Mahalanobis Metric-based Oversampling Technique for Parkinson’s Disease Severity Assessment using Spatiotemporal Gait Parameters

Parkinson’s Disease (PD) severity level detection is crucial for timely and effective medical intervention. Due to the scarcity of PD gait data especially subject samples of higher severity levels, data generation techniques are adopted. This paper proposes the Mahalanobis-Metric-based Oversampling...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 86; p. 105057
Main Authors Balakrishnan, Aishwarya, Medikonda, Jeevan, Namboothiri, Pramod K., Natarajan, Manikandan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2023
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2023.105057

Cover

Abstract Parkinson’s Disease (PD) severity level detection is crucial for timely and effective medical intervention. Due to the scarcity of PD gait data especially subject samples of higher severity levels, data generation techniques are adopted. This paper proposes the Mahalanobis-Metric-based Oversampling Technique (MMOTE), an algorithm that generates data within the boundaries of the existing data samples while also being diverse to address the problem of class imbalance within a dataset. The proposed technique is evaluated on PD gait data and the results show that MMOTE outperformed alternative oversampling techniques. A hybrid approach of combining ensemble learning with oversampling the minority class for PD severity level assessment is adopted. The minority class recognition is enhanced with an accuracy of 99%, thereby improving the generalizability of the classifier. Statistical analyses such as Levene’s test and Wilcoxon signed-rank test are conducted to validate the significance of the findings. Moreover, the importance of optimal sample size determination for obtaining reliable prediction results is also discussed. Overall classification accuracy of ≈98% is reported using sample size estimated by plotting the learning curve for Random Forest. •Mahalanobis Distance is a good alternative while dealing with a correlated dataset.•Mahalanobis Metric-based oversampling technique is proposed to improve Parkinson’s Disease diagnosis.•Proposed methodology adopts hybrid approach of oversampling with ensemble learning to improve model performance.•Improves minority class recognition using Random Forest with an accuracy of 99%.•Model training with optimal sample size yields classification accuracy of ≈98% in PD severity assessment.
AbstractList Parkinson’s Disease (PD) severity level detection is crucial for timely and effective medical intervention. Due to the scarcity of PD gait data especially subject samples of higher severity levels, data generation techniques are adopted. This paper proposes the Mahalanobis-Metric-based Oversampling Technique (MMOTE), an algorithm that generates data within the boundaries of the existing data samples while also being diverse to address the problem of class imbalance within a dataset. The proposed technique is evaluated on PD gait data and the results show that MMOTE outperformed alternative oversampling techniques. A hybrid approach of combining ensemble learning with oversampling the minority class for PD severity level assessment is adopted. The minority class recognition is enhanced with an accuracy of 99%, thereby improving the generalizability of the classifier. Statistical analyses such as Levene’s test and Wilcoxon signed-rank test are conducted to validate the significance of the findings. Moreover, the importance of optimal sample size determination for obtaining reliable prediction results is also discussed. Overall classification accuracy of ≈98% is reported using sample size estimated by plotting the learning curve for Random Forest. •Mahalanobis Distance is a good alternative while dealing with a correlated dataset.•Mahalanobis Metric-based oversampling technique is proposed to improve Parkinson’s Disease diagnosis.•Proposed methodology adopts hybrid approach of oversampling with ensemble learning to improve model performance.•Improves minority class recognition using Random Forest with an accuracy of 99%.•Model training with optimal sample size yields classification accuracy of ≈98% in PD severity assessment.
ArticleNumber 105057
Author Medikonda, Jeevan
Natarajan, Manikandan
Namboothiri, Pramod K.
Balakrishnan, Aishwarya
Author_xml – sequence: 1
  givenname: Aishwarya
  orcidid: 0000-0002-6677-141X
  surname: Balakrishnan
  fullname: Balakrishnan, Aishwarya
  organization: Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
– sequence: 2
  givenname: Jeevan
  orcidid: 0000-0003-2271-3602
  surname: Medikonda
  fullname: Medikonda, Jeevan
  email: jeevan.m@manipal.edu
  organization: Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
– sequence: 3
  givenname: Pramod K.
  orcidid: 0000-0002-6923-1558
  surname: Namboothiri
  fullname: Namboothiri, Pramod K.
  organization: Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
– sequence: 4
  givenname: Manikandan
  orcidid: 0000-0002-4329-5748
  surname: Natarajan
  fullname: Natarajan, Manikandan
  organization: Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
BookMark eNp9kEtOwzAQhi0EEuVxAVa-QIofaR4Sm6o8JRBIwNpy7Am4JE7wGKTuELfgepyERIUNi65mNNI3M_-3R7Z954GQI86mnPHseDmtsDdTwYQcBjM2y7fIhOdplhScFdt_PSvTXbKHuGQsLXKeTsjnjX7WjfZd5ZDeQAzOJJVGsPT2HQLqtm-cf6IPYJ69e30DWneB3unw4jx2_vvjC-mpQxgIeg8D4eKKzhEBsQUf6RuO9H2vo-sitH0XdEMvtIvjDt1CHG4ckJ1aNwiHv3WfPJ6fPSwuk-vbi6vF_DoxkrGYlGWZCqjB5lrOZF3wQmR5XZnKViCktakQpbCZMLzIhBSZyWoprR5yizSrAOQ-KdZ7TegQA9TKuDg-5mPQrlGcqdGlWqrRpRpdqrXLARX_0D64VofVZuhkDcEQ6t1BUGgceAPWBTBR2c5twn8AlhuUJw
CitedBy_id crossref_primary_10_32604_cmc_2024_060837
crossref_primary_10_20473_jisebi_10_1_38_50
crossref_primary_10_1007_s12553_023_00810_x
crossref_primary_10_1007_s13369_023_08626_7
crossref_primary_10_1109_ACCESS_2024_3456438
crossref_primary_10_1038_s41598_024_83975_3
crossref_primary_10_1016_j_bspc_2024_106862
Cites_doi 10.1016/j.eswa.2010.12.048
10.3390/s21155207
10.1016/j.future.2018.02.009
10.3389/fnhum.2019.00059
10.3390/diagnostics11081395
10.1504/IJKESDP.2011.039875
10.1016/j.bbe.2018.06.002
10.1002/mds.20507
10.3389/fphys.2020.587057
10.1161/01.CIR.101.23.e215
10.3390/s19020242
10.1111/j.1460-9568.2007.05810.x
10.1016/j.gaitpost.2009.10.014
10.1021/ac60214a047
10.1109/JBHI.2015.2450232
10.1109/JTEHM.2022.3180933
10.1186/1471-2288-14-137
10.1371/journal.pone.0175951
10.1016/j.eswa.2019.113075
10.1109/ACCESS.2021.3134330
10.1109/TNSRE.2019.2946194
10.1016/j.medengphy.2021.03.005
10.1109/TNSRE.2009.2033062
10.1016/j.eswa.2021.116113
10.3390/app11041834
10.1159/000110320
10.1016/j.engappai.2022.105099
10.1613/jair.953
10.1016/j.clineuro.2019.105442
10.2307/3001968
10.3390/s19183898
10.1109/ACCESS.2018.2874063
10.1007/s42979-022-01603-1
10.1111/j.1460-9568.2005.04298.x
10.1016/S0169-7439(99)00047-7
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105057
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_105057
S1746809423004901
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-99942efed7a353f818267fbcbdbe23dd42292d62c1862326c6f33da746246bee3
IEDL.DBID AIKHN
ISSN 1746-8094
IngestDate Thu Apr 24 23:11:54 EDT 2025
Tue Jul 01 01:34:18 EDT 2025
Fri Feb 23 02:37:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Imbalanced Dataset
Mahalanobis Distance
Parkinson’s Disease
Gait Analysis
Machine Learning
Optimal sample size
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-99942efed7a353f818267fbcbdbe23dd42292d62c1862326c6f33da746246bee3
ORCID 0000-0002-6923-1558
0000-0002-6677-141X
0000-0003-2271-3602
0000-0002-4329-5748
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_105057
crossref_primary_10_1016_j_bspc_2023_105057
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Krishnan (b24) 2009; 18
Zhao, Wang, Lei, Liao, Cao, Cao (b48) 2022; 189
Yogev, Giladi, Peretz, Springer, Simon, Hausdorff (b37) 2005; 22
Khoury, Attal, Amirat, Oukhellou, Mohammed (b4) 2019; 19
Tura, Raggi, Rocchi, Cutti, Chiari (b41) 2010; 7
Byeon, Kim (b15) 2021; 12
Klinton Amaladass, Subathra, Jeba Priya, Sivakumar (b32) 2023; 4
Frenkel-Toledo, Giladi, Peretz, Herman, Gruendlinger, Hausdorff (b39) 2005; 20
Belic, Bobic, Badza, Solaja, DJuric Jovicic, Kostic (b3) 2019; 184
Han, Wang, Mao (b8) 2005
Vidya, Sasikumar (b35) 2022; 114
Setiawan, Lin (b33) 2021; 21
Abdoh, Rizka, Maghraby (b21) 2018; 6
Wang, Zeng, Dai (b30) 2022
Nguyen, Cooper, Kamei (b9) 2011; 3
Ayaz, Naz, Khan, Razzak, Imran (b13) 2022
De Maesschalck, Jouan-Rimbaud, Massart (b44) 2000; 50
Xia, Yao, Ye, Cheng (b14) 2019; 28
Balaji, Brindha, Balakrishnan (b27) 2020; 94
Priya, Rani, Subathra, Mohammed, Damaševičius, Ubendran (b31) 2021; 11
Alam, Garg, Munia, Fazel-Rezai, Tavakolian (b22) 2017; 12
Savitzky, Golay (b40) 1964; 36
Chawla, Lazarevic, Hall, Bowyer (b7) 2003
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b36) 2000; 101
Hameed (b45) 2011; 38
Naghavi, Miller, Wade (b5) 2019; 19
Tong, Zhang, Dong, Du (b19) 2021; 11
Mico Amigo, Kingma, Heinzel, Rispens, Heger, Nussbaum, van Lummel, Berg, Maetzler, van Dieen (b2) 2019; 13
Patterson, Gage, Brooks, Black, McIlroy (b43) 2010; 31
Moon, Song, Sharma, Lyons, Pahwa, Akinwuntan, Devos (b16) 2020; 17
Ma, Chen, Chen, Lai (b17) 2021
Whittle (b42) 2014
Yang, Ye, Cai, Wang, Cai (b18) 2022
Aşuroğlu, Açıcı, Erdaş, Toprak, Erdem, Oğul (b26) 2018; 38
El Maachi, Bilodeau, Bouachir (b47) 2020; 143
Wilcoxon (b46) 1945; 1
Last, Douzas, Bacao (b10) 2017
Balaji, Brindha, Elumalai, Vikrama (b34) 2021; 108
Khera, Kumar (b29) 2022; 27
Wahid, Begg, Hass, Halgamuge, Ackland (b25) 2015; 19
He, Bai, Garcia, Li (b11) 2008
Abdulhay, Arunkumar, Narasimhan, Vellaiappan, Venkatraman (b23) 2018; 83
Veeraragavan, Gopalai, Gouwanda, Ahmad (b12) 2020; 11
Lilienfeld, Perl (b1) 1993; 12
Hausdorff, Lowenthal, Herman, Gruendlinger, Peretz, Giladi (b38) 2007; 26
Balaji, Brindha, Elumalai, Umesh (b28) 2021; 91
Chawla, Bowyer, Hall, Kegelmeyer (b6) 2002; 16
Ileberi, Sun, Wang (b20) 2021; 9
van der Ploeg, Austin, Steyerberg (b49) 2014; 14
Ileberi (10.1016/j.bspc.2023.105057_b20) 2021; 9
van der Ploeg (10.1016/j.bspc.2023.105057_b49) 2014; 14
Ayaz (10.1016/j.bspc.2023.105057_b13) 2022
Abdoh (10.1016/j.bspc.2023.105057_b21) 2018; 6
He (10.1016/j.bspc.2023.105057_b11) 2008
Xia (10.1016/j.bspc.2023.105057_b14) 2019; 28
Frenkel-Toledo (10.1016/j.bspc.2023.105057_b39) 2005; 20
El Maachi (10.1016/j.bspc.2023.105057_b47) 2020; 143
Hausdorff (10.1016/j.bspc.2023.105057_b38) 2007; 26
Savitzky (10.1016/j.bspc.2023.105057_b40) 1964; 36
Ma (10.1016/j.bspc.2023.105057_b17) 2021
Lilienfeld (10.1016/j.bspc.2023.105057_b1) 1993; 12
Yang (10.1016/j.bspc.2023.105057_b18) 2022
Abdulhay (10.1016/j.bspc.2023.105057_b23) 2018; 83
Patterson (10.1016/j.bspc.2023.105057_b43) 2010; 31
Veeraragavan (10.1016/j.bspc.2023.105057_b12) 2020; 11
Belic (10.1016/j.bspc.2023.105057_b3) 2019; 184
Byeon (10.1016/j.bspc.2023.105057_b15) 2021; 12
Yogev (10.1016/j.bspc.2023.105057_b37) 2005; 22
Chawla (10.1016/j.bspc.2023.105057_b6) 2002; 16
Balaji (10.1016/j.bspc.2023.105057_b27) 2020; 94
Tura (10.1016/j.bspc.2023.105057_b41) 2010; 7
Khoury (10.1016/j.bspc.2023.105057_b4) 2019; 19
Aşuroğlu (10.1016/j.bspc.2023.105057_b26) 2018; 38
Wu (10.1016/j.bspc.2023.105057_b24) 2009; 18
Priya (10.1016/j.bspc.2023.105057_b31) 2021; 11
Balaji (10.1016/j.bspc.2023.105057_b28) 2021; 91
Goldberger (10.1016/j.bspc.2023.105057_b36) 2000; 101
Tong (10.1016/j.bspc.2023.105057_b19) 2021; 11
Chawla (10.1016/j.bspc.2023.105057_b7) 2003
Last (10.1016/j.bspc.2023.105057_b10) 2017
Balaji (10.1016/j.bspc.2023.105057_b34) 2021; 108
Han (10.1016/j.bspc.2023.105057_b8) 2005
Wilcoxon (10.1016/j.bspc.2023.105057_b46) 1945; 1
Nguyen (10.1016/j.bspc.2023.105057_b9) 2011; 3
Whittle (10.1016/j.bspc.2023.105057_b42) 2014
Zhao (10.1016/j.bspc.2023.105057_b48) 2022; 189
Hameed (10.1016/j.bspc.2023.105057_b45) 2011; 38
Mico Amigo (10.1016/j.bspc.2023.105057_b2) 2019; 13
Moon (10.1016/j.bspc.2023.105057_b16) 2020; 17
Setiawan (10.1016/j.bspc.2023.105057_b33) 2021; 21
Naghavi (10.1016/j.bspc.2023.105057_b5) 2019; 19
Khera (10.1016/j.bspc.2023.105057_b29) 2022; 27
Wang (10.1016/j.bspc.2023.105057_b30) 2022
De Maesschalck (10.1016/j.bspc.2023.105057_b44) 2000; 50
Vidya (10.1016/j.bspc.2023.105057_b35) 2022; 114
Klinton Amaladass (10.1016/j.bspc.2023.105057_b32) 2023; 4
Wahid (10.1016/j.bspc.2023.105057_b25) 2015; 19
Alam (10.1016/j.bspc.2023.105057_b22) 2017; 12
References_xml – volume: 31
  start-page: 241
  year: 2010
  end-page: 246
  ident: b43
  article-title: Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization
  publication-title: Gait Posture
– volume: 189
  year: 2022
  ident: b48
  article-title: Severity level diagnosis of Parkinson’s disease by ensemble K-nearest neighbor under imbalanced data
  publication-title: Expert Syst. Appl.
– volume: 91
  start-page: 54
  year: 2021
  end-page: 64
  ident: b28
  article-title: Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease
  publication-title: Med. Eng. Phys.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b6
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
– start-page: 1
  year: 2022
  end-page: 24
  ident: b30
  article-title: Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods
  publication-title: Cogn. Neurodyn.
– volume: 18
  start-page: 150
  year: 2009
  end-page: 158
  ident: b24
  article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 12
  start-page: 219
  year: 1993
  end-page: 228
  ident: b1
  article-title: Projected neurodegenerative disease mortality in the United States,1990 -2040
  publication-title: Neuroepidemiology
– volume: 143
  year: 2020
  ident: b47
  article-title: Deep 1D-convnet for accurate parkinson disease detection and severity prediction from gait
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 1
  year: 2010
  end-page: 10
  ident: b41
  article-title: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations
  publication-title: J. Neuroeng. Rehabilit.
– year: 2014
  ident: b42
  article-title: Gait Analysis: An Introduction
– volume: 26
  start-page: 2369
  year: 2007
  end-page: 2375
  ident: b38
  article-title: Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease
  publication-title: Eur. J. Neurosci.
– volume: 14
  start-page: 1
  year: 2014
  end-page: 13
  ident: b49
  article-title: Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
  publication-title: BMC Med. Res. Methodol.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: b40
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– start-page: 1322
  year: 2008
  end-page: 1328
  ident: b11
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
– volume: 114
  year: 2022
  ident: b35
  article-title: Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network
  publication-title: Eng. Appl. Artif. Intell.
– year: 2017
  ident: b10
  article-title: Oversampling for imbalanced learning based on k-means and smote
– volume: 19
  start-page: 1794
  year: 2015
  end-page: 1802
  ident: b25
  article-title: Classification of Parkinson’s disease gait using spatial-temporal gait features
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 4
  start-page: 200
  year: 2023
  ident: b32
  article-title: Enhanced local pattern transformation based feature extraction for identification of Parkinson’s disease using gait signals
  publication-title: SN Comput. Sci.
– start-page: 1
  year: 2021
  end-page: 10
  ident: b17
  article-title: Explainable deep learning architecture for early diagnosis of parkinson’s disease
  publication-title: Soft Comput.
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b36
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 17
  start-page: 1
  year: 2020
  end-page: 8
  ident: b16
  article-title: Classification of Parkinson’s disease and essential tremor based on balance and gait characteristics from wearable motion sensors via machine learning techniques: a data-driven approach
  publication-title: J. Neuroeng. Rehabilit.
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: b46
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
– volume: 9
  start-page: 165286
  year: 2021
  end-page: 165294
  ident: b20
  article-title: Performance evaluation of machine learning methods for credit card fraud detection using SMOTE and AdaBoost
  publication-title: IEEE Access
– volume: 50
  start-page: 1
  year: 2000
  end-page: 18
  ident: b44
  article-title: The mahalanobis distance
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 13
  start-page: 59
  year: 2019
  ident: b2
  article-title: Potential markers of progression in idiopathic parkinson’s disease derived from assessment of circular gait with a single body-fixed-sensor: a 5 year longitudinal study
  publication-title: Front. Hum. Neurosci.
– volume: 38
  start-page: 7135
  year: 2011
  end-page: 7142
  ident: b45
  article-title: Using Gaussian membership functions for improving the reliability and robustness of students’ evaluation systems
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 3898
  year: 2019
  ident: b5
  article-title: Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: addressing the class imbalance problem
  publication-title: Sensors
– year: 2022
  ident: b18
  article-title: PD-ResNet for classification of Parkinson’s disease from gait
  publication-title: IEEE J. Transl. Eng. Health Med.
– volume: 28
  start-page: 42
  year: 2019
  end-page: 51
  ident: b14
  article-title: A dual-modal attention-enhanced deep learning network for quantification of Parkinson’s disease characteristics
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 27
  year: 2022
  ident: b29
  article-title: Age-gender specific prediction model for parkinson’s severity assessment using gait biomarkers
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 20
  start-page: 1109
  year: 2005
  end-page: 1114
  ident: b39
  article-title: Treadmill walking as an external pacemaker to improve gait rhythm and stability in parkinson’s disease
  publication-title: Movement Disorders Off. J. Movement Disorder Soc.
– volume: 21
  start-page: 5207
  year: 2021
  ident: b33
  article-title: Implementation of a deep learning algorithm based on vertical ground reaction force time–frequency features for the detection and severity classification of Parkinson’s disease
  publication-title: Sensors
– start-page: 878
  year: 2005
  end-page: 887
  ident: b8
  article-title: BorderlineSMOTE: a new over-sampling method in imbalanced datasets learning
– volume: 184
  year: 2019
  ident: b3
  article-title: Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease—A review
  publication-title: Clin. Neurol. Neurosurg.
– volume: 83
  start-page: 366
  year: 2018
  end-page: 373
  ident: b23
  article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease
  publication-title: Future Gener. Comput. Syst.
– volume: 11
  year: 2020
  ident: b12
  article-title: Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks
  publication-title: Front. Physiol.
– volume: 38
  start-page: 760
  year: 2018
  end-page: 772
  ident: b26
  article-title: Parkinson’s disease monitoring from gait analysis via foot-worn sensors
  publication-title: Biocybern. Biomed. Eng.
– volume: 22
  start-page: 1248
  year: 2005
  end-page: 1256
  ident: b37
  article-title: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding?
  publication-title: Eur. J. Neurosci.
– volume: 11
  start-page: 1395
  year: 2021
  ident: b31
  article-title: Local pattern transformation based feature extraction for recognition of Parkinson’s disease based on gait signals
  publication-title: Diagnostics
– volume: 6
  start-page: 59475
  year: 2018
  end-page: 59485
  ident: b21
  article-title: Cervical cancer diagnosis using random forest classifier with SMOTE and feature reduction techniques
  publication-title: IEEE Access
– volume: 94
  year: 2020
  ident: b27
  article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease
  publication-title: Appl. Soft Comput.
– volume: 3
  start-page: 4
  year: 2011
  end-page: 21
  ident: b9
  article-title: Borderline over - sampling for imbalanced data classification
  publication-title: Int. J. Knowl. Eng. Soft Data Paradigms
– start-page: 107
  year: 2003
  end-page: 119
  ident: b7
  article-title: SMOTEBoost: Improving prediction of the minority class in boosting
  publication-title: European Conference on Principles of Data Mining and Knowledge Discovery
– start-page: 1
  year: 2022
  end-page: 36
  ident: b13
  article-title: Automated methods for diagnosis of Parkinson’s disease and predicting severity level
  publication-title: Neural Comput. Appl.
– volume: 19
  start-page: 242
  year: 2019
  ident: b4
  article-title: Data-driven based approach to aid Parkinson’s disease diagnosis
  publication-title: Sensors
– volume: 11
  start-page: 1834
  year: 2021
  ident: b19
  article-title: Severity classification of Parkinson’s disease based on permutation-variable importance and persistent entropy
  publication-title: Appl. Sci.
– volume: 108
  year: 2021
  ident: b34
  article-title: Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network
  publication-title: Appl. Soft Comput.
– volume: 12
  year: 2017
  ident: b22
  article-title: Vertical ground reaction force marker for Parkinson’s disease
  publication-title: PLoS One
– volume: 12
  year: 2021
  ident: b15
  article-title: Applying synthetic minority over-sampling technique and support vector machine to develop a classifier for Parkinson’s disease
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 38
  start-page: 7135
  issue: 6
  year: 2011
  ident: 10.1016/j.bspc.2023.105057_b45
  article-title: Using Gaussian membership functions for improving the reliability and robustness of students’ evaluation systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.048
– volume: 21
  start-page: 5207
  issue: 15
  year: 2021
  ident: 10.1016/j.bspc.2023.105057_b33
  article-title: Implementation of a deep learning algorithm based on vertical ground reaction force time–frequency features for the detection and severity classification of Parkinson’s disease
  publication-title: Sensors
  doi: 10.3390/s21155207
– volume: 83
  start-page: 366
  year: 2018
  ident: 10.1016/j.bspc.2023.105057_b23
  article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.02.009
– volume: 13
  start-page: 59
  year: 2019
  ident: 10.1016/j.bspc.2023.105057_b2
  article-title: Potential markers of progression in idiopathic parkinson’s disease derived from assessment of circular gait with a single body-fixed-sensor: a 5 year longitudinal study
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00059
– volume: 11
  start-page: 1395
  issue: 8
  year: 2021
  ident: 10.1016/j.bspc.2023.105057_b31
  article-title: Local pattern transformation based feature extraction for recognition of Parkinson’s disease based on gait signals
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11081395
– volume: 108
  year: 2021
  ident: 10.1016/j.bspc.2023.105057_b34
  article-title: Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.bspc.2023.105057_b41
  article-title: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations
  publication-title: J. Neuroeng. Rehabilit.
– volume: 3
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.bspc.2023.105057_b9
  article-title: Borderline over - sampling for imbalanced data classification
  publication-title: Int. J. Knowl. Eng. Soft Data Paradigms
  doi: 10.1504/IJKESDP.2011.039875
– volume: 38
  start-page: 760
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2023.105057_b26
  article-title: Parkinson’s disease monitoring from gait analysis via foot-worn sensors
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.06.002
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.105057_b30
  article-title: Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods
  publication-title: Cogn. Neurodyn.
– volume: 20
  start-page: 1109
  issue: 9
  year: 2005
  ident: 10.1016/j.bspc.2023.105057_b39
  article-title: Treadmill walking as an external pacemaker to improve gait rhythm and stability in parkinson’s disease
  publication-title: Movement Disorders Off. J. Movement Disorder Soc.
  doi: 10.1002/mds.20507
– volume: 11
  year: 2020
  ident: 10.1016/j.bspc.2023.105057_b12
  article-title: Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.587057
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.bspc.2023.105057_b36
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 19
  start-page: 242
  issue: 2
  year: 2019
  ident: 10.1016/j.bspc.2023.105057_b4
  article-title: Data-driven based approach to aid Parkinson’s disease diagnosis
  publication-title: Sensors
  doi: 10.3390/s19020242
– volume: 26
  start-page: 2369
  issue: 8
  year: 2007
  ident: 10.1016/j.bspc.2023.105057_b38
  article-title: Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2007.05810.x
– year: 2017
  ident: 10.1016/j.bspc.2023.105057_b10
– volume: 31
  start-page: 241
  issue: 2
  year: 2010
  ident: 10.1016/j.bspc.2023.105057_b43
  article-title: Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.10.014
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.bspc.2023.105057_b40
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 19
  start-page: 1794
  issue: 6
  year: 2015
  ident: 10.1016/j.bspc.2023.105057_b25
  article-title: Classification of Parkinson’s disease gait using spatial-temporal gait features
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2015.2450232
– year: 2022
  ident: 10.1016/j.bspc.2023.105057_b18
  article-title: PD-ResNet for classification of Parkinson’s disease from gait
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2022.3180933
– volume: 12
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2023.105057_b15
  article-title: Applying synthetic minority over-sampling technique and support vector machine to develop a classifier for Parkinson’s disease
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 94
  year: 2020
  ident: 10.1016/j.bspc.2023.105057_b27
  article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease
  publication-title: Appl. Soft Comput.
– start-page: 1322
  year: 2008
  ident: 10.1016/j.bspc.2023.105057_b11
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
– volume: 14
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.bspc.2023.105057_b49
  article-title: Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-14-137
– start-page: 878
  year: 2005
  ident: 10.1016/j.bspc.2023.105057_b8
  article-title: BorderlineSMOTE: a new over-sampling method in imbalanced datasets learning
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105057_b17
  article-title: Explainable deep learning architecture for early diagnosis of parkinson’s disease
  publication-title: Soft Comput.
– volume: 12
  issue: 5
  year: 2017
  ident: 10.1016/j.bspc.2023.105057_b22
  article-title: Vertical ground reaction force marker for Parkinson’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0175951
– year: 2014
  ident: 10.1016/j.bspc.2023.105057_b42
– volume: 143
  year: 2020
  ident: 10.1016/j.bspc.2023.105057_b47
  article-title: Deep 1D-convnet for accurate parkinson disease detection and severity prediction from gait
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113075
– volume: 9
  start-page: 165286
  year: 2021
  ident: 10.1016/j.bspc.2023.105057_b20
  article-title: Performance evaluation of machine learning methods for credit card fraud detection using SMOTE and AdaBoost
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3134330
– volume: 28
  start-page: 42
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2023.105057_b14
  article-title: A dual-modal attention-enhanced deep learning network for quantification of Parkinson’s disease characteristics
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2946194
– volume: 91
  start-page: 54
  year: 2021
  ident: 10.1016/j.bspc.2023.105057_b28
  article-title: Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2021.03.005
– start-page: 107
  year: 2003
  ident: 10.1016/j.bspc.2023.105057_b7
  article-title: SMOTEBoost: Improving prediction of the minority class in boosting
– volume: 18
  start-page: 150
  issue: 2
  year: 2009
  ident: 10.1016/j.bspc.2023.105057_b24
  article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2009.2033062
– volume: 189
  year: 2022
  ident: 10.1016/j.bspc.2023.105057_b48
  article-title: Severity level diagnosis of Parkinson’s disease by ensemble K-nearest neighbor under imbalanced data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116113
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.105057_b13
  article-title: Automated methods for diagnosis of Parkinson’s disease and predicting severity level
  publication-title: Neural Comput. Appl.
– volume: 11
  start-page: 1834
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2023.105057_b19
  article-title: Severity classification of Parkinson’s disease based on permutation-variable importance and persistent entropy
  publication-title: Appl. Sci.
  doi: 10.3390/app11041834
– volume: 12
  start-page: 219
  issue: 4
  year: 1993
  ident: 10.1016/j.bspc.2023.105057_b1
  article-title: Projected neurodegenerative disease mortality in the United States,1990 -2040
  publication-title: Neuroepidemiology
  doi: 10.1159/000110320
– volume: 114
  year: 2022
  ident: 10.1016/j.bspc.2023.105057_b35
  article-title: Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105099
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.bspc.2023.105057_b6
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.953
– volume: 184
  year: 2019
  ident: 10.1016/j.bspc.2023.105057_b3
  article-title: Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease—A review
  publication-title: Clin. Neurol. Neurosurg.
  doi: 10.1016/j.clineuro.2019.105442
– volume: 1
  start-page: 80
  year: 1945
  ident: 10.1016/j.bspc.2023.105057_b46
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
  doi: 10.2307/3001968
– volume: 19
  start-page: 3898
  issue: 18
  year: 2019
  ident: 10.1016/j.bspc.2023.105057_b5
  article-title: Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: addressing the class imbalance problem
  publication-title: Sensors
  doi: 10.3390/s19183898
– volume: 6
  start-page: 59475
  year: 2018
  ident: 10.1016/j.bspc.2023.105057_b21
  article-title: Cervical cancer diagnosis using random forest classifier with SMOTE and feature reduction techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2874063
– volume: 17
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.105057_b16
  article-title: Classification of Parkinson’s disease and essential tremor based on balance and gait characteristics from wearable motion sensors via machine learning techniques: a data-driven approach
  publication-title: J. Neuroeng. Rehabilit.
– volume: 4
  start-page: 200
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2023.105057_b32
  article-title: Enhanced local pattern transformation based feature extraction for identification of Parkinson’s disease using gait signals
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-022-01603-1
– volume: 22
  start-page: 1248
  issue: 5
  year: 2005
  ident: 10.1016/j.bspc.2023.105057_b37
  article-title: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding?
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.04298.x
– volume: 27
  year: 2022
  ident: 10.1016/j.bspc.2023.105057_b29
  article-title: Age-gender specific prediction model for parkinson’s severity assessment using gait biomarkers
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 50
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.bspc.2023.105057_b44
  article-title: The mahalanobis distance
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(99)00047-7
SSID ssj0048714
Score 2.3538754
Snippet Parkinson’s Disease (PD) severity level detection is crucial for timely and effective medical intervention. Due to the scarcity of PD gait data especially...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105057
SubjectTerms Gait Analysis
Imbalanced Dataset
Machine Learning
Mahalanobis Distance
Optimal sample size
Parkinson’s Disease
Title Mahalanobis Metric-based Oversampling Technique for Parkinson’s Disease Severity Assessment using Spatiotemporal Gait Parameters
URI https://dx.doi.org/10.1016/j.bspc.2023.105057
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0gXPRg_Iz4QfbgzVTobneBI0ERNeABSLg13e4WaxCIxasx_gv_nr_EmXZLMDEePLbpNM3OduZN9s0bQs49TEqGhU4gXA0FitBOU0QKfncvgIxf0yLVme31ZXfk3Y3FuEDaeS8M0ipt7M9iehqt7Z2qXc3qIo6rA8DSsgHVCePp8RWUQCXGm1IUSal1e9_t5wEZIHkq8Y3PO2hge2cympdKFqhkyDhOvK1hlvotP63lnM4O2bZgkbay79klBTPbI1trEoL75KMXPCI7ca7ihPZwPFboYGbS9AEJFwESxmcTOsylWimAVIqtzmnX19f7Z0KvsjMaOjBgAaCctlZqnRRp8RM6SGnXVsVqSm-CeInvCJ6RS5MckFHnetjuOnaughPCUi0dwIQeM5HR9YALHjWwxKhHKlRaGca19hhrMi1Z6EK5A_AulBHnOoDlY55UxvBDUpzNZ-aI0IaMJBS2su6hdKBQTR7hWRs3Uc3jULqViZuvph9a0XGcfTH1c3bZk48e8NEDfuaBMrlY2SwyyY0_nxa5k_wfG8eHnPCH3fE_7U7IJl5lNLNTUly-vJozwCVLVSEbl29uxe6-bzt24v4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPKgH4zPicw_eTAX20cKRoIgKeAASbs1ud4s1CETwaoz_wr_nL3GmD4KJ4eC13WmamXbnm-w33xByITApWRY4SpYNFCjSOFUZavjdhYKMXzIy1pltd9xmX9wP5CBH6lkvDNIq070_2dPj3Tq9Uky9WZxGUbELWNqtQHXCeHx8BSXQmpDcQ17f1fuC5wGAPBb4xtUOLk87ZxKSl55NUceQcZx3W8Ic9Vd2Wso4jW2ylUJFWkveZofk7HiXbC4JCO6Rz7Z6Qm7iREcz2sbhWIGDecnQR6RbKKSLj4e0lwm1UoCoFBud456v74-vGb1OTmho14IFQHJaW2h1UiTFD2k3Jl2nGlYjequiOT5DvSCTZrZP-o2bXr3ppFMVnAAcNXcAEQpmQ2s8xSUPK1hgeKEOtNGWcWMEY1VmXBaUodgBcBe4IedGgfuYcLW1_IDkx5OxPSS04oYulLWuJ1A4UOoqD_GkjduwJDgUbgVSzrzpB6nkOE6-GPkZt-zZxwj4GAE_iUCBXC5spongxsrVMguS_-uz8SEjrLA7-qfdOVlv9totv3XXeTgmG3gnIZydkPz89c2eAkKZ67P4C_wBJ33jyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mahalanobis+Metric-based+Oversampling+Technique+for+Parkinson%E2%80%99s+Disease+Severity+Assessment+using+Spatiotemporal+Gait+Parameters&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Balakrishnan%2C+Aishwarya&rft.au=Medikonda%2C+Jeevan&rft.au=Namboothiri%2C+Pramod+K.&rft.au=Natarajan%2C+Manikandan&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=86&rft_id=info:doi/10.1016%2Fj.bspc.2023.105057&rft.externalDocID=S1746809423004901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon