Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting

New and improved electrochemical synthetic approaches have been developed to improve the photoelectrochemical performance of ZnO nanorods by homogenous and gradient doping of copper. The ZnO, Cu-doped ZnO, ZnO Cu-doped ZnO homojunction and also Cu gradient doped ZnO photoanodes were electro-synthesi...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 125; pp. 177 - 189
Main Authors Rasouli, Fatemeh, Rouhollahi, Ahmad, Ghahramanifard, Fazel
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New and improved electrochemical synthetic approaches have been developed to improve the photoelectrochemical performance of ZnO nanorods by homogenous and gradient doping of copper. The ZnO, Cu-doped ZnO, ZnO Cu-doped ZnO homojunction and also Cu gradient doped ZnO photoanodes were electro-synthesized and characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV–visible absorption spectroscopy. A comparative study was done between samples and Cu gradient doped ZnO photoanodes exhibit significantly enhanced photocurrent density in photoelectrochemical cell applications as compared to other photoanodes. By comparing the results, it is found out that the homogeneous Cu-incorporated ZnO photoanodes show an enhanced photoelectrochemical response, but not as well as Cu gradient doped ZnO photoanodes. The photoelectrochemical performance improvement by adjusting the copper concentration profile is attributed to an extra charge separation effect. The linear sweep voltammetry, electrochemical impedance spectroscopy and Mott-Schottky analysis were used to confirm the improved charge separation. [Display omitted] •Electrodeposition of Cu gradient doped ZnO and ZnO/Cu-doped/ZnO homojunction photoanodes.•Effective charge separation and low charge recombination rate in Cu gradient doped ZnO.•Visible light performance of Cu gradient doped ZnO.•Enhanced PEC response of homogeneous Cu-incorporated ZnO photoanodes toward water splitting.
AbstractList New and improved electrochemical synthetic approaches have been developed to improve the photoelectrochemical performance of ZnO nanorods by homogenous and gradient doping of copper. The ZnO, Cu-doped ZnO, ZnO Cu-doped ZnO homojunction and also Cu gradient doped ZnO photoanodes were electro-synthesized and characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV–visible absorption spectroscopy. A comparative study was done between samples and Cu gradient doped ZnO photoanodes exhibit significantly enhanced photocurrent density in photoelectrochemical cell applications as compared to other photoanodes. By comparing the results, it is found out that the homogeneous Cu-incorporated ZnO photoanodes show an enhanced photoelectrochemical response, but not as well as Cu gradient doped ZnO photoanodes. The photoelectrochemical performance improvement by adjusting the copper concentration profile is attributed to an extra charge separation effect. The linear sweep voltammetry, electrochemical impedance spectroscopy and Mott-Schottky analysis were used to confirm the improved charge separation. [Display omitted] •Electrodeposition of Cu gradient doped ZnO and ZnO/Cu-doped/ZnO homojunction photoanodes.•Effective charge separation and low charge recombination rate in Cu gradient doped ZnO.•Visible light performance of Cu gradient doped ZnO.•Enhanced PEC response of homogeneous Cu-incorporated ZnO photoanodes toward water splitting.
Author Ghahramanifard, Fazel
Rasouli, Fatemeh
Rouhollahi, Ahmad
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Rasouli
  fullname: Rasouli, Fatemeh
– sequence: 2
  givenname: Ahmad
  surname: Rouhollahi
  fullname: Rouhollahi, Ahmad
  email: rouhollahi@kntu.ac.ir
– sequence: 3
  givenname: Fazel
  surname: Ghahramanifard
  fullname: Ghahramanifard, Fazel
BookMark eNp9kNFOwyAUhomZiXP6Al7xAq20dLRNvDGLTpMlu9EbbwiF042lAwJEs6fwlaXbrrwYOQkE-M7J_92iibEGEHooSF6Qgj3u8uD2Oi9J0eQkVcmu0LQgLcsoq-sJmpK6ajNGKLtBtyHsCCFtVdRT9Lv0QmkwESvrtNlg22NpnQOPtcFfZo2NMNZbhd3WRpvOCnB3wDCAjOkanA06amtwbz0GsxVGgsJyK_wGcAAnvDg-p27HDmdQbmGvpRjwj4hpVnCDjjHNv0PXvRgC3J_3Gfp8fflYvGWr9fJ98bzKJCUkZm1TpawdJRQKJkoqOpWCzqFlLVA2b8fVVB00NZRdX5e0U_P0e65qUbdNKegMlae-0tsQPPTceb0X_sALwkelfMdHpXxUykmqkiWo-QdJHY_xohd6uIw-nVBIob41eB5k0p5caZ-EcGX1JfwPwl6YZw
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_164007
crossref_primary_10_1016_j_mssp_2022_106476
crossref_primary_10_1002_smsc_202100104
crossref_primary_10_1016_j_jechem_2023_07_039
crossref_primary_10_1016_j_mtcomm_2023_105909
crossref_primary_10_3390_nano12213735
crossref_primary_10_1016_j_ceramint_2020_04_176
crossref_primary_10_1039_D4CS00309H
crossref_primary_10_1007_s41939_024_00625_x
crossref_primary_10_1016_j_ceramint_2022_01_207
crossref_primary_10_3390_coatings13122051
crossref_primary_10_1016_j_jcis_2022_10_066
crossref_primary_10_1088_1402_4896_ad7001
crossref_primary_10_1016_j_jelechem_2022_117075
crossref_primary_10_1016_j_physb_2024_416206
crossref_primary_10_1016_j_jallcom_2024_177701
crossref_primary_10_3390_ijms24010443
crossref_primary_10_1016_j_solener_2019_09_045
crossref_primary_10_1016_j_surfcoat_2020_125352
crossref_primary_10_1016_j_jclepro_2023_139466
crossref_primary_10_1038_s44172_024_00291_4
crossref_primary_10_1016_j_surfin_2024_103850
crossref_primary_10_1016_j_jiec_2024_11_025
crossref_primary_10_1016_j_matchemphys_2024_129404
crossref_primary_10_1149_2_0561910jes
crossref_primary_10_1007_s10800_020_01443_y
crossref_primary_10_1016_j_apcatb_2019_118398
crossref_primary_10_1016_j_spmi_2019_106296
crossref_primary_10_1007_s10854_023_10999_2
crossref_primary_10_1016_j_envres_2023_116181
crossref_primary_10_1007_s10854_023_11713_y
crossref_primary_10_1039_D2RA06730G
crossref_primary_10_1088_1361_6463_ad5212
crossref_primary_10_1007_s10854_023_10057_x
crossref_primary_10_1088_1361_6463_ac4c22
crossref_primary_10_1002_er_7564
crossref_primary_10_1007_s11082_023_04798_6
crossref_primary_10_1016_j_jelechem_2019_113583
crossref_primary_10_1016_j_matchemphys_2021_124718
crossref_primary_10_1088_1361_6528_abe3b3
crossref_primary_10_1002_adfm_202008247
crossref_primary_10_1016_j_tsf_2024_140350
crossref_primary_10_1007_s10854_020_05144_2
crossref_primary_10_1016_j_ceramint_2021_03_312
crossref_primary_10_1016_j_matchemphys_2020_123270
crossref_primary_10_1002_solr_202400657
crossref_primary_10_1016_j_jallcom_2020_157000
crossref_primary_10_1016_j_cej_2021_130507
Cites_doi 10.1016/j.tsf.2007.04.027
10.1038/ncomms3195
10.1016/j.rser.2013.11.045
10.1039/C4CC09628B
10.1016/j.optmat.2014.08.012
10.1016/S0254-0584(02)00027-5
10.1016/j.solmat.2007.05.014
10.1016/S0022-0728(01)00674-X
10.1016/j.ijhydene.2010.02.013
10.1126/science.1139366
10.1007/s10971-006-6969-y
10.1021/am402265v
10.1103/PhysRev.134.A713
10.1016/j.nanoen.2014.12.037
10.1039/c0dt01567a
10.1016/j.jpowsour.2007.10.082
10.1021/jp062299z
10.1021/acscatal.6b02089
10.1016/j.nanoen.2014.02.008
10.1016/S0022-0248(98)01051-3
10.1063/1.1605805
10.1016/j.jpowsour.2016.03.004
10.1016/j.apsusc.2012.05.021
10.1016/j.snb.2017.03.105
10.1021/jp500395a
10.1007/s10854-013-1420-y
10.1021/jp405515v
10.1016/j.nanoen.2014.04.010
10.1039/C6CP05515J
10.1016/j.tsf.2007.03.122
10.1016/j.apsusc.2012.05.156
10.1016/j.electacta.2013.08.146
10.1166/nnl.2014.1754
10.1007/s10853-007-1970-6
10.1039/c2sc20874a
10.1063/1.3374333
10.1021/am302288m
10.1021/acsami.5b03921
10.1039/C2CS35266D
10.1016/j.tsf.2013.04.024
10.1016/j.jcis.2016.08.022
10.1016/j.spmi.2017.07.019
10.1021/nl3029202
10.1016/j.saa.2014.03.089
10.1063/1.3112603
10.1016/j.nanoen.2014.08.005
10.1143/JJAP.47.516
10.1016/j.apsusc.2011.01.039
10.1016/S0927-0248(03)00101-6
10.1063/1.334375
10.1016/j.jcrysgro.2012.08.038
10.1016/j.nanoen.2011.10.005
10.1016/j.solener.2014.09.026
10.1063/1.1992666
10.1021/cm102155m
10.1063/1.447218
10.3938/jkps.62.1164
10.1016/j.electacta.2012.03.165
10.1021/la105147u
10.1021/am404527q
10.1021/jp410242e
10.1002/aenm.201301590
10.1002/smll.201202547
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2018.08.026
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
EndPage 189
ExternalDocumentID 10_1016_j_spmi_2018_08_026
S0749603618316082
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-984201b303e16a23abd3675e969e3659999984be87e2bf723bd5b305d7a7982a3
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Tue Jul 01 01:35:11 EDT 2025
Thu Apr 24 23:02:48 EDT 2025
Fri Feb 23 02:43:53 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords ZnO nanorods
Gradient doping
Electrodeposition
Charge separation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-984201b303e16a23abd3675e969e3659999984be87e2bf723bd5b305d7a7982a3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_spmi_2018_08_026
crossref_citationtrail_10_1016_j_spmi_2018_08_026
elsevier_sciencedirect_doi_10_1016_j_spmi_2018_08_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Superlattices and microstructures
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References McPeak, Becker, Britton, Majidi, Bunker, Baxter (bib47) 2010; 22
Wang, Liu, Tan, Liang, Zhang, Wei, Zhao, Sargent, Zhang (bib62) 2017; 13
Saad, Kassis (bib41) 2003; 79
Pashchanka, Hoffmann, Gurlo, Swarbrick, Khanderi, Engstler, Issanin, Schneider (bib39) 2011; 40
Suliman, Tang, Xu (bib17) 2007; 91
Gao, Peng, Li, Yu, Qiu (bib29) 2007; 42
Zhang, Li, Wang, Fan, Bard (bib59) 2014; 118
Rokade1, Rondiyal, Sharma, Prasad, Pathan, Jadkar (bib61) 2016
Zhu, Xun, Lu (bib37) 2014; 7
Ghahramanifard, Rouhollahi, Fazlolahzadeh (bib54) 2018; 114
Zhang, Shao, Ning, Xu, Li, Wei, Evans, Duan (bib14) 2015; 12
Yu, Huang, Qin, Zhang, Wang, Liu (bib27) 2011; 257
Montenegro, Souissi, Martínez-Tomás, Mu˜noz-Sanjosé, Sallet (bib25) 2012; 359
Wang, Jin, Jiao, Lu, Ye, Bi (bib33) 2015; 51
Li, Li, Delaunay (bib67) 2014; 6
Srivastav, Verma, Banerjee, Khan, Gupta, Satsangi, Shrivastav, Dass (bib43) 2016; 18
Zhang, Zhang, Hedhili, Zhang, Wang (bib8) 2013; 13
Verma, Srivastav, Banerjee, Sharma, Sharma, Singh, Satsangi, Shrivastav, Avasthi, Dass (bib63) 2016; 315
Sarkar, Makhal, Bora, Lakhsman, Singha, Dutta, Pal (bib12) 2012; 4
Ashfold, Doherty, Ndifor-Angwafor, Riley, Sun (bib46) 2007; 515
Chen, Chen, Tseng, Wu, Huang, Chan, Liu (bib15) 2013; 9
Ng, Chan, Tohsophon (bib24) 2012; 258
Elias, Tena-Zaera, Lévy-Clément (bib30) 2007; 515
Eron, Rothwarf (bib40) 1985; 57
Li, Peng, Peng (bib4) 2016; 6
Fung, Lloyd, Samavat, Deganello, Teng (bib13) 2017; 247
Zhang, Shao, Ning, Xu, Li, Wein, Evans, Duan (bib28) 2015; 12
Meyer, Shu, Kroger, Kahn (bib65) 2010; 96
Zhua, Lia, Lia, Lia, Hua, Yang (bib66) 2013; 112
Pauporté, Lincot (bib56) 2001; 517
Liu, Cai, Tian, Ruan, Ye, Liang, Shao (bib9) 2014; 9
Mittal, Sharma, Pandey (bib57) 2014; 110
Li, Zhai, Bando, Golberg (bib31) 2012; 1
Mead, Spitzer (bib64) 1964; 134
Shen, Guo, Chen, Ren, Mao (bib5) 2010; 35
Sun, Riley, Ashfold (bib45) 2006; 110
Jongnavakit, Amornpitoksuk, Suwanboon, Ndiege (bib55) 2012; 258
Elamin, Elsanousi (bib21) 2013; 1
Huang, Li, Xiao (bib6) 2014; 118
Raoufi, Raoufi (bib53) 2009; vol. 225
McPeak, Le, Britton, Nickolov, Elabd, Baxter (bib48) 2011; 27
Mao, Yang, Chen, Chen, Tong, Wang (bib22) 2014; 6
Hsu, Lin (bib52) 2012; 74
Shaheen, Salem, El-Sayed, Allam (bib36) 2013; 117
Sugunan, Warad, Boman, Dutta (bib49) 2006; 39
Saleh, Djaja (bib38) 2014; 130
Wang, Song, Liu, Wang (bib2) 2007; 316
Abdi, Han, Smets, Zeman, Dam, Krol (bib42) 2013; 4
Gogova, Iossifova, Ivanova, Dimitrova, Gesheva (bib18) 1999; 198/199
Brus (bib68) 1984; 80
Ganesh (bib3) 2014; 31
Lu, Zhang, Ge, Han, Qiu, Fang (bib7) 2016; 483
Liao, Zhou, Xie, Yu (bib23) 2013; 24
Radecka, Rekas, Trenczek-Zajac, Zakrzewska (bib60) 2008; 181
Fujisawa, Kobayashi, Nakashima, Shimizu (bib26) 2013; 62
Jiang, Wong, Fung, Lee (bib19) 2003; 83
Ashokkumar, Muthukumaran (bib50) 2014; 37
Chen, Wang, Liao, Wu (bib32) 2013; 5
Hsu, Chen, Lin (bib34) 2015; 7
Wang, Ren, Zhou, Cai, Cai, Hu, Wang, Liu, Guo (bib51) 2015; 5
Park, Jung, Kim (bib20) 2008; 47
Ferhat, Zaoui, Ahuja (bib58) 2009; 94
Li, Yabe, Yamashita (bib11) 2002; 75
Chettah, Abdi (bib44) 2013; 537
Ozgur, Alivov, Liu, Teke, Reshchikov, Dogan, Avrutin, Cho, Morkoc (bib10) 2005; 98
Huang, Wang, Cheng, Lin, Lan, Wu, Chang (bib16) 2014; 6
Lin, Lai, Mersch, Reisner (bib69) 2012; 3
Osterloh (bib1) 2013; 42
Moniz, Zhu, Tang (bib35) 2014; 4
Elias (10.1016/j.spmi.2018.08.026_bib30) 2007; 515
Zhang (10.1016/j.spmi.2018.08.026_bib8) 2013; 13
Wang (10.1016/j.spmi.2018.08.026_bib51) 2015; 5
Lu (10.1016/j.spmi.2018.08.026_bib7) 2016; 483
Eron (10.1016/j.spmi.2018.08.026_bib40) 1985; 57
Raoufi (10.1016/j.spmi.2018.08.026_bib53) 2009; vol. 225
Hsu (10.1016/j.spmi.2018.08.026_bib34) 2015; 7
Ferhat (10.1016/j.spmi.2018.08.026_bib58) 2009; 94
Chen (10.1016/j.spmi.2018.08.026_bib15) 2013; 9
Li (10.1016/j.spmi.2018.08.026_bib67) 2014; 6
Jongnavakit (10.1016/j.spmi.2018.08.026_bib55) 2012; 258
Ganesh (10.1016/j.spmi.2018.08.026_bib3) 2014; 31
Zhua (10.1016/j.spmi.2018.08.026_bib66) 2013; 112
Huang (10.1016/j.spmi.2018.08.026_bib6) 2014; 118
Fung (10.1016/j.spmi.2018.08.026_bib13) 2017; 247
Chen (10.1016/j.spmi.2018.08.026_bib32) 2013; 5
Ashokkumar (10.1016/j.spmi.2018.08.026_bib50) 2014; 37
Hsu (10.1016/j.spmi.2018.08.026_bib52) 2012; 74
Zhang (10.1016/j.spmi.2018.08.026_bib14) 2015; 12
Huang (10.1016/j.spmi.2018.08.026_bib16) 2014; 6
Abdi (10.1016/j.spmi.2018.08.026_bib42) 2013; 4
Rokade1 (10.1016/j.spmi.2018.08.026_bib61) 2016
Mao (10.1016/j.spmi.2018.08.026_bib22) 2014; 6
Zhang (10.1016/j.spmi.2018.08.026_bib59) 2014; 118
Li (10.1016/j.spmi.2018.08.026_bib4) 2016; 6
Li (10.1016/j.spmi.2018.08.026_bib11) 2002; 75
Liu (10.1016/j.spmi.2018.08.026_bib9) 2014; 9
Ozgur (10.1016/j.spmi.2018.08.026_bib10) 2005; 98
Park (10.1016/j.spmi.2018.08.026_bib20) 2008; 47
Verma (10.1016/j.spmi.2018.08.026_bib63) 2016; 315
Mittal (10.1016/j.spmi.2018.08.026_bib57) 2014; 110
Wang (10.1016/j.spmi.2018.08.026_bib33) 2015; 51
Zhang (10.1016/j.spmi.2018.08.026_bib28) 2015; 12
Brus (10.1016/j.spmi.2018.08.026_bib68) 1984; 80
Zhu (10.1016/j.spmi.2018.08.026_bib37) 2014; 7
Saad (10.1016/j.spmi.2018.08.026_bib41) 2003; 79
Ng (10.1016/j.spmi.2018.08.026_bib24) 2012; 258
Elamin (10.1016/j.spmi.2018.08.026_bib21) 2013; 1
Shaheen (10.1016/j.spmi.2018.08.026_bib36) 2013; 117
Montenegro (10.1016/j.spmi.2018.08.026_bib25) 2012; 359
Liao (10.1016/j.spmi.2018.08.026_bib23) 2013; 24
Suliman (10.1016/j.spmi.2018.08.026_bib17) 2007; 91
McPeak (10.1016/j.spmi.2018.08.026_bib47) 2010; 22
Lin (10.1016/j.spmi.2018.08.026_bib69) 2012; 3
Chettah (10.1016/j.spmi.2018.08.026_bib44) 2013; 537
Ashfold (10.1016/j.spmi.2018.08.026_bib46) 2007; 515
Fujisawa (10.1016/j.spmi.2018.08.026_bib26) 2013; 62
Mead (10.1016/j.spmi.2018.08.026_bib64) 1964; 134
Saleh (10.1016/j.spmi.2018.08.026_bib38) 2014; 130
Ghahramanifard (10.1016/j.spmi.2018.08.026_bib54) 2018; 114
Meyer (10.1016/j.spmi.2018.08.026_bib65) 2010; 96
Radecka (10.1016/j.spmi.2018.08.026_bib60) 2008; 181
Srivastav (10.1016/j.spmi.2018.08.026_bib43) 2016; 18
McPeak (10.1016/j.spmi.2018.08.026_bib48) 2011; 27
Osterloh (10.1016/j.spmi.2018.08.026_bib1) 2013; 42
Moniz (10.1016/j.spmi.2018.08.026_bib35) 2014; 4
Shen (10.1016/j.spmi.2018.08.026_bib5) 2010; 35
Jiang (10.1016/j.spmi.2018.08.026_bib19) 2003; 83
Pashchanka (10.1016/j.spmi.2018.08.026_bib39) 2011; 40
Pauporté (10.1016/j.spmi.2018.08.026_bib56) 2001; 517
Gogova (10.1016/j.spmi.2018.08.026_bib18) 1999; 198/199
Yu (10.1016/j.spmi.2018.08.026_bib27) 2011; 257
Wang (10.1016/j.spmi.2018.08.026_bib62) 2017; 13
Li (10.1016/j.spmi.2018.08.026_bib31) 2012; 1
Sun (10.1016/j.spmi.2018.08.026_bib45) 2006; 110
Sugunan (10.1016/j.spmi.2018.08.026_bib49) 2006; 39
Wang (10.1016/j.spmi.2018.08.026_bib2) 2007; 316
Sarkar (10.1016/j.spmi.2018.08.026_bib12) 2012; 4
Gao (10.1016/j.spmi.2018.08.026_bib29) 2007; 42
References_xml – volume: 181
  start-page: 46
  year: 2008
  end-page: 55
  ident: bib60
  article-title: Importance of the band gap energy and flat band potential for application of modified TiO
  publication-title: J. Power Sources
– volume: 18
  start-page: 32735
  year: 2016
  end-page: 32743
  ident: bib43
  article-title: Gradient doping-a case study of Ti-Fe
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 231
  year: 2015
  end-page: 239
  ident: bib14
  article-title: Au nanoparticles sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting
  publication-title: Nano Energy
– volume: 57
  start-page: 2275
  year: 1985
  end-page: 2279
  ident: bib40
  article-title: Interface charging and solar-cell characteristics - CuInSe
  publication-title: J. Appl. Phys.
– volume: 515
  start-page: 8553
  year: 2007
  end-page: 8557
  ident: bib30
  article-title: Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer
  publication-title: Thin Solid Films
– volume: 1
  start-page: 32
  year: 2013
  end-page: 35
  ident: bib21
  article-title: Synthesis of ZnO nanostructures and their photocatalytic activity
  publication-title: J. Appl. Ind. Sci.
– volume: 110
  start-page: 386
  year: 2014
  end-page: 397
  ident: bib57
  article-title: UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method
  publication-title: Sol. Energy
– volume: 316
  start-page: 102
  year: 2007
  end-page: 105
  ident: bib2
  article-title: Direct-current nanogenerator driven by ultrasonic waves
  publication-title: Science
– volume: 258
  start-page: 9604
  year: 2012
  end-page: 9609
  ident: bib24
  article-title: Effects of annealing temperature on ZnO and AZO films prepared by sol-gel technique
  publication-title: Appl. Surf. Sci.
– volume: 114
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib54
  article-title: Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure
  publication-title: Superlattice. Microst.
– volume: 112
  start-page: 191
  year: 2013
  end-page: 198
  ident: bib66
  article-title: Photoelectrochemical activity of NiWO
  publication-title: Electrochim. Acta
– volume: 13
  year: 2017
  ident: bib62
  article-title: Compound homojunction:heterojunction reduces bulk and interface recombination in ZnO photoanodes for water splitting
  publication-title: Small
– volume: 118
  start-page: 2306
  year: 2014
  end-page: 2311
  ident: bib6
  article-title: Hydrogen evolution from Pt nanoparticles covered p-type CdS: Cu photocathode in scavenger-free electrolyte
  publication-title: J. Phys. Chem. C
– volume: 130
  start-page: 581
  year: 2014
  end-page: 590
  ident: bib38
  article-title: Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light
  publication-title: Spectrochim. Acta, Part A
– volume: 258
  start-page: 8192
  year: 2012
  end-page: 8198
  ident: bib55
  article-title: Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method
  publication-title: Appl. Surf. Sci.
– volume: 39
  start-page: 49
  year: 2006
  end-page: 56
  ident: bib49
  article-title: Zinc Oxide Nanowires in Chemical bath on seeded substrates: role of hexamine
  publication-title: J. Sol. Gel Sci. Technol.
– volume: 5
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib51
  article-title: Sh. Shen, N doping to ZnO nanorods for photoelectrochemical water splitting under visible light : engineered impurity distribution and terraced band structure
  publication-title: Sci. Rep.
– volume: 6
  start-page: 7485
  year: 2016
  end-page: 7527
  ident: bib4
  article-title: Recent advances in heterogeneous photocatalytic CO
  publication-title: ACS Catal.
– volume: 40
  start-page: 4307
  year: 2011
  end-page: 4314
  ident: bib39
  article-title: A molecular approach to Cu doped ZnO nanorods with tunable dopant content
  publication-title: Dalton Trans.
– volume: 75
  start-page: 39
  year: 2002
  end-page: 44
  ident: bib11
  article-title: UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes
  publication-title: Mater. Chem. Phys.
– volume: 517
  start-page: 54
  year: 2001
  end-page: 62
  ident: bib56
  article-title: Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II—mechanistic aspects
  publication-title: J. Electroanal. Chem.
– volume: 5
  start-page: 8359
  year: 2013
  end-page: 8365
  ident: bib32
  article-title: Synergistic effect of dual interfacial modifications with room-temperature-grown epitaxial ZnO and adsorbed indoline dye for ZnO nanorod array/P
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2195
  year: 2013
  ident: bib42
  article-title: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
  publication-title: Nat. Commun.
– volume: 118
  start-page: 16842
  year: 2014
  end-page: 16850
  ident: bib59
  article-title: Improvement of hematite as photocatalyst by doping with tantalum
  publication-title: J. Phys. Chem. C
– volume: 31
  start-page: 221
  year: 2014
  end-page: 257
  ident: bib3
  article-title: Conversion of carbon dioxide into methanol – a potential liquid fuel: fundamental challenges and opportunities (a review)
  publication-title: Sustainable Energy Rev.
– volume: 42
  start-page: 2294
  year: 2013
  end-page: 2320
  ident: bib1
  article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
  publication-title: Chem. Soc. Rev.
– volume: 74
  start-page: 73
  year: 2012
  end-page: 77
  ident: bib52
  article-title: Enhanced photoelectrochemical properties of ternary Zn
  publication-title: Electrochim. Acta
– volume: 91
  start-page: 1658
  year: 2007
  end-page: 1662
  ident: bib17
  article-title: Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 83
  start-page: 1875
  year: 2003
  ident: bib19
  article-title: Aluminum-doped zinc oxide films as transparent conductive electrode for orangic light-emitting devices
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 7027
  year: 2012
  end-page: 7035
  ident: bib12
  article-title: Hematoporphyrin–ZnO nanohybrids: twin applications in efficient visible-light photocatalysis and dye-sensitized solar cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 257
  start-page: 5563
  year: 2011
  end-page: 5565
  ident: bib27
  article-title: Hydrothermal synthesis and characterization of ZnO films with different nanostructures
  publication-title: Appl. Surf. Sci.
– volume: 80
  start-page: 4403
  year: 1984
  end-page: 4409
  ident: bib68
  article-title: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 14157
  year: 2015
  end-page: 14162
  ident: bib34
  article-title: Novel ZnO/Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 79
  start-page: 507
  year: 2003
  end-page: 517
  ident: bib41
  article-title: Effect of interface recombination on solar cell parameters
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 47
  start-page: 516
  year: 2008
  end-page: 520
  ident: bib20
  article-title: Organic solar cells with hydrogenated In-doped ZnO replacing Sn-doped In
  publication-title: Jpn. J. Appl. Phys.
– volume: 24
  start-page: 4427
  year: 2013
  end-page: 4432
  ident: bib23
  article-title: The effects of solvents on the highly oriented ZnO films prepared using sol-gel method
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 3
  start-page: 3482
  year: 2012
  end-page: 3487
  ident: bib69
  article-title: Cu
  publication-title: Chem. Sci.
– volume: 247
  start-page: 807
  year: 2017
  end-page: 813
  ident: bib13
  article-title: Facile fabrication of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique
  publication-title: Sensor. Actuator. B Chem.
– volume: 315
  start-page: 152
  year: 2016
  end-page: 160
  ident: bib63
  article-title: Plasmonic layer enhanced photoelectrochemical response of Fe
  publication-title: J. Power Sources
– start-page: 1
  year: 2016
  end-page: 10
  ident: bib61
  article-title: Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water
  publication-title: J. Solid State Electrochem.
– volume: 51
  start-page: 2103
  year: 2015
  end-page: 2106
  ident: bib33
  article-title: Electric field-directed growth and photoelectrochemical properties of cross-linked Au-ZnO hetero-nanowire arrays
  publication-title: Chem. Commun.
– volume: 12
  start-page: 231
  year: 2015
  end-page: 239
  ident: bib28
  article-title: Au nanoparticle sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting
  publication-title: Nano Energy
– volume: 6
  start-page: 210
  year: 2014
  end-page: 215
  ident: bib16
  article-title: The structure and photoelectrochemistry of Al, Ti co-doped zinc oxide thin films prepared by sol–gel dip-coating process
  publication-title: Nanosci. Nanotechnol. Lett.
– volume: 1
  start-page: 91
  year: 2012
  end-page: 106
  ident: bib31
  article-title: Recent progress of one-dimensional ZnO nanostructured solar cells
  publication-title: Nano Energy
– volume: 110
  start-page: 15186
  year: 2006
  end-page: 15192
  ident: bib45
  article-title: Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates
  publication-title: J. Phys. Chem. B
– volume: 134
  start-page: A713
  year: 1964
  end-page: A716
  ident: bib64
  article-title: Fermi level position at metal-semiconductor interfaces
  publication-title: Physiol. Rev.
– volume: 483
  start-page: 146
  year: 2016
  end-page: 153
  ident: bib7
  article-title: Synthesis of novel Au Pd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity
  publication-title: J. Colloid Interface Sci.
– volume: 359
  start-page: 122
  year: 2012
  end-page: 128
  ident: bib25
  article-title: Morphology transitions in ZnO nanorods grown by MOCVD
  publication-title: J. Cryst. Growth
– volume: 6
  start-page: 480
  year: 2014
  end-page: 486
  ident: bib67
  article-title: A novel method to synthesize highly photoactive Cu
  publication-title: Appl. Mater. Interfaces
– volume: 42
  start-page: 9638
  year: 2007
  end-page: 9644
  ident: bib29
  article-title: Growth of highly oriented ZnO films by the two-step electrodeposition technique
  publication-title: J. Mater. Sci.
– volume: 37
  start-page: 671
  year: 2014
  end-page: 678
  ident: bib50
  article-title: Microstructure, optical and FT-IR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method
  publication-title: Opt. Mater.
– volume: 9
  start-page: 2926
  year: 2013
  end-page: 2936
  ident: bib15
  article-title: D.P.Tsai, ZnO/Ag embedded plasmonics as collecting layers for photo-generating electrons in solar hydrogen generation photoelectrode
  publication-title: Small
– volume: vol. 225
  start-page: 5812
  year: 2009
  end-page: 5817
  ident: bib53
  publication-title: The Effect of Heat Treatment on the Physical Properties of Sol-gel Derived ZnO Thin Films Applied Surface Science
– volume: 537
  start-page: 119
  year: 2013
  end-page: 123
  ident: bib44
  article-title: Effect of the electrochemical technique on nanocrystalline ZnO electrodeposition, its structural, morphological and photoelectrochemical properties
  publication-title: Thin Solid Films
– volume: 198/199
  start-page: 1230
  year: 1999
  end-page: 1234
  ident: bib18
  article-title: Electrochromic behavior in CVD grown tungsten oxide films
  publication-title: J. Cryst. Growth
– volume: 22
  start-page: 6162
  year: 2010
  end-page: 6170
  ident: bib47
  article-title: In situ X-ray absorption near-edge structure spectroscopy of ZnO nanowire growth during chemical bath deposition
  publication-title: Chem. Mater.
– volume: 62
  start-page: 1164
  year: 2013
  end-page: 1168
  ident: bib26
  article-title: Two-step growth of ZnO nanorods by using MOCVD and control of their diameters and surface densities
  publication-title: J. Kor. Phys. Soc.
– volume: 515
  start-page: 8579
  year: 2007
  end-page: 8683
  ident: bib46
  article-title: The kinetics of the hydrothermal growth of ZnO nanostructures
  publication-title: Thin Solid Films
– volume: 35
  start-page: 7110
  year: 2010
  end-page: 7115
  ident: bib5
  article-title: Effect of Ag
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 10
  year: 2014
  end-page: 18
  ident: bib22
  article-title: Significant performance enhancement of ZnO photoanodes from Ni(OH)
  publication-title: Nano Energy
– volume: 98
  start-page: 041301
  year: 2005
  ident: bib10
  article-title: A comprehensive review of ZnO materials and devices
  publication-title: J. Appl. Phys.
– volume: 27
  start-page: 3672
  year: 2011
  end-page: 3677
  ident: bib48
  article-title: Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth
  publication-title: Langmuir
– volume: 94
  start-page: 142502
  year: 2009
  end-page: 142503
  ident: bib58
  article-title: Magnetism and band gap narrowing in Cu-doped ZnO
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 282
  year: 2014
  end-page: 290
  ident: bib9
  article-title: Highly oriented Ge-doped hematite nanosheet arrays for photoelectrochemical water oxidation
  publication-title: Nano Energy
– volume: 7
  start-page: 114
  year: 2014
  end-page: 123
  ident: bib37
  article-title: Ultrafine Au nanoparticles decorated NiCo
  publication-title: Nano Energy
– volume: 13
  start-page: 14
  year: 2013
  end-page: 20
  ident: bib8
  article-title: Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting
  publication-title: Nano Lett.
– volume: 96
  start-page: 133303
  year: 2010
  end-page: 133308
  ident: bib65
  article-title: Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2014
  ident: bib35
  article-title: 1D Co-Pi modified BiVO
  publication-title: Adv. Energy Mater
– volume: 117
  start-page: 18502
  year: 2013
  end-page: 18509
  ident: bib36
  article-title: Thermal/Electrochemical growth and characterization of one-dimensional ZnO/TiO
  publication-title: J. Phys. Chem. C
– volume: 515
  start-page: 8553
  year: 2007
  ident: 10.1016/j.spmi.2018.08.026_bib30
  article-title: Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.04.027
– volume: 4
  start-page: 2195
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib42
  article-title: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3195
– volume: 31
  start-page: 221
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib3
  article-title: Conversion of carbon dioxide into methanol – a potential liquid fuel: fundamental challenges and opportunities (a review)
  publication-title: Sustainable Energy Rev.
  doi: 10.1016/j.rser.2013.11.045
– volume: 51
  start-page: 2103
  year: 2015
  ident: 10.1016/j.spmi.2018.08.026_bib33
  article-title: Electric field-directed growth and photoelectrochemical properties of cross-linked Au-ZnO hetero-nanowire arrays
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09628B
– volume: 37
  start-page: 671
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib50
  article-title: Microstructure, optical and FT-IR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2014.08.012
– volume: 75
  start-page: 39
  year: 2002
  ident: 10.1016/j.spmi.2018.08.026_bib11
  article-title: UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(02)00027-5
– volume: 91
  start-page: 1658
  year: 2007
  ident: 10.1016/j.spmi.2018.08.026_bib17
  article-title: Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2007.05.014
– volume: 13
  year: 2017
  ident: 10.1016/j.spmi.2018.08.026_bib62
  article-title: Compound homojunction:heterojunction reduces bulk and interface recombination in ZnO photoanodes for water splitting
  publication-title: Small
– volume: 517
  start-page: 54
  year: 2001
  ident: 10.1016/j.spmi.2018.08.026_bib56
  article-title: Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II—mechanistic aspects
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(01)00674-X
– volume: 35
  start-page: 7110
  year: 2010
  ident: 10.1016/j.spmi.2018.08.026_bib5
  article-title: Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.02.013
– volume: 316
  start-page: 102
  year: 2007
  ident: 10.1016/j.spmi.2018.08.026_bib2
  article-title: Direct-current nanogenerator driven by ultrasonic waves
  publication-title: Science
  doi: 10.1126/science.1139366
– volume: vol. 225
  start-page: 5812
  year: 2009
  ident: 10.1016/j.spmi.2018.08.026_bib53
– volume: 39
  start-page: 49
  year: 2006
  ident: 10.1016/j.spmi.2018.08.026_bib49
  article-title: Zinc Oxide Nanowires in Chemical bath on seeded substrates: role of hexamine
  publication-title: J. Sol. Gel Sci. Technol.
  doi: 10.1007/s10971-006-6969-y
– volume: 5
  start-page: 8359
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib32
  article-title: Synergistic effect of dual interfacial modifications with room-temperature-grown epitaxial ZnO and adsorbed indoline dye for ZnO nanorod array/P3HT hybrid solar cell
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402265v
– volume: 134
  start-page: A713
  year: 1964
  ident: 10.1016/j.spmi.2018.08.026_bib64
  article-title: Fermi level position at metal-semiconductor interfaces
  publication-title: Physiol. Rev.
  doi: 10.1103/PhysRev.134.A713
– volume: 12
  start-page: 231
  year: 2015
  ident: 10.1016/j.spmi.2018.08.026_bib28
  article-title: Au nanoparticle sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.12.037
– volume: 40
  start-page: 4307
  year: 2011
  ident: 10.1016/j.spmi.2018.08.026_bib39
  article-title: A molecular approach to Cu doped ZnO nanorods with tunable dopant content
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt01567a
– volume: 181
  start-page: 46
  year: 2008
  ident: 10.1016/j.spmi.2018.08.026_bib60
  article-title: Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.10.082
– volume: 110
  start-page: 15186
  year: 2006
  ident: 10.1016/j.spmi.2018.08.026_bib45
  article-title: Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp062299z
– volume: 6
  start-page: 7485
  year: 2016
  ident: 10.1016/j.spmi.2018.08.026_bib4
  article-title: Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02089
– volume: 6
  start-page: 10
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib22
  article-title: Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.02.008
– volume: 198/199
  start-page: 1230
  year: 1999
  ident: 10.1016/j.spmi.2018.08.026_bib18
  article-title: Electrochromic behavior in CVD grown tungsten oxide films
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)01051-3
– volume: 83
  start-page: 1875
  year: 2003
  ident: 10.1016/j.spmi.2018.08.026_bib19
  article-title: Aluminum-doped zinc oxide films as transparent conductive electrode for orangic light-emitting devices
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1605805
– volume: 315
  start-page: 152
  year: 2016
  ident: 10.1016/j.spmi.2018.08.026_bib63
  article-title: Plasmonic layer enhanced photoelectrochemical response of Fe2O3 photoanodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.004
– volume: 258
  start-page: 8192
  year: 2012
  ident: 10.1016/j.spmi.2018.08.026_bib55
  article-title: Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.05.021
– start-page: 1
  year: 2016
  ident: 10.1016/j.spmi.2018.08.026_bib61
  article-title: Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water
  publication-title: J. Solid State Electrochem.
– volume: 247
  start-page: 807
  year: 2017
  ident: 10.1016/j.spmi.2018.08.026_bib13
  article-title: Facile fabrication of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.03.105
– volume: 118
  start-page: 16842
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib59
  article-title: Improvement of hematite as photocatalyst by doping with tantalum
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp500395a
– volume: 24
  start-page: 4427
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib23
  article-title: The effects of solvents on the highly oriented ZnO films prepared using sol-gel method
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-013-1420-y
– volume: 117
  start-page: 18502
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib36
  article-title: Thermal/Electrochemical growth and characterization of one-dimensional ZnO/TiO2 hybrid nanoelectrodes for solar fuel production
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp405515v
– volume: 7
  start-page: 114
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib37
  article-title: Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.04.010
– volume: 18
  start-page: 32735
  year: 2016
  ident: 10.1016/j.spmi.2018.08.026_bib43
  article-title: Gradient doping-a case study of Ti-Fe2O3 towards improved photoelectrochemical response
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05515J
– volume: 515
  start-page: 8579
  year: 2007
  ident: 10.1016/j.spmi.2018.08.026_bib46
  article-title: The kinetics of the hydrothermal growth of ZnO nanostructures
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.03.122
– volume: 258
  start-page: 9604
  year: 2012
  ident: 10.1016/j.spmi.2018.08.026_bib24
  article-title: Effects of annealing temperature on ZnO and AZO films prepared by sol-gel technique
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.05.156
– volume: 112
  start-page: 191
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib66
  article-title: Photoelectrochemical activity of NiWO4/WO3heterojunctionphotoanode under visible light irradiation
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.08.146
– volume: 6
  start-page: 210
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib16
  article-title: The structure and photoelectrochemistry of Al, Ti co-doped zinc oxide thin films prepared by sol–gel dip-coating process
  publication-title: Nanosci. Nanotechnol. Lett.
  doi: 10.1166/nnl.2014.1754
– volume: 42
  start-page: 9638
  year: 2007
  ident: 10.1016/j.spmi.2018.08.026_bib29
  article-title: Growth of highly oriented ZnO films by the two-step electrodeposition technique
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-007-1970-6
– volume: 3
  start-page: 3482
  year: 2012
  ident: 10.1016/j.spmi.2018.08.026_bib69
  article-title: Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20874a
– volume: 96
  start-page: 133303
  year: 2010
  ident: 10.1016/j.spmi.2018.08.026_bib65
  article-title: Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3374333
– volume: 12
  start-page: 231
  year: 2015
  ident: 10.1016/j.spmi.2018.08.026_bib14
  article-title: Au nanoparticles sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.12.037
– volume: 4
  start-page: 7027
  year: 2012
  ident: 10.1016/j.spmi.2018.08.026_bib12
  article-title: Hematoporphyrin–ZnO nanohybrids: twin applications in efficient visible-light photocatalysis and dye-sensitized solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302288m
– volume: 7
  start-page: 14157
  year: 2015
  ident: 10.1016/j.spmi.2018.08.026_bib34
  article-title: Novel ZnO/Fe2O3 core-shell nanowires for photoelectrochemical water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03921
– volume: 42
  start-page: 2294
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib1
  article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35266D
– volume: 537
  start-page: 119
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib44
  article-title: Effect of the electrochemical technique on nanocrystalline ZnO electrodeposition, its structural, morphological and photoelectrochemical properties
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.04.024
– volume: 483
  start-page: 146
  year: 2016
  ident: 10.1016/j.spmi.2018.08.026_bib7
  article-title: Synthesis of novel Au Pd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.08.022
– volume: 114
  start-page: 1
  year: 2018
  ident: 10.1016/j.spmi.2018.08.026_bib54
  article-title: Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2017.07.019
– volume: 1
  start-page: 32
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib21
  article-title: Synthesis of ZnO nanostructures and their photocatalytic activity
  publication-title: J. Appl. Ind. Sci.
– volume: 13
  start-page: 14
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib8
  article-title: Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting
  publication-title: Nano Lett.
  doi: 10.1021/nl3029202
– volume: 130
  start-page: 581
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib38
  article-title: Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2014.03.089
– volume: 94
  start-page: 142502
  year: 2009
  ident: 10.1016/j.spmi.2018.08.026_bib58
  article-title: Magnetism and band gap narrowing in Cu-doped ZnO
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3112603
– volume: 9
  start-page: 282
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib9
  article-title: Highly oriented Ge-doped hematite nanosheet arrays for photoelectrochemical water oxidation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.08.005
– volume: 47
  start-page: 516
  year: 2008
  ident: 10.1016/j.spmi.2018.08.026_bib20
  article-title: Organic solar cells with hydrogenated In-doped ZnO replacing Sn-doped In2O3 as transparent electrode
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.47.516
– volume: 257
  start-page: 5563
  year: 2011
  ident: 10.1016/j.spmi.2018.08.026_bib27
  article-title: Hydrothermal synthesis and characterization of ZnO films with different nanostructures
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.01.039
– volume: 79
  start-page: 507
  year: 2003
  ident: 10.1016/j.spmi.2018.08.026_bib41
  article-title: Effect of interface recombination on solar cell parameters
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(03)00101-6
– volume: 57
  start-page: 2275
  year: 1985
  ident: 10.1016/j.spmi.2018.08.026_bib40
  article-title: Interface charging and solar-cell characteristics - CuInSe2/CdS
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.334375
– volume: 359
  start-page: 122
  year: 2012
  ident: 10.1016/j.spmi.2018.08.026_bib25
  article-title: Morphology transitions in ZnO nanorods grown by MOCVD
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2012.08.038
– volume: 1
  start-page: 91
  year: 2012
  ident: 10.1016/j.spmi.2018.08.026_bib31
  article-title: Recent progress of one-dimensional ZnO nanostructured solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2011.10.005
– volume: 110
  start-page: 386
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib57
  article-title: UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.09.026
– volume: 98
  start-page: 041301
  year: 2005
  ident: 10.1016/j.spmi.2018.08.026_bib10
  article-title: A comprehensive review of ZnO materials and devices
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1992666
– volume: 22
  start-page: 6162
  year: 2010
  ident: 10.1016/j.spmi.2018.08.026_bib47
  article-title: In situ X-ray absorption near-edge structure spectroscopy of ZnO nanowire growth during chemical bath deposition
  publication-title: Chem. Mater.
  doi: 10.1021/cm102155m
– volume: 80
  start-page: 4403
  year: 1984
  ident: 10.1016/j.spmi.2018.08.026_bib68
  article-title: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447218
– volume: 62
  start-page: 1164
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib26
  article-title: Two-step growth of ZnO nanorods by using MOCVD and control of their diameters and surface densities
  publication-title: J. Kor. Phys. Soc.
  doi: 10.3938/jkps.62.1164
– volume: 5
  start-page: 1
  year: 2015
  ident: 10.1016/j.spmi.2018.08.026_bib51
  article-title: Sh. Shen, N doping to ZnO nanorods for photoelectrochemical water splitting under visible light : engineered impurity distribution and terraced band structure
  publication-title: Sci. Rep.
– volume: 74
  start-page: 73
  year: 2012
  ident: 10.1016/j.spmi.2018.08.026_bib52
  article-title: Enhanced photoelectrochemical properties of ternary Zn1−xCuxO nanorods with tunable band gaps for solar water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.03.165
– volume: 27
  start-page: 3672
  year: 2011
  ident: 10.1016/j.spmi.2018.08.026_bib48
  article-title: Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth
  publication-title: Langmuir
  doi: 10.1021/la105147u
– volume: 6
  start-page: 480
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib67
  article-title: A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells
  publication-title: Appl. Mater. Interfaces
  doi: 10.1021/am404527q
– volume: 118
  start-page: 2306
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib6
  article-title: Hydrogen evolution from Pt nanoparticles covered p-type CdS: Cu photocathode in scavenger-free electrolyte
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp410242e
– volume: 4
  year: 2014
  ident: 10.1016/j.spmi.2018.08.026_bib35
  article-title: 1D Co-Pi modified BiVO4/ZnO junction cascade for efficient photoelectrochemical water cleavage
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.201301590
– volume: 9
  start-page: 2926
  year: 2013
  ident: 10.1016/j.spmi.2018.08.026_bib15
  article-title: D.P.Tsai, ZnO/Ag embedded plasmonics as collecting layers for photo-generating electrons in solar hydrogen generation photoelectrode
  publication-title: Small
  doi: 10.1002/smll.201202547
SSID ssj0009417
Score 2.0672605
Snippet New and improved electrochemical synthetic approaches have been developed to improve the photoelectrochemical performance of ZnO nanorods by homogenous and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms Charge separation
Electrodeposition
Gradient doping
ZnO nanorods
Title Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting
URI https://dx.doi.org/10.1016/j.spmi.2018.08.026
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWVAguVVlAbHloDtxQ2GxiJ_ERrYBtK-DQIqFeIjueiEWQRLupKi79C_3LjB0HqIQ4NKc8ZqzIHs2MrW--YeywDBXKLJSBQR4FlIFngeK6tLbMldJay9JuFC8uk9k1_3ojbgZs2tfCWFil9_2dT3fe2r8Z-9kcN_P5-DsFP0q_44SMcpJQJLMV7Dy1Vn785wXmIbnrumuFAyvtC2c6jNeyeZhbeFfmaDwtwcJbwelVwDn7xD76TBFOup_ZYAOshmxt2jdoG7JVh94slpvs7_nCIbdaMK7-CeoSirppcAHzCn5WV1CpqiZXCc1t3dZ0bxD0I_geOAZ76BZQCgtY3TpYADgWJYQldvzg9JlGcyN4xcKzDcBvylgXsKSE1sGot9j12emP6SzwnRaCIg7DNpAZp1nQFM5wkqgoVtrEtJNAmUiMEyHtlXGNWYqRLtMo1kaQtDCpSmUWqXibrVR1hTsMUlViwWVUSBNzISKtU8NVKBRPC5VxMWKTforzwtOQ224Y93mPN7vL7bLkdlly2yIzSkbs6Fmn6Ug43pUW_crl_5hSTlHiHb3P_6m3y9bpSXbnMntspV38wn3KVFp94EzxgH04-fJtdvkE79nrjw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrVB7qaCAKBSYAzcUbTaxk_hYrdpuabscaKWKS2THE3URJNFuKsSv4C8zdhw-JNQDOUWxx4rs0cyz9fwG4G0da1JFrCJLIokYgReRFqZ2viy0Nsao2m0UL5fZ4lq8v5E3WzAf78I4WmWI_UNM99E6fJmG2Zx2q9X0Iyc_ht9pxk45yziTPYBtp04lJ7B9dHa-WP7W3hW-8K7rHzmDcHdmoHltuq8rx_AqvJKn01j4V376I-ecPIK9ABbxaPifx7BFzT7szMcabfvw0BM4q80T-HG69uStHq2_AoVtjVXbdbTGVYOfmg_Y6KblaIndbdu3_G4JzXcMZXAsjewtZBSL1Nx6ZgB6ISXCDQ0S4dzMo_kRgmEVBAfwG4PWNW4Y03om9VO4Pjm-mi-iUGwhqtI47iNVCJ4FwxmNZplOUm1sypsJUpmiNJPKPYUwVOSUmDpPUmMl95Y217kqEp0-g0nTNvQcMNc1VUIllbKpkDIxJrdCx1KLvNKFkAcwG6e4rIISuSuI8aUcKWefS7cspVuW0lXJTLIDePfLpht0OO7tLceVK__yppITxT12L_7T7g3sLK4uL8qLs-X5S9jlFjUc0xzCpF_f0SsGLr15HRzzJwAU7kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+doping+of+copper+in+ZnO+nanorod+photoanode+by+electrodeposition+for+enhanced+charge+separation+in+photoelectrochemical+water+splitting&rft.jtitle=Superlattices+and+microstructures&rft.au=Rasouli%2C+Fatemeh&rft.au=Rouhollahi%2C+Ahmad&rft.au=Ghahramanifard%2C+Fazel&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=125&rft.spage=177&rft.epage=189&rft_id=info:doi/10.1016%2Fj.spmi.2018.08.026&rft.externalDocID=S0749603618316082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon