Subject-independent hand gesture recognition using normalization and machine learning algorithms

•Generalizability of subject-independent hand gesture recognition were investigated.•A different strategy to normalize the EMG features was proposed.•Hand gesture recognition accuracy improved significantly using the proposed normalization strategy.•The developed approach of gesture recognition will...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational science Vol. 27; pp. 69 - 76
Main Authors Wahid, Md Ferdous, Tafreshi, Reza, Al-Sowaidi, Mubarak, Langari, Reza
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2018
Subjects
Online AccessGet full text
ISSN1877-7503
1877-7511
DOI10.1016/j.jocs.2018.04.019

Cover

Loading…
Abstract •Generalizability of subject-independent hand gesture recognition were investigated.•A different strategy to normalize the EMG features was proposed.•Hand gesture recognition accuracy improved significantly using the proposed normalization strategy.•The developed approach of gesture recognition will be useful in biomedical application. Hand gestures can be recognized using the upper limb’s electromyography (EMG) that measures the electrical activity of the skeletal muscles. However, generalization of muscle activities for a particular hand gesture is challenging due to between-subject variations in EMG signals. To improve the gesture recognition accuracy without training the machine learning algorithm subject specifically, the time-domain EMG features are normalized to the area under the averaged root mean square curve (AUC-RMS). Results are compared with both original EMG features and EMG features extracted from the signals that are normalized to the maximum peak value. Ten male adult subjects age ranging 20–37 years performed three hand gestures including fist, wave in, and wave out for ten to twelve times. The four basic time domain features including mean absolute value, zero crossing, waveform length, and slope sign change were extracted from the active EMG signals of each channel. Five machine learning algorithms, namely, k-Nearest Neighbor (kNN), Discriminant Analysis (DA), Naïve Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) were used to classify the three different hand gestures. The results showed that the performance metrics such as accuracy, F1-score, Matthew correlation coefficient, and Kappa score were improved when using the both normalization methods compared to the original EMG features. However, normalization to the AUC-RMS value resulted in substantially more accurate gesture recognition compared to features extracted from signal normalized to maximum peak value using kNN, NB, and RF (p < 0.05). The developed approach of classifying different hand gestures will be useful in human-computer interaction as well as in controlling devices including prosthesis, virtual objects, and wheelchair.
AbstractList •Generalizability of subject-independent hand gesture recognition were investigated.•A different strategy to normalize the EMG features was proposed.•Hand gesture recognition accuracy improved significantly using the proposed normalization strategy.•The developed approach of gesture recognition will be useful in biomedical application. Hand gestures can be recognized using the upper limb’s electromyography (EMG) that measures the electrical activity of the skeletal muscles. However, generalization of muscle activities for a particular hand gesture is challenging due to between-subject variations in EMG signals. To improve the gesture recognition accuracy without training the machine learning algorithm subject specifically, the time-domain EMG features are normalized to the area under the averaged root mean square curve (AUC-RMS). Results are compared with both original EMG features and EMG features extracted from the signals that are normalized to the maximum peak value. Ten male adult subjects age ranging 20–37 years performed three hand gestures including fist, wave in, and wave out for ten to twelve times. The four basic time domain features including mean absolute value, zero crossing, waveform length, and slope sign change were extracted from the active EMG signals of each channel. Five machine learning algorithms, namely, k-Nearest Neighbor (kNN), Discriminant Analysis (DA), Naïve Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) were used to classify the three different hand gestures. The results showed that the performance metrics such as accuracy, F1-score, Matthew correlation coefficient, and Kappa score were improved when using the both normalization methods compared to the original EMG features. However, normalization to the AUC-RMS value resulted in substantially more accurate gesture recognition compared to features extracted from signal normalized to maximum peak value using kNN, NB, and RF (p < 0.05). The developed approach of classifying different hand gestures will be useful in human-computer interaction as well as in controlling devices including prosthesis, virtual objects, and wheelchair.
Author Langari, Reza
Al-Sowaidi, Mubarak
Wahid, Md Ferdous
Tafreshi, Reza
Author_xml – sequence: 1
  givenname: Md Ferdous
  surname: Wahid
  fullname: Wahid, Md Ferdous
  organization: Department of Mechanical Engineering, Texas A&M University at Qatar, Doha, Qatar
– sequence: 2
  givenname: Reza
  orcidid: 0000-0001-7900-5186
  surname: Tafreshi
  fullname: Tafreshi, Reza
  email: reza.tafreshi@qatar.tamu.edu
  organization: Department of Mechanical Engineering, Texas A&M University at Qatar, Doha, Qatar
– sequence: 3
  givenname: Mubarak
  surname: Al-Sowaidi
  fullname: Al-Sowaidi, Mubarak
  organization: Department of Mechanical Engineering, Texas A&M University at Qatar, Doha, Qatar
– sequence: 4
  givenname: Reza
  surname: Langari
  fullname: Langari, Reza
  organization: Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
BookMark eNp9kE1OwzAQRi1UJErpBVjlAgnjOk1siQ2q-JMqsQDWxnEmqaPUrmwXCU5P0iIWLOrF2Po0b-R5l2RinUVCrilkFGhx02Wd0yFbAOUZ5BlQcUamlJdlWi4pnfy9gV2QeQgdDIdxLiibko_XfdWhjqmxNe5wKDYmG2XrpMUQ9x4Tj9q11kTjbLIPxraJdX6revOtDtnYu1V6YywmPSpvxxbVt86buNmGK3LeqD7g_PeekfeH-7fVU7p-eXxe3a1TzQBiKniJUDMoMFdcg1Cc1shRCCZ4UWlUmFPaLGlTliVTqqhyroa4WjQiL2BZsBnhx7nauxA8NlKbePhh9Mr0koIcZclOjrLkKEtCLgdZA7r4h-682Sr_dRq6PUI4LPVp0MugDVqNtRmMRVk7cwr_AbcriF4
CitedBy_id crossref_primary_10_3390_s22155855
crossref_primary_10_3390_s22041321
crossref_primary_10_1016_j_irbm_2024_100866
crossref_primary_10_1007_s13735_023_00302_8
crossref_primary_10_3390_s22135005
crossref_primary_10_1002_pmic_202200290
crossref_primary_10_1016_j_bspc_2022_103852
crossref_primary_10_1016_j_segan_2021_100582
crossref_primary_10_3233_JIFS_234018
crossref_primary_10_1007_s10846_022_01666_5
crossref_primary_10_1177_09544119231225528
crossref_primary_10_1109_THMS_2022_3227309
crossref_primary_10_21467_exr_3_1_8382
crossref_primary_10_1016_j_bspc_2021_102969
crossref_primary_10_34016_pjbt_2023_20_02_804
crossref_primary_10_2174_1574893618666230706112826
crossref_primary_10_1007_s10639_023_11899_y
crossref_primary_10_1016_j_irbm_2022_06_001
crossref_primary_10_1016_j_iswa_2022_200174
crossref_primary_10_1155_2022_7775528
crossref_primary_10_3390_bioengineering10070770
crossref_primary_10_1109_TIM_2022_3225015
crossref_primary_10_1155_2022_9108656
crossref_primary_10_1016_j_bspc_2022_103787
crossref_primary_10_1016_j_bbe_2021_03_003
crossref_primary_10_3390_s19143170
crossref_primary_10_1002_hfm_20881
crossref_primary_10_1155_2022_4436016
crossref_primary_10_1177_0300060520903617
crossref_primary_10_1016_j_jocs_2021_101348
crossref_primary_10_1080_0954898X_2024_2389231
crossref_primary_10_1016_j_bspc_2022_103487
crossref_primary_10_1080_09540091_2019_1609420
crossref_primary_10_1016_j_bspc_2023_105023
crossref_primary_10_1109_ACCESS_2024_3421992
crossref_primary_10_1109_TIM_2022_3217868
crossref_primary_10_1080_1062936X_2025_2466020
crossref_primary_10_3390_s21227681
crossref_primary_10_1080_03772063_2023_2176368
crossref_primary_10_1109_TNSRE_2019_2961706
crossref_primary_10_3389_fnins_2022_847180
crossref_primary_10_17341_gazimmfd_1025221
crossref_primary_10_1016_j_bspc_2019_101834
crossref_primary_10_4103_jmss_jmss_3_22
crossref_primary_10_1088_1757_899X_1076_1_012047
crossref_primary_10_3390_s18082497
crossref_primary_10_31590_ejosat_779660
crossref_primary_10_1007_s40747_020_00194_9
crossref_primary_10_3390_electronics11060968
Cites_doi 10.23919/EUSIPCO.2017.8081366
10.1109/10.914793
10.1109/TBME.2008.919734
10.1115/DSCC2014-5993
10.3390/s130912431
10.1007/s13246-011-0079-z
10.1109/10.204774
10.1109/TNSRE.2015.2424371
10.1109/SMC.2016.7844940
10.1109/ACC.2016.7526129
10.1115/1.4033835
10.1109/ICMA.2017.8015855
10.1109/TBME.2003.813539
10.3390/s17071597
10.1109/TBME.2013.2250502
10.1186/1746-160X-3-26
10.1016/S0161-4754(99)70032-1
10.1251/bpo115
10.3390/s17030458
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jocs.2018.04.019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
EndPage 76
ExternalDocumentID 10_1016_j_jocs_2018_04_019
S1877750317312632
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-987e0d306e4a8c09a81de8e993986bceae411f51f7773aa6b48abceb2f9460563
IEDL.DBID .~1
ISSN 1877-7503
IngestDate Tue Jul 01 03:46:07 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Fri Feb 23 02:49:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time-domain
Machine learning
Electromyography
Normalization
Pattern recognition
Hand gesture
MYO armband
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-987e0d306e4a8c09a81de8e993986bceae411f51f7773aa6b48abceb2f9460563
ORCID 0000-0001-7900-5186
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_jocs_2018_04_019
crossref_primary_10_1016_j_jocs_2018_04_019
elsevier_sciencedirect_doi_10_1016_j_jocs_2018_04_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationTitle Journal of computational science
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vaiman (bib0010) 2007; 3
Akosa (bib0125) 2017
Georgi, Amma, Schultz (bib0090) 2015
Thalmic Labs. 2013. Available
Adewuyi, Hargrove, Kuiken (bib0150) 2016; 24
Marsland (bib0120) 2015
Ison, Artemiadis (bib0135) 2013
Halaki, Ginn (bib0080) 2012
Chowdhury, Reaz, Ali, Bakar, Chellappan, Chang (bib0015) 2013; 13
Shin, Tafreshi, Langari (bib0065) 2016; 138
Jordanić, Rojas-Martínez, Mañanas, Alonso, Marateb (bib0035) 2017; 17
Geethanjali, Ray (bib0040) 2011; 34
Powers (bib0130) 2011
Kerber, Puhl, Krüger (bib0085) 2017
Du, Jin, Wei, Hu, Geng (bib0030) 2017; 17
Chowdhury, Reaz, Ali, Bakar, Chellappan, Chang (bib0025) 2013; 13
(Accessed 1 November 2017).
Shin, Langari, Tafreshi (bib0060) 2014
Shin, Tafreshi, Langari (bib0070) 2016
Oskoei, Hu (bib0110) 2008; 55
Lehman, McGill (bib0075) 1999; 22
Donovan, Valenzuela, Ortiz, Dusheyko, Jiang, Okada, Zhang (bib0055) 2016
Samadani, Kulic (bib0145) 2014
Matsubara, Morimoto (bib0095) 2013; 60
Benalcázar, Jaramillo, Zea, Páez, Andaluz (bib0140) 2017
Reaz, Hussain, Mohd-Yasin (bib0020) 2006; 8
Bian, Li, Liang (bib0050) 2017
Hudgins, Parker, Scott (bib0115) 1993; 40
Englehart, Hudgin, Parker (bib0045) 2001; 48
Patton (bib0155) 2015
Englehart, Hudgins (bib0005) 2003; 50
Robô (bib0105) 2016
Shin (10.1016/j.jocs.2018.04.019_bib0060) 2014
Adewuyi (10.1016/j.jocs.2018.04.019_bib0150) 2016; 24
Georgi (10.1016/j.jocs.2018.04.019_bib0090) 2015
Englehart (10.1016/j.jocs.2018.04.019_bib0005) 2003; 50
Patton (10.1016/j.jocs.2018.04.019_bib0155) 2015
Shin (10.1016/j.jocs.2018.04.019_bib0065) 2016; 138
Englehart (10.1016/j.jocs.2018.04.019_bib0045) 2001; 48
Vaiman (10.1016/j.jocs.2018.04.019_bib0010) 2007; 3
Lehman (10.1016/j.jocs.2018.04.019_bib0075) 1999; 22
Samadani (10.1016/j.jocs.2018.04.019_bib0145) 2014
Jordanić (10.1016/j.jocs.2018.04.019_bib0035) 2017; 17
Bian (10.1016/j.jocs.2018.04.019_bib0050) 2017
Matsubara (10.1016/j.jocs.2018.04.019_bib0095) 2013; 60
Hudgins (10.1016/j.jocs.2018.04.019_bib0115) 1993; 40
Donovan (10.1016/j.jocs.2018.04.019_bib0055) 2016
Shin (10.1016/j.jocs.2018.04.019_bib0070) 2016
10.1016/j.jocs.2018.04.019_bib0100
Akosa (10.1016/j.jocs.2018.04.019_bib0125) 2017
Du (10.1016/j.jocs.2018.04.019_bib0030) 2017; 17
Chowdhury (10.1016/j.jocs.2018.04.019_bib0015) 2013; 13
Oskoei (10.1016/j.jocs.2018.04.019_bib0110) 2008; 55
Halaki (10.1016/j.jocs.2018.04.019_bib0080) 2012
Reaz (10.1016/j.jocs.2018.04.019_bib0020) 2006; 8
Marsland (10.1016/j.jocs.2018.04.019_bib0120) 2015
Robô (10.1016/j.jocs.2018.04.019_bib0105) 2016
Ison (10.1016/j.jocs.2018.04.019_bib0135) 2013
Chowdhury (10.1016/j.jocs.2018.04.019_bib0025) 2013; 13
Geethanjali (10.1016/j.jocs.2018.04.019_bib0040) 2011; 34
Kerber (10.1016/j.jocs.2018.04.019_bib0085) 2017
Powers (10.1016/j.jocs.2018.04.019_bib0130) 2011
Benalcázar (10.1016/j.jocs.2018.04.019_bib0140) 2017
References_xml – year: 2016
  ident: bib0105
  article-title: Gesture Spotting from IMU and EMG Data for Human-Robot Interaction
– start-page: 427
  year: 2017
  end-page: 432
  ident: bib0050
  article-title: SVM based simultaneous hand movements classification using sEMG signals
  publication-title: IEEE International Conference on Mechatronics and Automation (ICMA)
– start-page: 4901
  year: 2016
  end-page: 4906
  ident: bib0070
  article-title: Myoelectric pattern recognition using dynamic motions with limb position changes
  publication-title: American Control Conference (ACC), 2016
– start-page: 4196
  year: 2014
  end-page: 4199
  ident: bib0145
  article-title: Hand gesture recognition based on surface electromyography
  publication-title: 36th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC)
– volume: 55
  start-page: 1956
  year: 2008
  end-page: 1965
  ident: bib0110
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 13
  start-page: 12431
  year: 2013
  end-page: 12466
  ident: bib0015
  article-title: Surface electromyography signal processing and classification techniques
  publication-title: Sensors
– reference: . (Accessed 1 November 2017).
– volume: 60
  start-page: 2205
  year: 2013
  end-page: 2213
  ident: bib0095
  article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 1597
  year: 2017
  ident: bib0035
  article-title: A novel spatial feature for the identification of motor tasks using high-density electromyography
  publication-title: Sensors
– start-page: 99
  year: 2015
  end-page: 108
  ident: bib0090
  article-title: Recognizing hand and finger gestures with IMU based motion and EMG based muscle activity sensing
  publication-title: Biosignals
– year: 2013
  ident: bib0135
  article-title: Beyond user-specificity for EMG decoding using multiresolution muscle synergy analysis
  publication-title: Dynamic Systems and Control Conference
– year: 2012
  ident: bib0080
  article-title: Normalization of EMG signals: to normalize or not to normalize and what to normalize to?
  publication-title: Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges
– start-page: 1040
  year: 2017
  end-page: 1044
  ident: bib0140
  article-title: Hand gesture recognition using machine learning and the Myo armband
  publication-title: 25th European on Signal Processing Conference (EUSIPCO)
– year: 2011
  ident: bib0130
  article-title: Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation
– year: 2014
  ident: bib0060
  article-title: A performance comparison of emg classification methods for hand and finger motion
  publication-title: ASME 2014 Dynamic Systems and Control Conference
– volume: 40
  start-page: 82
  year: 1993
  end-page: 94
  ident: bib0115
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2015
  ident: bib0120
  article-title: Machine Learning: An Algorithmic Perspective
– volume: 24
  start-page: 485
  year: 2016
  end-page: 494
  ident: bib0150
  article-title: An analysis of intrinsic and extrinsic hand muscle EMG for improved pattern recognition control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc.
– start-page: 36
  year: 2017
  ident: bib0085
  article-title: User-independent real-time hand gesture recognition based on surface electromyography
  publication-title: Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services
– year: 2015
  ident: bib0155
  article-title: Anatomy and Physiology
– volume: 13
  start-page: 12431
  year: 2013
  end-page: 12466
  ident: bib0025
  article-title: Surface electromyography signal processing and classification techniques
  publication-title: Sensors (Basel, Switzerland)
– volume: 3
  start-page: 26
  year: 2007
  ident: bib0010
  article-title: Standardization of surface electromyography utilized to evaluate patients with dysphagia
  publication-title: Head Face Med.
– volume: 17
  start-page: 458
  year: 2017
  ident: bib0030
  article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation
  publication-title: Sensors (Basel, Switzerland)
– year: 2017
  ident: bib0125
  article-title: Predictive accuracy: a misleading performance measure for highly imbalanced data
  publication-title: Proceedings of the SAS Global Forum
– volume: 50
  start-page: 848
  year: 2003
  end-page: 854
  ident: bib0005
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 11
  year: 2006
  end-page: 35
  ident: bib0020
  article-title: Techniques of EMG signal analysis: detection, processing, classification and applications
  publication-title: Biol. Proced. Online
– volume: 22
  start-page: 444
  year: 1999
  end-page: 446
  ident: bib0075
  article-title: The importance of normalization in the interpretation of surface electromyography: a proof of principle
  publication-title: J. Manipulative Physiol. Ther.
– volume: 138
  start-page: 111009
  year: 2016
  ident: bib0065
  article-title: Robustness of using dynamic motions and template matching to the limb position effect in myoelectric classification
  publication-title: J. Dyn. Syst. Meas. Control
– start-page: 004495
  year: 2016
  end-page: 004500
  ident: bib0055
  article-title: MyoHMI: a low-cost and flexible platform for developing real-time human machine interface for myoelectric controlled applications
  publication-title: IEEE International Conference on Systems, Man, and Cybernetics (SMC)
– volume: 48
  start-page: 302
  year: 2001
  end-page: 311
  ident: bib0045
  article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 34
  start-page: 419
  year: 2011
  end-page: 427
  ident: bib0040
  article-title: Identification of motion from multi-channel EMG signals for control of prosthetic hand
  publication-title: Australas. Phys. Eng. Sci. Med.
– reference: Thalmic Labs. 2013. Available:
– start-page: 36
  year: 2017
  ident: 10.1016/j.jocs.2018.04.019_bib0085
  article-title: User-independent real-time hand gesture recognition based on surface electromyography
  publication-title: Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services
– start-page: 1040
  year: 2017
  ident: 10.1016/j.jocs.2018.04.019_bib0140
  article-title: Hand gesture recognition using machine learning and the Myo armband
  publication-title: 25th European on Signal Processing Conference (EUSIPCO)
  doi: 10.23919/EUSIPCO.2017.8081366
– volume: 48
  start-page: 302
  year: 2001
  ident: 10.1016/j.jocs.2018.04.019_bib0045
  article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.914793
– start-page: 4196
  year: 2014
  ident: 10.1016/j.jocs.2018.04.019_bib0145
  article-title: Hand gesture recognition based on surface electromyography
  publication-title: 36th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC)
– year: 2015
  ident: 10.1016/j.jocs.2018.04.019_bib0120
– volume: 55
  start-page: 1956
  year: 2008
  ident: 10.1016/j.jocs.2018.04.019_bib0110
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.919734
– year: 2013
  ident: 10.1016/j.jocs.2018.04.019_bib0135
  article-title: Beyond user-specificity for EMG decoding using multiresolution muscle synergy analysis
  publication-title: Dynamic Systems and Control Conference
– year: 2014
  ident: 10.1016/j.jocs.2018.04.019_bib0060
  article-title: A performance comparison of emg classification methods for hand and finger motion
  publication-title: ASME 2014 Dynamic Systems and Control Conference
  doi: 10.1115/DSCC2014-5993
– volume: 13
  start-page: 12431
  year: 2013
  ident: 10.1016/j.jocs.2018.04.019_bib0025
  article-title: Surface electromyography signal processing and classification techniques
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s130912431
– start-page: 99
  year: 2015
  ident: 10.1016/j.jocs.2018.04.019_bib0090
  article-title: Recognizing hand and finger gestures with IMU based motion and EMG based muscle activity sensing
– volume: 34
  start-page: 419
  year: 2011
  ident: 10.1016/j.jocs.2018.04.019_bib0040
  article-title: Identification of motion from multi-channel EMG signals for control of prosthetic hand
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-011-0079-z
– volume: 40
  start-page: 82
  year: 1993
  ident: 10.1016/j.jocs.2018.04.019_bib0115
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– volume: 24
  start-page: 485
  year: 2016
  ident: 10.1016/j.jocs.2018.04.019_bib0150
  article-title: An analysis of intrinsic and extrinsic hand muscle EMG for improved pattern recognition control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/TNSRE.2015.2424371
– start-page: 004495
  year: 2016
  ident: 10.1016/j.jocs.2018.04.019_bib0055
  article-title: MyoHMI: a low-cost and flexible platform for developing real-time human machine interface for myoelectric controlled applications
  publication-title: IEEE International Conference on Systems, Man, and Cybernetics (SMC)
  doi: 10.1109/SMC.2016.7844940
– start-page: 4901
  year: 2016
  ident: 10.1016/j.jocs.2018.04.019_bib0070
  article-title: Myoelectric pattern recognition using dynamic motions with limb position changes
  publication-title: American Control Conference (ACC), 2016
  doi: 10.1109/ACC.2016.7526129
– year: 2017
  ident: 10.1016/j.jocs.2018.04.019_bib0125
  article-title: Predictive accuracy: a misleading performance measure for highly imbalanced data
  publication-title: Proceedings of the SAS Global Forum
– volume: 138
  start-page: 111009
  year: 2016
  ident: 10.1016/j.jocs.2018.04.019_bib0065
  article-title: Robustness of using dynamic motions and template matching to the limb position effect in myoelectric classification
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.4033835
– start-page: 427
  year: 2017
  ident: 10.1016/j.jocs.2018.04.019_bib0050
  article-title: SVM based simultaneous hand movements classification using sEMG signals
  publication-title: IEEE International Conference on Mechatronics and Automation (ICMA)
  doi: 10.1109/ICMA.2017.8015855
– year: 2012
  ident: 10.1016/j.jocs.2018.04.019_bib0080
  article-title: Normalization of EMG signals: to normalize or not to normalize and what to normalize to?
– volume: 50
  start-page: 848
  year: 2003
  ident: 10.1016/j.jocs.2018.04.019_bib0005
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.813539
– volume: 17
  start-page: 1597
  year: 2017
  ident: 10.1016/j.jocs.2018.04.019_bib0035
  article-title: A novel spatial feature for the identification of motor tasks using high-density electromyography
  publication-title: Sensors
  doi: 10.3390/s17071597
– volume: 60
  start-page: 2205
  year: 2013
  ident: 10.1016/j.jocs.2018.04.019_bib0095
  article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2250502
– year: 2016
  ident: 10.1016/j.jocs.2018.04.019_bib0105
– year: 2011
  ident: 10.1016/j.jocs.2018.04.019_bib0130
– volume: 3
  start-page: 26
  year: 2007
  ident: 10.1016/j.jocs.2018.04.019_bib0010
  article-title: Standardization of surface electromyography utilized to evaluate patients with dysphagia
  publication-title: Head Face Med.
  doi: 10.1186/1746-160X-3-26
– volume: 22
  start-page: 444
  year: 1999
  ident: 10.1016/j.jocs.2018.04.019_bib0075
  article-title: The importance of normalization in the interpretation of surface electromyography: a proof of principle
  publication-title: J. Manipulative Physiol. Ther.
  doi: 10.1016/S0161-4754(99)70032-1
– volume: 13
  start-page: 12431
  year: 2013
  ident: 10.1016/j.jocs.2018.04.019_bib0015
  article-title: Surface electromyography signal processing and classification techniques
  publication-title: Sensors
  doi: 10.3390/s130912431
– year: 2015
  ident: 10.1016/j.jocs.2018.04.019_bib0155
– volume: 8
  start-page: 11
  year: 2006
  ident: 10.1016/j.jocs.2018.04.019_bib0020
  article-title: Techniques of EMG signal analysis: detection, processing, classification and applications
  publication-title: Biol. Proced. Online
  doi: 10.1251/bpo115
– volume: 17
  start-page: 458
  year: 2017
  ident: 10.1016/j.jocs.2018.04.019_bib0030
  article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s17030458
– ident: 10.1016/j.jocs.2018.04.019_bib0100
SSID ssj0000388913
Score 2.4007003
Snippet •Generalizability of subject-independent hand gesture recognition were investigated.•A different strategy to normalize the EMG features was proposed.•Hand...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 69
SubjectTerms Electromyography
Hand gesture
Machine learning
MYO armband
Normalization
Pattern recognition
Time-domain
Title Subject-independent hand gesture recognition using normalization and machine learning algorithms
URI https://dx.doi.org/10.1016/j.jocs.2018.04.019
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DQbyIm4rzx8jBgyJxTZu26XEMx1TcRQe71aRLZ8fWjq27-reb16ZFQXbw2JBXysvry3vJ976H0A0XvhQ-FYTFkhMmPJsIIQVRwren2mAol5Aovo684Zg9T9xJA_WrWhiAVRrfX_r0wlubka7RZneVJN03ClR2rjZK36HAOg4V7MwHWN_DF63PWYDtJCi6JMN8AgKmdqaEec2zCFi7KS8YT4Fw56_96ceeMzhGRyZYxL3ye5qoodIWOqiw6i3UNH_mBt8a-ui7E_ShfQEcrpCk7nCbYzgfx3CVtF0rXIOGshTDu2Y4hch1YUoyMcxdFiBLhU1XiRkWi1m2TvLP5eYUjQeP7_0hMX0USORYVk4C7itrqnMDxQSPrEDoGFVxpSOTgHsyUkIxSmOXxlqfjhCeZFzoYWnHAdyaes4Z2kuzVJ0jrLMjWzhqSq2IsziKdf4T2baOEwJpB5TJNqKV9sLIkIxDr4tFWKHJ5iFoPASNhxYLtcbb6L6WWZUUGztnu9WihL8MJdR7wA65i3_KXaJDeCoRuldoL19v1bWOQ3LZKQytg_Z7Ty_D0TdKSd4d
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgSMAFwQDxJgcOIBStabM2PaIJNNjjwpC4haRLR6fRTVv5_8RrOoGEOHBN46pyXMdOPn8GuBIq0ipiivJUC8pV6FOltKJGRf7QGgwTGhPFXj9sv_Cn1-brGrSqWhiEVTrfX_r0pbd2Iw2nzcYsyxrPDKnsmtYoo4Ah6_g6bCA7Fa_Bxt1jp91fHbUg4Um8bJSMIhRlXPlMifQaTxMk7mZiSXqKnDu_bVHftp2HXdhx8SK5Kz9pD9ZMXofNCq5ehz33cy7ItWOQvtmHN-sO8HyFZqsmtwXBI3KCt0mfc0NWuKFpTvBdI5Jj8DpxVZkE534scZaGuMYSI6Imo-k8K94_Fgfw8nA_aLWpa6VAk8DzChqLyHhDmx4YrkTixcqGqUYYG5zEItSJUYYzljZZalUaKBVqLpQd1n4a48VpGBxCLZ_m5giITZB8FZgh8xLB0yS1KVDi-zZUiLUfM66PgVXak4njGcd2FxNZAcrGEjUuUePS49Jq_BhuVzKzkmXjz9nNalHkD1uRdhv4Q-7kn3KXsNUe9Lqy-9jvnMI2PikBu2dQK-af5tyGJYW-cGb3Be-m4M4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-independent+hand+gesture+recognition+using+normalization+and+machine+learning+algorithms&rft.jtitle=Journal+of+computational+science&rft.au=Wahid%2C+Md+Ferdous&rft.au=Tafreshi%2C+Reza&rft.au=Al-Sowaidi%2C+Mubarak&rft.au=Langari%2C+Reza&rft.date=2018-07-01&rft.issn=1877-7503&rft.volume=27&rft.spage=69&rft.epage=76&rft_id=info:doi/10.1016%2Fj.jocs.2018.04.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2018_04_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon