume: 14
  start-page: 531
  year: 2020
  end-page: 541
  ident: b0855
  article-title: Improved real-time permission based malware detection and clustering approach using model independent pruning
  publication-title: IET Information Security
– volume: 49
  start-page: 259
  year: 2014
  end-page: 269
  ident: b0180
  article-title: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps
  publication-title: Acm Sigplan Notices
– volume: 14
  start-page: 3216
  year: 2018
  end-page: 3225
  ident: b0530
  article-title: Significant permission identification for machine-learning-based android malware detection
  publication-title: IEEE Transactions on Industrial Informatics
– reference: Maryam, A., Ahmed, U., Aleem, M., Lin, J. C. W., Arshad Islam, M., & Iqbal, M. A. (2020). cHybriDroid: a machine learning-based hybrid technique for securing the edge computing.
– reference: , 2022. Accessed October 11, 2022.
– reference: Lee, D. H. (2013, June). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In
– reference: MobiSec Lab Website. (2022). Retrieved from http://www.mobiseclab.org/. Accessed December 31, 2022.
– reference: Gfan. (2022). Retrieved from http://apk.gfan.com/. Accessed December 31, 2022.
– reference: (Vol. 97, pp. 295–305). Elsevier BV. https://doi.org/10.1016/j.future.2019.03.006.
– start-page: 643
  year: 2017
  end-page: 647
  ident: b0260
  article-title: DroidFax: A toolkit for systematic characterization of Android applications
  publication-title: In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME)
– reference: (Vol. 43, Issue 6, pp. 492–530). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tse.2016.2615307.
– start-page: 738
  year: 2018
  end-page: 743
  ident: b0845
  article-title: Analysis and Classification of Android Malware using Machine Learning Algorithms
  publication-title: In 2018 3rd International Conference on Inventive Computation Technologies (ICICT)
– start-page: 1
  year: 2021
  end-page: 17
  ident: b0100
  article-title: Malware visualization and detection using DenseNets
  publication-title: Personal and Ubiquitous Computing
– reference: Cai, H., & Jenkins, J. (2018, May). Towards sustainable android malware detection. In
– start-page: 920
  year: 2014
  end-page: 924
  ident: b0645
  publication-title: May). Sensitivity analysis of static features for Android malware detection
– start-page: 24
  year: 2016
  end-page: 35
  ident: b0365
  article-title: Frequent subgraph based familial classification of android malware
  publication-title: In 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE)
– reference: Martín, I., Hernández, J. A., & de los Santos, S. (2019). Machine-Learning based analysis and classification of Android malware signatures. In
– start-page: 1
  year: 2019
  end-page: 5
  ident: b0895
  article-title: Multilevel permission extraction in android applications for malware detection
  publication-title: In 2019 International Conference on Computer, Information and Telecommunication Systems (CITS)
– reference: Hsien-De Huang, T., & Kao, H. Y. (2018, December). R2-d2: Color-inspired convolutional neural network (cnn)-based android malware detections. In
– volume: 13
  start-page: 1096
  year: 2017
  end-page: 1109
  ident: b0890
  article-title: Detecting android malware leveraging text semantics of network flows
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 54
  year: 2020
  ident: b0815
  article-title: A TAN based hybrid model for android malware detection
  publication-title: Journal of Information Security and Applications
– reference: Anzhi Application store (2022). Retrieved from https://www.malavida.com/en/soft/anzhi-market/android/. Accessed December 31, 2022.
– start-page: 384
  year: 2014
  end-page: 393
  ident: b0040
  article-title: A Forensic Analysis of Android Malware-How is Malware Written and How it Could Be Detected?
  publication-title: In
– reference: Dilhara, M., Cai, H., & Jenkins, J. (2018, May). Automated detection and repair of incompatible uses of runtime permissions in android apps. In
– reference: Manzil, H. H. R., & Naik, M. S. (2022a, January). COVID-Themed Android Malware Analysis and Detection Framework Based on Permissions. In
– reference: (pp. 309-320). ACM. https://doi.org/10.1145/3029806.3029825.
– start-page: 841
  year: 2019
  end-page: 845
  ident: b0745
  publication-title: Static analysis of android malware detection using deep learning
– reference: (pp. 1871-1878). IEEE. https://doi.org/10.1109/IJCNN.2017.7966078.
– volume: 69
  start-page: 828
  year: 2018
  end-page: 841
  ident: b0710
  article-title: Machine learning-assisted signature and heuristic-based detection of malwares in Android devices
  publication-title: Computers & Electrical Engineering
– volume: 272
  start-page: 638
  year: 2018
  end-page: 646
  ident: b0950
  article-title: Droiddet: Effective and robust detection of Android malware using static analysis along with Rotation Forest Model
  publication-title: Neurocomputing
– reference: StatcounterGlobalStats (2022). Mobile Operating System Market Share World Wide. Retrieved from
– reference: Oak, R., Du, M., Yan, D., Takawale, H., & Amit, I. (2019, November). Malware detection on highly imbalanced data through sequence modeling. In
– volume: 72
  start-page: 607
  year: 2017
  end-page: 615
  ident: b0885
  article-title: An android malware dynamic detection method based on service call co-occurrence matrices
  publication-title: Annals of Telecommunications
– start-page: 808
  year: 2018
  end-page: 813
  ident: b0160
  article-title: NTPDroid: A hybrid android malware detector using network traffic and system permissions
  publication-title: In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE)
– start-page: 1
  year: 2022
  end-page: 6
  ident: b0580
  publication-title: December). DynaMalDroid: Dynamic Analysis-Based Detection Framework for Android Malware Using Machine Learning Techniques
– volume: 6
  start-page: 4321
  year: 2018
  end-page: 4339
  ident: b0170
  article-title: SAMADroid: A novel 3-level hybrid malware detection model for android operating system
  publication-title: IEEE Access
– reference: Cai, H. (2020.a). Assessing and improving malware detection sustainability through app evolution studies.
– volume: 39
  year: 2021
  ident: b0770
  article-title: A survey of android application and malware hardening
  publication-title: Computer Science Review
– volume: 105
  start-page: 230
  year: 2020
  end-page: 247
  ident: b0830
  article-title: Similarity-based Android malware detection using Hamming distance of static binary features
  publication-title: Future Generation Computer Systems
– volume: 143
  year: 2022
  ident: b0030
  article-title: A comparison of machine learning algorithms on design smell detection using balanced and imbalanced dataset: A study of God class
  publication-title: Information and Software Technology
– reference: APKMirror (2022). Retrieved from https://www.apkmirror.com/. Accessed December 31, 2022.
– start-page: 294
  year: 2015
  end-page: 297
  ident: b0720
  publication-title: Malware detection on android smartphones using API class and machine learning
– volume: 93
  start-page: 109
  year: 2019
  end-page: 114
  ident: b0915
  article-title: An Android mutation malware detection based on deep learning using visualization of importance from codes
  publication-title: Microelectronics Reliability
– reference: (pp. 67-71). ACM. https://doi.org/10.1145/3197231.3197255.
– reference: Samani, R. (2020). Contributions from the McAfee Advanced Threat Research and Mobile Malware Research team. Retrieved from https://www.mcafee.com/. Accessed July 10, 2020.
– volume: 74
  start-page: 121
  year: 2018
  end-page: 133
  ident: b0605
  article-title: CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 16
  start-page: 157
  year: 2020
  end-page: 171
  ident: b0635
  article-title: Deep learning for image-based mobile malware detection
  publication-title: Journal of Computer Virology and Hacking Techniques
– reference: (pp. 94-105). ACM. https://doi.org/10.1145/2931037.2931054.
– reference: (pp. 1-9). ACM. https://doi.org/10.1145/2843859.2843866.
– reference: Cai, H. (2020.b, July). Embracing mobile app evolution via continuous ecosystem mining and characterization. In
– reference: Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012, February). Detecting repackaged smartphone applications in third-party android marketplaces. In
– volume: 12
  year: 2021
  ident: b0085
  article-title: Sustainable Android Malware Detection Scheme using Deep Learning Algorithm
  publication-title: International Journal of Advanced Computer Science and Applications
– volume: 1
  start-page: 1
  year: 2019
  end-page: 42
  ident: b0215
  article-title: The Android malware detection systems between hope and reality
  publication-title: SN Applied Sciences
– volume: 1
  start-page: 1
  year: 2018
  end-page: 17
  ident: b0630
  article-title: DroidEcho: An in-depth dissection of malicious behaviors in Android applications
  publication-title: Cybersecurity
– reference: (pp. 1-5). IEEE. https://doi.org/10.1109/ICONAT53423.2022.9726024.
– reference: AndroTotal (2022). Retrieved from http://www.andrototal.org. Accessed December 31, 2022.
– reference: (Vol. 14, pp. 23-26).
– reference: IccRE (2022). Retrieved from https://sites.google.com/site/icctawebpage/dataset. Accessed December 31, 2022.
– reference: TutorialsPoint (2021). Android Overview. Retrieved from
– volume: 2
  start-page: 1
  year: 2020
  end-page: 15
  ident: b0870
  article-title: Android malware detection based on image-based features and machine learning techniques
  publication-title: SN Applied Sciences
– reference: Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., & Ahmadi, M. (2018). Microsoft malware classification challenge.
– volume: 103
  start-page: 22
  year: 2017
  end-page: 31
  ident: b0860
  article-title: A hybrid approach of mobile malware detection in Android
  publication-title: Journal of Parallel and Distributed computing
– reference: Singh, A. K., Wadhwa, G., Ahuja, M., Soni, K., & Sharma, K. (2020). Android malware detection using LSI-based reduced opcode feature vector. In
– start-page: 288
  year: 2015
  end-page: 293
  ident: b0520
  publication-title: August). Android anomaly detection system using machine learning classification
– start-page: 364
  year: 2013
  end-page: 381
  ident: b0175
  article-title: Instrumenting android and java applications as easy as abc
  publication-title: International Conference on Runtime Verification
– volume: Vol. 1
  start-page: 426
  year: 2015
  end-page: 436
  ident: b0195
  article-title: Mining apps for abnormal usage of sensitive data
  publication-title: In
– start-page: 875
  year: 2010
  end-page: 886
  ident: b0280
  article-title: Data mining for imbalanced datasets: An overview
  publication-title: Data mining and knowledge discovery handbook
– start-page: 490
  year: 2013
  end-page: 495
  ident: b0420
  article-title: Analysis of android malware detection performance using machine learning classifiers
  publication-title: In 2013 international conference on ICT Convergence (ICTC)
– start-page: 1
  year: 2019
  end-page: 8
  ident: b0825
  article-title: Extensible android malware detection and family classification using network-flows and API-calls
  publication-title: In 2019 International Carnahan Conference on Security Technology (ICCST)
– reference: Statista. (2021). Development of Android Malware Worldwide 2016-2020. Retrieved from https://www.statista.com/statistics/680705/global android-malware-volume/. Accessed January 7, 2021.
– volume: 4
  start-page: e164
  year: 2021
  ident: b0185
  article-title: Android Permission Classifier: A deep learning algorithmic framework based on protection and threat levels
  publication-title: Security and Privacy
– reference: Contagio Mini Dump (2020). Retrieved from http://contagiominidump.blogspot.com/. Accessed June 02, 2020.
– reference: Afonso, D. A. (2015). de Geus, 2015 Afonso VM, de Amorim MF, Grégio ARA, Junquera GB, de Geus PL.
– volume: 6
  start-page: 76217
  year: 2018
  end-page: 76227
  ident: b0055
  article-title: Android malware permission-based multi-class classification using extremely randomized trees
  publication-title: IEEE Access
– start-page: 252
  year: 2016
  end-page: 261
  ident: b0315
  article-title: Droidscribe: Classifying android malware based on runtime behavior
  publication-title: In 2016 IEEE Security and Privacy Workshops (SPW)
– volume: 17
  start-page: 998
  year: 2014
  end-page: 1022
  ident: b0370
  article-title: Android security: A survey of issues, malware penetration, and defenses
  publication-title: IEEE communications surveys & tutorials
– reference: .
– volume: Volume. 184
  start-page: 841
  year: 2021
  end-page: 846
  ident: b0045
  article-title: ReDroidDet: Android malware detection based on recurrent neural network
  publication-title: The 12th International Conference on Ambient Systems, Network and Technologies (ANT) / The 4th International Conference on Emerging Data and Industry 4.0 (EDI40) / Affiliated Workshops
– volume: 47
  start-page: 1
  year: 2015
  end-page: 45
  ident: b0840
  article-title: Securing android: A survey, taxonomy, and challenges
  publication-title: ACM Computing Surveys (CSUR)
– volume: 115
  start-page: 844
  year: 2021
  end-page: 856
  ident: b0440
  article-title: DeepAMD: Detection and identification of Android malware using high-efficient Deep Artificial Neural Network
  publication-title: Future Generation computer systems
– reference: (2), 1-28.
– volume: 47
  start-page: 2934
  year: 2020
  end-page: 2955
  ident: b0255
  article-title: A longitudinal study of application structure and behaviors in android
  publication-title: IEEE Transactions on Software Engineering
– reference: Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., & Stringhini, G. (2016). Mamadroid: Detecting android malware by building markov chains of behavioral models.
– volume: 93
  year: 2020
  ident: b0695
  article-title: AMalNet: A deep learning framework based on graph convolutional networks for malware detection
  publication-title: Computers & Security
– volume: 173
  start-page: 345
  year: 2020
  end-page: 353
  ident: b0725
  publication-title: Android malware detection based on vulnerable feature aggregation
– reference: AndroidPIT market (2022). Retrieved from
– reference: Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani, A. A. (2020, August). Dynamic android malware category classification using semi-supervised deep learning. In
– reference: Martín, A., Lara-Cabrera, R., & Camacho, D. (2019). Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset. In
– volume: 33
  start-page: 5183
  year: 2021
  end-page: 5240
  ident: b0565
  article-title: MLDroid—Framework for Android malware detection using machine learning techniques
  publication-title: Neural Computing and Applications
– reference: (pp. 149-153). ACM. https://doi.org/10.1145/3264746.3264780.
– reference: (p. 106). DOI: 10.11228/dpsc.02.01.
– volume: 4
  start-page: 95
  year: 2021
  end-page: 114
  ident: b0850
  article-title: LimonDroid: A system coupling three signature-based schemes for profiling Android malware
  publication-title: Iran Journal of Computer Science
– reference: APKTool (2021). Retrieved from https://ibotpeaches.github.io/Apktool/. Accessed November 11, 2021.
– volume: 14
  start-page: 1455
  year: 2018
  end-page: 1470
  ident: b0270
  article-title: Droidcat: Effective android malware detection and categorization via app-level profiling
  publication-title: IEEE Transactions on Information Forensics and Security
– reference: (pp. 899-901). ACM. https://doi.org/10.1145/3052973.3055156.
– reference: Hiapk. (2022), Retrieved from http://apk.hiapk.com/. Accessed December 31, 2022.
– reference: . Accessed December 30, 2022.
– volume: 38
  start-page: 161
  year: 2012
  end-page: 190
  ident: b0760
  article-title: “Andromaly”: A behavioral malware detection framework for android devices
  publication-title: Journal of Intelligent Information Systems
– volume: 73
  start-page: 235
  year: 2018
  end-page: 248
  ident: b0025
  article-title: Toward a more dependable hybrid analysis of android malware using aspect-oriented programming
  publication-title: computers & security
– reference: Kaspersky. (2022). 2021 Mobile threats report: cybercriminals forego low hanging fruit to go after banking and gaming. Retrieved from https://www.kaspersky.com/about/press-releases/2022_2021-mobile-threats-report-cybercriminals-forego-low-hanging-fruit-to-go-after-banking-and-gaming. Accessed December 30, 2022.
– reference: Koodous. (2022). Retrieved from https://koodous.com/. Accessed December 31, 2022.
– volume: 22
  start-page: 1
  year: 2019
  end-page: 34
  ident: b0685
  article-title: Mamadroid: Detecting android malware by building markov chains of behavioral models (extended version)
  publication-title: ACM Transactions on Privacy and Security (TOPS)
– reference: Slideme. (2022). Retrieved from http://slideme.org/. Accessed December 31, 2022.
– volume: 6
  start-page: 59540
  year: 2018
  end-page: 59556
  ident: b0190
  article-title: Countering android malware: A scalable semi-supervised approach for family-signature generation
  publication-title: IEEE Access
– volume: 11
  start-page: 15
  year: 2017
  end-page: 28
  ident: b0515
  article-title: Identification of cryptographic vulnerability and malware detection in Android
  publication-title: International Journal of Information Security and Privacy (IJISP)
– volume: 14
  year: 2022
  ident: b0320
  article-title: Android Malware Detection Using One-Class Graph Neural Networks
  publication-title: ISeCure
– volume: 42
  start-page: 46
  year: 2018
  end-page: 56
  ident: b0220
  article-title: Sword: Semantic aware android malware detector
  publication-title: Journal of information security and applications
– reference: Android malware dataset. (2017) Retrieved from https://www.unb.ca/cic/datasets/andmal2017.html. Accessed December 31, 2022.
– volume: 206
  year: 2022
  ident: b0475
  article-title: DroidMalwareDetector: A novel Android malware detection framework based on convolutional neural network
  publication-title: Expert Systems with Applications
– reference: (pp. 2633-2642). IEEE. https://doi.org/10.1109/BigData.2018.8622324.
– reference: . Accessed December 31, 2022.
– reference: Accessed October 11, 2020.
– year: 2015
  ident: b0395
  article-title: Ngram and signature based malware detection in android platform
– reference: Mumayi. (2022). Retrieved from http://www.mumayi.com/, Accessed December 31, 2022).
– reference: Chen, S., Xue, M., Tang, Z., Xu, L., & Zhu, H. (2016, May). Stormdroid: A streaminglized machine learning-based system for detecting android malware. In
– reference: ,
– volume: 19
  start-page: 90
  year: 2018
  end-page: 102
  ident: b0355
  article-title: Identifying mobile inter-app communication risks
  publication-title: IEEE Transactions on Mobile Computing
– volume: 8
  start-page: 984
  year: 2020
  end-page: 994
  ident: b0945
  article-title: SEDMDroid: An enhanced stacking ensemble framework for Android malware detection
  publication-title: IEEE Transactions on Network Science and Engineering
– reference: (pp. 13-20). ACM. https://doi.org/10.1145/2804345.2804349.
– reference: (pp. 65-72). ACM. https://doi.org/10.1145/3041008.3041010.
– reference: GooglePlay (2022). Retrieved from
– reference: (pp. 22-25). ACM. https://doi.org/10.1145/3194244.3194257.
– volume: 49
  start-page: 1
  year: 2017
  end-page: 41
  ident: b0835
  article-title: The evolution of android malware and android analysis techniques
  publication-title: ACM Computing Surveys (CSUR)
– volume: 15
  start-page: 83
  year: 2016
  end-page: 97
  ident: b0750
  article-title: Madam: Effective and efficient behavior-based android malware detection and prevention
  publication-title: IEEE Transactions on Dependable and Secure Computing
– reference: Suarez-Tangil, G., & Stringhini, G. (2018). Eight years of rider measurement in the android malware ecosystem: evolution and lessons learned.
– start-page: 189
  year: 2017
  end-page: 198
  ident: b0540
  publication-title: May). MR-Droid: A scalable and prioritized analysis of inter-app communication risks
– reference: (pp. 317-326). ACM. https://doi.org/10.1145/2133601.2133640.
– reference: Albakri, A., Fatima, H., Mohammed, M., Ahmed, A., Ali, A., Ali, A., & Elzein, N. M. (2022). Survey on Reverse-Engineering Tools for Android Mobile Devices.
– reference: Jain, A., Gonzalez, H., & Stakhanova, N. (2015, December). Enriching reverse engineering through visual exploration of Android binaries. In
– reference: Jd-gui. (2021). Retrieved from https://github.com/java-decompiler/jd-gui. Accessed April 02, 2021.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b0790
  article-title: A collaborative framework for android malware detection using DNS & dynamic analysis
  publication-title: In 2017 IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII)
– reference: AndroMalShare (2022). Retrieved from http://andromalshare.androidmalware:8080/#.com. Accessed December 31, 2022.
– reference: Amit, I., Matherly, J., Hewlett, W., Xu, Z., Meshi, Y., & Weinberger, Y. (2018). Machine learning in cyber-security-problems, challenges and data sets.
– reference: (pp. 31-35).
– reference: Chen, L., Zhang, M., Yang, C. Y., & Sahita, R. (2017, October). POSTER: semi-supervised classification for dynamic android malware detection. In
– volume: 89
  year: 2020
  ident: b0065
  article-title: DL-Droid: Deep learning based android malware detection using real devices
  publication-title: Computers & Security
– reference: DroidBench (2022). Retrieved from https://github.com/secure-software-engineering/DroidBench/tree/develop. Accessed December 31, 2022.
– start-page: 8
  year: 2020
  end-page: 12
  ident: b0415
  article-title: Hybrid-based malware analysis for effective and efficiency android malware detection
  publication-title: In 2020 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS)
– volume: 2
  start-page: 113
  year: 2019
  end-page: 124
  ident: b0360
  article-title: A new technique for intent elicitation in Android applications
  publication-title: Iran Journal of Computer Science
– reference: (pp. 515-522). IEEE. https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094.
– reference: Yuan, L. (2016). Xue, 2016 Yuan Z., Lu Y., Xue Y. Droiddetector: android malware characterization and detection using deep learning,
– volume: 125
  start-page: 314
  year: 2021
  end-page: 323
  ident: b0310
  article-title: Visualization and deep-learning-based malware variant detection using OpCode-level features
  publication-title: Future Generation Computer Systems
– start-page: 272
  year: 2019
  end-page: 273
  ident: b0390
  article-title: On the deterioration of learning-based malware detectors for Android
  publication-title: In 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)
– reference: Jung, J., Choi, J., Cho, S. J., Han, S., Park, M., & Hwang, Y. (2018, October). Android malware detection using convolutional neural networks and data section images. In
– reference: (1), 114-123.
– volume: 18
  start-page: 1231
  year: 2018
  end-page: 1245
  ident: b0765
  article-title: Android malware detection using complex-flows
  publication-title: IEEE Transactions on Mobile Computing
– volume: 12
  start-page: 1369
  year: 2021
  end-page: 1411
  ident: b0570
  article-title: SemiDroid: A behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches
  publication-title: International Journal of Machine Learning and Cybernetics
– start-page: 95
  year: 2012
  end-page: 109
  ident: b0940
  article-title: Dissecting android malware: Characterization and evolution
  publication-title: In
– volume: 39
  year: 2021
  ident: b0015
  article-title: Applying Natural Language Processing for detecting malicious patterns in Android applications
  publication-title: Forensic Science International: Digital Investigation
– volume: 33
  start-page: 3133
  year: 2021
  end-page: 3153
  ident: b0210
  article-title: VisDroid: Android malware classification based on local and global image features, bag of visual words and machine learning techniques
  publication-title: Neural Computing and Applications
– volume: 14
  start-page: 773
  year: 2018
  end-page: 788
  ident: b0495
  article-title: A multimodal deep learning method for android malware detection using various features
  publication-title: IEEE Transactions on Information Forensics and Security
– reference: VirusShare. (2020). Retrieved from https://virusshare.com/. Accessed February 21, 2020.
– start-page: 344
  year: 2017
  end-page: 347
  ident: b0910
  article-title: Detecting android malware by applying classification techniques on images patterns
  publication-title: In 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA)
– reference: APKRepatcher (2022). Retrieved from https://github.com/csanuragjain/APKRepatcher. Accessed September 23, 2022.
– volume: 13
  start-page: 269
  year: 2019
  end-page: 277
  ident: b0200
  article-title: Analysis of dynamic code updating in Android with security perspective
  publication-title: IET Information Security
– volume: 103
  start-page: 204
  year: 2020
  end-page: 211
  ident: b0505
  article-title: A survey on mobile malware detection techniques
  publication-title: IEICE Transactions on Information and Systems
– reference: Nix, R., & Zhang, J. (2017, May). Classification of Android apps and malware using deep neural networks. In
– reference: Github.com. (2022). Retrieved from https://github.com/sk3ptre/AndroidMalware_2019. Accessed December 31, 2022.
– start-page: 55
  year: 2010
  end-page: 62
  ident: b0225
  article-title: An android application sandbox system for suspicious software detection
  publication-title: In
– volume: 11
  start-page: 141
  year: 2015
  end-page: 157
  ident: b0300
  article-title: M0droid: An android behavioral-based malware detection model
  publication-title: Journal of Information Privacy and Security
– reference: (pp. 2479-2481). ACM. https://doi.org/10.1145/3133956.3138838.
– volume: 22
  start-page: 66
  year: 2015
  end-page: 80
  ident: b0375
  article-title: AndroSimilar: Robust signature for detecting variants of Android malware
  publication-title: Journal of Information Security and Applications
– reference: (pp. 1-7).
– reference: (pp. 350-351). ACM. https://doi.org/10.1145/3183440.3195004.
– volume: 8
  start-page: 148404
  year: 2020
  end-page: 148410
  ident: b0930
  article-title: An android malware detection approach based on SIMGRU
  publication-title: IEEE Access
– volume: 30
  start-page: 1
  year: 2022
  end-page: 34
  ident: b0555
  article-title: Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder
  publication-title: Journal of Network and Systems Management
– reference: . Accessed December 10, 2022.
– reference: (1), 9-17.
– reference: AppChina (2022). Retrieved from http://www.appchina.com/. Accessed December 31, 2022.
– reference: JADX. (2021). Retrieved from https://github.com/skylot/jadx. Accessed March 09, 2021.
– start-page: 47
  year: 2019
  end-page: 62
  ident: b0905
  article-title: Droidevolver: Self-evolving android malware detection system
  publication-title: In 2019 IEEE European Symposium on Security and Privacy (EuroS&P)
– volume: 87
  year: 2020
  ident: b0755
  article-title: Secur-ama: Active malware analysis based on monte carlo tree search for android systems
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Baidu App Store. (2022). Retrieved from https://baidu-app-store.en.softonic.com/. Accessed December 31, 2022.
– reference: Fasano, F., Martinelli, F., Mercaldo, F., & Santone, A. (2020). Android Run-time Permission Exploitation User Awareness by Means of Formal Methods. In
– year: 2018
  ident: b0615
  article-title: 2018
– volume: 184
  start-page: 847
  year: 2021
  end-page: 852
  ident: b0350
  article-title: Android malware detection using deep learning
  publication-title: The 12th International Conference on Ambient Systems, Network and Technologies (ANT) / The 4th International Conference on Emerging Data and Industry 4.0 (EDI40) / Affiliated Workshops
– start-page: 2022
  year: 2022
  ident: b0005
  article-title: A Comprehensive Review of Android Security: Threats
– volume: 51
  start-page: 16
  year: 2015
  end-page: 31
  ident: b0575
  article-title: Stealth attacks: An extended insight into the obfuscation effects on android malware
  publication-title: Computers & Security
– reference: CICInvesAndMal (2019). Retrieved from
– reference: Pandaapp. (2022). Retrieved from http://download.pandaapp.com/?app=soft&controller=android#.V-p3f4h97IU. Accessed December 31, 2022).
– start-page: 252
  year: 2017
  end-page: 276
  ident: b0900
  article-title: Deep ground truth analysis of current android malware
  publication-title: International conference on detection of intrusions and malware, and vulnerability assessment
– volume: 13
  start-page: 22
  year: 2015
  end-page: 37
  ident: b0385
  article-title: A review on feature selection in mobile malware detection
  publication-title: Digital investigation
– start-page: 229
  year: 2017
  end-page: 234
  ident: b0485
  article-title: Android ransomware detection using reduced opcode sequence and image similarity
  publication-title: In 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE)
– reference: Burris, A. (2020). G Data Mobile Malware Report 2019: New high for malicious Android apps. Retrieved from https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps. Accessed October 11, 2020.
– start-page: 255
  year: 2018
  end-page: 266
  ident: b0680
  publication-title: November). Android malware detection: A survey
– reference: (pp. 804-814).
– reference: (Vol. 52, pp. 128–142). Elsevier BV. https://doi.org/10.1016/j.inffus.2018.12.006.
– reference: Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. (2011, July). Malware images: visualization and automatic classification. In
– reference: . Accessed February, 2021.
– start-page: 570
  year: 2021
  end-page: 574
  ident: b0535
  publication-title: Androct: ten years of app call traces in android
– start-page: 1
  year: 2020
  end-page: 10
  ident: b0335
  article-title: Android malware detection method based on bytecode image
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– reference: Martinelli, F., Mercaldo, F., & Saracino, A. (2017, April). Bridemaid: An hybrid tool for accurate detection of android malware. In
– start-page: 1
  year: 2016
  end-page: 3
  ident: b0510
  publication-title: November). Lightweight malware detection based on machine learning algorithms and the android manifest file
– start-page: 110
  year: 2019
  end-page: 117
  ident: b0050
  article-title: A Survey on Android Malware Detection Techniques Using Machine Learning Algorithms
  publication-title: In 2019 Sixth International Conference on Software Defined Systems (SDS)
– year: 2021
  ident: b0080
  article-title: Recent advances in Android mobile malware detection: A systematic literature review
– reference: (Vol. 3, No. 2, p. 896).
– volume: 54
  year: 2022
  ident: b0785
  article-title: An optimized and efficient android malware detection framework for future sustainable computing
  publication-title: Sustainable Energy Technologies and Assessments
– reference: (pp. 377-388). ACM. https://doi.org/10.1145/2897845.2897860.
– reference: Mao, K., Harman, M., & Jia, Y. (2016, July). Sapienz: Multi-objective automated testing for android applications. In
– reference: (pp. 37-48). ACM. https://doi.org/10.1145/3338501.3357374.
– volume: 122
  year: 2020
  ident: b0265
  article-title: A study of run-time behavioral evolution of benign versus malicious apps in android
  publication-title: Information and Software Technology
– volume: 7
  start-page: 21235
  year: 2019
  end-page: 21245
  ident: b0550
  article-title: A combination method for android malware detection based on control flow graphs and machine learning algorithms
  publication-title: IEEE access
– reference: Ngamwitroj, S., & Limthanmaphon, B. (2018, February). Adaptive Android malware signature detection. In
– reference: Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2017, March). Emulator vs real phone: Android malware detection using machine learning. In
– volume: 24
  start-page: 1
  year: 2021
  end-page: 37
  ident: b0090
  article-title: Systematic mutation-based evaluation of the soundness of security-focused android static analysis techniques
  publication-title: ACM Transactions on Privacy and Security (TOPS)
– reference: APKPure (2022). Retrieved from https://m.apkpure.com/. Accessed December 31, 2022.
– volume: 14
  start-page: 57
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0410
  article-title: DecaDroid classification and characterization of malicious behaviour in android applications
  publication-title: International Journal of Information Security and Privacy (IJISP)
  doi: 10.4018/IJISP.2020100104
– ident: 10.1016/j.eswa.2023.122255_b0625
  doi: 10.1155/2020/8861639
– start-page: 841
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0745
– ident: 10.1016/j.eswa.2023.122255_b0250
  doi: 10.1145/3183440.3195004
– volume: 20
  start-page: 59
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0545
  article-title: NSDroid: Efficient multi-classification of android malware using neighborhood signature in local function call graphs
  publication-title: International Journal of Information Security
  doi: 10.1007/s10207-020-00489-5
– ident: 10.1016/j.eswa.2023.122255_b0675
  doi: 10.1145/3338501.3357374
– ident: 10.1016/j.eswa.2023.122255_b0880
– volume: 6
  start-page: 59540
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0190
  article-title: Countering android malware: A scalable semi-supervised approach for family-signature generation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2874502
– ident: 10.1016/j.eswa.2023.122255_b0450
– volume: 12
  issue: 12
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0085
  article-title: Sustainable Android Malware Detection Scheme using Deep Learning Algorithm
  publication-title: International Journal of Advanced Computer Science and Applications
  doi: 10.14569/IJACSA.2021.01212104
– volume: 39
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0705
  article-title: A survey of malware detection in Android apps: Recommendations and perspectives for future research
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2020.100358
– start-page: 643
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0260
  article-title: DroidFax: A toolkit for systematic characterization of Android applications
– ident: 10.1016/j.eswa.2023.122255_b0430
  doi: 10.1109/BigData.2018.8622324
– start-page: 364
  year: 2013
  ident: 10.1016/j.eswa.2023.122255_b0175
  article-title: Instrumenting android and java applications as easy as abc
– ident: 10.1016/j.eswa.2023.122255_b0780
– ident: 10.1016/j.eswa.2023.122255_b0865
– ident: 10.1016/j.eswa.2023.122255_bib952
– volume: 47
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2023.122255_b0840
  article-title: Securing android: A survey, taxonomy, and challenges
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/2733306
– volume: 33
  start-page: 5183
  issue: 10
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0565
  article-title: MLDroid—Framework for Android malware detection using machine learning techniques
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05309-4
– volume: 1
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0630
  article-title: DroidEcho: An in-depth dissection of malicious behaviors in Android applications
  publication-title: Cybersecurity
  doi: 10.1186/s42400-018-0006-7
– volume: 51
  start-page: 16
  year: 2015
  ident: 10.1016/j.eswa.2023.122255_b0575
  article-title: Stealth attacks: An extended insight into the obfuscation effects on android malware
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2015.02.007
– ident: 10.1016/j.eswa.2023.122255_b0620
  doi: 10.1145/3052973.3055156
– volume: 20
  start-page: 371
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0700
  article-title: MalFamAware: Automatic family identification and malware classification through online clustering
  publication-title: International Journal of Information Security
  doi: 10.1007/s10207-020-00509-4
– ident: 10.1016/j.eswa.2023.122255_b0120
– start-page: 294
  year: 2015
  ident: 10.1016/j.eswa.2023.122255_b0720
– volume: 13
  start-page: 269
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0200
  article-title: Analysis of dynamic code updating in Android with security perspective
  publication-title: IET Information Security
  doi: 10.1049/iet-ifs.2018.5316
– ident: 10.1016/j.eswa.2023.122255_b0230
  doi: 10.1145/2046614.2046619
– volume: 8
  start-page: 984
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0945
  article-title: SEDMDroid: An enhanced stacking ensemble framework for Android malware detection
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2020.2996379
– volume: 42
  start-page: 46
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0220
  article-title: Sword: Semantic aware android malware detector
  publication-title: Journal of information security and applications
  doi: 10.1016/j.jisa.2018.07.003
– ident: 10.1016/j.eswa.2023.122255_b0435
– volume: 38
  start-page: 161
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2023.122255_b0760
  article-title: “Andromaly”: A behavioral malware detection framework for android devices
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-010-0148-x
– ident: 10.1016/j.eswa.2023.122255_b0560
  doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
– ident: 10.1016/j.eswa.2023.122255_b0135
– year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0615
– ident: 10.1016/j.eswa.2023.122255_b0155
– volume: 12
  start-page: 1369
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0570
  article-title: SemiDroid: A behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-020-01238-9
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0335
  article-title: Android malware detection method based on bytecode image
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– ident: 10.1016/j.eswa.2023.122255_b0095
– year: 2015
  ident: 10.1016/j.eswa.2023.122255_b0395
– ident: 10.1016/j.eswa.2023.122255_b0020
  doi: 10.1155/2022/4908134
– volume: 6
  start-page: 4321
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0170
  article-title: SAMADroid: A novel 3-level hybrid malware detection model for android operating system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2792941
– volume: 125
  start-page: 314
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0310
  article-title: Visualization and deep-learning-based malware variant detection using OpCode-level features
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2021.06.032
– volume: 25
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2023.122255_b0305
  article-title: A deep dive inside drebin: An explorative analysis beyond android malware detection scores
  publication-title: ACM Transactions on Privacy and Security
  doi: 10.1145/3503463
– ident: 10.1016/j.eswa.2023.122255_b0730
  doi: 10.1109/TSE.2016.2615307
– ident: 10.1016/j.eswa.2023.122255_b0660
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0100
  article-title: Malware visualization and detection using DenseNets
  publication-title: Personal and Ubiquitous Computing
– ident: 10.1016/j.eswa.2023.122255_b0490
– volume: 16
  start-page: 157
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0635
  article-title: Deep learning for image-based mobile malware detection
  publication-title: Journal of Computer Virology and Hacking Techniques
  doi: 10.1007/s11416-019-00346-7
– start-page: 570
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0535
– ident: 10.1016/j.eswa.2023.122255_b0655
  doi: 10.1145/2016904.2016908
– ident: 10.1016/j.eswa.2023.122255_b0150
– start-page: 738
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0845
  article-title: Analysis and Classification of Android Malware using Machine Learning Algorithms
– volume: 22
  start-page: 66
  year: 2015
  ident: 10.1016/j.eswa.2023.122255_b0375
  article-title: AndroSimilar: Robust signature for detecting variants of Android malware
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2014.10.011
– volume: 143
  year: 2022
  ident: 10.1016/j.eswa.2023.122255_b0030
  article-title: A comparison of machine learning algorithms on design smell detection using balanced and imbalanced dataset: A study of God class
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2021.106736
– start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2023.122255_b0510
– ident: 10.1016/j.eswa.2023.122255_b0130
– start-page: 252
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0900
  article-title: Deep ground truth analysis of current android malware
– volume: 30
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.122255_b0555
  article-title: Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder
  publication-title: Journal of Network and Systems Management
  doi: 10.1007/s10922-021-09634-4
– start-page: 344
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0910
  article-title: Detecting android malware by applying classification techniques on images patterns
– ident: 10.1016/j.eswa.2023.122255_b0125
– ident: 10.1016/j.eswa.2023.122255_b0400
– start-page: 110
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0050
  article-title: A Survey on Android Malware Detection Techniques Using Machine Learning Algorithms
– volume: 24
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0090
  article-title: Systematic mutation-based evaluation of the soundness of security-focused android static analysis techniques
  publication-title: ACM Transactions on Privacy and Security (TOPS)
  doi: 10.1145/3439802
– volume: 39
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0015
  article-title: Applying Natural Language Processing for detecting malicious patterns in Android applications
  publication-title: Forensic Science International: Digital Investigation
– start-page: 229
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0485
  article-title: Android ransomware detection using reduced opcode sequence and image similarity
– volume: 15
  start-page: 83
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2023.122255_b0750
  article-title: Madam: Effective and efficient behavior-based android malware detection and prevention
  publication-title: IEEE Transactions on Dependable and Secure Computing
  doi: 10.1109/TDSC.2016.2536605
– ident: 10.1016/j.eswa.2023.122255_b0380
  doi: 10.5220/0009372308040814
– ident: 10.1016/j.eswa.2023.122255_b0670
  doi: 10.1109/IJCNN.2017.7966078
– start-page: 2022
  year: 2022
  ident: 10.1016/j.eswa.2023.122255_b0005
– start-page: 490
  year: 2013
  ident: 10.1016/j.eswa.2023.122255_b0420
  article-title: Analysis of android malware detection performance using machine learning classifiers
– start-page: 55
  year: 2010
  ident: 10.1016/j.eswa.2023.122255_b0225
  article-title: An android application sandbox system for suspicious software detection
– ident: 10.1016/j.eswa.2023.122255_b0340
– start-page: 920
  year: 2014
  ident: 10.1016/j.eswa.2023.122255_b0645
– start-page: 95
  year: 2012
  ident: 10.1016/j.eswa.2023.122255_b0940
  article-title: Dissecting android malware: Characterization and evolution
– volume: 14
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2023.122255_b0320
  article-title: Android Malware Detection Using One-Class Graph Neural Networks
  publication-title: ISeCure
– ident: 10.1016/j.eswa.2023.122255_b0405
– volume: 14
  start-page: 773
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0495
  article-title: A multimodal deep learning method for android malware detection using various features
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2018.2866319
– ident: 10.1016/j.eswa.2023.122255_b0105
– volume: 2
  start-page: 113
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0360
  article-title: A new technique for intent elicitation in Android applications
  publication-title: Iran Journal of Computer Science
  doi: 10.1007/s42044-019-00032-3
– volume: 7
  start-page: 21235
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0550
  article-title: A combination method for android malware detection based on control flow graphs and machine learning algorithms
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2019.2896003
– ident: 10.1016/j.eswa.2023.122255_b0810
  doi: 10.1145/3029806.3029825
– ident: 10.1016/j.eswa.2023.122255_b0245
  doi: 10.1145/3387905.3388612
– volume: 4
  start-page: 95
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0850
  article-title: LimonDroid: A system coupling three signature-based schemes for profiling Android malware
  publication-title: Iran Journal of Computer Science
  doi: 10.1007/s42044-020-00068-w
– ident: 10.1016/j.eswa.2023.122255_b0640
– volume: 22
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0685
  article-title: Mamadroid: Detecting android malware by building markov chains of behavioral models (extended version)
  publication-title: ACM Transactions on Privacy and Security (TOPS)
  doi: 10.1145/3313391
– ident: 10.1016/j.eswa.2023.122255_b0795
– ident: 10.1016/j.eswa.2023.122255_b0235
– volume: 93
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0695
  article-title: AMalNet: A deep learning framework based on graph convolutional networks for malware detection
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2020.101792
– ident: 10.1016/j.eswa.2023.122255_b0585
  doi: 10.1109/ICONAT53423.2022.9726024
– start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2023.122255_b0070
  article-title: DynaLog: An automated dynamic analysis framework for characterizing android applications
– volume: 2
  start-page: 1
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0870
  article-title: Android malware detection based on image-based features and machine learning techniques
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-020-3132-2
– ident: 10.1016/j.eswa.2023.122255_b0595
  doi: 10.14722/ndss.2017.23353
– volume: 122
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0265
  article-title: A study of run-time behavioral evolution of benign versus malicious apps in android
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2020.106291
– volume: 14
  start-page: 3216
  issue: 7
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0530
  article-title: Significant permission identification for machine-learning-based android malware detection
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2017.2789219
– start-page: 808
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0160
  article-title: NTPDroid: A hybrid android malware detector using network traffic and system permissions
– volume: 17
  start-page: 998
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2023.122255_b0370
  article-title: Android security: A survey of issues, malware penetration, and defenses
  publication-title: IEEE communications surveys & tutorials
  doi: 10.1109/COMST.2014.2386139
– start-page: 47
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0905
  article-title: Droidevolver: Self-evolving android malware detection system
– volume: 4
  start-page: e164
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0185
  article-title: Android Permission Classifier: A deep learning algorithmic framework based on protection and threat levels
  publication-title: Security and Privacy
  doi: 10.1002/spy2.164
– start-page: 288
  year: 2015
  ident: 10.1016/j.eswa.2023.122255_b0520
– ident: 10.1016/j.eswa.2023.122255_b0935
  doi: 10.1145/2133601.2133640
– ident: 10.1016/j.eswa.2023.122255_b0590
  doi: 10.1145/2931037.2931054
– volume: 13
  start-page: 1096
  issue: 5
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0890
  article-title: Detecting android malware leveraging text semantics of network flows
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2017.2771228
– volume: 14
  start-page: 1455
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0270
  article-title: Droidcat: Effective android malware detection and categorization via app-level profiling
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2018.2879302
– volume: 47
  start-page: 2934
  issue: 12
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0255
  article-title: A longitudinal study of application structure and behaviors in android
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2020.2975176
– volume: 73
  start-page: 235
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0025
  article-title: Toward a more dependable hybrid analysis of android malware using aspect-oriented programming
  publication-title: computers & security
  doi: 10.1016/j.cose.2017.11.006
– volume: 8
  start-page: 148404
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0930
  article-title: An android malware detection approach based on SIMGRU
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007571
– ident: 10.1016/j.eswa.2023.122255_b0345
– ident: 10.1016/j.eswa.2023.122255_b0330
  doi: 10.1145/3197231.3197255
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0825
  article-title: Extensible android malware detection and family classification using network-flows and API-calls
– volume: 6
  start-page: 76217
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0055
  article-title: Android malware permission-based multi-class classification using extremely randomized trees
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883975
– ident: 10.1016/j.eswa.2023.122255_b0425
– volume: 184
  start-page: 847
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0350
  article-title: Android malware detection using deep learning
– volume: 69
  start-page: 828
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0710
  article-title: Machine learning-assisted signature and heuristic-based detection of malwares in Android devices
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2017.11.028
– ident: 10.1016/j.eswa.2023.122255_b0075
  doi: 10.1145/3041008.3041010
– start-page: 875
  year: 2010
  ident: 10.1016/j.eswa.2023.122255_b0280
  article-title: Data mining for imbalanced datasets: An overview
  publication-title: Data mining and knowledge discovery handbook
– volume: Vol. 1
  start-page: 426
  year: 2015
  ident: 10.1016/j.eswa.2023.122255_b0195
  article-title: Mining apps for abnormal usage of sensitive data
– ident: 10.1016/j.eswa.2023.122255_b0445
– ident: 10.1016/j.eswa.2023.122255_b0455
  doi: 10.1145/2843859.2843866
– ident: 10.1016/j.eswa.2023.122255_b0875
– ident: 10.1016/j.eswa.2023.122255_b0925
  doi: 10.1109/TST.2016.7399288
– ident: 10.1016/j.eswa.2023.122255_b0690
– volume: 14
  start-page: 531
  issue: 5
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0855
  article-title: Improved real-time permission based malware detection and clustering approach using model independent pruning
  publication-title: IET Information Security
  doi: 10.1049/iet-ifs.2019.0418
– volume: 103
  start-page: 204
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0505
  article-title: A survey on mobile malware detection techniques
  publication-title: IEICE Transactions on Information and Systems
  doi: 10.1587/transinf.2019INI0003
– volume: 93
  start-page: 109
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0915
  article-title: An Android mutation malware detection based on deep learning using visualization of importance from codes
  publication-title: Microelectronics Reliability
  doi: 10.1016/j.microrel.2019.01.007
– ident: 10.1016/j.eswa.2023.122255_b0110
– ident: 10.1016/j.eswa.2023.122255_b0290
  doi: 10.1145/2897845.2897860
– ident: 10.1016/j.eswa.2023.122255_b0325
– ident: 10.1016/j.eswa.2023.122255_b0470
  doi: 10.1145/3264746.3264780
– ident: 10.1016/j.eswa.2023.122255_b0010
  doi: 10.1007/s11416-014-0226-7
– start-page: 252
  year: 2016
  ident: 10.1016/j.eswa.2023.122255_b0315
  article-title: Droidscribe: Classifying android malware based on runtime behavior
– volume: 18
  start-page: 1231
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0765
  article-title: Android malware detection using complex-flows
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2018.2861405
– volume: 74
  start-page: 121
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0605
  article-title: CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.06.006
– volume: 272
  start-page: 638
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0950
  article-title: Droiddet: Effective and robust detection of Android malware using static analysis along with Rotation Forest Model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.030
– ident: 10.1016/j.eswa.2023.122255_b0145
– start-page: 384
  year: 2014
  ident: 10.1016/j.eswa.2023.122255_b0040
  article-title: A Forensic Analysis of Android Malware-How is Malware Written and How it Could Be Detected?
– year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0465
  article-title: A Survey on Permission Based Malware Detection in Android Applications. International Journal of Engineering
  publication-title: Research.
– volume: 206
  year: 2022
  ident: 10.1016/j.eswa.2023.122255_b0475
  article-title: DroidMalwareDetector: A novel Android malware detection framework based on convolutional neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117833
– volume: 13
  start-page: 22
  year: 2015
  ident: 10.1016/j.eswa.2023.122255_b0385
  article-title: A review on feature selection in mobile malware detection
  publication-title: Digital investigation
  doi: 10.1016/j.diin.2015.02.001
– ident: 10.1016/j.eswa.2023.122255_b0205
– ident: 10.1016/j.eswa.2023.122255_b0715
– volume: 24
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0735
  article-title: Maat: Automatically analyzing virustotal for accurate labeling and effective malware detection
  publication-title: ACM Transactions on Privacy and Security (TOPS)
  doi: 10.1145/3465361
– ident: 10.1016/j.eswa.2023.122255_b0740
– volume: 103
  start-page: 22
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0860
  article-title: A hybrid approach of mobile malware detection in Android
  publication-title: Journal of Parallel and Distributed computing
  doi: 10.1016/j.jpdc.2016.10.012
– ident: 10.1016/j.eswa.2023.122255_b0805
– volume: 19
  start-page: 90
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0355
  article-title: Identifying mobile inter-app communication risks
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2018.2889495
– ident: 10.1016/j.eswa.2023.122255_b0650
– ident: 10.1016/j.eswa.2023.122255_b0115
– volume: 33
  start-page: 3133
  issue: 8
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0210
  article-title: VisDroid: Android malware classification based on local and global image features, bag of visual words and machine learning techniques
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05195-w
– volume: 54
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0815
  article-title: A TAN based hybrid model for android malware detection
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2020.102483
– ident: 10.1016/j.eswa.2023.122255_b0820
– ident: 10.1016/j.eswa.2023.122255_b0285
  doi: 10.1145/3133956.3138838
– start-page: 189
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0540
– volume: 49
  start-page: 259
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2023.122255_b0180
  article-title: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps
  publication-title: Acm Sigplan Notices
  doi: 10.1145/2666356.2594299
– ident: 10.1016/j.eswa.2023.122255_b0275
  doi: 10.1145/2804345.2804349
– volume: 9
  start-page: 313
  issue: 6
  year: 2015
  ident: 10.1016/j.eswa.2023.122255_b0920
  article-title: High accuracy android malware detection using ensemble learning
  publication-title: IET Information Security
  doi: 10.1049/iet-ifs.2014.0099
– start-page: 468
  year: 2016
  ident: 10.1016/j.eswa.2023.122255_b0035
  article-title: Androzoo: Collecting millions of android apps for the research community
– volume: 87
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0755
  article-title: Secur-ama: Active malware analysis based on monte carlo tree search for android systems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.103303
– volume: 1
  start-page: 1
  issue: 9
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0215
  article-title: The Android malware detection systems between hope and reality
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-1124-x
– volume: 39
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0770
  article-title: A survey of android application and malware hardening
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2021.100365
– ident: 10.1016/j.eswa.2023.122255_b0165
  doi: 10.14722/ndss.2014.23247
– volume: 9
  start-page: 942
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0060
  article-title: Android malware family classification and analysis: Current status and future directions
  publication-title: Electronics
  doi: 10.3390/electronics9060942
– ident: 10.1016/j.eswa.2023.122255_b0140
– ident: 10.1016/j.eswa.2023.122255_b0295
– volume: 89
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0065
  article-title: DL-Droid: Deep learning based android malware detection using real devices
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2019.101663
– ident: 10.1016/j.eswa.2023.122255_b0525
– ident: 10.1016/j.eswa.2023.122255_b0800
– ident: 10.1016/j.eswa.2023.122255_b0500
– volume: 49
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0835
  article-title: The evolution of android malware and android analysis techniques
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3017427
– ident: 10.1016/j.eswa.2023.122255_b0665
  doi: 10.1145/3194244.3194257
– start-page: 272
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0390
  article-title: On the deterioration of learning-based malware detectors for Android
– volume: 105
  start-page: 230
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0830
  article-title: Similarity-based Android malware detection using Hamming distance of static binary features
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.11.034
– year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0080
– start-page: 8
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0415
  article-title: Hybrid-based malware analysis for effective and efficiency android malware detection
– volume: 72
  start-page: 607
  issue: 9
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0885
  article-title: An android malware dynamic detection method based on service call co-occurrence matrices
  publication-title: Annals of Telecommunications
  doi: 10.1007/s12243-017-0580-9
– ident: 10.1016/j.eswa.2023.122255_b0610
  doi: 10.1016/j.future.2019.03.006
– ident: 10.1016/j.eswa.2023.122255_b0240
  doi: 10.1145/3371924
– ident: 10.1016/j.eswa.2023.122255_b0775
  doi: 10.1016/j.procs.2020.06.034
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.122255_b0580
– volume: 173
  start-page: 345
  year: 2020
  ident: 10.1016/j.eswa.2023.122255_b0725
  publication-title: Android malware detection based on vulnerable feature aggregation
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.122255_b0895
  article-title: Multilevel permission extraction in android applications for malware detection
– volume: 11
  start-page: 141
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2023.122255_b0300
  article-title: M0droid: An android behavioral-based malware detection model
  publication-title: Journal of Information Privacy and Security
  doi: 10.1080/15536548.2015.1073510
– ident: 10.1016/j.eswa.2023.122255_b0600
  doi: 10.1016/j.inffus.2018.12.006
– start-page: 255
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0680
– start-page: 24
  year: 2016
  ident: 10.1016/j.eswa.2023.122255_b0365
  article-title: Frequent subgraph based familial classification of android malware
– volume: 54
  year: 2022
  ident: 10.1016/j.eswa.2023.122255_b0785
  article-title: An optimized and efficient android malware detection framework for future sustainable computing
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2022.102852
– volume: 115
  start-page: 844
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0440
  article-title: DeepAMD: Detection and identification of Android malware using high-efficient Deep Artificial Neural Network
  publication-title: Future Generation computer systems
  doi: 10.1016/j.future.2020.10.008
– volume: Volume. 184
  start-page: 841
  year: 2021
  ident: 10.1016/j.eswa.2023.122255_b0045
  article-title: ReDroidDet: Android malware detection based on recurrent neural network
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0790
  article-title: A collaborative framework for android malware detection using DNS & dynamic analysis
– ident: 10.1016/j.eswa.2023.122255_b0460
– volume: 11
  start-page: 15
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2023.122255_b0515
  article-title: Identification of cryptographic vulnerability and malware detection in Android
  publication-title: International Journal of Information Security and Privacy (IJISP)
  doi: 10.4018/IJISP.2017070102
– volume: 24
  start-page: S48
  year: 2018
  ident: 10.1016/j.eswa.2023.122255_b0480
  article-title: MalDozer: Automatic framework for android malware detection using deep learning
  publication-title: Digital Investigation
  doi: 10.1016/j.diin.2018.01.007
SSID ssj0017007
Score 2.5032883
SecondaryResourceType review_article
Snippet The main objective of this review is to present an in-depth study of Android malware detection approaches. This article provides a comprehensive survey of 150...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122255
SubjectTerms Android malware detection
Behavior based analysis
Malware analysis
Signature based analysis
Title Detection approaches for android malware: Taxonomy and review analysis
URI https://dx.doi.org/10.1016/j.eswa.2023.122255
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENpY0bO2nYqkJVQHShlbpF9sWRikqo2qAy8dvxxU4FEurAloctRZ-du7Puu-8IudYyhFgr6amQa4-bU63XDWPuYeggwHjcDDCj-zwKhxP-OBXTGulXtTBIq3S239r00lq7J22HZnsxm7VfTHBg3CFmGjH1FqEmKOcR7vLW14bmgfJzkdXbizwc7QpnLMdLr9aoPdQJWgzPPeJv5_TD4QwOyJ6LFGnPfswhqen8iOxXXRio-ymPyeBOFyWfKqeVQLheUROLUoliBLOUvsn5Wi71LR3Lz7KGAd9QW7RiLq0qyQmZDO7H_aHnuiN4EPh-4cXAyr7cAiTPMhHyDAQLhegajwtRmoEPQkBXp0KqNODSZxCjWfQ5xBBLFZySev6e6zNCeRT5inW0iT4U551UgmYMUplF2tdaqQZhFSwJOOlw7GAxTyqO2GuCUCYIZWKhbJCbzZyFFc7YOlpUaCe_lj8xln3LvPN_zrsgu-aOI5mMiUtSL5Yf-spEF4VqltunSXZ6D0_D0Td2S86o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71caAXoIWqhT72UE7IjdfeteNKPVSUKH1eSKTc3N3xWAoKpmqCAhf-FH-wO_Y6KhLKAak3y-u1vJ9XM7Oab74BOCKTYEbWBDZRFCh3qg26SaYCDh00Oo9bImd0b26T_lBdjvRoBf60tTBMq_S2v7HptbX2dzoezc79eNz54oID5w4508ipt1R5ZuUV_Zq7c9v09OLc_eQPUdT7PPjUD3xrgQDjMJwFGcq6qbVGo8pSJ6pELROtu85dYVqUGKLW2KVCG1vEyoQSM7YpocIMM2Nj995VWFfOXHDbhOPfC14J692ljcBfGvDn-UqdhlRG0zmLHUXxseSDlv63N3zi4Xqv4aUPTcVZs_pNWKFqC161bR-EtwJvoHdOs5rAVYlWkZymwgW_wrD6wbgQ38xkbh7oRAzMz7pogkdEUyXjLhsZlLcwfBbMtmGt-l7RDgiVpqGVEblwxyoVFQZJSixMmVJIZO0uyBaWHL1WObfMmOQtKe1rzlDmDGXeQLkLHxdz7huljqVP6xbt_K_9ljtXsmTeu_-cdwgv-oOb6_z64vbqPWy4EcVMNqn3YG328IP2XWgzswf1VhJw99x79xEbiQnv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+approaches+for+android+malware%3A+Taxonomy+and+review+analysis&rft.jtitle=Expert+systems+with+applications&rft.au=Haidros+Rahima+Manzil%2C+Hashida&rft.au=Manohar+Naik%2C+S.&rft.date=2024-03-15&rft.issn=0957-4174&rft.volume=238&rft.spage=122255&rft_id=info:doi/10.1016%2Fj.eswa.2023.122255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_122255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon