Subject-independent hand gesture recognition using normalization and machine learning algorithms
•Generalizability of subject-independent hand gesture recognition were investigated.•A different strategy to normalize the EMG features was proposed.•Hand gesture recognition accuracy improved significantly using the proposed normalization strategy.•The developed approach of gesture recognition will...
Saved in:
Published in | Journal of computational science Vol. 27; pp. 69 - 76 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-7503 1877-7511 |
DOI | 10.1016/j.jocs.2018.04.019 |
Cover
Loading…
Abstract | •Generalizability of subject-independent hand gesture recognition were investigated.•A different strategy to normalize the EMG features was proposed.•Hand gesture recognition accuracy improved significantly using the proposed normalization strategy.•The developed approach of gesture recognition will be useful in biomedical application.
Hand gestures can be recognized using the upper limb’s electromyography (EMG) that measures the electrical activity of the skeletal muscles. However, generalization of muscle activities for a particular hand gesture is challenging due to between-subject variations in EMG signals. To improve the gesture recognition accuracy without training the machine learning algorithm subject specifically, the time-domain EMG features are normalized to the area under the averaged root mean square curve (AUC-RMS). Results are compared with both original EMG features and EMG features extracted from the signals that are normalized to the maximum peak value. Ten male adult subjects age ranging 20–37 years performed three hand gestures including fist, wave in, and wave out for ten to twelve times. The four basic time domain features including mean absolute value, zero crossing, waveform length, and slope sign change were extracted from the active EMG signals of each channel. Five machine learning algorithms, namely, k-Nearest Neighbor (kNN), Discriminant Analysis (DA), Naïve Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) were used to classify the three different hand gestures. The results showed that the performance metrics such as accuracy, F1-score, Matthew correlation coefficient, and Kappa score were improved when using the both normalization methods compared to the original EMG features. However, normalization to the AUC-RMS value resulted in substantially more accurate gesture recognition compared to features extracted from signal normalized to maximum peak value using kNN, NB, and RF (p < 0.05). The developed approach of classifying different hand gestures will be useful in human-computer interaction as well as in controlling devices including prosthesis, virtual objects, and wheelchair. |
---|---|
AbstractList | •Generalizability of subject-independent hand gesture recognition were investigated.•A different strategy to normalize the EMG features was proposed.•Hand gesture recognition accuracy improved significantly using the proposed normalization strategy.•The developed approach of gesture recognition will be useful in biomedical application.
Hand gestures can be recognized using the upper limb’s electromyography (EMG) that measures the electrical activity of the skeletal muscles. However, generalization of muscle activities for a particular hand gesture is challenging due to between-subject variations in EMG signals. To improve the gesture recognition accuracy without training the machine learning algorithm subject specifically, the time-domain EMG features are normalized to the area under the averaged root mean square curve (AUC-RMS). Results are compared with both original EMG features and EMG features extracted from the signals that are normalized to the maximum peak value. Ten male adult subjects age ranging 20–37 years performed three hand gestures including fist, wave in, and wave out for ten to twelve times. The four basic time domain features including mean absolute value, zero crossing, waveform length, and slope sign change were extracted from the active EMG signals of each channel. Five machine learning algorithms, namely, k-Nearest Neighbor (kNN), Discriminant Analysis (DA), Naïve Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) were used to classify the three different hand gestures. The results showed that the performance metrics such as accuracy, F1-score, Matthew correlation coefficient, and Kappa score were improved when using the both normalization methods compared to the original EMG features. However, normalization to the AUC-RMS value resulted in substantially more accurate gesture recognition compared to features extracted from signal normalized to maximum peak value using kNN, NB, and RF (p < 0.05). The developed approach of classifying different hand gestures will be useful in human-computer interaction as well as in controlling devices including prosthesis, virtual objects, and wheelchair. |
Author | Langari, Reza Al-Sowaidi, Mubarak Wahid, Md Ferdous Tafreshi, Reza |
Author_xml | – sequence: 1 givenname: Md Ferdous surname: Wahid fullname: Wahid, Md Ferdous organization: Department of Mechanical Engineering, Texas A&M University at Qatar, Doha, Qatar – sequence: 2 givenname: Reza orcidid: 0000-0001-7900-5186 surname: Tafreshi fullname: Tafreshi, Reza email: reza.tafreshi@qatar.tamu.edu organization: Department of Mechanical Engineering, Texas A&M University at Qatar, Doha, Qatar – sequence: 3 givenname: Mubarak surname: Al-Sowaidi fullname: Al-Sowaidi, Mubarak organization: Department of Mechanical Engineering, Texas A&M University at Qatar, Doha, Qatar – sequence: 4 givenname: Reza surname: Langari fullname: Langari, Reza organization: Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA |
BookMark | eNp9kE1OwzAQRi1UJErpBVjlAgnjOk1siQ2q-JMqsQDWxnEmqaPUrmwXCU5P0iIWLOrF2Po0b-R5l2RinUVCrilkFGhx02Wd0yFbAOUZ5BlQcUamlJdlWi4pnfy9gV2QeQgdDIdxLiibko_XfdWhjqmxNe5wKDYmG2XrpMUQ9x4Tj9q11kTjbLIPxraJdX6revOtDtnYu1V6YywmPSpvxxbVt86buNmGK3LeqD7g_PeekfeH-7fVU7p-eXxe3a1TzQBiKniJUDMoMFdcg1Cc1shRCCZ4UWlUmFPaLGlTliVTqqhyroa4WjQiL2BZsBnhx7nauxA8NlKbePhh9Mr0koIcZclOjrLkKEtCLgdZA7r4h-682Sr_dRq6PUI4LPVp0MugDVqNtRmMRVk7cwr_AbcriF4 |
CitedBy_id | crossref_primary_10_3390_s22155855 crossref_primary_10_3390_s22041321 crossref_primary_10_1016_j_irbm_2024_100866 crossref_primary_10_1007_s13735_023_00302_8 crossref_primary_10_3390_s22135005 crossref_primary_10_1002_pmic_202200290 crossref_primary_10_1016_j_bspc_2022_103852 crossref_primary_10_1016_j_segan_2021_100582 crossref_primary_10_3233_JIFS_234018 crossref_primary_10_1007_s10846_022_01666_5 crossref_primary_10_1177_09544119231225528 crossref_primary_10_1109_THMS_2022_3227309 crossref_primary_10_21467_exr_3_1_8382 crossref_primary_10_1016_j_bspc_2021_102969 crossref_primary_10_34016_pjbt_2023_20_02_804 crossref_primary_10_2174_1574893618666230706112826 crossref_primary_10_1007_s10639_023_11899_y crossref_primary_10_1016_j_irbm_2022_06_001 crossref_primary_10_1016_j_iswa_2022_200174 crossref_primary_10_1155_2022_7775528 crossref_primary_10_3390_bioengineering10070770 crossref_primary_10_1109_TIM_2022_3225015 crossref_primary_10_1155_2022_9108656 crossref_primary_10_1016_j_bspc_2022_103787 crossref_primary_10_1016_j_bbe_2021_03_003 crossref_primary_10_3390_s19143170 crossref_primary_10_1002_hfm_20881 crossref_primary_10_1155_2022_4436016 crossref_primary_10_1177_0300060520903617 crossref_primary_10_1016_j_jocs_2021_101348 crossref_primary_10_1080_0954898X_2024_2389231 crossref_primary_10_1016_j_bspc_2022_103487 crossref_primary_10_1080_09540091_2019_1609420 crossref_primary_10_1016_j_bspc_2023_105023 crossref_primary_10_1109_ACCESS_2024_3421992 crossref_primary_10_1109_TIM_2022_3217868 crossref_primary_10_1080_1062936X_2025_2466020 crossref_primary_10_3390_s21227681 crossref_primary_10_1080_03772063_2023_2176368 crossref_primary_10_1109_TNSRE_2019_2961706 crossref_primary_10_3389_fnins_2022_847180 crossref_primary_10_17341_gazimmfd_1025221 crossref_primary_10_1016_j_bspc_2019_101834 crossref_primary_10_4103_jmss_jmss_3_22 crossref_primary_10_1088_1757_899X_1076_1_012047 crossref_primary_10_3390_s18082497 crossref_primary_10_31590_ejosat_779660 crossref_primary_10_1007_s40747_020_00194_9 crossref_primary_10_3390_electronics11060968 |
Cites_doi | 10.23919/EUSIPCO.2017.8081366 10.1109/10.914793 10.1109/TBME.2008.919734 10.1115/DSCC2014-5993 10.3390/s130912431 10.1007/s13246-011-0079-z 10.1109/10.204774 10.1109/TNSRE.2015.2424371 10.1109/SMC.2016.7844940 10.1109/ACC.2016.7526129 10.1115/1.4033835 10.1109/ICMA.2017.8015855 10.1109/TBME.2003.813539 10.3390/s17071597 10.1109/TBME.2013.2250502 10.1186/1746-160X-3-26 10.1016/S0161-4754(99)70032-1 10.1251/bpo115 10.3390/s17030458 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jocs.2018.04.019 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Business |
EISSN | 1877-7511 |
EndPage | 76 |
ExternalDocumentID | 10_1016_j_jocs_2018_04_019 S1877750317312632 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-987e0d306e4a8c09a81de8e993986bceae411f51f7773aa6b48abceb2f9460563 |
IEDL.DBID | .~1 |
ISSN | 1877-7503 |
IngestDate | Tue Jul 01 03:46:07 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Fri Feb 23 02:49:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Time-domain Machine learning Electromyography Normalization Pattern recognition Hand gesture MYO armband |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-987e0d306e4a8c09a81de8e993986bceae411f51f7773aa6b48abceb2f9460563 |
ORCID | 0000-0001-7900-5186 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jocs_2018_04_019 crossref_primary_10_1016_j_jocs_2018_04_019 elsevier_sciencedirect_doi_10_1016_j_jocs_2018_04_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 2018-07-00 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationTitle | Journal of computational science |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Vaiman (bib0010) 2007; 3 Akosa (bib0125) 2017 Georgi, Amma, Schultz (bib0090) 2015 Thalmic Labs. 2013. Available Adewuyi, Hargrove, Kuiken (bib0150) 2016; 24 Marsland (bib0120) 2015 Ison, Artemiadis (bib0135) 2013 Halaki, Ginn (bib0080) 2012 Chowdhury, Reaz, Ali, Bakar, Chellappan, Chang (bib0015) 2013; 13 Shin, Tafreshi, Langari (bib0065) 2016; 138 Jordanić, Rojas-Martínez, Mañanas, Alonso, Marateb (bib0035) 2017; 17 Geethanjali, Ray (bib0040) 2011; 34 Powers (bib0130) 2011 Kerber, Puhl, Krüger (bib0085) 2017 Du, Jin, Wei, Hu, Geng (bib0030) 2017; 17 Chowdhury, Reaz, Ali, Bakar, Chellappan, Chang (bib0025) 2013; 13 (Accessed 1 November 2017). Shin, Langari, Tafreshi (bib0060) 2014 Shin, Tafreshi, Langari (bib0070) 2016 Oskoei, Hu (bib0110) 2008; 55 Lehman, McGill (bib0075) 1999; 22 Donovan, Valenzuela, Ortiz, Dusheyko, Jiang, Okada, Zhang (bib0055) 2016 Samadani, Kulic (bib0145) 2014 Matsubara, Morimoto (bib0095) 2013; 60 Benalcázar, Jaramillo, Zea, Páez, Andaluz (bib0140) 2017 Reaz, Hussain, Mohd-Yasin (bib0020) 2006; 8 Bian, Li, Liang (bib0050) 2017 Hudgins, Parker, Scott (bib0115) 1993; 40 Englehart, Hudgin, Parker (bib0045) 2001; 48 Patton (bib0155) 2015 Englehart, Hudgins (bib0005) 2003; 50 Robô (bib0105) 2016 Shin (10.1016/j.jocs.2018.04.019_bib0060) 2014 Adewuyi (10.1016/j.jocs.2018.04.019_bib0150) 2016; 24 Georgi (10.1016/j.jocs.2018.04.019_bib0090) 2015 Englehart (10.1016/j.jocs.2018.04.019_bib0005) 2003; 50 Patton (10.1016/j.jocs.2018.04.019_bib0155) 2015 Shin (10.1016/j.jocs.2018.04.019_bib0065) 2016; 138 Englehart (10.1016/j.jocs.2018.04.019_bib0045) 2001; 48 Vaiman (10.1016/j.jocs.2018.04.019_bib0010) 2007; 3 Lehman (10.1016/j.jocs.2018.04.019_bib0075) 1999; 22 Samadani (10.1016/j.jocs.2018.04.019_bib0145) 2014 Jordanić (10.1016/j.jocs.2018.04.019_bib0035) 2017; 17 Bian (10.1016/j.jocs.2018.04.019_bib0050) 2017 Matsubara (10.1016/j.jocs.2018.04.019_bib0095) 2013; 60 Hudgins (10.1016/j.jocs.2018.04.019_bib0115) 1993; 40 Donovan (10.1016/j.jocs.2018.04.019_bib0055) 2016 Shin (10.1016/j.jocs.2018.04.019_bib0070) 2016 10.1016/j.jocs.2018.04.019_bib0100 Akosa (10.1016/j.jocs.2018.04.019_bib0125) 2017 Du (10.1016/j.jocs.2018.04.019_bib0030) 2017; 17 Chowdhury (10.1016/j.jocs.2018.04.019_bib0015) 2013; 13 Oskoei (10.1016/j.jocs.2018.04.019_bib0110) 2008; 55 Halaki (10.1016/j.jocs.2018.04.019_bib0080) 2012 Reaz (10.1016/j.jocs.2018.04.019_bib0020) 2006; 8 Marsland (10.1016/j.jocs.2018.04.019_bib0120) 2015 Robô (10.1016/j.jocs.2018.04.019_bib0105) 2016 Ison (10.1016/j.jocs.2018.04.019_bib0135) 2013 Chowdhury (10.1016/j.jocs.2018.04.019_bib0025) 2013; 13 Geethanjali (10.1016/j.jocs.2018.04.019_bib0040) 2011; 34 Kerber (10.1016/j.jocs.2018.04.019_bib0085) 2017 Powers (10.1016/j.jocs.2018.04.019_bib0130) 2011 Benalcázar (10.1016/j.jocs.2018.04.019_bib0140) 2017 |
References_xml | – year: 2016 ident: bib0105 article-title: Gesture Spotting from IMU and EMG Data for Human-Robot Interaction – start-page: 427 year: 2017 end-page: 432 ident: bib0050 article-title: SVM based simultaneous hand movements classification using sEMG signals publication-title: IEEE International Conference on Mechatronics and Automation (ICMA) – start-page: 4901 year: 2016 end-page: 4906 ident: bib0070 article-title: Myoelectric pattern recognition using dynamic motions with limb position changes publication-title: American Control Conference (ACC), 2016 – start-page: 4196 year: 2014 end-page: 4199 ident: bib0145 article-title: Hand gesture recognition based on surface electromyography publication-title: 36th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC) – volume: 55 start-page: 1956 year: 2008 end-page: 1965 ident: bib0110 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Trans. Biomed. Eng. – volume: 13 start-page: 12431 year: 2013 end-page: 12466 ident: bib0015 article-title: Surface electromyography signal processing and classification techniques publication-title: Sensors – reference: . (Accessed 1 November 2017). – volume: 60 start-page: 2205 year: 2013 end-page: 2213 ident: bib0095 article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface publication-title: IEEE Trans. Biomed. Eng. – volume: 17 start-page: 1597 year: 2017 ident: bib0035 article-title: A novel spatial feature for the identification of motor tasks using high-density electromyography publication-title: Sensors – start-page: 99 year: 2015 end-page: 108 ident: bib0090 article-title: Recognizing hand and finger gestures with IMU based motion and EMG based muscle activity sensing publication-title: Biosignals – year: 2013 ident: bib0135 article-title: Beyond user-specificity for EMG decoding using multiresolution muscle synergy analysis publication-title: Dynamic Systems and Control Conference – year: 2012 ident: bib0080 article-title: Normalization of EMG signals: to normalize or not to normalize and what to normalize to? publication-title: Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges – start-page: 1040 year: 2017 end-page: 1044 ident: bib0140 article-title: Hand gesture recognition using machine learning and the Myo armband publication-title: 25th European on Signal Processing Conference (EUSIPCO) – year: 2011 ident: bib0130 article-title: Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation – year: 2014 ident: bib0060 article-title: A performance comparison of emg classification methods for hand and finger motion publication-title: ASME 2014 Dynamic Systems and Control Conference – volume: 40 start-page: 82 year: 1993 end-page: 94 ident: bib0115 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. – year: 2015 ident: bib0120 article-title: Machine Learning: An Algorithmic Perspective – volume: 24 start-page: 485 year: 2016 end-page: 494 ident: bib0150 article-title: An analysis of intrinsic and extrinsic hand muscle EMG for improved pattern recognition control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. – start-page: 36 year: 2017 ident: bib0085 article-title: User-independent real-time hand gesture recognition based on surface electromyography publication-title: Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services – year: 2015 ident: bib0155 article-title: Anatomy and Physiology – volume: 13 start-page: 12431 year: 2013 end-page: 12466 ident: bib0025 article-title: Surface electromyography signal processing and classification techniques publication-title: Sensors (Basel, Switzerland) – volume: 3 start-page: 26 year: 2007 ident: bib0010 article-title: Standardization of surface electromyography utilized to evaluate patients with dysphagia publication-title: Head Face Med. – volume: 17 start-page: 458 year: 2017 ident: bib0030 article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation publication-title: Sensors (Basel, Switzerland) – year: 2017 ident: bib0125 article-title: Predictive accuracy: a misleading performance measure for highly imbalanced data publication-title: Proceedings of the SAS Global Forum – volume: 50 start-page: 848 year: 2003 end-page: 854 ident: bib0005 article-title: A robust, real-time control scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 11 year: 2006 end-page: 35 ident: bib0020 article-title: Techniques of EMG signal analysis: detection, processing, classification and applications publication-title: Biol. Proced. Online – volume: 22 start-page: 444 year: 1999 end-page: 446 ident: bib0075 article-title: The importance of normalization in the interpretation of surface electromyography: a proof of principle publication-title: J. Manipulative Physiol. Ther. – volume: 138 start-page: 111009 year: 2016 ident: bib0065 article-title: Robustness of using dynamic motions and template matching to the limb position effect in myoelectric classification publication-title: J. Dyn. Syst. Meas. Control – start-page: 004495 year: 2016 end-page: 004500 ident: bib0055 article-title: MyoHMI: a low-cost and flexible platform for developing real-time human machine interface for myoelectric controlled applications publication-title: IEEE International Conference on Systems, Man, and Cybernetics (SMC) – volume: 48 start-page: 302 year: 2001 end-page: 311 ident: bib0045 article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. – volume: 34 start-page: 419 year: 2011 end-page: 427 ident: bib0040 article-title: Identification of motion from multi-channel EMG signals for control of prosthetic hand publication-title: Australas. Phys. Eng. Sci. Med. – reference: Thalmic Labs. 2013. Available: – start-page: 36 year: 2017 ident: 10.1016/j.jocs.2018.04.019_bib0085 article-title: User-independent real-time hand gesture recognition based on surface electromyography publication-title: Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services – start-page: 1040 year: 2017 ident: 10.1016/j.jocs.2018.04.019_bib0140 article-title: Hand gesture recognition using machine learning and the Myo armband publication-title: 25th European on Signal Processing Conference (EUSIPCO) doi: 10.23919/EUSIPCO.2017.8081366 – volume: 48 start-page: 302 year: 2001 ident: 10.1016/j.jocs.2018.04.019_bib0045 article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.914793 – start-page: 4196 year: 2014 ident: 10.1016/j.jocs.2018.04.019_bib0145 article-title: Hand gesture recognition based on surface electromyography publication-title: 36th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC) – year: 2015 ident: 10.1016/j.jocs.2018.04.019_bib0120 – volume: 55 start-page: 1956 year: 2008 ident: 10.1016/j.jocs.2018.04.019_bib0110 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.919734 – year: 2013 ident: 10.1016/j.jocs.2018.04.019_bib0135 article-title: Beyond user-specificity for EMG decoding using multiresolution muscle synergy analysis publication-title: Dynamic Systems and Control Conference – year: 2014 ident: 10.1016/j.jocs.2018.04.019_bib0060 article-title: A performance comparison of emg classification methods for hand and finger motion publication-title: ASME 2014 Dynamic Systems and Control Conference doi: 10.1115/DSCC2014-5993 – volume: 13 start-page: 12431 year: 2013 ident: 10.1016/j.jocs.2018.04.019_bib0025 article-title: Surface electromyography signal processing and classification techniques publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s130912431 – start-page: 99 year: 2015 ident: 10.1016/j.jocs.2018.04.019_bib0090 article-title: Recognizing hand and finger gestures with IMU based motion and EMG based muscle activity sensing – volume: 34 start-page: 419 year: 2011 ident: 10.1016/j.jocs.2018.04.019_bib0040 article-title: Identification of motion from multi-channel EMG signals for control of prosthetic hand publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-011-0079-z – volume: 40 start-page: 82 year: 1993 ident: 10.1016/j.jocs.2018.04.019_bib0115 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.204774 – volume: 24 start-page: 485 year: 2016 ident: 10.1016/j.jocs.2018.04.019_bib0150 article-title: An analysis of intrinsic and extrinsic hand muscle EMG for improved pattern recognition control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. doi: 10.1109/TNSRE.2015.2424371 – start-page: 004495 year: 2016 ident: 10.1016/j.jocs.2018.04.019_bib0055 article-title: MyoHMI: a low-cost and flexible platform for developing real-time human machine interface for myoelectric controlled applications publication-title: IEEE International Conference on Systems, Man, and Cybernetics (SMC) doi: 10.1109/SMC.2016.7844940 – start-page: 4901 year: 2016 ident: 10.1016/j.jocs.2018.04.019_bib0070 article-title: Myoelectric pattern recognition using dynamic motions with limb position changes publication-title: American Control Conference (ACC), 2016 doi: 10.1109/ACC.2016.7526129 – year: 2017 ident: 10.1016/j.jocs.2018.04.019_bib0125 article-title: Predictive accuracy: a misleading performance measure for highly imbalanced data publication-title: Proceedings of the SAS Global Forum – volume: 138 start-page: 111009 year: 2016 ident: 10.1016/j.jocs.2018.04.019_bib0065 article-title: Robustness of using dynamic motions and template matching to the limb position effect in myoelectric classification publication-title: J. Dyn. Syst. Meas. Control doi: 10.1115/1.4033835 – start-page: 427 year: 2017 ident: 10.1016/j.jocs.2018.04.019_bib0050 article-title: SVM based simultaneous hand movements classification using sEMG signals publication-title: IEEE International Conference on Mechatronics and Automation (ICMA) doi: 10.1109/ICMA.2017.8015855 – year: 2012 ident: 10.1016/j.jocs.2018.04.019_bib0080 article-title: Normalization of EMG signals: to normalize or not to normalize and what to normalize to? – volume: 50 start-page: 848 year: 2003 ident: 10.1016/j.jocs.2018.04.019_bib0005 article-title: A robust, real-time control scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.813539 – volume: 17 start-page: 1597 year: 2017 ident: 10.1016/j.jocs.2018.04.019_bib0035 article-title: A novel spatial feature for the identification of motor tasks using high-density electromyography publication-title: Sensors doi: 10.3390/s17071597 – volume: 60 start-page: 2205 year: 2013 ident: 10.1016/j.jocs.2018.04.019_bib0095 article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2250502 – year: 2016 ident: 10.1016/j.jocs.2018.04.019_bib0105 – year: 2011 ident: 10.1016/j.jocs.2018.04.019_bib0130 – volume: 3 start-page: 26 year: 2007 ident: 10.1016/j.jocs.2018.04.019_bib0010 article-title: Standardization of surface electromyography utilized to evaluate patients with dysphagia publication-title: Head Face Med. doi: 10.1186/1746-160X-3-26 – volume: 22 start-page: 444 year: 1999 ident: 10.1016/j.jocs.2018.04.019_bib0075 article-title: The importance of normalization in the interpretation of surface electromyography: a proof of principle publication-title: J. Manipulative Physiol. Ther. doi: 10.1016/S0161-4754(99)70032-1 – volume: 13 start-page: 12431 year: 2013 ident: 10.1016/j.jocs.2018.04.019_bib0015 article-title: Surface electromyography signal processing and classification techniques publication-title: Sensors doi: 10.3390/s130912431 – year: 2015 ident: 10.1016/j.jocs.2018.04.019_bib0155 – volume: 8 start-page: 11 year: 2006 ident: 10.1016/j.jocs.2018.04.019_bib0020 article-title: Techniques of EMG signal analysis: detection, processing, classification and applications publication-title: Biol. Proced. Online doi: 10.1251/bpo115 – volume: 17 start-page: 458 year: 2017 ident: 10.1016/j.jocs.2018.04.019_bib0030 article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s17030458 – ident: 10.1016/j.jocs.2018.04.019_bib0100 |
SSID | ssj0000388913 |
Score | 2.4007003 |
Snippet | •Generalizability of subject-independent hand gesture recognition were investigated.•A different strategy to normalize the EMG features was proposed.•Hand... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 69 |
SubjectTerms | Electromyography Hand gesture Machine learning MYO armband Normalization Pattern recognition Time-domain |
Title | Subject-independent hand gesture recognition using normalization and machine learning algorithms |
URI | https://dx.doi.org/10.1016/j.jocs.2018.04.019 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DQbyIm4rzx8jBgyJxTZu26XEMx1TcRQe71aRLZ8fWjq27-reb16ZFQXbw2JBXysvry3vJ976H0A0XvhQ-FYTFkhMmPJsIIQVRwren2mAol5Aovo684Zg9T9xJA_WrWhiAVRrfX_r0wlubka7RZneVJN03ClR2rjZK36HAOg4V7MwHWN_DF63PWYDtJCi6JMN8AgKmdqaEec2zCFi7KS8YT4Fw56_96ceeMzhGRyZYxL3ye5qoodIWOqiw6i3UNH_mBt8a-ui7E_ShfQEcrpCk7nCbYzgfx3CVtF0rXIOGshTDu2Y4hch1YUoyMcxdFiBLhU1XiRkWi1m2TvLP5eYUjQeP7_0hMX0USORYVk4C7itrqnMDxQSPrEDoGFVxpSOTgHsyUkIxSmOXxlqfjhCeZFzoYWnHAdyaes4Z2kuzVJ0jrLMjWzhqSq2IsziKdf4T2baOEwJpB5TJNqKV9sLIkIxDr4tFWKHJ5iFoPASNhxYLtcbb6L6WWZUUGztnu9WihL8MJdR7wA65i3_KXaJDeCoRuldoL19v1bWOQ3LZKQytg_Z7Ty_D0TdKSd4d |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgSMAFwQDxJgcOIBStabM2PaIJNNjjwpC4haRLR6fRTVv5_8RrOoGEOHBN46pyXMdOPn8GuBIq0ipiivJUC8pV6FOltKJGRf7QGgwTGhPFXj9sv_Cn1-brGrSqWhiEVTrfX_r0pbd2Iw2nzcYsyxrPDKnsmtYoo4Ah6_g6bCA7Fa_Bxt1jp91fHbUg4Um8bJSMIhRlXPlMifQaTxMk7mZiSXqKnDu_bVHftp2HXdhx8SK5Kz9pD9ZMXofNCq5ehz33cy7ItWOQvtmHN-sO8HyFZqsmtwXBI3KCt0mfc0NWuKFpTvBdI5Jj8DpxVZkE534scZaGuMYSI6Imo-k8K94_Fgfw8nA_aLWpa6VAk8DzChqLyHhDmx4YrkTixcqGqUYYG5zEItSJUYYzljZZalUaKBVqLpQd1n4a48VpGBxCLZ_m5giITZB8FZgh8xLB0yS1KVDi-zZUiLUfM66PgVXak4njGcd2FxNZAcrGEjUuUePS49Jq_BhuVzKzkmXjz9nNalHkD1uRdhv4Q-7kn3KXsNUe9Lqy-9jvnMI2PikBu2dQK-af5tyGJYW-cGb3Be-m4M4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-independent+hand+gesture+recognition+using+normalization+and+machine+learning+algorithms&rft.jtitle=Journal+of+computational+science&rft.au=Wahid%2C+Md+Ferdous&rft.au=Tafreshi%2C+Reza&rft.au=Al-Sowaidi%2C+Mubarak&rft.au=Langari%2C+Reza&rft.date=2018-07-01&rft.issn=1877-7503&rft.volume=27&rft.spage=69&rft.epage=76&rft_id=info:doi/10.1016%2Fj.jocs.2018.04.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2018_04_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |