Mahalanobis Metric-based Oversampling Technique for Parkinson’s Disease Severity Assessment using Spatiotemporal Gait Parameters
Parkinson’s Disease (PD) severity level detection is crucial for timely and effective medical intervention. Due to the scarcity of PD gait data especially subject samples of higher severity levels, data generation techniques are adopted. This paper proposes the Mahalanobis-Metric-based Oversampling...
Saved in:
Published in | Biomedical signal processing and control Vol. 86; p. 105057 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2023.105057 |
Cover
Abstract | Parkinson’s Disease (PD) severity level detection is crucial for timely and effective medical intervention. Due to the scarcity of PD gait data especially subject samples of higher severity levels, data generation techniques are adopted. This paper proposes the Mahalanobis-Metric-based Oversampling Technique (MMOTE), an algorithm that generates data within the boundaries of the existing data samples while also being diverse to address the problem of class imbalance within a dataset. The proposed technique is evaluated on PD gait data and the results show that MMOTE outperformed alternative oversampling techniques. A hybrid approach of combining ensemble learning with oversampling the minority class for PD severity level assessment is adopted. The minority class recognition is enhanced with an accuracy of 99%, thereby improving the generalizability of the classifier. Statistical analyses such as Levene’s test and Wilcoxon signed-rank test are conducted to validate the significance of the findings. Moreover, the importance of optimal sample size determination for obtaining reliable prediction results is also discussed. Overall classification accuracy of ≈98% is reported using sample size estimated by plotting the learning curve for Random Forest.
•Mahalanobis Distance is a good alternative while dealing with a correlated dataset.•Mahalanobis Metric-based oversampling technique is proposed to improve Parkinson’s Disease diagnosis.•Proposed methodology adopts hybrid approach of oversampling with ensemble learning to improve model performance.•Improves minority class recognition using Random Forest with an accuracy of 99%.•Model training with optimal sample size yields classification accuracy of ≈98% in PD severity assessment. |
---|---|
AbstractList | Parkinson’s Disease (PD) severity level detection is crucial for timely and effective medical intervention. Due to the scarcity of PD gait data especially subject samples of higher severity levels, data generation techniques are adopted. This paper proposes the Mahalanobis-Metric-based Oversampling Technique (MMOTE), an algorithm that generates data within the boundaries of the existing data samples while also being diverse to address the problem of class imbalance within a dataset. The proposed technique is evaluated on PD gait data and the results show that MMOTE outperformed alternative oversampling techniques. A hybrid approach of combining ensemble learning with oversampling the minority class for PD severity level assessment is adopted. The minority class recognition is enhanced with an accuracy of 99%, thereby improving the generalizability of the classifier. Statistical analyses such as Levene’s test and Wilcoxon signed-rank test are conducted to validate the significance of the findings. Moreover, the importance of optimal sample size determination for obtaining reliable prediction results is also discussed. Overall classification accuracy of ≈98% is reported using sample size estimated by plotting the learning curve for Random Forest.
•Mahalanobis Distance is a good alternative while dealing with a correlated dataset.•Mahalanobis Metric-based oversampling technique is proposed to improve Parkinson’s Disease diagnosis.•Proposed methodology adopts hybrid approach of oversampling with ensemble learning to improve model performance.•Improves minority class recognition using Random Forest with an accuracy of 99%.•Model training with optimal sample size yields classification accuracy of ≈98% in PD severity assessment. |
ArticleNumber | 105057 |
Author | Medikonda, Jeevan Natarajan, Manikandan Namboothiri, Pramod K. Balakrishnan, Aishwarya |
Author_xml | – sequence: 1 givenname: Aishwarya orcidid: 0000-0002-6677-141X surname: Balakrishnan fullname: Balakrishnan, Aishwarya organization: Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India – sequence: 2 givenname: Jeevan orcidid: 0000-0003-2271-3602 surname: Medikonda fullname: Medikonda, Jeevan email: jeevan.m@manipal.edu organization: Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India – sequence: 3 givenname: Pramod K. orcidid: 0000-0002-6923-1558 surname: Namboothiri fullname: Namboothiri, Pramod K. organization: Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India – sequence: 4 givenname: Manikandan orcidid: 0000-0002-4329-5748 surname: Natarajan fullname: Natarajan, Manikandan organization: Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India |
BookMark | eNp9kEtOwzAQhi0EEuVxAVa-QIofaR4Sm6o8JRBIwNpy7Am4JE7wGKTuELfgepyERIUNi65mNNI3M_-3R7Z954GQI86mnPHseDmtsDdTwYQcBjM2y7fIhOdplhScFdt_PSvTXbKHuGQsLXKeTsjnjX7WjfZd5ZDeQAzOJJVGsPT2HQLqtm-cf6IPYJ69e30DWneB3unw4jx2_vvjC-mpQxgIeg8D4eKKzhEBsQUf6RuO9H2vo-sitH0XdEMvtIvjDt1CHG4ckJ1aNwiHv3WfPJ6fPSwuk-vbi6vF_DoxkrGYlGWZCqjB5lrOZF3wQmR5XZnKViCktakQpbCZMLzIhBSZyWoprR5yizSrAOQ-KdZ7TegQA9TKuDg-5mPQrlGcqdGlWqrRpRpdqrXLARX_0D64VofVZuhkDcEQ6t1BUGgceAPWBTBR2c5twn8AlhuUJw |
CitedBy_id | crossref_primary_10_32604_cmc_2024_060837 crossref_primary_10_20473_jisebi_10_1_38_50 crossref_primary_10_1007_s12553_023_00810_x crossref_primary_10_1007_s13369_023_08626_7 crossref_primary_10_1109_ACCESS_2024_3456438 crossref_primary_10_1038_s41598_024_83975_3 crossref_primary_10_1016_j_bspc_2024_106862 |
Cites_doi | 10.1016/j.eswa.2010.12.048 10.3390/s21155207 10.1016/j.future.2018.02.009 10.3389/fnhum.2019.00059 10.3390/diagnostics11081395 10.1504/IJKESDP.2011.039875 10.1016/j.bbe.2018.06.002 10.1002/mds.20507 10.3389/fphys.2020.587057 10.1161/01.CIR.101.23.e215 10.3390/s19020242 10.1111/j.1460-9568.2007.05810.x 10.1016/j.gaitpost.2009.10.014 10.1021/ac60214a047 10.1109/JBHI.2015.2450232 10.1109/JTEHM.2022.3180933 10.1186/1471-2288-14-137 10.1371/journal.pone.0175951 10.1016/j.eswa.2019.113075 10.1109/ACCESS.2021.3134330 10.1109/TNSRE.2019.2946194 10.1016/j.medengphy.2021.03.005 10.1109/TNSRE.2009.2033062 10.1016/j.eswa.2021.116113 10.3390/app11041834 10.1159/000110320 10.1016/j.engappai.2022.105099 10.1613/jair.953 10.1016/j.clineuro.2019.105442 10.2307/3001968 10.3390/s19183898 10.1109/ACCESS.2018.2874063 10.1007/s42979-022-01603-1 10.1111/j.1460-9568.2005.04298.x 10.1016/S0169-7439(99)00047-7 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2023.105057 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2023_105057 S1746809423004901 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-99942efed7a353f818267fbcbdbe23dd42292d62c1862326c6f33da746246bee3 |
IEDL.DBID | AIKHN |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:11:54 EDT 2025 Tue Jul 01 01:34:18 EDT 2025 Fri Feb 23 02:37:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Imbalanced Dataset Mahalanobis Distance Parkinson’s Disease Gait Analysis Machine Learning Optimal sample size |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-99942efed7a353f818267fbcbdbe23dd42292d62c1862326c6f33da746246bee3 |
ORCID | 0000-0002-6923-1558 0000-0002-6677-141X 0000-0003-2271-3602 0000-0002-4329-5748 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2023_105057 crossref_primary_10_1016_j_bspc_2023_105057 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wu, Krishnan (b24) 2009; 18 Zhao, Wang, Lei, Liao, Cao, Cao (b48) 2022; 189 Yogev, Giladi, Peretz, Springer, Simon, Hausdorff (b37) 2005; 22 Khoury, Attal, Amirat, Oukhellou, Mohammed (b4) 2019; 19 Tura, Raggi, Rocchi, Cutti, Chiari (b41) 2010; 7 Byeon, Kim (b15) 2021; 12 Klinton Amaladass, Subathra, Jeba Priya, Sivakumar (b32) 2023; 4 Frenkel-Toledo, Giladi, Peretz, Herman, Gruendlinger, Hausdorff (b39) 2005; 20 Belic, Bobic, Badza, Solaja, DJuric Jovicic, Kostic (b3) 2019; 184 Han, Wang, Mao (b8) 2005 Vidya, Sasikumar (b35) 2022; 114 Setiawan, Lin (b33) 2021; 21 Abdoh, Rizka, Maghraby (b21) 2018; 6 Wang, Zeng, Dai (b30) 2022 Nguyen, Cooper, Kamei (b9) 2011; 3 Ayaz, Naz, Khan, Razzak, Imran (b13) 2022 De Maesschalck, Jouan-Rimbaud, Massart (b44) 2000; 50 Xia, Yao, Ye, Cheng (b14) 2019; 28 Balaji, Brindha, Balakrishnan (b27) 2020; 94 Priya, Rani, Subathra, Mohammed, Damaševičius, Ubendran (b31) 2021; 11 Alam, Garg, Munia, Fazel-Rezai, Tavakolian (b22) 2017; 12 Savitzky, Golay (b40) 1964; 36 Chawla, Lazarevic, Hall, Bowyer (b7) 2003 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b36) 2000; 101 Hameed (b45) 2011; 38 Naghavi, Miller, Wade (b5) 2019; 19 Tong, Zhang, Dong, Du (b19) 2021; 11 Mico Amigo, Kingma, Heinzel, Rispens, Heger, Nussbaum, van Lummel, Berg, Maetzler, van Dieen (b2) 2019; 13 Patterson, Gage, Brooks, Black, McIlroy (b43) 2010; 31 Moon, Song, Sharma, Lyons, Pahwa, Akinwuntan, Devos (b16) 2020; 17 Ma, Chen, Chen, Lai (b17) 2021 Whittle (b42) 2014 Yang, Ye, Cai, Wang, Cai (b18) 2022 Aşuroğlu, Açıcı, Erdaş, Toprak, Erdem, Oğul (b26) 2018; 38 El Maachi, Bilodeau, Bouachir (b47) 2020; 143 Wilcoxon (b46) 1945; 1 Last, Douzas, Bacao (b10) 2017 Balaji, Brindha, Elumalai, Vikrama (b34) 2021; 108 Khera, Kumar (b29) 2022; 27 Wahid, Begg, Hass, Halgamuge, Ackland (b25) 2015; 19 He, Bai, Garcia, Li (b11) 2008 Abdulhay, Arunkumar, Narasimhan, Vellaiappan, Venkatraman (b23) 2018; 83 Veeraragavan, Gopalai, Gouwanda, Ahmad (b12) 2020; 11 Lilienfeld, Perl (b1) 1993; 12 Hausdorff, Lowenthal, Herman, Gruendlinger, Peretz, Giladi (b38) 2007; 26 Balaji, Brindha, Elumalai, Umesh (b28) 2021; 91 Chawla, Bowyer, Hall, Kegelmeyer (b6) 2002; 16 Ileberi, Sun, Wang (b20) 2021; 9 van der Ploeg, Austin, Steyerberg (b49) 2014; 14 Ileberi (10.1016/j.bspc.2023.105057_b20) 2021; 9 van der Ploeg (10.1016/j.bspc.2023.105057_b49) 2014; 14 Ayaz (10.1016/j.bspc.2023.105057_b13) 2022 Abdoh (10.1016/j.bspc.2023.105057_b21) 2018; 6 He (10.1016/j.bspc.2023.105057_b11) 2008 Xia (10.1016/j.bspc.2023.105057_b14) 2019; 28 Frenkel-Toledo (10.1016/j.bspc.2023.105057_b39) 2005; 20 El Maachi (10.1016/j.bspc.2023.105057_b47) 2020; 143 Hausdorff (10.1016/j.bspc.2023.105057_b38) 2007; 26 Savitzky (10.1016/j.bspc.2023.105057_b40) 1964; 36 Ma (10.1016/j.bspc.2023.105057_b17) 2021 Lilienfeld (10.1016/j.bspc.2023.105057_b1) 1993; 12 Yang (10.1016/j.bspc.2023.105057_b18) 2022 Abdulhay (10.1016/j.bspc.2023.105057_b23) 2018; 83 Patterson (10.1016/j.bspc.2023.105057_b43) 2010; 31 Veeraragavan (10.1016/j.bspc.2023.105057_b12) 2020; 11 Belic (10.1016/j.bspc.2023.105057_b3) 2019; 184 Byeon (10.1016/j.bspc.2023.105057_b15) 2021; 12 Yogev (10.1016/j.bspc.2023.105057_b37) 2005; 22 Chawla (10.1016/j.bspc.2023.105057_b6) 2002; 16 Balaji (10.1016/j.bspc.2023.105057_b27) 2020; 94 Tura (10.1016/j.bspc.2023.105057_b41) 2010; 7 Khoury (10.1016/j.bspc.2023.105057_b4) 2019; 19 Aşuroğlu (10.1016/j.bspc.2023.105057_b26) 2018; 38 Wu (10.1016/j.bspc.2023.105057_b24) 2009; 18 Priya (10.1016/j.bspc.2023.105057_b31) 2021; 11 Balaji (10.1016/j.bspc.2023.105057_b28) 2021; 91 Goldberger (10.1016/j.bspc.2023.105057_b36) 2000; 101 Tong (10.1016/j.bspc.2023.105057_b19) 2021; 11 Chawla (10.1016/j.bspc.2023.105057_b7) 2003 Last (10.1016/j.bspc.2023.105057_b10) 2017 Balaji (10.1016/j.bspc.2023.105057_b34) 2021; 108 Han (10.1016/j.bspc.2023.105057_b8) 2005 Wilcoxon (10.1016/j.bspc.2023.105057_b46) 1945; 1 Nguyen (10.1016/j.bspc.2023.105057_b9) 2011; 3 Whittle (10.1016/j.bspc.2023.105057_b42) 2014 Zhao (10.1016/j.bspc.2023.105057_b48) 2022; 189 Hameed (10.1016/j.bspc.2023.105057_b45) 2011; 38 Mico Amigo (10.1016/j.bspc.2023.105057_b2) 2019; 13 Moon (10.1016/j.bspc.2023.105057_b16) 2020; 17 Setiawan (10.1016/j.bspc.2023.105057_b33) 2021; 21 Naghavi (10.1016/j.bspc.2023.105057_b5) 2019; 19 Khera (10.1016/j.bspc.2023.105057_b29) 2022; 27 Wang (10.1016/j.bspc.2023.105057_b30) 2022 De Maesschalck (10.1016/j.bspc.2023.105057_b44) 2000; 50 Vidya (10.1016/j.bspc.2023.105057_b35) 2022; 114 Klinton Amaladass (10.1016/j.bspc.2023.105057_b32) 2023; 4 Wahid (10.1016/j.bspc.2023.105057_b25) 2015; 19 Alam (10.1016/j.bspc.2023.105057_b22) 2017; 12 |
References_xml | – volume: 31 start-page: 241 year: 2010 end-page: 246 ident: b43 article-title: Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization publication-title: Gait Posture – volume: 189 year: 2022 ident: b48 article-title: Severity level diagnosis of Parkinson’s disease by ensemble K-nearest neighbor under imbalanced data publication-title: Expert Syst. Appl. – volume: 91 start-page: 54 year: 2021 end-page: 64 ident: b28 article-title: Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease publication-title: Med. Eng. Phys. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: b6 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. – start-page: 1 year: 2022 end-page: 24 ident: b30 article-title: Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods publication-title: Cogn. Neurodyn. – volume: 18 start-page: 150 year: 2009 end-page: 158 ident: b24 article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 12 start-page: 219 year: 1993 end-page: 228 ident: b1 article-title: Projected neurodegenerative disease mortality in the United States,1990 -2040 publication-title: Neuroepidemiology – volume: 143 year: 2020 ident: b47 article-title: Deep 1D-convnet for accurate parkinson disease detection and severity prediction from gait publication-title: Expert Syst. Appl. – volume: 7 start-page: 1 year: 2010 end-page: 10 ident: b41 article-title: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations publication-title: J. Neuroeng. Rehabilit. – year: 2014 ident: b42 article-title: Gait Analysis: An Introduction – volume: 26 start-page: 2369 year: 2007 end-page: 2375 ident: b38 article-title: Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease publication-title: Eur. J. Neurosci. – volume: 14 start-page: 1 year: 2014 end-page: 13 ident: b49 article-title: Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints publication-title: BMC Med. Res. Methodol. – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: b40 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. – start-page: 1322 year: 2008 end-page: 1328 ident: b11 article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning publication-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) – volume: 114 year: 2022 ident: b35 article-title: Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network publication-title: Eng. Appl. Artif. Intell. – year: 2017 ident: b10 article-title: Oversampling for imbalanced learning based on k-means and smote – volume: 19 start-page: 1794 year: 2015 end-page: 1802 ident: b25 article-title: Classification of Parkinson’s disease gait using spatial-temporal gait features publication-title: IEEE J. Biomed. Health Inf. – volume: 4 start-page: 200 year: 2023 ident: b32 article-title: Enhanced local pattern transformation based feature extraction for identification of Parkinson’s disease using gait signals publication-title: SN Comput. Sci. – start-page: 1 year: 2021 end-page: 10 ident: b17 article-title: Explainable deep learning architecture for early diagnosis of parkinson’s disease publication-title: Soft Comput. – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b36 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 17 start-page: 1 year: 2020 end-page: 8 ident: b16 article-title: Classification of Parkinson’s disease and essential tremor based on balance and gait characteristics from wearable motion sensors via machine learning techniques: a data-driven approach publication-title: J. Neuroeng. Rehabilit. – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: b46 article-title: Individual comparisons by ranking methods publication-title: Biom. Bull. – volume: 9 start-page: 165286 year: 2021 end-page: 165294 ident: b20 article-title: Performance evaluation of machine learning methods for credit card fraud detection using SMOTE and AdaBoost publication-title: IEEE Access – volume: 50 start-page: 1 year: 2000 end-page: 18 ident: b44 article-title: The mahalanobis distance publication-title: Chemometr. Intell. Lab. Syst. – volume: 13 start-page: 59 year: 2019 ident: b2 article-title: Potential markers of progression in idiopathic parkinson’s disease derived from assessment of circular gait with a single body-fixed-sensor: a 5 year longitudinal study publication-title: Front. Hum. Neurosci. – volume: 38 start-page: 7135 year: 2011 end-page: 7142 ident: b45 article-title: Using Gaussian membership functions for improving the reliability and robustness of students’ evaluation systems publication-title: Expert Syst. Appl. – volume: 19 start-page: 3898 year: 2019 ident: b5 article-title: Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: addressing the class imbalance problem publication-title: Sensors – year: 2022 ident: b18 article-title: PD-ResNet for classification of Parkinson’s disease from gait publication-title: IEEE J. Transl. Eng. Health Med. – volume: 28 start-page: 42 year: 2019 end-page: 51 ident: b14 article-title: A dual-modal attention-enhanced deep learning network for quantification of Parkinson’s disease characteristics publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 27 year: 2022 ident: b29 article-title: Age-gender specific prediction model for parkinson’s severity assessment using gait biomarkers publication-title: Eng. Sci. Technol. Int. J. – volume: 20 start-page: 1109 year: 2005 end-page: 1114 ident: b39 article-title: Treadmill walking as an external pacemaker to improve gait rhythm and stability in parkinson’s disease publication-title: Movement Disorders Off. J. Movement Disorder Soc. – volume: 21 start-page: 5207 year: 2021 ident: b33 article-title: Implementation of a deep learning algorithm based on vertical ground reaction force time–frequency features for the detection and severity classification of Parkinson’s disease publication-title: Sensors – start-page: 878 year: 2005 end-page: 887 ident: b8 article-title: BorderlineSMOTE: a new over-sampling method in imbalanced datasets learning – volume: 184 year: 2019 ident: b3 article-title: Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease—A review publication-title: Clin. Neurol. Neurosurg. – volume: 83 start-page: 366 year: 2018 end-page: 373 ident: b23 article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease publication-title: Future Gener. Comput. Syst. – volume: 11 year: 2020 ident: b12 article-title: Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks publication-title: Front. Physiol. – volume: 38 start-page: 760 year: 2018 end-page: 772 ident: b26 article-title: Parkinson’s disease monitoring from gait analysis via foot-worn sensors publication-title: Biocybern. Biomed. Eng. – volume: 22 start-page: 1248 year: 2005 end-page: 1256 ident: b37 article-title: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? publication-title: Eur. J. Neurosci. – volume: 11 start-page: 1395 year: 2021 ident: b31 article-title: Local pattern transformation based feature extraction for recognition of Parkinson’s disease based on gait signals publication-title: Diagnostics – volume: 6 start-page: 59475 year: 2018 end-page: 59485 ident: b21 article-title: Cervical cancer diagnosis using random forest classifier with SMOTE and feature reduction techniques publication-title: IEEE Access – volume: 94 year: 2020 ident: b27 article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease publication-title: Appl. Soft Comput. – volume: 3 start-page: 4 year: 2011 end-page: 21 ident: b9 article-title: Borderline over - sampling for imbalanced data classification publication-title: Int. J. Knowl. Eng. Soft Data Paradigms – start-page: 107 year: 2003 end-page: 119 ident: b7 article-title: SMOTEBoost: Improving prediction of the minority class in boosting publication-title: European Conference on Principles of Data Mining and Knowledge Discovery – start-page: 1 year: 2022 end-page: 36 ident: b13 article-title: Automated methods for diagnosis of Parkinson’s disease and predicting severity level publication-title: Neural Comput. Appl. – volume: 19 start-page: 242 year: 2019 ident: b4 article-title: Data-driven based approach to aid Parkinson’s disease diagnosis publication-title: Sensors – volume: 11 start-page: 1834 year: 2021 ident: b19 article-title: Severity classification of Parkinson’s disease based on permutation-variable importance and persistent entropy publication-title: Appl. Sci. – volume: 108 year: 2021 ident: b34 article-title: Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network publication-title: Appl. Soft Comput. – volume: 12 year: 2017 ident: b22 article-title: Vertical ground reaction force marker for Parkinson’s disease publication-title: PLoS One – volume: 12 year: 2021 ident: b15 article-title: Applying synthetic minority over-sampling technique and support vector machine to develop a classifier for Parkinson’s disease publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 38 start-page: 7135 issue: 6 year: 2011 ident: 10.1016/j.bspc.2023.105057_b45 article-title: Using Gaussian membership functions for improving the reliability and robustness of students’ evaluation systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.048 – volume: 21 start-page: 5207 issue: 15 year: 2021 ident: 10.1016/j.bspc.2023.105057_b33 article-title: Implementation of a deep learning algorithm based on vertical ground reaction force time–frequency features for the detection and severity classification of Parkinson’s disease publication-title: Sensors doi: 10.3390/s21155207 – volume: 83 start-page: 366 year: 2018 ident: 10.1016/j.bspc.2023.105057_b23 article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.02.009 – volume: 13 start-page: 59 year: 2019 ident: 10.1016/j.bspc.2023.105057_b2 article-title: Potential markers of progression in idiopathic parkinson’s disease derived from assessment of circular gait with a single body-fixed-sensor: a 5 year longitudinal study publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2019.00059 – volume: 11 start-page: 1395 issue: 8 year: 2021 ident: 10.1016/j.bspc.2023.105057_b31 article-title: Local pattern transformation based feature extraction for recognition of Parkinson’s disease based on gait signals publication-title: Diagnostics doi: 10.3390/diagnostics11081395 – volume: 108 year: 2021 ident: 10.1016/j.bspc.2023.105057_b34 article-title: Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network publication-title: Appl. Soft Comput. – volume: 7 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.bspc.2023.105057_b41 article-title: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations publication-title: J. Neuroeng. Rehabilit. – volume: 3 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.bspc.2023.105057_b9 article-title: Borderline over - sampling for imbalanced data classification publication-title: Int. J. Knowl. Eng. Soft Data Paradigms doi: 10.1504/IJKESDP.2011.039875 – volume: 38 start-page: 760 issue: 3 year: 2018 ident: 10.1016/j.bspc.2023.105057_b26 article-title: Parkinson’s disease monitoring from gait analysis via foot-worn sensors publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.06.002 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.105057_b30 article-title: Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods publication-title: Cogn. Neurodyn. – volume: 20 start-page: 1109 issue: 9 year: 2005 ident: 10.1016/j.bspc.2023.105057_b39 article-title: Treadmill walking as an external pacemaker to improve gait rhythm and stability in parkinson’s disease publication-title: Movement Disorders Off. J. Movement Disorder Soc. doi: 10.1002/mds.20507 – volume: 11 year: 2020 ident: 10.1016/j.bspc.2023.105057_b12 article-title: Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks publication-title: Front. Physiol. doi: 10.3389/fphys.2020.587057 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.bspc.2023.105057_b36 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 19 start-page: 242 issue: 2 year: 2019 ident: 10.1016/j.bspc.2023.105057_b4 article-title: Data-driven based approach to aid Parkinson’s disease diagnosis publication-title: Sensors doi: 10.3390/s19020242 – volume: 26 start-page: 2369 issue: 8 year: 2007 ident: 10.1016/j.bspc.2023.105057_b38 article-title: Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2007.05810.x – year: 2017 ident: 10.1016/j.bspc.2023.105057_b10 – volume: 31 start-page: 241 issue: 2 year: 2010 ident: 10.1016/j.bspc.2023.105057_b43 article-title: Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.10.014 – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: 10.1016/j.bspc.2023.105057_b40 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 19 start-page: 1794 issue: 6 year: 2015 ident: 10.1016/j.bspc.2023.105057_b25 article-title: Classification of Parkinson’s disease gait using spatial-temporal gait features publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2015.2450232 – year: 2022 ident: 10.1016/j.bspc.2023.105057_b18 article-title: PD-ResNet for classification of Parkinson’s disease from gait publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2022.3180933 – volume: 12 issue: 3 year: 2021 ident: 10.1016/j.bspc.2023.105057_b15 article-title: Applying synthetic minority over-sampling technique and support vector machine to develop a classifier for Parkinson’s disease publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 94 year: 2020 ident: 10.1016/j.bspc.2023.105057_b27 article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease publication-title: Appl. Soft Comput. – start-page: 1322 year: 2008 ident: 10.1016/j.bspc.2023.105057_b11 article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning – volume: 14 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.bspc.2023.105057_b49 article-title: Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-14-137 – start-page: 878 year: 2005 ident: 10.1016/j.bspc.2023.105057_b8 article-title: BorderlineSMOTE: a new over-sampling method in imbalanced datasets learning – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.105057_b17 article-title: Explainable deep learning architecture for early diagnosis of parkinson’s disease publication-title: Soft Comput. – volume: 12 issue: 5 year: 2017 ident: 10.1016/j.bspc.2023.105057_b22 article-title: Vertical ground reaction force marker for Parkinson’s disease publication-title: PLoS One doi: 10.1371/journal.pone.0175951 – year: 2014 ident: 10.1016/j.bspc.2023.105057_b42 – volume: 143 year: 2020 ident: 10.1016/j.bspc.2023.105057_b47 article-title: Deep 1D-convnet for accurate parkinson disease detection and severity prediction from gait publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113075 – volume: 9 start-page: 165286 year: 2021 ident: 10.1016/j.bspc.2023.105057_b20 article-title: Performance evaluation of machine learning methods for credit card fraud detection using SMOTE and AdaBoost publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3134330 – volume: 28 start-page: 42 issue: 1 year: 2019 ident: 10.1016/j.bspc.2023.105057_b14 article-title: A dual-modal attention-enhanced deep learning network for quantification of Parkinson’s disease characteristics publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2946194 – volume: 91 start-page: 54 year: 2021 ident: 10.1016/j.bspc.2023.105057_b28 article-title: Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2021.03.005 – start-page: 107 year: 2003 ident: 10.1016/j.bspc.2023.105057_b7 article-title: SMOTEBoost: Improving prediction of the minority class in boosting – volume: 18 start-page: 150 issue: 2 year: 2009 ident: 10.1016/j.bspc.2023.105057_b24 article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2009.2033062 – volume: 189 year: 2022 ident: 10.1016/j.bspc.2023.105057_b48 article-title: Severity level diagnosis of Parkinson’s disease by ensemble K-nearest neighbor under imbalanced data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116113 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.105057_b13 article-title: Automated methods for diagnosis of Parkinson’s disease and predicting severity level publication-title: Neural Comput. Appl. – volume: 11 start-page: 1834 issue: 4 year: 2021 ident: 10.1016/j.bspc.2023.105057_b19 article-title: Severity classification of Parkinson’s disease based on permutation-variable importance and persistent entropy publication-title: Appl. Sci. doi: 10.3390/app11041834 – volume: 12 start-page: 219 issue: 4 year: 1993 ident: 10.1016/j.bspc.2023.105057_b1 article-title: Projected neurodegenerative disease mortality in the United States,1990 -2040 publication-title: Neuroepidemiology doi: 10.1159/000110320 – volume: 114 year: 2022 ident: 10.1016/j.bspc.2023.105057_b35 article-title: Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105099 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.bspc.2023.105057_b6 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.953 – volume: 184 year: 2019 ident: 10.1016/j.bspc.2023.105057_b3 article-title: Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease—A review publication-title: Clin. Neurol. Neurosurg. doi: 10.1016/j.clineuro.2019.105442 – volume: 1 start-page: 80 year: 1945 ident: 10.1016/j.bspc.2023.105057_b46 article-title: Individual comparisons by ranking methods publication-title: Biom. Bull. doi: 10.2307/3001968 – volume: 19 start-page: 3898 issue: 18 year: 2019 ident: 10.1016/j.bspc.2023.105057_b5 article-title: Towards real-time prediction of freezing of gait in patients with Parkinson’s disease: addressing the class imbalance problem publication-title: Sensors doi: 10.3390/s19183898 – volume: 6 start-page: 59475 year: 2018 ident: 10.1016/j.bspc.2023.105057_b21 article-title: Cervical cancer diagnosis using random forest classifier with SMOTE and feature reduction techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2874063 – volume: 17 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.bspc.2023.105057_b16 article-title: Classification of Parkinson’s disease and essential tremor based on balance and gait characteristics from wearable motion sensors via machine learning techniques: a data-driven approach publication-title: J. Neuroeng. Rehabilit. – volume: 4 start-page: 200 issue: 2 year: 2023 ident: 10.1016/j.bspc.2023.105057_b32 article-title: Enhanced local pattern transformation based feature extraction for identification of Parkinson’s disease using gait signals publication-title: SN Comput. Sci. doi: 10.1007/s42979-022-01603-1 – volume: 22 start-page: 1248 issue: 5 year: 2005 ident: 10.1016/j.bspc.2023.105057_b37 article-title: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04298.x – volume: 27 year: 2022 ident: 10.1016/j.bspc.2023.105057_b29 article-title: Age-gender specific prediction model for parkinson’s severity assessment using gait biomarkers publication-title: Eng. Sci. Technol. Int. J. – volume: 50 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.bspc.2023.105057_b44 article-title: The mahalanobis distance publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(99)00047-7 |
SSID | ssj0048714 |
Score | 2.3538754 |
Snippet | Parkinson’s Disease (PD) severity level detection is crucial for timely and effective medical intervention. Due to the scarcity of PD gait data especially... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105057 |
SubjectTerms | Gait Analysis Imbalanced Dataset Machine Learning Mahalanobis Distance Optimal sample size Parkinson’s Disease |
Title | Mahalanobis Metric-based Oversampling Technique for Parkinson’s Disease Severity Assessment using Spatiotemporal Gait Parameters |
URI | https://dx.doi.org/10.1016/j.bspc.2023.105057 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0gXPRg_Iz4QfbgzVTobneBI0ERNeABSLg13e4WaxCIxasx_gv_nr_EmXZLMDEePLbpNM3OduZN9s0bQs49TEqGhU4gXA0FitBOU0QKfncvgIxf0yLVme31ZXfk3Y3FuEDaeS8M0ipt7M9iehqt7Z2qXc3qIo6rA8DSsgHVCePp8RWUQCXGm1IUSal1e9_t5wEZIHkq8Y3PO2hge2cympdKFqhkyDhOvK1hlvotP63lnM4O2bZgkbay79klBTPbI1trEoL75KMXPCI7ca7ihPZwPFboYGbS9AEJFwESxmcTOsylWimAVIqtzmnX19f7Z0KvsjMaOjBgAaCctlZqnRRp8RM6SGnXVsVqSm-CeInvCJ6RS5MckFHnetjuOnaughPCUi0dwIQeM5HR9YALHjWwxKhHKlRaGca19hhrMi1Z6EK5A_AulBHnOoDlY55UxvBDUpzNZ-aI0IaMJBS2su6hdKBQTR7hWRs3Uc3jULqViZuvph9a0XGcfTH1c3bZk48e8NEDfuaBMrlY2SwyyY0_nxa5k_wfG8eHnPCH3fE_7U7IJl5lNLNTUly-vJozwCVLVSEbl29uxe6-bzt24v4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPKgH4zPicw_eTAX20cKRoIgKeAASbs1ud4s1CETwaoz_wr_nL3GmD4KJ4eC13WmamXbnm-w33xByITApWRY4SpYNFCjSOFUZavjdhYKMXzIy1pltd9xmX9wP5CBH6lkvDNIq070_2dPj3Tq9Uky9WZxGUbELWNqtQHXCeHx8BSXQmpDcQ17f1fuC5wGAPBb4xtUOLk87ZxKSl55NUceQcZx3W8Ic9Vd2Wso4jW2ylUJFWkveZofk7HiXbC4JCO6Rz7Z6Qm7iREcz2sbhWIGDecnQR6RbKKSLj4e0lwm1UoCoFBud456v74-vGb1OTmho14IFQHJaW2h1UiTFD2k3Jl2nGlYjequiOT5DvSCTZrZP-o2bXr3ppFMVnAAcNXcAEQpmQ2s8xSUPK1hgeKEOtNGWcWMEY1VmXBaUodgBcBe4IedGgfuYcLW1_IDkx5OxPSS04oYulLWuJ1A4UOoqD_GkjduwJDgUbgVSzrzpB6nkOE6-GPkZt-zZxwj4GAE_iUCBXC5spongxsrVMguS_-uz8SEjrLA7-qfdOVlv9totv3XXeTgmG3gnIZydkPz89c2eAkKZ67P4C_wBJ33jyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mahalanobis+Metric-based+Oversampling+Technique+for+Parkinson%E2%80%99s+Disease+Severity+Assessment+using+Spatiotemporal+Gait+Parameters&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Balakrishnan%2C+Aishwarya&rft.au=Medikonda%2C+Jeevan&rft.au=Namboothiri%2C+Pramod+K.&rft.au=Natarajan%2C+Manikandan&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=86&rft_id=info:doi/10.1016%2Fj.bspc.2023.105057&rft.externalDocID=S1746809423004901 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |