Detail preserving image denoising with patch-based structure similarity via sparse representation and SVD
The key problem of image denoising methods is to smooth noise while retaining the details of original image. The human vision system is more sensitive to the details (or the high frequency components) of original image, hence the restoration of image details ensures the good quality of denoised imag...
Saved in:
Published in | Computer vision and image understanding Vol. 206; p. 103173 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The key problem of image denoising methods is to smooth noise while retaining the details of original image. The human vision system is more sensitive to the details (or the high frequency components) of original image, hence the restoration of image details ensures the good quality of denoised image. Different from denoising the image as a whole, this paper proposes a novel denoising method that reconstructs the high and low frequency components respectively. The sparse representation using patch-based structure similarity is proposed to reconstruct the high frequency parts. And the low frequency parts are reconstructed by singular value decomposition (SVD). Finally an energy minimization function that contains high and low frequency parts are presented. Experimental results illustrate that the proposed method is outstanding in both numerical precision and visual performance.
•The low and high frequency components are restored respectively.•A novel image denoising framework with SVD and sparse representation is proposed.•An energy function is proposed to aggregate the low and high frequency components.•Experiments show the competitiveness of the proposed method. |
---|---|
AbstractList | The key problem of image denoising methods is to smooth noise while retaining the details of original image. The human vision system is more sensitive to the details (or the high frequency components) of original image, hence the restoration of image details ensures the good quality of denoised image. Different from denoising the image as a whole, this paper proposes a novel denoising method that reconstructs the high and low frequency components respectively. The sparse representation using patch-based structure similarity is proposed to reconstruct the high frequency parts. And the low frequency parts are reconstructed by singular value decomposition (SVD). Finally an energy minimization function that contains high and low frequency parts are presented. Experimental results illustrate that the proposed method is outstanding in both numerical precision and visual performance.
•The low and high frequency components are restored respectively.•A novel image denoising framework with SVD and sparse representation is proposed.•An energy function is proposed to aggregate the low and high frequency components.•Experiments show the competitiveness of the proposed method. |
ArticleNumber | 103173 |
Author | Wang, Suwei Zhang, Fan Li, Xuemei Shi, Miaowen Zhang, Caiming |
Author_xml | – sequence: 1 givenname: Miaowen surname: Shi fullname: Shi, Miaowen organization: School of Software, Shandong University, ShunHua Road No. 1500, Jinan 250101, China – sequence: 2 givenname: Fan surname: Zhang fullname: Zhang, Fan organization: School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264003, China – sequence: 3 givenname: Suwei surname: Wang fullname: Wang, Suwei organization: School of Software, Shandong University, ShunHua Road No. 1500, Jinan 250101, China – sequence: 4 givenname: Caiming surname: Zhang fullname: Zhang, Caiming organization: School of Software, Shandong University, ShunHua Road No. 1500, Jinan 250101, China – sequence: 5 givenname: Xuemei orcidid: 0000-0001-5064-7425 surname: Li fullname: Li, Xuemei email: xmli@sdu.edu.cn organization: School of Software, Shandong University, ShunHua Road No. 1500, Jinan 250101, China |
BookMark | eNp9kMlqwzAQhkVJoUnaF-hJL-BUsrwJeilJNwj00IXehCyNkwmJbSTFJW9fu-6ph55mgW-Y_5uRSd3UQMg1ZwvOeHazW5gOj4uYxbxfCJ6LMzLlTLIoFunnZOjzPBI8iS_IzPsdY5wnkk8JriBo3NPWgQfXYb2heNAboBbqBv0wf2HY0lYHs41K7cFSH9zRhKMD6vGAe-0wnGiHmvpWOw_Uwc-1OuiATU11benrx-qSnFd67-Hqt87J-8P92_IpWr88Pi_v1pERjIVIljwVIAWkqShsJUXGypyxzPAUCpEVOY8TVpoit1pWsgQT5zKBRMQcdCJsJuakGO8a13jvoFIGx0-C65MqztSgTO3UoEwNytSorEfjP2jrehvu9D90O0LQh-oQnPIGoTZg0YEJyjb4H_4Np9SJHw |
CitedBy_id | crossref_primary_10_1109_TMM_2022_3185887 crossref_primary_10_3390_electronics12092146 crossref_primary_10_3390_app13084675 crossref_primary_10_1016_j_cviu_2023_103725 crossref_primary_10_1007_s11220_023_00411_y crossref_primary_10_3390_rs15020445 crossref_primary_10_1016_j_cviu_2023_103840 crossref_primary_10_1016_j_cviu_2024_104007 crossref_primary_10_1007_s00521_022_06972_5 crossref_primary_10_1016_j_cviu_2024_104204 crossref_primary_10_1016_j_dsp_2024_104946 crossref_primary_10_1016_j_cviu_2024_104103 crossref_primary_10_1364_OL_516785 crossref_primary_10_1016_j_bspc_2022_104343 crossref_primary_10_1016_j_cam_2022_114244 crossref_primary_10_1007_s10915_021_01728_0 crossref_primary_10_1016_j_sigpro_2022_108650 crossref_primary_10_1140_epjp_s13360_021_01693_5 crossref_primary_10_1016_j_compag_2022_106999 crossref_primary_10_1016_j_ijleo_2023_171013 crossref_primary_10_1016_j_neucom_2024_127490 crossref_primary_10_1109_JSEN_2022_3155706 crossref_primary_10_3389_fenrg_2022_837823 |
Cites_doi | 10.1109/TSP.2010.2040671 10.1016/j.patcog.2009.09.023 10.1109/83.661192 10.1016/j.neuroimage.2014.01.059 10.1109/83.661190 10.1109/TCSVT.2015.2416631 10.1109/ICASSP.2015.7178160 10.1109/34.56205 10.1109/TIP.2006.881969 10.1109/TPAMI.2012.116 10.1109/TCSVT.2018.2878794 10.1016/0167-2789(92)90242-F 10.1109/ACCESS.2015.2430359 10.1109/TIP.2003.819861 10.1109/ICASSP.2018.8461388 10.1109/TIP.2012.2235847 10.1109/TIP.2005.863057 10.1002/cpa.20042 10.1109/TIT.2006.871582 10.1109/TMI.2010.2100850 10.1137/S0097539792240406 10.1145/566654.566574 10.1145/1141911.1141935 10.1007/s11432-017-9207-9 10.1002/cpa.20132 10.1109/TSP.2006.881199 10.1109/TIT.2006.885507 10.1109/JPROC.2009.2037655 10.1109/ICASSP.2010.5496033 10.1109/TIP.2007.901238 10.1109/ICCV.2011.6126377 10.1007/s00371-015-1087-x 10.1186/1687-6180-2012-16 10.1016/j.jmva.2013.03.005 10.1016/S0304-3975(97)00115-1 10.1023/B:JMIV.0000011321.19549.88 10.1109/CVPR.2005.38 10.1002/cpa.20124 10.1109/TIP.2011.2170702 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cviu.2021.103173 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1090-235X |
ExternalDocumentID | 10_1016_j_cviu_2021_103173 S1077314221000175 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SST |
ID | FETCH-LOGICAL-c300t-9b153e93e5538df9360b7006c15e836871240bc87da9f9bec2794e4321ea43d63 |
IEDL.DBID | .~1 |
ISSN | 1077-3142 |
IngestDate | Tue Jul 01 04:32:07 EDT 2025 Thu Apr 24 22:52:19 EDT 2025 Fri Feb 23 02:48:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sparse representation Structure similarity Singular value decomposition( SVD) Image denoising |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-9b153e93e5538df9360b7006c15e836871240bc87da9f9bec2794e4321ea43d63 |
ORCID | 0000-0001-5064-7425 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cviu_2021_103173 crossref_primary_10_1016_j_cviu_2021_103173 elsevier_sciencedirect_doi_10_1016_j_cviu_2021_103173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationTitle | Computer vision and image understanding |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Frédo, Julie (b20) 2002; 21 Benesty, J., Chen, J., Huang, Y., 2010. Study of the widely linear Wiener filter for noise reduction. In: IEEE International Conference on Acoustics Speech and Signal Processing. pp. 205–208,. Gong, Zhou, Ma (b21) 2012; 21 Zhang, Dong, Zhang, Shi (b47) 2010; 43 Fan, Li, Guo, Zhang (b19) 2018; 61 Candes, Romberg, Tao (b8) 2006; 59 Perona, Malik (b36) 1990; 12 Donoho (b14) 2006; 52 Weickert, Romeny, Viergever (b44) 1998; 7 Hansen (b27) 2005 Black, Sapiro, Marimont, Heeger (b6) 2002; 7 Zhang, Xu, Yang, Li, Zhang (b48) 2015; 3 Shabalin, Nobel (b39) 2013; 118 Candes, Tao (b9) 2007; 52 Zeev, F., Raanan, F., Dani, L., Richard, S., 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. In: ACM SIGGRAPH. pp. 67. Dong, Zhang, Shi, Li (b13) 2013; 22 Daubechies, Defrise, Mol (b11) 2004; 57 Julien, M., Francis, B., Jean, P., Guillermo, S., 2009. Online dictionary learning for sparse coding. In: International Conference on Machine Learning. pp. 689–696,. Vya, Yu, Paik (b42) 1989 Guleryuz (b24) 2006; 15 Elad, Aharon (b16) 2006; 15 Zha, Z., Zhang, X., Wang, Q., Bai, Y., Tang, L., Yuan, X., 2018. Group sparsity residual with non-local samples for image denoising. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP. pp. 1353–1357,. Gonzalez, Woods (b22) 2006 Huang, Yang, Jiang, Wu, Zhang, Chen, Feng (b28) 2014; 92 Aharon, Elad, Bruckstein (b1) 2006; 54 Liu, Zhang, Guo, Xu, Zhou (b33) 2016; 32 Fan, Li, Fan, Feng, Zhang (b18) 2019; 29 Natarajan (b34) 1995; 24 Soonmin, B., Sylvain, P., Frédo, D., 2006. Two-scale tone management for photographic look. In: ACM SIGGRAPH. pp. 637–645,. Guo, Zhang, Zhang, Liu (b26) 2016; 26 Rudin, Osher, Fatemi (b38) 1992; 60 Elad, Figueiredo, Ma (b17) 2010; 98 Antonin (b4) 2004; 20 Dong, W., Zhang, L., Shi, G., 2012. Centralized sparse representation for image restoration. In: IEEE International Conference on Computer Vision. pp. 1259–1266,. Li, Y., Liu, J., Yang, W., Guo, Z., 2015. Neighborhood regression for edge-preserving image super-resolution. In: IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP. pp. 1201–1205,. Amaldi, Kann (b2) 1998; 209 Otazo (b35) 2015; 73 Rehman, Rostami, Wang, Brunet, Vrscay (b37) 2012; 2012 Dabov, Foi, Katkovnik, Egiazarian (b10) 2007; 16 Wang, Bovik, Sheikh, Simoncelli (b43) 2004; 13 Guleryuz (b25) 2006; 15 Lingala, Hu, Bella, Jacob (b31) 2011; 30 Liu, R., Lin, Z., la Torre Fernando, D., Su, Z., 2012. Fixed-rank representation for unsupervised visual learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. pp. 598–605,. Buades, A., Coll, B., Morel, J.-M., 2005. A non-local algorithm for image denoising. In: Conference on Computer Vision and Pattern Recognition. pp. 60–65,. Skretting, Engan (b40) 2010; 58 Anders, Anton (b3) 2012; 34 Guleryuz, O., 2003. Weighted overcomplete denoising. In: The Thrity-Seventh Asilomar Conference on Signals, Systems Computers. pp. 1992–1998,. Donoho (b15) 2006; 59 Gong (10.1016/j.cviu.2021.103173_b21) 2012; 21 Guo (10.1016/j.cviu.2021.103173_b26) 2016; 26 10.1016/j.cviu.2021.103173_b30 Huang (10.1016/j.cviu.2021.103173_b28) 2014; 92 10.1016/j.cviu.2021.103173_b32 10.1016/j.cviu.2021.103173_b12 Dong (10.1016/j.cviu.2021.103173_b13) 2013; 22 Donoho (10.1016/j.cviu.2021.103173_b15) 2006; 59 Anders (10.1016/j.cviu.2021.103173_b3) 2012; 34 Vya (10.1016/j.cviu.2021.103173_b42) 1989 Skretting (10.1016/j.cviu.2021.103173_b40) 2010; 58 Otazo (10.1016/j.cviu.2021.103173_b35) 2015; 73 Rehman (10.1016/j.cviu.2021.103173_b37) 2012; 2012 Zhang (10.1016/j.cviu.2021.103173_b48) 2015; 3 Shabalin (10.1016/j.cviu.2021.103173_b39) 2013; 118 Perona (10.1016/j.cviu.2021.103173_b36) 1990; 12 10.1016/j.cviu.2021.103173_b7 Elad (10.1016/j.cviu.2021.103173_b17) 2010; 98 Antonin (10.1016/j.cviu.2021.103173_b4) 2004; 20 10.1016/j.cviu.2021.103173_b46 10.1016/j.cviu.2021.103173_b5 Donoho (10.1016/j.cviu.2021.103173_b14) 2006; 52 Dabov (10.1016/j.cviu.2021.103173_b10) 2007; 16 Weickert (10.1016/j.cviu.2021.103173_b44) 1998; 7 Daubechies (10.1016/j.cviu.2021.103173_b11) 2004; 57 10.1016/j.cviu.2021.103173_b29 Candes (10.1016/j.cviu.2021.103173_b8) 2006; 59 10.1016/j.cviu.2021.103173_b41 Guleryuz (10.1016/j.cviu.2021.103173_b25) 2006; 15 Candes (10.1016/j.cviu.2021.103173_b9) 2007; 52 Lingala (10.1016/j.cviu.2021.103173_b31) 2011; 30 10.1016/j.cviu.2021.103173_b23 10.1016/j.cviu.2021.103173_b45 Frédo (10.1016/j.cviu.2021.103173_b20) 2002; 21 Hansen (10.1016/j.cviu.2021.103173_b27) 2005 Wang (10.1016/j.cviu.2021.103173_b43) 2004; 13 Aharon (10.1016/j.cviu.2021.103173_b1) 2006; 54 Black (10.1016/j.cviu.2021.103173_b6) 2002; 7 Elad (10.1016/j.cviu.2021.103173_b16) 2006; 15 Gonzalez (10.1016/j.cviu.2021.103173_b22) 2006 Liu (10.1016/j.cviu.2021.103173_b33) 2016; 32 Natarajan (10.1016/j.cviu.2021.103173_b34) 1995; 24 Fan (10.1016/j.cviu.2021.103173_b19) 2018; 61 Zhang (10.1016/j.cviu.2021.103173_b47) 2010; 43 Rudin (10.1016/j.cviu.2021.103173_b38) 1992; 60 Fan (10.1016/j.cviu.2021.103173_b18) 2019; 29 Amaldi (10.1016/j.cviu.2021.103173_b2) 1998; 209 Guleryuz (10.1016/j.cviu.2021.103173_b24) 2006; 15 |
References_xml | – volume: 22 start-page: 1618 year: 2013 end-page: 1628 ident: b13 article-title: Nonlocally centralized sparse representation for image restoration publication-title: IEEE Trans. Image Process. – volume: 15 start-page: 554 year: 2006 end-page: 571 ident: b25 article-title: Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: Adaptive algorithms publication-title: IEEE Trans. Image Process. – volume: 34 start-page: 1681 year: 2012 end-page: 1690 ident: b3 article-title: Efficient computation of robust weighted low-rank matrix approximations using the l_1 norm publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Dong, W., Zhang, L., Shi, G., 2012. Centralized sparse representation for image restoration. In: IEEE International Conference on Computer Vision. pp. 1259–1266,. – volume: 52 start-page: 5406 year: 2007 end-page: 5425 ident: b9 article-title: Near optimal signal recovery from random projections: Universal encoding strategies? publication-title: IEEE Trans. Inform. Theory – reference: Li, Y., Liu, J., Yang, W., Guo, Z., 2015. Neighborhood regression for edge-preserving image super-resolution. In: IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP. pp. 1201–1205,. – reference: Soonmin, B., Sylvain, P., Frédo, D., 2006. Two-scale tone management for photographic look. In: ACM SIGGRAPH. pp. 637–645,. – volume: 20 start-page: 89 year: 2004 end-page: 97 ident: b4 article-title: An algorithm for total variation minimization and applications publication-title: J. Matter Image Vis. – reference: Julien, M., Francis, B., Jean, P., Guillermo, S., 2009. Online dictionary learning for sparse coding. In: International Conference on Machine Learning. pp. 689–696,. – volume: 59 start-page: 1207 year: 2006 end-page: 1223 ident: b8 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Comm. Pure Appl. Math. – volume: 54 start-page: 4311 year: 2006 end-page: 4322 ident: b1 article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. – year: 2006 ident: b22 article-title: Digital Image Processing – reference: Zha, Z., Zhang, X., Wang, Q., Bai, Y., Tang, L., Yuan, X., 2018. Group sparsity residual with non-local samples for image denoising. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP. pp. 1353–1357,. – volume: 21 start-page: 2141 year: 2012 end-page: 2151 ident: b21 article-title: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering publication-title: IEEE Trans. Image Process. – year: 1989 ident: b42 article-title: Fundamentals of Digital Image Processing – reference: Benesty, J., Chen, J., Huang, Y., 2010. Study of the widely linear Wiener filter for noise reduction. In: IEEE International Conference on Acoustics Speech and Signal Processing. pp. 205–208,. – volume: 26 start-page: 868 year: 2016 end-page: 880 ident: b26 article-title: An efficient SVD-based method for image denoising publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 16 start-page: 2080 year: 2007 end-page: 2095 ident: b10 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering. image processing publication-title: IEEE Trans. Image Process. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b43 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 43 start-page: 1531 year: 2010 end-page: 1549 ident: b47 article-title: Two-stage image denoising by principal component analysis with local pixel grouping publication-title: Pattern Recognit. – reference: Buades, A., Coll, B., Morel, J.-M., 2005. A non-local algorithm for image denoising. In: Conference on Computer Vision and Pattern Recognition. pp. 60–65,. – volume: 12 start-page: 629 year: 1990 end-page: 639 ident: b36 article-title: Scale-space and edge detection using anisotropic diffusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Guleryuz, O., 2003. Weighted overcomplete denoising. In: The Thrity-Seventh Asilomar Conference on Signals, Systems Computers. pp. 1992–1998,. – volume: 73 start-page: 1125 year: 2015 end-page: 1136 ident: b35 article-title: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components publication-title: Trans. Jpn. Soc. Med. Biol. Eng. – reference: Zeev, F., Raanan, F., Dani, L., Richard, S., 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. In: ACM SIGGRAPH. pp. 67. – volume: 98 start-page: 972 year: 2010 end-page: 982 ident: b17 article-title: On the role of sparse and redundant representations in image processing publication-title: Proc. IEEE – volume: 15 start-page: 3736 year: 2006 end-page: 3745 ident: b16 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. – volume: 21 start-page: 257 year: 2002 end-page: 266 ident: b20 article-title: Fast bilateral filtering for the display of high-dynamic-range images publication-title: ACM Trans. Graph. – volume: 7 start-page: 421 year: 2002 end-page: 432 ident: b6 article-title: Robust anisotropic diffusion publication-title: IEEE Trans. Image Process. – volume: 57 start-page: 1413 year: 2004 end-page: 1457 ident: b11 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Comm. Pure Appl. Math. – volume: 15 start-page: 539 year: 2006 end-page: 554 ident: b24 article-title: Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory publication-title: IEEE Trans. Image Process. – volume: 30 start-page: 1042 year: 2011 end-page: 1054 ident: b31 article-title: Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-t SLR publication-title: IEEE Trans. Med. Imaging – volume: 61 start-page: 224 year: 2018 end-page: 226 ident: b19 article-title: Nonlocal image denoising using edge-based similarity metric and adaptive parameter selection publication-title: Sci. China Inf. Sci. – reference: Liu, R., Lin, Z., la Torre Fernando, D., Su, Z., 2012. Fixed-rank representation for unsupervised visual learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. pp. 598–605,. – volume: 58 start-page: 2121 year: 2010 end-page: 2130 ident: b40 article-title: Recursive least squares dictionary learning algorithm publication-title: IEEE Trans. Signal Process. – year: 2005 ident: b27 article-title: Rank-Deficient and Discrete Ill-Posed Problems: numerical Aspects of Linear Inversion. volume 4 – volume: 209 start-page: 237 year: 1998 end-page: 260 ident: b2 article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems publication-title: Theoret. Comput. Sci. – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: b14 article-title: Compressed sensing publication-title: IEEE Trans. Inform. Theory – volume: 60 start-page: 259 year: 1992 end-page: 268 ident: b38 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D – volume: 32 start-page: 535 year: 2016 end-page: 549 ident: b33 article-title: Adaptive sparse coding on PCA dictionary for image denoising publication-title: Vis. Comput. – volume: 7 start-page: 398 year: 1998 end-page: 410 ident: b44 article-title: Efficient and reliable schemes for nonlinear diffusion filtering publication-title: IEEE Trans. Image Process. – volume: 3 start-page: 490 year: 2015 end-page: 530 ident: b48 article-title: A survey of sparse representation: Algorithms and applications publication-title: IEEE Access – volume: 59 start-page: 797 year: 2006 end-page: 829 ident: b15 article-title: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution publication-title: Comm. Pure Appl. Math. – volume: 24 start-page: 227 year: 1995 end-page: 234 ident: b34 article-title: Sparse approximate solutions to linear systems publication-title: SIAM J. Comput. – volume: 118 start-page: 67 year: 2013 end-page: 76 ident: b39 article-title: Reconstruction of a low-rank matrix in the presence of Gaussian noise publication-title: J. Multivariate Anal. – volume: 29 start-page: 3222 year: 2019 end-page: 3235 ident: b18 article-title: Adaptive texture-preserving denoising method using gradient histogram and nonlocal self-similarity priors publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 92 start-page: 322 year: 2014 end-page: 339 ident: b28 article-title: Brain extraction based on locally linear representation-based classification publication-title: Neuroimage – volume: 2012 start-page: 16 year: 2012 ident: b37 article-title: SSIM-inspired image restoration using sparse representation publication-title: EURASIP J. Adv. Signal Process. – volume: 58 start-page: 2121 year: 2010 ident: 10.1016/j.cviu.2021.103173_b40 article-title: Recursive least squares dictionary learning algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2040671 – volume: 43 start-page: 1531 year: 2010 ident: 10.1016/j.cviu.2021.103173_b47 article-title: Two-stage image denoising by principal component analysis with local pixel grouping publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.09.023 – volume: 7 start-page: 421 year: 2002 ident: 10.1016/j.cviu.2021.103173_b6 article-title: Robust anisotropic diffusion publication-title: IEEE Trans. Image Process. doi: 10.1109/83.661192 – year: 2006 ident: 10.1016/j.cviu.2021.103173_b22 – volume: 92 start-page: 322 year: 2014 ident: 10.1016/j.cviu.2021.103173_b28 article-title: Brain extraction based on locally linear representation-based classification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.059 – volume: 7 start-page: 398 year: 1998 ident: 10.1016/j.cviu.2021.103173_b44 article-title: Efficient and reliable schemes for nonlinear diffusion filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/83.661190 – volume: 26 start-page: 868 year: 2016 ident: 10.1016/j.cviu.2021.103173_b26 article-title: An efficient SVD-based method for image denoising publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2015.2416631 – ident: 10.1016/j.cviu.2021.103173_b30 doi: 10.1109/ICASSP.2015.7178160 – volume: 12 start-page: 629 year: 1990 ident: 10.1016/j.cviu.2021.103173_b36 article-title: Scale-space and edge detection using anisotropic diffusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.56205 – ident: 10.1016/j.cviu.2021.103173_b29 – volume: 15 start-page: 3736 year: 2006 ident: 10.1016/j.cviu.2021.103173_b16 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881969 – ident: 10.1016/j.cviu.2021.103173_b23 – volume: 34 start-page: 1681 year: 2012 ident: 10.1016/j.cviu.2021.103173_b3 article-title: Efficient computation of robust weighted low-rank matrix approximations using the l_1 norm publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.116 – volume: 29 start-page: 3222 year: 2019 ident: 10.1016/j.cviu.2021.103173_b18 article-title: Adaptive texture-preserving denoising method using gradient histogram and nonlocal self-similarity priors publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2018.2878794 – volume: 60 start-page: 259 year: 1992 ident: 10.1016/j.cviu.2021.103173_b38 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D doi: 10.1016/0167-2789(92)90242-F – ident: 10.1016/j.cviu.2021.103173_b45 – volume: 3 start-page: 490 year: 2015 ident: 10.1016/j.cviu.2021.103173_b48 article-title: A survey of sparse representation: Algorithms and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2430359 – volume: 15 start-page: 554 year: 2006 ident: 10.1016/j.cviu.2021.103173_b25 article-title: Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: Adaptive algorithms publication-title: IEEE Trans. Image Process. – volume: 13 start-page: 600 year: 2004 ident: 10.1016/j.cviu.2021.103173_b43 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: 10.1016/j.cviu.2021.103173_b46 doi: 10.1109/ICASSP.2018.8461388 – volume: 22 start-page: 1618 year: 2013 ident: 10.1016/j.cviu.2021.103173_b13 article-title: Nonlocally centralized sparse representation for image restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2235847 – volume: 15 start-page: 539 year: 2006 ident: 10.1016/j.cviu.2021.103173_b24 article-title: Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.863057 – volume: 73 start-page: 1125 year: 2015 ident: 10.1016/j.cviu.2021.103173_b35 article-title: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components publication-title: Trans. Jpn. Soc. Med. Biol. Eng. – volume: 57 start-page: 1413 year: 2004 ident: 10.1016/j.cviu.2021.103173_b11 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.20042 – volume: 52 start-page: 1289 year: 2006 ident: 10.1016/j.cviu.2021.103173_b14 article-title: Compressed sensing publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2006.871582 – volume: 30 start-page: 1042 year: 2011 ident: 10.1016/j.cviu.2021.103173_b31 article-title: Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-t SLR publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2100850 – volume: 24 start-page: 227 year: 1995 ident: 10.1016/j.cviu.2021.103173_b34 article-title: Sparse approximate solutions to linear systems publication-title: SIAM J. Comput. doi: 10.1137/S0097539792240406 – volume: 21 start-page: 257 year: 2002 ident: 10.1016/j.cviu.2021.103173_b20 article-title: Fast bilateral filtering for the display of high-dynamic-range images publication-title: ACM Trans. Graph. doi: 10.1145/566654.566574 – ident: 10.1016/j.cviu.2021.103173_b41 doi: 10.1145/1141911.1141935 – volume: 61 start-page: 224 year: 2018 ident: 10.1016/j.cviu.2021.103173_b19 article-title: Nonlocal image denoising using edge-based similarity metric and adaptive parameter selection publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-017-9207-9 – year: 2005 ident: 10.1016/j.cviu.2021.103173_b27 – volume: 59 start-page: 797 year: 2006 ident: 10.1016/j.cviu.2021.103173_b15 article-title: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.20132 – volume: 54 start-page: 4311 year: 2006 ident: 10.1016/j.cviu.2021.103173_b1 article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – year: 1989 ident: 10.1016/j.cviu.2021.103173_b42 – volume: 52 start-page: 5406 year: 2007 ident: 10.1016/j.cviu.2021.103173_b9 article-title: Near optimal signal recovery from random projections: Universal encoding strategies? publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2006.885507 – volume: 98 start-page: 972 year: 2010 ident: 10.1016/j.cviu.2021.103173_b17 article-title: On the role of sparse and redundant representations in image processing publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2037655 – ident: 10.1016/j.cviu.2021.103173_b5 doi: 10.1109/ICASSP.2010.5496033 – volume: 16 start-page: 2080 year: 2007 ident: 10.1016/j.cviu.2021.103173_b10 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering. image processing publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – ident: 10.1016/j.cviu.2021.103173_b12 doi: 10.1109/ICCV.2011.6126377 – volume: 32 start-page: 535 year: 2016 ident: 10.1016/j.cviu.2021.103173_b33 article-title: Adaptive sparse coding on PCA dictionary for image denoising publication-title: Vis. Comput. doi: 10.1007/s00371-015-1087-x – volume: 2012 start-page: 16 year: 2012 ident: 10.1016/j.cviu.2021.103173_b37 article-title: SSIM-inspired image restoration using sparse representation publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/1687-6180-2012-16 – volume: 118 start-page: 67 year: 2013 ident: 10.1016/j.cviu.2021.103173_b39 article-title: Reconstruction of a low-rank matrix in the presence of Gaussian noise publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2013.03.005 – volume: 209 start-page: 237 year: 1998 ident: 10.1016/j.cviu.2021.103173_b2 article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(97)00115-1 – volume: 20 start-page: 89 year: 2004 ident: 10.1016/j.cviu.2021.103173_b4 article-title: An algorithm for total variation minimization and applications publication-title: J. Matter Image Vis. doi: 10.1023/B:JMIV.0000011321.19549.88 – ident: 10.1016/j.cviu.2021.103173_b7 doi: 10.1109/CVPR.2005.38 – volume: 59 start-page: 1207 year: 2006 ident: 10.1016/j.cviu.2021.103173_b8 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.20124 – volume: 21 start-page: 2141 year: 2012 ident: 10.1016/j.cviu.2021.103173_b21 article-title: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2170702 – ident: 10.1016/j.cviu.2021.103173_b32 |
SSID | ssj0011491 |
Score | 2.4679983 |
Snippet | The key problem of image denoising methods is to smooth noise while retaining the details of original image. The human vision system is more sensitive to the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103173 |
SubjectTerms | Image denoising Singular value decomposition( SVD) Sparse representation Structure similarity |
Title | Detail preserving image denoising with patch-based structure similarity via sparse representation and SVD |
URI | https://dx.doi.org/10.1016/j.cviu.2021.103173 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUR-WBDZkmtZ3HWLVUBUQXKOoWxYkLRjSt-hr57dwlTlUk1IExli1ZvvN3d853d4TcyJGfgioI_N2omUhDzuLQlSyJYw0aBj6dwmzk577XG4jHoRxWSLvMhUFapcX-AtNztLYjDXuajakxjRcIXHyOTxhuXvUFE82F8FHL777XNA9w9_OueTiZ4WybOFNwvJKVWUKM2HQx99z1-d_GacPgdI_IgfUUaavYzDGp6KxKDq3XSO2dnMNQ2ZihHKuS_Y0qgyfEdHKaKEXKKyJD9k7NGGCEAuRMDL4VUHyNpVNA5Q-GZi2lRVnZ5UzTuRkbiH7BWacrE1MAoNlc07wWZpm3lNE4gx29dU7JoHv_2u4x22GBJdxxFixUAHg65FoC7qWjkHuO8uEeJq7UAfcgmAKDr5LAT-NwFIK4m3B9teBNV8eCpx4_IzvZJNPnhEqIytNECKVDTyQyCBQcMQd_JHVcJfmoRtzyaKPElh_HLhhfUckz-4xQHBGKIyrEUSO36zXTovjG1tmylFj0S4UisA5b1l38c90l2cOvgv14RXZAMPoaPJSFqucqWCe7rYenXv8HCy_lEw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFH5BOKgHF9SIaw_ezARK21mOBCQgy0Uw3CazFK2RgbD9fl-ZDsHEcPDamSZN3-v3ln7vFeBJjJ0YVYHr60Zp8dhjVuBRYUVBIFHD0KcLdTVyr2-3hvx1JEY5qGe1MJpWabA_xfQNWpuRstnN8kyp8hsGLg7TKQy66foiDqCgu1OJPBRq7U6rv71MwCCAptRDnZLjVVM7k9K8orVaYZhYpbr8nDrsb_u0Y3OaZ3BinEVSS9dzDjmZFOHUOI7EHMsFDmVvM2RjRTjeaTR4AaqxYYoSzXrV4JB8EDVBJCGIOlOl0wVEJ2TJDIH509KWLSZpZ9nVXJKFmigMgNFfJ2sVEMSg-UKSTTvMrHQpIUGCK3pvXMKw-TKotyzzyIIVsUplaXkhYp70mBQIffHYY3YldPAoRlRIl9kYT6HNDyPXiQNv7KHEq3iCJWdVKgPOYptdQT6ZJvIaiMDAPI44D6Vn80i4bohbzNAliSs0FGxcApptrR-ZDuT6IYxvP6OafflaHL4Wh5-KowTP2zmztP_G3r9FJjH_lxb5aCD2zLv557xHOGwNel2_2-53buFIf0nJkHeQRyHJe3RYluGDUcgf7ErnxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detail+preserving+image+denoising+with+patch-based+structure+similarity+via+sparse+representation+and+SVD&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Shi%2C+Miaowen&rft.au=Zhang%2C+Fan&rft.au=Wang%2C+Suwei&rft.au=Zhang%2C+Caiming&rft.date=2021-05-01&rft.issn=1077-3142&rft.volume=206&rft.spage=103173&rft_id=info:doi/10.1016%2Fj.cviu.2021.103173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2021_103173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |