Detail preserving image denoising with patch-based structure similarity via sparse representation and SVD

The key problem of image denoising methods is to smooth noise while retaining the details of original image. The human vision system is more sensitive to the details (or the high frequency components) of original image, hence the restoration of image details ensures the good quality of denoised imag...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 206; p. 103173
Main Authors Shi, Miaowen, Zhang, Fan, Wang, Suwei, Zhang, Caiming, Li, Xuemei
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The key problem of image denoising methods is to smooth noise while retaining the details of original image. The human vision system is more sensitive to the details (or the high frequency components) of original image, hence the restoration of image details ensures the good quality of denoised image. Different from denoising the image as a whole, this paper proposes a novel denoising method that reconstructs the high and low frequency components respectively. The sparse representation using patch-based structure similarity is proposed to reconstruct the high frequency parts. And the low frequency parts are reconstructed by singular value decomposition (SVD). Finally an energy minimization function that contains high and low frequency parts are presented. Experimental results illustrate that the proposed method is outstanding in both numerical precision and visual performance. •The low and high frequency components are restored respectively.•A novel image denoising framework with SVD and sparse representation is proposed.•An energy function is proposed to aggregate the low and high frequency components.•Experiments show the competitiveness of the proposed method.
AbstractList The key problem of image denoising methods is to smooth noise while retaining the details of original image. The human vision system is more sensitive to the details (or the high frequency components) of original image, hence the restoration of image details ensures the good quality of denoised image. Different from denoising the image as a whole, this paper proposes a novel denoising method that reconstructs the high and low frequency components respectively. The sparse representation using patch-based structure similarity is proposed to reconstruct the high frequency parts. And the low frequency parts are reconstructed by singular value decomposition (SVD). Finally an energy minimization function that contains high and low frequency parts are presented. Experimental results illustrate that the proposed method is outstanding in both numerical precision and visual performance. •The low and high frequency components are restored respectively.•A novel image denoising framework with SVD and sparse representation is proposed.•An energy function is proposed to aggregate the low and high frequency components.•Experiments show the competitiveness of the proposed method.
ArticleNumber 103173
Author Wang, Suwei
Zhang, Fan
Li, Xuemei
Shi, Miaowen
Zhang, Caiming
Author_xml – sequence: 1
  givenname: Miaowen
  surname: Shi
  fullname: Shi, Miaowen
  organization: School of Software, Shandong University, ShunHua Road No. 1500, Jinan 250101, China
– sequence: 2
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
  organization: School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264003, China
– sequence: 3
  givenname: Suwei
  surname: Wang
  fullname: Wang, Suwei
  organization: School of Software, Shandong University, ShunHua Road No. 1500, Jinan 250101, China
– sequence: 4
  givenname: Caiming
  surname: Zhang
  fullname: Zhang, Caiming
  organization: School of Software, Shandong University, ShunHua Road No. 1500, Jinan 250101, China
– sequence: 5
  givenname: Xuemei
  orcidid: 0000-0001-5064-7425
  surname: Li
  fullname: Li, Xuemei
  email: xmli@sdu.edu.cn
  organization: School of Software, Shandong University, ShunHua Road No. 1500, Jinan 250101, China
BookMark eNp9kMlqwzAQhkVJoUnaF-hJL-BUsrwJeilJNwj00IXehCyNkwmJbSTFJW9fu-6ph55mgW-Y_5uRSd3UQMg1ZwvOeHazW5gOj4uYxbxfCJ6LMzLlTLIoFunnZOjzPBI8iS_IzPsdY5wnkk8JriBo3NPWgQfXYb2heNAboBbqBv0wf2HY0lYHs41K7cFSH9zRhKMD6vGAe-0wnGiHmvpWOw_Uwc-1OuiATU11benrx-qSnFd67-Hqt87J-8P92_IpWr88Pi_v1pERjIVIljwVIAWkqShsJUXGypyxzPAUCpEVOY8TVpoit1pWsgQT5zKBRMQcdCJsJuakGO8a13jvoFIGx0-C65MqztSgTO3UoEwNytSorEfjP2jrehvu9D90O0LQh-oQnPIGoTZg0YEJyjb4H_4Np9SJHw
CitedBy_id crossref_primary_10_1109_TMM_2022_3185887
crossref_primary_10_3390_electronics12092146
crossref_primary_10_3390_app13084675
crossref_primary_10_1016_j_cviu_2023_103725
crossref_primary_10_1007_s11220_023_00411_y
crossref_primary_10_3390_rs15020445
crossref_primary_10_1016_j_cviu_2023_103840
crossref_primary_10_1016_j_cviu_2024_104007
crossref_primary_10_1007_s00521_022_06972_5
crossref_primary_10_1016_j_cviu_2024_104204
crossref_primary_10_1016_j_dsp_2024_104946
crossref_primary_10_1016_j_cviu_2024_104103
crossref_primary_10_1364_OL_516785
crossref_primary_10_1016_j_bspc_2022_104343
crossref_primary_10_1016_j_cam_2022_114244
crossref_primary_10_1007_s10915_021_01728_0
crossref_primary_10_1016_j_sigpro_2022_108650
crossref_primary_10_1140_epjp_s13360_021_01693_5
crossref_primary_10_1016_j_compag_2022_106999
crossref_primary_10_1016_j_ijleo_2023_171013
crossref_primary_10_1016_j_neucom_2024_127490
crossref_primary_10_1109_JSEN_2022_3155706
crossref_primary_10_3389_fenrg_2022_837823
Cites_doi 10.1109/TSP.2010.2040671
10.1016/j.patcog.2009.09.023
10.1109/83.661192
10.1016/j.neuroimage.2014.01.059
10.1109/83.661190
10.1109/TCSVT.2015.2416631
10.1109/ICASSP.2015.7178160
10.1109/34.56205
10.1109/TIP.2006.881969
10.1109/TPAMI.2012.116
10.1109/TCSVT.2018.2878794
10.1016/0167-2789(92)90242-F
10.1109/ACCESS.2015.2430359
10.1109/TIP.2003.819861
10.1109/ICASSP.2018.8461388
10.1109/TIP.2012.2235847
10.1109/TIP.2005.863057
10.1002/cpa.20042
10.1109/TIT.2006.871582
10.1109/TMI.2010.2100850
10.1137/S0097539792240406
10.1145/566654.566574
10.1145/1141911.1141935
10.1007/s11432-017-9207-9
10.1002/cpa.20132
10.1109/TSP.2006.881199
10.1109/TIT.2006.885507
10.1109/JPROC.2009.2037655
10.1109/ICASSP.2010.5496033
10.1109/TIP.2007.901238
10.1109/ICCV.2011.6126377
10.1007/s00371-015-1087-x
10.1186/1687-6180-2012-16
10.1016/j.jmva.2013.03.005
10.1016/S0304-3975(97)00115-1
10.1023/B:JMIV.0000011321.19549.88
10.1109/CVPR.2005.38
10.1002/cpa.20124
10.1109/TIP.2011.2170702
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.cviu.2021.103173
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
ExternalDocumentID 10_1016_j_cviu_2021_103173
S1077314221000175
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SST
ID FETCH-LOGICAL-c300t-9b153e93e5538df9360b7006c15e836871240bc87da9f9bec2794e4321ea43d63
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Tue Jul 01 04:32:07 EDT 2025
Thu Apr 24 22:52:19 EDT 2025
Fri Feb 23 02:48:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sparse representation
Structure similarity
Singular value decomposition( SVD)
Image denoising
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-9b153e93e5538df9360b7006c15e836871240bc87da9f9bec2794e4321ea43d63
ORCID 0000-0001-5064-7425
ParticipantIDs crossref_citationtrail_10_1016_j_cviu_2021_103173
crossref_primary_10_1016_j_cviu_2021_103173
elsevier_sciencedirect_doi_10_1016_j_cviu_2021_103173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Computer vision and image understanding
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Frédo, Julie (b20) 2002; 21
Benesty, J., Chen, J., Huang, Y., 2010. Study of the widely linear Wiener filter for noise reduction. In: IEEE International Conference on Acoustics Speech and Signal Processing. pp. 205–208,.
Gong, Zhou, Ma (b21) 2012; 21
Zhang, Dong, Zhang, Shi (b47) 2010; 43
Fan, Li, Guo, Zhang (b19) 2018; 61
Candes, Romberg, Tao (b8) 2006; 59
Perona, Malik (b36) 1990; 12
Donoho (b14) 2006; 52
Weickert, Romeny, Viergever (b44) 1998; 7
Hansen (b27) 2005
Black, Sapiro, Marimont, Heeger (b6) 2002; 7
Zhang, Xu, Yang, Li, Zhang (b48) 2015; 3
Shabalin, Nobel (b39) 2013; 118
Candes, Tao (b9) 2007; 52
Zeev, F., Raanan, F., Dani, L., Richard, S., 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. In: ACM SIGGRAPH. pp. 67.
Dong, Zhang, Shi, Li (b13) 2013; 22
Daubechies, Defrise, Mol (b11) 2004; 57
Julien, M., Francis, B., Jean, P., Guillermo, S., 2009. Online dictionary learning for sparse coding. In: International Conference on Machine Learning. pp. 689–696,.
Vya, Yu, Paik (b42) 1989
Guleryuz (b24) 2006; 15
Elad, Aharon (b16) 2006; 15
Zha, Z., Zhang, X., Wang, Q., Bai, Y., Tang, L., Yuan, X., 2018. Group sparsity residual with non-local samples for image denoising. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP. pp. 1353–1357,.
Gonzalez, Woods (b22) 2006
Huang, Yang, Jiang, Wu, Zhang, Chen, Feng (b28) 2014; 92
Aharon, Elad, Bruckstein (b1) 2006; 54
Liu, Zhang, Guo, Xu, Zhou (b33) 2016; 32
Fan, Li, Fan, Feng, Zhang (b18) 2019; 29
Natarajan (b34) 1995; 24
Soonmin, B., Sylvain, P., Frédo, D., 2006. Two-scale tone management for photographic look. In: ACM SIGGRAPH. pp. 637–645,.
Guo, Zhang, Zhang, Liu (b26) 2016; 26
Rudin, Osher, Fatemi (b38) 1992; 60
Elad, Figueiredo, Ma (b17) 2010; 98
Antonin (b4) 2004; 20
Dong, W., Zhang, L., Shi, G., 2012. Centralized sparse representation for image restoration. In: IEEE International Conference on Computer Vision. pp. 1259–1266,.
Li, Y., Liu, J., Yang, W., Guo, Z., 2015. Neighborhood regression for edge-preserving image super-resolution. In: IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP. pp. 1201–1205,.
Amaldi, Kann (b2) 1998; 209
Otazo (b35) 2015; 73
Rehman, Rostami, Wang, Brunet, Vrscay (b37) 2012; 2012
Dabov, Foi, Katkovnik, Egiazarian (b10) 2007; 16
Wang, Bovik, Sheikh, Simoncelli (b43) 2004; 13
Guleryuz (b25) 2006; 15
Lingala, Hu, Bella, Jacob (b31) 2011; 30
Liu, R., Lin, Z., la Torre Fernando, D., Su, Z., 2012. Fixed-rank representation for unsupervised visual learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. pp. 598–605,.
Buades, A., Coll, B., Morel, J.-M., 2005. A non-local algorithm for image denoising. In: Conference on Computer Vision and Pattern Recognition. pp. 60–65,.
Skretting, Engan (b40) 2010; 58
Anders, Anton (b3) 2012; 34
Guleryuz, O., 2003. Weighted overcomplete denoising. In: The Thrity-Seventh Asilomar Conference on Signals, Systems Computers. pp. 1992–1998,.
Donoho (b15) 2006; 59
Gong (10.1016/j.cviu.2021.103173_b21) 2012; 21
Guo (10.1016/j.cviu.2021.103173_b26) 2016; 26
10.1016/j.cviu.2021.103173_b30
Huang (10.1016/j.cviu.2021.103173_b28) 2014; 92
10.1016/j.cviu.2021.103173_b32
10.1016/j.cviu.2021.103173_b12
Dong (10.1016/j.cviu.2021.103173_b13) 2013; 22
Donoho (10.1016/j.cviu.2021.103173_b15) 2006; 59
Anders (10.1016/j.cviu.2021.103173_b3) 2012; 34
Vya (10.1016/j.cviu.2021.103173_b42) 1989
Skretting (10.1016/j.cviu.2021.103173_b40) 2010; 58
Otazo (10.1016/j.cviu.2021.103173_b35) 2015; 73
Rehman (10.1016/j.cviu.2021.103173_b37) 2012; 2012
Zhang (10.1016/j.cviu.2021.103173_b48) 2015; 3
Shabalin (10.1016/j.cviu.2021.103173_b39) 2013; 118
Perona (10.1016/j.cviu.2021.103173_b36) 1990; 12
10.1016/j.cviu.2021.103173_b7
Elad (10.1016/j.cviu.2021.103173_b17) 2010; 98
Antonin (10.1016/j.cviu.2021.103173_b4) 2004; 20
10.1016/j.cviu.2021.103173_b46
10.1016/j.cviu.2021.103173_b5
Donoho (10.1016/j.cviu.2021.103173_b14) 2006; 52
Dabov (10.1016/j.cviu.2021.103173_b10) 2007; 16
Weickert (10.1016/j.cviu.2021.103173_b44) 1998; 7
Daubechies (10.1016/j.cviu.2021.103173_b11) 2004; 57
10.1016/j.cviu.2021.103173_b29
Candes (10.1016/j.cviu.2021.103173_b8) 2006; 59
10.1016/j.cviu.2021.103173_b41
Guleryuz (10.1016/j.cviu.2021.103173_b25) 2006; 15
Candes (10.1016/j.cviu.2021.103173_b9) 2007; 52
Lingala (10.1016/j.cviu.2021.103173_b31) 2011; 30
10.1016/j.cviu.2021.103173_b23
10.1016/j.cviu.2021.103173_b45
Frédo (10.1016/j.cviu.2021.103173_b20) 2002; 21
Hansen (10.1016/j.cviu.2021.103173_b27) 2005
Wang (10.1016/j.cviu.2021.103173_b43) 2004; 13
Aharon (10.1016/j.cviu.2021.103173_b1) 2006; 54
Black (10.1016/j.cviu.2021.103173_b6) 2002; 7
Elad (10.1016/j.cviu.2021.103173_b16) 2006; 15
Gonzalez (10.1016/j.cviu.2021.103173_b22) 2006
Liu (10.1016/j.cviu.2021.103173_b33) 2016; 32
Natarajan (10.1016/j.cviu.2021.103173_b34) 1995; 24
Fan (10.1016/j.cviu.2021.103173_b19) 2018; 61
Zhang (10.1016/j.cviu.2021.103173_b47) 2010; 43
Rudin (10.1016/j.cviu.2021.103173_b38) 1992; 60
Fan (10.1016/j.cviu.2021.103173_b18) 2019; 29
Amaldi (10.1016/j.cviu.2021.103173_b2) 1998; 209
Guleryuz (10.1016/j.cviu.2021.103173_b24) 2006; 15
References_xml – volume: 22
  start-page: 1618
  year: 2013
  end-page: 1628
  ident: b13
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 15
  start-page: 554
  year: 2006
  end-page: 571
  ident: b25
  article-title: Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: Adaptive algorithms
  publication-title: IEEE Trans. Image Process.
– volume: 34
  start-page: 1681
  year: 2012
  end-page: 1690
  ident: b3
  article-title: Efficient computation of robust weighted low-rank matrix approximations using the l_1 norm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Dong, W., Zhang, L., Shi, G., 2012. Centralized sparse representation for image restoration. In: IEEE International Conference on Computer Vision. pp. 1259–1266,.
– volume: 52
  start-page: 5406
  year: 2007
  end-page: 5425
  ident: b9
  article-title: Near optimal signal recovery from random projections: Universal encoding strategies?
  publication-title: IEEE Trans. Inform. Theory
– reference: Li, Y., Liu, J., Yang, W., Guo, Z., 2015. Neighborhood regression for edge-preserving image super-resolution. In: IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP. pp. 1201–1205,.
– reference: Soonmin, B., Sylvain, P., Frédo, D., 2006. Two-scale tone management for photographic look. In: ACM SIGGRAPH. pp. 637–645,.
– volume: 20
  start-page: 89
  year: 2004
  end-page: 97
  ident: b4
  article-title: An algorithm for total variation minimization and applications
  publication-title: J. Matter Image Vis.
– reference: Julien, M., Francis, B., Jean, P., Guillermo, S., 2009. Online dictionary learning for sparse coding. In: International Conference on Machine Learning. pp. 689–696,.
– volume: 59
  start-page: 1207
  year: 2006
  end-page: 1223
  ident: b8
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Comm. Pure Appl. Math.
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: b1
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– year: 2006
  ident: b22
  article-title: Digital Image Processing
– reference: Zha, Z., Zhang, X., Wang, Q., Bai, Y., Tang, L., Yuan, X., 2018. Group sparsity residual with non-local samples for image denoising. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP. pp. 1353–1357,.
– volume: 21
  start-page: 2141
  year: 2012
  end-page: 2151
  ident: b21
  article-title: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering
  publication-title: IEEE Trans. Image Process.
– year: 1989
  ident: b42
  article-title: Fundamentals of Digital Image Processing
– reference: Benesty, J., Chen, J., Huang, Y., 2010. Study of the widely linear Wiener filter for noise reduction. In: IEEE International Conference on Acoustics Speech and Signal Processing. pp. 205–208,.
– volume: 26
  start-page: 868
  year: 2016
  end-page: 880
  ident: b26
  article-title: An efficient SVD-based method for image denoising
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: b10
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering. image processing
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b43
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 43
  start-page: 1531
  year: 2010
  end-page: 1549
  ident: b47
  article-title: Two-stage image denoising by principal component analysis with local pixel grouping
  publication-title: Pattern Recognit.
– reference: Buades, A., Coll, B., Morel, J.-M., 2005. A non-local algorithm for image denoising. In: Conference on Computer Vision and Pattern Recognition. pp. 60–65,.
– volume: 12
  start-page: 629
  year: 1990
  end-page: 639
  ident: b36
  article-title: Scale-space and edge detection using anisotropic diffusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Guleryuz, O., 2003. Weighted overcomplete denoising. In: The Thrity-Seventh Asilomar Conference on Signals, Systems Computers. pp. 1992–1998,.
– volume: 73
  start-page: 1125
  year: 2015
  end-page: 1136
  ident: b35
  article-title: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components
  publication-title: Trans. Jpn. Soc. Med. Biol. Eng.
– reference: Zeev, F., Raanan, F., Dani, L., Richard, S., 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. In: ACM SIGGRAPH. pp. 67.
– volume: 98
  start-page: 972
  year: 2010
  end-page: 982
  ident: b17
  article-title: On the role of sparse and redundant representations in image processing
  publication-title: Proc. IEEE
– volume: 15
  start-page: 3736
  year: 2006
  end-page: 3745
  ident: b16
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
– volume: 21
  start-page: 257
  year: 2002
  end-page: 266
  ident: b20
  article-title: Fast bilateral filtering for the display of high-dynamic-range images
  publication-title: ACM Trans. Graph.
– volume: 7
  start-page: 421
  year: 2002
  end-page: 432
  ident: b6
  article-title: Robust anisotropic diffusion
  publication-title: IEEE Trans. Image Process.
– volume: 57
  start-page: 1413
  year: 2004
  end-page: 1457
  ident: b11
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Comm. Pure Appl. Math.
– volume: 15
  start-page: 539
  year: 2006
  end-page: 554
  ident: b24
  article-title: Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory
  publication-title: IEEE Trans. Image Process.
– volume: 30
  start-page: 1042
  year: 2011
  end-page: 1054
  ident: b31
  article-title: Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-t SLR
  publication-title: IEEE Trans. Med. Imaging
– volume: 61
  start-page: 224
  year: 2018
  end-page: 226
  ident: b19
  article-title: Nonlocal image denoising using edge-based similarity metric and adaptive parameter selection
  publication-title: Sci. China Inf. Sci.
– reference: Liu, R., Lin, Z., la Torre Fernando, D., Su, Z., 2012. Fixed-rank representation for unsupervised visual learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. pp. 598–605,.
– volume: 58
  start-page: 2121
  year: 2010
  end-page: 2130
  ident: b40
  article-title: Recursive least squares dictionary learning algorithm
  publication-title: IEEE Trans. Signal Process.
– year: 2005
  ident: b27
  article-title: Rank-Deficient and Discrete Ill-Posed Problems: numerical Aspects of Linear Inversion. volume 4
– volume: 209
  start-page: 237
  year: 1998
  end-page: 260
  ident: b2
  article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
  publication-title: Theoret. Comput. Sci.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: b14
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory
– volume: 60
  start-page: 259
  year: 1992
  end-page: 268
  ident: b38
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
– volume: 32
  start-page: 535
  year: 2016
  end-page: 549
  ident: b33
  article-title: Adaptive sparse coding on PCA dictionary for image denoising
  publication-title: Vis. Comput.
– volume: 7
  start-page: 398
  year: 1998
  end-page: 410
  ident: b44
  article-title: Efficient and reliable schemes for nonlinear diffusion filtering
  publication-title: IEEE Trans. Image Process.
– volume: 3
  start-page: 490
  year: 2015
  end-page: 530
  ident: b48
  article-title: A survey of sparse representation: Algorithms and applications
  publication-title: IEEE Access
– volume: 59
  start-page: 797
  year: 2006
  end-page: 829
  ident: b15
  article-title: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
  publication-title: Comm. Pure Appl. Math.
– volume: 24
  start-page: 227
  year: 1995
  end-page: 234
  ident: b34
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J. Comput.
– volume: 118
  start-page: 67
  year: 2013
  end-page: 76
  ident: b39
  article-title: Reconstruction of a low-rank matrix in the presence of Gaussian noise
  publication-title: J. Multivariate Anal.
– volume: 29
  start-page: 3222
  year: 2019
  end-page: 3235
  ident: b18
  article-title: Adaptive texture-preserving denoising method using gradient histogram and nonlocal self-similarity priors
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 92
  start-page: 322
  year: 2014
  end-page: 339
  ident: b28
  article-title: Brain extraction based on locally linear representation-based classification
  publication-title: Neuroimage
– volume: 2012
  start-page: 16
  year: 2012
  ident: b37
  article-title: SSIM-inspired image restoration using sparse representation
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 58
  start-page: 2121
  year: 2010
  ident: 10.1016/j.cviu.2021.103173_b40
  article-title: Recursive least squares dictionary learning algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2040671
– volume: 43
  start-page: 1531
  year: 2010
  ident: 10.1016/j.cviu.2021.103173_b47
  article-title: Two-stage image denoising by principal component analysis with local pixel grouping
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.09.023
– volume: 7
  start-page: 421
  year: 2002
  ident: 10.1016/j.cviu.2021.103173_b6
  article-title: Robust anisotropic diffusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.661192
– year: 2006
  ident: 10.1016/j.cviu.2021.103173_b22
– volume: 92
  start-page: 322
  year: 2014
  ident: 10.1016/j.cviu.2021.103173_b28
  article-title: Brain extraction based on locally linear representation-based classification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.059
– volume: 7
  start-page: 398
  year: 1998
  ident: 10.1016/j.cviu.2021.103173_b44
  article-title: Efficient and reliable schemes for nonlinear diffusion filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.661190
– volume: 26
  start-page: 868
  year: 2016
  ident: 10.1016/j.cviu.2021.103173_b26
  article-title: An efficient SVD-based method for image denoising
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2015.2416631
– ident: 10.1016/j.cviu.2021.103173_b30
  doi: 10.1109/ICASSP.2015.7178160
– volume: 12
  start-page: 629
  year: 1990
  ident: 10.1016/j.cviu.2021.103173_b36
  article-title: Scale-space and edge detection using anisotropic diffusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.56205
– ident: 10.1016/j.cviu.2021.103173_b29
– volume: 15
  start-page: 3736
  year: 2006
  ident: 10.1016/j.cviu.2021.103173_b16
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881969
– ident: 10.1016/j.cviu.2021.103173_b23
– volume: 34
  start-page: 1681
  year: 2012
  ident: 10.1016/j.cviu.2021.103173_b3
  article-title: Efficient computation of robust weighted low-rank matrix approximations using the l_1 norm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.116
– volume: 29
  start-page: 3222
  year: 2019
  ident: 10.1016/j.cviu.2021.103173_b18
  article-title: Adaptive texture-preserving denoising method using gradient histogram and nonlocal self-similarity priors
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2878794
– volume: 60
  start-page: 259
  year: 1992
  ident: 10.1016/j.cviu.2021.103173_b38
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– ident: 10.1016/j.cviu.2021.103173_b45
– volume: 3
  start-page: 490
  year: 2015
  ident: 10.1016/j.cviu.2021.103173_b48
  article-title: A survey of sparse representation: Algorithms and applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2430359
– volume: 15
  start-page: 554
  year: 2006
  ident: 10.1016/j.cviu.2021.103173_b25
  article-title: Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: Adaptive algorithms
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.cviu.2021.103173_b43
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: 10.1016/j.cviu.2021.103173_b46
  doi: 10.1109/ICASSP.2018.8461388
– volume: 22
  start-page: 1618
  year: 2013
  ident: 10.1016/j.cviu.2021.103173_b13
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2235847
– volume: 15
  start-page: 539
  year: 2006
  ident: 10.1016/j.cviu.2021.103173_b24
  article-title: Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.863057
– volume: 73
  start-page: 1125
  year: 2015
  ident: 10.1016/j.cviu.2021.103173_b35
  article-title: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components
  publication-title: Trans. Jpn. Soc. Med. Biol. Eng.
– volume: 57
  start-page: 1413
  year: 2004
  ident: 10.1016/j.cviu.2021.103173_b11
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– volume: 52
  start-page: 1289
  year: 2006
  ident: 10.1016/j.cviu.2021.103173_b14
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 30
  start-page: 1042
  year: 2011
  ident: 10.1016/j.cviu.2021.103173_b31
  article-title: Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-t SLR
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2100850
– volume: 24
  start-page: 227
  year: 1995
  ident: 10.1016/j.cviu.2021.103173_b34
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792240406
– volume: 21
  start-page: 257
  year: 2002
  ident: 10.1016/j.cviu.2021.103173_b20
  article-title: Fast bilateral filtering for the display of high-dynamic-range images
  publication-title: ACM Trans. Graph.
  doi: 10.1145/566654.566574
– ident: 10.1016/j.cviu.2021.103173_b41
  doi: 10.1145/1141911.1141935
– volume: 61
  start-page: 224
  year: 2018
  ident: 10.1016/j.cviu.2021.103173_b19
  article-title: Nonlocal image denoising using edge-based similarity metric and adaptive parameter selection
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-017-9207-9
– year: 2005
  ident: 10.1016/j.cviu.2021.103173_b27
– volume: 59
  start-page: 797
  year: 2006
  ident: 10.1016/j.cviu.2021.103173_b15
  article-title: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20132
– volume: 54
  start-page: 4311
  year: 2006
  ident: 10.1016/j.cviu.2021.103173_b1
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– year: 1989
  ident: 10.1016/j.cviu.2021.103173_b42
– volume: 52
  start-page: 5406
  year: 2007
  ident: 10.1016/j.cviu.2021.103173_b9
  article-title: Near optimal signal recovery from random projections: Universal encoding strategies?
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2006.885507
– volume: 98
  start-page: 972
  year: 2010
  ident: 10.1016/j.cviu.2021.103173_b17
  article-title: On the role of sparse and redundant representations in image processing
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2037655
– ident: 10.1016/j.cviu.2021.103173_b5
  doi: 10.1109/ICASSP.2010.5496033
– volume: 16
  start-page: 2080
  year: 2007
  ident: 10.1016/j.cviu.2021.103173_b10
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering. image processing
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– ident: 10.1016/j.cviu.2021.103173_b12
  doi: 10.1109/ICCV.2011.6126377
– volume: 32
  start-page: 535
  year: 2016
  ident: 10.1016/j.cviu.2021.103173_b33
  article-title: Adaptive sparse coding on PCA dictionary for image denoising
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1087-x
– volume: 2012
  start-page: 16
  year: 2012
  ident: 10.1016/j.cviu.2021.103173_b37
  article-title: SSIM-inspired image restoration using sparse representation
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/1687-6180-2012-16
– volume: 118
  start-page: 67
  year: 2013
  ident: 10.1016/j.cviu.2021.103173_b39
  article-title: Reconstruction of a low-rank matrix in the presence of Gaussian noise
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2013.03.005
– volume: 209
  start-page: 237
  year: 1998
  ident: 10.1016/j.cviu.2021.103173_b2
  article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(97)00115-1
– volume: 20
  start-page: 89
  year: 2004
  ident: 10.1016/j.cviu.2021.103173_b4
  article-title: An algorithm for total variation minimization and applications
  publication-title: J. Matter Image Vis.
  doi: 10.1023/B:JMIV.0000011321.19549.88
– ident: 10.1016/j.cviu.2021.103173_b7
  doi: 10.1109/CVPR.2005.38
– volume: 59
  start-page: 1207
  year: 2006
  ident: 10.1016/j.cviu.2021.103173_b8
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– volume: 21
  start-page: 2141
  year: 2012
  ident: 10.1016/j.cviu.2021.103173_b21
  article-title: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2170702
– ident: 10.1016/j.cviu.2021.103173_b32
SSID ssj0011491
Score 2.4679983
Snippet The key problem of image denoising methods is to smooth noise while retaining the details of original image. The human vision system is more sensitive to the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103173
SubjectTerms Image denoising
Singular value decomposition( SVD)
Sparse representation
Structure similarity
Title Detail preserving image denoising with patch-based structure similarity via sparse representation and SVD
URI https://dx.doi.org/10.1016/j.cviu.2021.103173
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUR-WBDZkmtZ3HWLVUBUQXKOoWxYkLRjSt-hr57dwlTlUk1IExli1ZvvN3d853d4TcyJGfgioI_N2omUhDzuLQlSyJYw0aBj6dwmzk577XG4jHoRxWSLvMhUFapcX-AtNztLYjDXuajakxjRcIXHyOTxhuXvUFE82F8FHL777XNA9w9_OueTiZ4WybOFNwvJKVWUKM2HQx99z1-d_GacPgdI_IgfUUaavYzDGp6KxKDq3XSO2dnMNQ2ZihHKuS_Y0qgyfEdHKaKEXKKyJD9k7NGGCEAuRMDL4VUHyNpVNA5Q-GZi2lRVnZ5UzTuRkbiH7BWacrE1MAoNlc07wWZpm3lNE4gx29dU7JoHv_2u4x22GBJdxxFixUAHg65FoC7qWjkHuO8uEeJq7UAfcgmAKDr5LAT-NwFIK4m3B9teBNV8eCpx4_IzvZJNPnhEqIytNECKVDTyQyCBQcMQd_JHVcJfmoRtzyaKPElh_HLhhfUckz-4xQHBGKIyrEUSO36zXTovjG1tmylFj0S4UisA5b1l38c90l2cOvgv14RXZAMPoaPJSFqucqWCe7rYenXv8HCy_lEw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFH5BOKgHF9SIaw_ezARK21mOBCQgy0Uw3CazFK2RgbD9fl-ZDsHEcPDamSZN3-v3ln7vFeBJjJ0YVYHr60Zp8dhjVuBRYUVBIFHD0KcLdTVyr2-3hvx1JEY5qGe1MJpWabA_xfQNWpuRstnN8kyp8hsGLg7TKQy66foiDqCgu1OJPBRq7U6rv71MwCCAptRDnZLjVVM7k9K8orVaYZhYpbr8nDrsb_u0Y3OaZ3BinEVSS9dzDjmZFOHUOI7EHMsFDmVvM2RjRTjeaTR4AaqxYYoSzXrV4JB8EDVBJCGIOlOl0wVEJ2TJDIH509KWLSZpZ9nVXJKFmigMgNFfJ2sVEMSg-UKSTTvMrHQpIUGCK3pvXMKw-TKotyzzyIIVsUplaXkhYp70mBQIffHYY3YldPAoRlRIl9kYT6HNDyPXiQNv7KHEq3iCJWdVKgPOYptdQT6ZJvIaiMDAPI44D6Vn80i4bohbzNAliSs0FGxcApptrR-ZDuT6IYxvP6OafflaHL4Wh5-KowTP2zmztP_G3r9FJjH_lxb5aCD2zLv557xHOGwNel2_2-53buFIf0nJkHeQRyHJe3RYluGDUcgf7ErnxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detail+preserving+image+denoising+with+patch-based+structure+similarity+via+sparse+representation+and+SVD&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Shi%2C+Miaowen&rft.au=Zhang%2C+Fan&rft.au=Wang%2C+Suwei&rft.au=Zhang%2C+Caiming&rft.date=2021-05-01&rft.issn=1077-3142&rft.volume=206&rft.spage=103173&rft_id=info:doi/10.1016%2Fj.cviu.2021.103173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2021_103173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon