Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting
New and improved electrochemical synthetic approaches have been developed to improve the photoelectrochemical performance of ZnO nanorods by homogenous and gradient doping of copper. The ZnO, Cu-doped ZnO, ZnO Cu-doped ZnO homojunction and also Cu gradient doped ZnO photoanodes were electro-synthesi...
Saved in:
Published in | Superlattices and microstructures Vol. 125; pp. 177 - 189 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New and improved electrochemical synthetic approaches have been developed to improve the photoelectrochemical performance of ZnO nanorods by homogenous and gradient doping of copper. The ZnO, Cu-doped ZnO, ZnO Cu-doped ZnO homojunction and also Cu gradient doped ZnO photoanodes were electro-synthesized and characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV–visible absorption spectroscopy. A comparative study was done between samples and Cu gradient doped ZnO photoanodes exhibit significantly enhanced photocurrent density in photoelectrochemical cell applications as compared to other photoanodes. By comparing the results, it is found out that the homogeneous Cu-incorporated ZnO photoanodes show an enhanced photoelectrochemical response, but not as well as Cu gradient doped ZnO photoanodes. The photoelectrochemical performance improvement by adjusting the copper concentration profile is attributed to an extra charge separation effect. The linear sweep voltammetry, electrochemical impedance spectroscopy and Mott-Schottky analysis were used to confirm the improved charge separation.
[Display omitted]
•Electrodeposition of Cu gradient doped ZnO and ZnO/Cu-doped/ZnO homojunction photoanodes.•Effective charge separation and low charge recombination rate in Cu gradient doped ZnO.•Visible light performance of Cu gradient doped ZnO.•Enhanced PEC response of homogeneous Cu-incorporated ZnO photoanodes toward water splitting. |
---|---|
AbstractList | New and improved electrochemical synthetic approaches have been developed to improve the photoelectrochemical performance of ZnO nanorods by homogenous and gradient doping of copper. The ZnO, Cu-doped ZnO, ZnO Cu-doped ZnO homojunction and also Cu gradient doped ZnO photoanodes were electro-synthesized and characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV–visible absorption spectroscopy. A comparative study was done between samples and Cu gradient doped ZnO photoanodes exhibit significantly enhanced photocurrent density in photoelectrochemical cell applications as compared to other photoanodes. By comparing the results, it is found out that the homogeneous Cu-incorporated ZnO photoanodes show an enhanced photoelectrochemical response, but not as well as Cu gradient doped ZnO photoanodes. The photoelectrochemical performance improvement by adjusting the copper concentration profile is attributed to an extra charge separation effect. The linear sweep voltammetry, electrochemical impedance spectroscopy and Mott-Schottky analysis were used to confirm the improved charge separation.
[Display omitted]
•Electrodeposition of Cu gradient doped ZnO and ZnO/Cu-doped/ZnO homojunction photoanodes.•Effective charge separation and low charge recombination rate in Cu gradient doped ZnO.•Visible light performance of Cu gradient doped ZnO.•Enhanced PEC response of homogeneous Cu-incorporated ZnO photoanodes toward water splitting. |
Author | Ghahramanifard, Fazel Rasouli, Fatemeh Rouhollahi, Ahmad |
Author_xml | – sequence: 1 givenname: Fatemeh surname: Rasouli fullname: Rasouli, Fatemeh – sequence: 2 givenname: Ahmad surname: Rouhollahi fullname: Rouhollahi, Ahmad email: rouhollahi@kntu.ac.ir – sequence: 3 givenname: Fazel surname: Ghahramanifard fullname: Ghahramanifard, Fazel |
BookMark | eNp9kNFOwyAUhomZiXP6Al7xAq20dLRNvDGLTpMlu9EbbwiF042lAwJEs6fwlaXbrrwYOQkE-M7J_92iibEGEHooSF6Qgj3u8uD2Oi9J0eQkVcmu0LQgLcsoq-sJmpK6ajNGKLtBtyHsCCFtVdRT9Lv0QmkwESvrtNlg22NpnQOPtcFfZo2NMNZbhd3WRpvOCnB3wDCAjOkanA06amtwbz0GsxVGgsJyK_wGcAAnvDg-p27HDmdQbmGvpRjwj4hpVnCDjjHNv0PXvRgC3J_3Gfp8fflYvGWr9fJ98bzKJCUkZm1TpawdJRQKJkoqOpWCzqFlLVA2b8fVVB00NZRdX5e0U_P0e65qUbdNKegMlae-0tsQPPTceb0X_sALwkelfMdHpXxUykmqkiWo-QdJHY_xohd6uIw-nVBIob41eB5k0p5caZ-EcGX1JfwPwl6YZw |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_164007 crossref_primary_10_1016_j_mssp_2022_106476 crossref_primary_10_1002_smsc_202100104 crossref_primary_10_1016_j_jechem_2023_07_039 crossref_primary_10_1016_j_mtcomm_2023_105909 crossref_primary_10_3390_nano12213735 crossref_primary_10_1016_j_ceramint_2020_04_176 crossref_primary_10_1039_D4CS00309H crossref_primary_10_1007_s41939_024_00625_x crossref_primary_10_1016_j_ceramint_2022_01_207 crossref_primary_10_3390_coatings13122051 crossref_primary_10_1016_j_jcis_2022_10_066 crossref_primary_10_1088_1402_4896_ad7001 crossref_primary_10_1016_j_jelechem_2022_117075 crossref_primary_10_1016_j_physb_2024_416206 crossref_primary_10_1016_j_jallcom_2024_177701 crossref_primary_10_3390_ijms24010443 crossref_primary_10_1016_j_solener_2019_09_045 crossref_primary_10_1016_j_surfcoat_2020_125352 crossref_primary_10_1016_j_jclepro_2023_139466 crossref_primary_10_1038_s44172_024_00291_4 crossref_primary_10_1016_j_surfin_2024_103850 crossref_primary_10_1016_j_jiec_2024_11_025 crossref_primary_10_1016_j_matchemphys_2024_129404 crossref_primary_10_1149_2_0561910jes crossref_primary_10_1007_s10800_020_01443_y crossref_primary_10_1016_j_apcatb_2019_118398 crossref_primary_10_1016_j_spmi_2019_106296 crossref_primary_10_1007_s10854_023_10999_2 crossref_primary_10_1016_j_envres_2023_116181 crossref_primary_10_1007_s10854_023_11713_y crossref_primary_10_1039_D2RA06730G crossref_primary_10_1088_1361_6463_ad5212 crossref_primary_10_1007_s10854_023_10057_x crossref_primary_10_1088_1361_6463_ac4c22 crossref_primary_10_1002_er_7564 crossref_primary_10_1007_s11082_023_04798_6 crossref_primary_10_1016_j_jelechem_2019_113583 crossref_primary_10_1016_j_matchemphys_2021_124718 crossref_primary_10_1088_1361_6528_abe3b3 crossref_primary_10_1002_adfm_202008247 crossref_primary_10_1016_j_tsf_2024_140350 crossref_primary_10_1007_s10854_020_05144_2 crossref_primary_10_1016_j_ceramint_2021_03_312 crossref_primary_10_1016_j_matchemphys_2020_123270 crossref_primary_10_1002_solr_202400657 crossref_primary_10_1016_j_jallcom_2020_157000 crossref_primary_10_1016_j_cej_2021_130507 |
Cites_doi | 10.1016/j.tsf.2007.04.027 10.1038/ncomms3195 10.1016/j.rser.2013.11.045 10.1039/C4CC09628B 10.1016/j.optmat.2014.08.012 10.1016/S0254-0584(02)00027-5 10.1016/j.solmat.2007.05.014 10.1016/S0022-0728(01)00674-X 10.1016/j.ijhydene.2010.02.013 10.1126/science.1139366 10.1007/s10971-006-6969-y 10.1021/am402265v 10.1103/PhysRev.134.A713 10.1016/j.nanoen.2014.12.037 10.1039/c0dt01567a 10.1016/j.jpowsour.2007.10.082 10.1021/jp062299z 10.1021/acscatal.6b02089 10.1016/j.nanoen.2014.02.008 10.1016/S0022-0248(98)01051-3 10.1063/1.1605805 10.1016/j.jpowsour.2016.03.004 10.1016/j.apsusc.2012.05.021 10.1016/j.snb.2017.03.105 10.1021/jp500395a 10.1007/s10854-013-1420-y 10.1021/jp405515v 10.1016/j.nanoen.2014.04.010 10.1039/C6CP05515J 10.1016/j.tsf.2007.03.122 10.1016/j.apsusc.2012.05.156 10.1016/j.electacta.2013.08.146 10.1166/nnl.2014.1754 10.1007/s10853-007-1970-6 10.1039/c2sc20874a 10.1063/1.3374333 10.1021/am302288m 10.1021/acsami.5b03921 10.1039/C2CS35266D 10.1016/j.tsf.2013.04.024 10.1016/j.jcis.2016.08.022 10.1016/j.spmi.2017.07.019 10.1021/nl3029202 10.1016/j.saa.2014.03.089 10.1063/1.3112603 10.1016/j.nanoen.2014.08.005 10.1143/JJAP.47.516 10.1016/j.apsusc.2011.01.039 10.1016/S0927-0248(03)00101-6 10.1063/1.334375 10.1016/j.jcrysgro.2012.08.038 10.1016/j.nanoen.2011.10.005 10.1016/j.solener.2014.09.026 10.1063/1.1992666 10.1021/cm102155m 10.1063/1.447218 10.3938/jkps.62.1164 10.1016/j.electacta.2012.03.165 10.1021/la105147u 10.1021/am404527q 10.1021/jp410242e 10.1002/aenm.201301590 10.1002/smll.201202547 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2018.08.026 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
EndPage | 189 |
ExternalDocumentID | 10_1016_j_spmi_2018_08_026 S0749603618316082 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-984201b303e16a23abd3675e969e3659999984be87e2bf723bd5b305d7a7982a3 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:11 EDT 2025 Thu Apr 24 23:02:48 EDT 2025 Fri Feb 23 02:43:53 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | ZnO nanorods Gradient doping Electrodeposition Charge separation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-984201b303e16a23abd3675e969e3659999984be87e2bf723bd5b305d7a7982a3 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_spmi_2018_08_026 crossref_citationtrail_10_1016_j_spmi_2018_08_026 elsevier_sciencedirect_doi_10_1016_j_spmi_2018_08_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | McPeak, Becker, Britton, Majidi, Bunker, Baxter (bib47) 2010; 22 Wang, Liu, Tan, Liang, Zhang, Wei, Zhao, Sargent, Zhang (bib62) 2017; 13 Saad, Kassis (bib41) 2003; 79 Pashchanka, Hoffmann, Gurlo, Swarbrick, Khanderi, Engstler, Issanin, Schneider (bib39) 2011; 40 Suliman, Tang, Xu (bib17) 2007; 91 Gao, Peng, Li, Yu, Qiu (bib29) 2007; 42 Zhang, Li, Wang, Fan, Bard (bib59) 2014; 118 Rokade1, Rondiyal, Sharma, Prasad, Pathan, Jadkar (bib61) 2016 Zhu, Xun, Lu (bib37) 2014; 7 Ghahramanifard, Rouhollahi, Fazlolahzadeh (bib54) 2018; 114 Zhang, Shao, Ning, Xu, Li, Wei, Evans, Duan (bib14) 2015; 12 Yu, Huang, Qin, Zhang, Wang, Liu (bib27) 2011; 257 Montenegro, Souissi, Martínez-Tomás, Mu˜noz-Sanjosé, Sallet (bib25) 2012; 359 Wang, Jin, Jiao, Lu, Ye, Bi (bib33) 2015; 51 Li, Li, Delaunay (bib67) 2014; 6 Srivastav, Verma, Banerjee, Khan, Gupta, Satsangi, Shrivastav, Dass (bib43) 2016; 18 Zhang, Zhang, Hedhili, Zhang, Wang (bib8) 2013; 13 Verma, Srivastav, Banerjee, Sharma, Sharma, Singh, Satsangi, Shrivastav, Avasthi, Dass (bib63) 2016; 315 Sarkar, Makhal, Bora, Lakhsman, Singha, Dutta, Pal (bib12) 2012; 4 Ashfold, Doherty, Ndifor-Angwafor, Riley, Sun (bib46) 2007; 515 Chen, Chen, Tseng, Wu, Huang, Chan, Liu (bib15) 2013; 9 Ng, Chan, Tohsophon (bib24) 2012; 258 Elias, Tena-Zaera, Lévy-Clément (bib30) 2007; 515 Eron, Rothwarf (bib40) 1985; 57 Li, Peng, Peng (bib4) 2016; 6 Fung, Lloyd, Samavat, Deganello, Teng (bib13) 2017; 247 Zhang, Shao, Ning, Xu, Li, Wein, Evans, Duan (bib28) 2015; 12 Meyer, Shu, Kroger, Kahn (bib65) 2010; 96 Zhua, Lia, Lia, Lia, Hua, Yang (bib66) 2013; 112 Pauporté, Lincot (bib56) 2001; 517 Liu, Cai, Tian, Ruan, Ye, Liang, Shao (bib9) 2014; 9 Mittal, Sharma, Pandey (bib57) 2014; 110 Li, Zhai, Bando, Golberg (bib31) 2012; 1 Mead, Spitzer (bib64) 1964; 134 Shen, Guo, Chen, Ren, Mao (bib5) 2010; 35 Sun, Riley, Ashfold (bib45) 2006; 110 Jongnavakit, Amornpitoksuk, Suwanboon, Ndiege (bib55) 2012; 258 Elamin, Elsanousi (bib21) 2013; 1 Huang, Li, Xiao (bib6) 2014; 118 Raoufi, Raoufi (bib53) 2009; vol. 225 McPeak, Le, Britton, Nickolov, Elabd, Baxter (bib48) 2011; 27 Mao, Yang, Chen, Chen, Tong, Wang (bib22) 2014; 6 Hsu, Lin (bib52) 2012; 74 Shaheen, Salem, El-Sayed, Allam (bib36) 2013; 117 Sugunan, Warad, Boman, Dutta (bib49) 2006; 39 Saleh, Djaja (bib38) 2014; 130 Wang, Song, Liu, Wang (bib2) 2007; 316 Abdi, Han, Smets, Zeman, Dam, Krol (bib42) 2013; 4 Gogova, Iossifova, Ivanova, Dimitrova, Gesheva (bib18) 1999; 198/199 Brus (bib68) 1984; 80 Ganesh (bib3) 2014; 31 Lu, Zhang, Ge, Han, Qiu, Fang (bib7) 2016; 483 Liao, Zhou, Xie, Yu (bib23) 2013; 24 Radecka, Rekas, Trenczek-Zajac, Zakrzewska (bib60) 2008; 181 Fujisawa, Kobayashi, Nakashima, Shimizu (bib26) 2013; 62 Jiang, Wong, Fung, Lee (bib19) 2003; 83 Ashokkumar, Muthukumaran (bib50) 2014; 37 Chen, Wang, Liao, Wu (bib32) 2013; 5 Hsu, Chen, Lin (bib34) 2015; 7 Wang, Ren, Zhou, Cai, Cai, Hu, Wang, Liu, Guo (bib51) 2015; 5 Park, Jung, Kim (bib20) 2008; 47 Ferhat, Zaoui, Ahuja (bib58) 2009; 94 Li, Yabe, Yamashita (bib11) 2002; 75 Chettah, Abdi (bib44) 2013; 537 Ozgur, Alivov, Liu, Teke, Reshchikov, Dogan, Avrutin, Cho, Morkoc (bib10) 2005; 98 Huang, Wang, Cheng, Lin, Lan, Wu, Chang (bib16) 2014; 6 Lin, Lai, Mersch, Reisner (bib69) 2012; 3 Osterloh (bib1) 2013; 42 Moniz, Zhu, Tang (bib35) 2014; 4 Elias (10.1016/j.spmi.2018.08.026_bib30) 2007; 515 Zhang (10.1016/j.spmi.2018.08.026_bib8) 2013; 13 Wang (10.1016/j.spmi.2018.08.026_bib51) 2015; 5 Lu (10.1016/j.spmi.2018.08.026_bib7) 2016; 483 Eron (10.1016/j.spmi.2018.08.026_bib40) 1985; 57 Raoufi (10.1016/j.spmi.2018.08.026_bib53) 2009; vol. 225 Hsu (10.1016/j.spmi.2018.08.026_bib34) 2015; 7 Ferhat (10.1016/j.spmi.2018.08.026_bib58) 2009; 94 Chen (10.1016/j.spmi.2018.08.026_bib15) 2013; 9 Li (10.1016/j.spmi.2018.08.026_bib67) 2014; 6 Jongnavakit (10.1016/j.spmi.2018.08.026_bib55) 2012; 258 Ganesh (10.1016/j.spmi.2018.08.026_bib3) 2014; 31 Zhua (10.1016/j.spmi.2018.08.026_bib66) 2013; 112 Huang (10.1016/j.spmi.2018.08.026_bib6) 2014; 118 Fung (10.1016/j.spmi.2018.08.026_bib13) 2017; 247 Chen (10.1016/j.spmi.2018.08.026_bib32) 2013; 5 Ashokkumar (10.1016/j.spmi.2018.08.026_bib50) 2014; 37 Hsu (10.1016/j.spmi.2018.08.026_bib52) 2012; 74 Zhang (10.1016/j.spmi.2018.08.026_bib14) 2015; 12 Huang (10.1016/j.spmi.2018.08.026_bib16) 2014; 6 Abdi (10.1016/j.spmi.2018.08.026_bib42) 2013; 4 Rokade1 (10.1016/j.spmi.2018.08.026_bib61) 2016 Mao (10.1016/j.spmi.2018.08.026_bib22) 2014; 6 Zhang (10.1016/j.spmi.2018.08.026_bib59) 2014; 118 Li (10.1016/j.spmi.2018.08.026_bib4) 2016; 6 Li (10.1016/j.spmi.2018.08.026_bib11) 2002; 75 Liu (10.1016/j.spmi.2018.08.026_bib9) 2014; 9 Ozgur (10.1016/j.spmi.2018.08.026_bib10) 2005; 98 Park (10.1016/j.spmi.2018.08.026_bib20) 2008; 47 Verma (10.1016/j.spmi.2018.08.026_bib63) 2016; 315 Mittal (10.1016/j.spmi.2018.08.026_bib57) 2014; 110 Wang (10.1016/j.spmi.2018.08.026_bib33) 2015; 51 Zhang (10.1016/j.spmi.2018.08.026_bib28) 2015; 12 Brus (10.1016/j.spmi.2018.08.026_bib68) 1984; 80 Zhu (10.1016/j.spmi.2018.08.026_bib37) 2014; 7 Saad (10.1016/j.spmi.2018.08.026_bib41) 2003; 79 Ng (10.1016/j.spmi.2018.08.026_bib24) 2012; 258 Elamin (10.1016/j.spmi.2018.08.026_bib21) 2013; 1 Shaheen (10.1016/j.spmi.2018.08.026_bib36) 2013; 117 Montenegro (10.1016/j.spmi.2018.08.026_bib25) 2012; 359 Liao (10.1016/j.spmi.2018.08.026_bib23) 2013; 24 Suliman (10.1016/j.spmi.2018.08.026_bib17) 2007; 91 McPeak (10.1016/j.spmi.2018.08.026_bib47) 2010; 22 Lin (10.1016/j.spmi.2018.08.026_bib69) 2012; 3 Chettah (10.1016/j.spmi.2018.08.026_bib44) 2013; 537 Ashfold (10.1016/j.spmi.2018.08.026_bib46) 2007; 515 Fujisawa (10.1016/j.spmi.2018.08.026_bib26) 2013; 62 Mead (10.1016/j.spmi.2018.08.026_bib64) 1964; 134 Saleh (10.1016/j.spmi.2018.08.026_bib38) 2014; 130 Ghahramanifard (10.1016/j.spmi.2018.08.026_bib54) 2018; 114 Meyer (10.1016/j.spmi.2018.08.026_bib65) 2010; 96 Radecka (10.1016/j.spmi.2018.08.026_bib60) 2008; 181 Srivastav (10.1016/j.spmi.2018.08.026_bib43) 2016; 18 McPeak (10.1016/j.spmi.2018.08.026_bib48) 2011; 27 Osterloh (10.1016/j.spmi.2018.08.026_bib1) 2013; 42 Moniz (10.1016/j.spmi.2018.08.026_bib35) 2014; 4 Shen (10.1016/j.spmi.2018.08.026_bib5) 2010; 35 Jiang (10.1016/j.spmi.2018.08.026_bib19) 2003; 83 Pashchanka (10.1016/j.spmi.2018.08.026_bib39) 2011; 40 Pauporté (10.1016/j.spmi.2018.08.026_bib56) 2001; 517 Gogova (10.1016/j.spmi.2018.08.026_bib18) 1999; 198/199 Yu (10.1016/j.spmi.2018.08.026_bib27) 2011; 257 Wang (10.1016/j.spmi.2018.08.026_bib62) 2017; 13 Li (10.1016/j.spmi.2018.08.026_bib31) 2012; 1 Sun (10.1016/j.spmi.2018.08.026_bib45) 2006; 110 Sugunan (10.1016/j.spmi.2018.08.026_bib49) 2006; 39 Wang (10.1016/j.spmi.2018.08.026_bib2) 2007; 316 Sarkar (10.1016/j.spmi.2018.08.026_bib12) 2012; 4 Gao (10.1016/j.spmi.2018.08.026_bib29) 2007; 42 |
References_xml | – volume: 181 start-page: 46 year: 2008 end-page: 55 ident: bib60 article-title: Importance of the band gap energy and flat band potential for application of modified TiO publication-title: J. Power Sources – volume: 18 start-page: 32735 year: 2016 end-page: 32743 ident: bib43 article-title: Gradient doping-a case study of Ti-Fe publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 231 year: 2015 end-page: 239 ident: bib14 article-title: Au nanoparticles sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting publication-title: Nano Energy – volume: 57 start-page: 2275 year: 1985 end-page: 2279 ident: bib40 article-title: Interface charging and solar-cell characteristics - CuInSe publication-title: J. Appl. Phys. – volume: 515 start-page: 8553 year: 2007 end-page: 8557 ident: bib30 article-title: Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer publication-title: Thin Solid Films – volume: 1 start-page: 32 year: 2013 end-page: 35 ident: bib21 article-title: Synthesis of ZnO nanostructures and their photocatalytic activity publication-title: J. Appl. Ind. Sci. – volume: 110 start-page: 386 year: 2014 end-page: 397 ident: bib57 article-title: UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method publication-title: Sol. Energy – volume: 316 start-page: 102 year: 2007 end-page: 105 ident: bib2 article-title: Direct-current nanogenerator driven by ultrasonic waves publication-title: Science – volume: 258 start-page: 9604 year: 2012 end-page: 9609 ident: bib24 article-title: Effects of annealing temperature on ZnO and AZO films prepared by sol-gel technique publication-title: Appl. Surf. Sci. – volume: 114 start-page: 1 year: 2018 end-page: 14 ident: bib54 article-title: Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure publication-title: Superlattice. Microst. – volume: 112 start-page: 191 year: 2013 end-page: 198 ident: bib66 article-title: Photoelectrochemical activity of NiWO publication-title: Electrochim. Acta – volume: 13 year: 2017 ident: bib62 article-title: Compound homojunction:heterojunction reduces bulk and interface recombination in ZnO photoanodes for water splitting publication-title: Small – volume: 118 start-page: 2306 year: 2014 end-page: 2311 ident: bib6 article-title: Hydrogen evolution from Pt nanoparticles covered p-type CdS: Cu photocathode in scavenger-free electrolyte publication-title: J. Phys. Chem. C – volume: 130 start-page: 581 year: 2014 end-page: 590 ident: bib38 article-title: Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light publication-title: Spectrochim. Acta, Part A – volume: 258 start-page: 8192 year: 2012 end-page: 8198 ident: bib55 article-title: Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method publication-title: Appl. Surf. Sci. – volume: 39 start-page: 49 year: 2006 end-page: 56 ident: bib49 article-title: Zinc Oxide Nanowires in Chemical bath on seeded substrates: role of hexamine publication-title: J. Sol. Gel Sci. Technol. – volume: 5 start-page: 1 year: 2015 end-page: 13 ident: bib51 article-title: Sh. Shen, N doping to ZnO nanorods for photoelectrochemical water splitting under visible light : engineered impurity distribution and terraced band structure publication-title: Sci. Rep. – volume: 6 start-page: 7485 year: 2016 end-page: 7527 ident: bib4 article-title: Recent advances in heterogeneous photocatalytic CO publication-title: ACS Catal. – volume: 40 start-page: 4307 year: 2011 end-page: 4314 ident: bib39 article-title: A molecular approach to Cu doped ZnO nanorods with tunable dopant content publication-title: Dalton Trans. – volume: 75 start-page: 39 year: 2002 end-page: 44 ident: bib11 article-title: UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes publication-title: Mater. Chem. Phys. – volume: 517 start-page: 54 year: 2001 end-page: 62 ident: bib56 article-title: Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II—mechanistic aspects publication-title: J. Electroanal. Chem. – volume: 5 start-page: 8359 year: 2013 end-page: 8365 ident: bib32 article-title: Synergistic effect of dual interfacial modifications with room-temperature-grown epitaxial ZnO and adsorbed indoline dye for ZnO nanorod array/P publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2195 year: 2013 ident: bib42 article-title: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode publication-title: Nat. Commun. – volume: 118 start-page: 16842 year: 2014 end-page: 16850 ident: bib59 article-title: Improvement of hematite as photocatalyst by doping with tantalum publication-title: J. Phys. Chem. C – volume: 31 start-page: 221 year: 2014 end-page: 257 ident: bib3 article-title: Conversion of carbon dioxide into methanol – a potential liquid fuel: fundamental challenges and opportunities (a review) publication-title: Sustainable Energy Rev. – volume: 42 start-page: 2294 year: 2013 end-page: 2320 ident: bib1 article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting publication-title: Chem. Soc. Rev. – volume: 74 start-page: 73 year: 2012 end-page: 77 ident: bib52 article-title: Enhanced photoelectrochemical properties of ternary Zn publication-title: Electrochim. Acta – volume: 91 start-page: 1658 year: 2007 end-page: 1662 ident: bib17 article-title: Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 83 start-page: 1875 year: 2003 ident: bib19 article-title: Aluminum-doped zinc oxide films as transparent conductive electrode for orangic light-emitting devices publication-title: Appl. Phys. Lett. – volume: 4 start-page: 7027 year: 2012 end-page: 7035 ident: bib12 article-title: Hematoporphyrin–ZnO nanohybrids: twin applications in efficient visible-light photocatalysis and dye-sensitized solar cells publication-title: ACS Appl. Mater. Interfaces – volume: 257 start-page: 5563 year: 2011 end-page: 5565 ident: bib27 article-title: Hydrothermal synthesis and characterization of ZnO films with different nanostructures publication-title: Appl. Surf. Sci. – volume: 80 start-page: 4403 year: 1984 end-page: 4409 ident: bib68 article-title: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state publication-title: J. Chem. Phys. – volume: 7 start-page: 14157 year: 2015 end-page: 14162 ident: bib34 article-title: Novel ZnO/Fe publication-title: ACS Appl. Mater. Interfaces – volume: 79 start-page: 507 year: 2003 end-page: 517 ident: bib41 article-title: Effect of interface recombination on solar cell parameters publication-title: Sol. Energy Mater. Sol. Cells – volume: 47 start-page: 516 year: 2008 end-page: 520 ident: bib20 article-title: Organic solar cells with hydrogenated In-doped ZnO replacing Sn-doped In publication-title: Jpn. J. Appl. Phys. – volume: 24 start-page: 4427 year: 2013 end-page: 4432 ident: bib23 article-title: The effects of solvents on the highly oriented ZnO films prepared using sol-gel method publication-title: J. Mater. Sci. Mater. Electron. – volume: 3 start-page: 3482 year: 2012 end-page: 3487 ident: bib69 article-title: Cu publication-title: Chem. Sci. – volume: 247 start-page: 807 year: 2017 end-page: 813 ident: bib13 article-title: Facile fabrication of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique publication-title: Sensor. Actuator. B Chem. – volume: 315 start-page: 152 year: 2016 end-page: 160 ident: bib63 article-title: Plasmonic layer enhanced photoelectrochemical response of Fe publication-title: J. Power Sources – start-page: 1 year: 2016 end-page: 10 ident: bib61 article-title: Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water publication-title: J. Solid State Electrochem. – volume: 51 start-page: 2103 year: 2015 end-page: 2106 ident: bib33 article-title: Electric field-directed growth and photoelectrochemical properties of cross-linked Au-ZnO hetero-nanowire arrays publication-title: Chem. Commun. – volume: 12 start-page: 231 year: 2015 end-page: 239 ident: bib28 article-title: Au nanoparticle sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting publication-title: Nano Energy – volume: 6 start-page: 210 year: 2014 end-page: 215 ident: bib16 article-title: The structure and photoelectrochemistry of Al, Ti co-doped zinc oxide thin films prepared by sol–gel dip-coating process publication-title: Nanosci. Nanotechnol. Lett. – volume: 1 start-page: 91 year: 2012 end-page: 106 ident: bib31 article-title: Recent progress of one-dimensional ZnO nanostructured solar cells publication-title: Nano Energy – volume: 110 start-page: 15186 year: 2006 end-page: 15192 ident: bib45 article-title: Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates publication-title: J. Phys. Chem. B – volume: 134 start-page: A713 year: 1964 end-page: A716 ident: bib64 article-title: Fermi level position at metal-semiconductor interfaces publication-title: Physiol. Rev. – volume: 483 start-page: 146 year: 2016 end-page: 153 ident: bib7 article-title: Synthesis of novel Au Pd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity publication-title: J. Colloid Interface Sci. – volume: 359 start-page: 122 year: 2012 end-page: 128 ident: bib25 article-title: Morphology transitions in ZnO nanorods grown by MOCVD publication-title: J. Cryst. Growth – volume: 6 start-page: 480 year: 2014 end-page: 486 ident: bib67 article-title: A novel method to synthesize highly photoactive Cu publication-title: Appl. Mater. Interfaces – volume: 42 start-page: 9638 year: 2007 end-page: 9644 ident: bib29 article-title: Growth of highly oriented ZnO films by the two-step electrodeposition technique publication-title: J. Mater. Sci. – volume: 37 start-page: 671 year: 2014 end-page: 678 ident: bib50 article-title: Microstructure, optical and FT-IR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method publication-title: Opt. Mater. – volume: 9 start-page: 2926 year: 2013 end-page: 2936 ident: bib15 article-title: D.P.Tsai, ZnO/Ag embedded plasmonics as collecting layers for photo-generating electrons in solar hydrogen generation photoelectrode publication-title: Small – volume: vol. 225 start-page: 5812 year: 2009 end-page: 5817 ident: bib53 publication-title: The Effect of Heat Treatment on the Physical Properties of Sol-gel Derived ZnO Thin Films Applied Surface Science – volume: 537 start-page: 119 year: 2013 end-page: 123 ident: bib44 article-title: Effect of the electrochemical technique on nanocrystalline ZnO electrodeposition, its structural, morphological and photoelectrochemical properties publication-title: Thin Solid Films – volume: 198/199 start-page: 1230 year: 1999 end-page: 1234 ident: bib18 article-title: Electrochromic behavior in CVD grown tungsten oxide films publication-title: J. Cryst. Growth – volume: 22 start-page: 6162 year: 2010 end-page: 6170 ident: bib47 article-title: In situ X-ray absorption near-edge structure spectroscopy of ZnO nanowire growth during chemical bath deposition publication-title: Chem. Mater. – volume: 62 start-page: 1164 year: 2013 end-page: 1168 ident: bib26 article-title: Two-step growth of ZnO nanorods by using MOCVD and control of their diameters and surface densities publication-title: J. Kor. Phys. Soc. – volume: 515 start-page: 8579 year: 2007 end-page: 8683 ident: bib46 article-title: The kinetics of the hydrothermal growth of ZnO nanostructures publication-title: Thin Solid Films – volume: 35 start-page: 7110 year: 2010 end-page: 7115 ident: bib5 article-title: Effect of Ag publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 10 year: 2014 end-page: 18 ident: bib22 article-title: Significant performance enhancement of ZnO photoanodes from Ni(OH) publication-title: Nano Energy – volume: 98 start-page: 041301 year: 2005 ident: bib10 article-title: A comprehensive review of ZnO materials and devices publication-title: J. Appl. Phys. – volume: 27 start-page: 3672 year: 2011 end-page: 3677 ident: bib48 article-title: Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth publication-title: Langmuir – volume: 94 start-page: 142502 year: 2009 end-page: 142503 ident: bib58 article-title: Magnetism and band gap narrowing in Cu-doped ZnO publication-title: Appl. Phys. Lett. – volume: 9 start-page: 282 year: 2014 end-page: 290 ident: bib9 article-title: Highly oriented Ge-doped hematite nanosheet arrays for photoelectrochemical water oxidation publication-title: Nano Energy – volume: 7 start-page: 114 year: 2014 end-page: 123 ident: bib37 article-title: Ultrafine Au nanoparticles decorated NiCo publication-title: Nano Energy – volume: 13 start-page: 14 year: 2013 end-page: 20 ident: bib8 article-title: Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting publication-title: Nano Lett. – volume: 96 start-page: 133303 year: 2010 end-page: 133308 ident: bib65 article-title: Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces publication-title: Appl. Phys. Lett. – volume: 4 year: 2014 ident: bib35 article-title: 1D Co-Pi modified BiVO publication-title: Adv. Energy Mater – volume: 117 start-page: 18502 year: 2013 end-page: 18509 ident: bib36 article-title: Thermal/Electrochemical growth and characterization of one-dimensional ZnO/TiO publication-title: J. Phys. Chem. C – volume: 515 start-page: 8553 year: 2007 ident: 10.1016/j.spmi.2018.08.026_bib30 article-title: Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.04.027 – volume: 4 start-page: 2195 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib42 article-title: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode publication-title: Nat. Commun. doi: 10.1038/ncomms3195 – volume: 31 start-page: 221 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib3 article-title: Conversion of carbon dioxide into methanol – a potential liquid fuel: fundamental challenges and opportunities (a review) publication-title: Sustainable Energy Rev. doi: 10.1016/j.rser.2013.11.045 – volume: 51 start-page: 2103 year: 2015 ident: 10.1016/j.spmi.2018.08.026_bib33 article-title: Electric field-directed growth and photoelectrochemical properties of cross-linked Au-ZnO hetero-nanowire arrays publication-title: Chem. Commun. doi: 10.1039/C4CC09628B – volume: 37 start-page: 671 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib50 article-title: Microstructure, optical and FT-IR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method publication-title: Opt. Mater. doi: 10.1016/j.optmat.2014.08.012 – volume: 75 start-page: 39 year: 2002 ident: 10.1016/j.spmi.2018.08.026_bib11 article-title: UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(02)00027-5 – volume: 91 start-page: 1658 year: 2007 ident: 10.1016/j.spmi.2018.08.026_bib17 article-title: Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2007.05.014 – volume: 13 year: 2017 ident: 10.1016/j.spmi.2018.08.026_bib62 article-title: Compound homojunction:heterojunction reduces bulk and interface recombination in ZnO photoanodes for water splitting publication-title: Small – volume: 517 start-page: 54 year: 2001 ident: 10.1016/j.spmi.2018.08.026_bib56 article-title: Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II—mechanistic aspects publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(01)00674-X – volume: 35 start-page: 7110 year: 2010 ident: 10.1016/j.spmi.2018.08.026_bib5 article-title: Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.02.013 – volume: 316 start-page: 102 year: 2007 ident: 10.1016/j.spmi.2018.08.026_bib2 article-title: Direct-current nanogenerator driven by ultrasonic waves publication-title: Science doi: 10.1126/science.1139366 – volume: vol. 225 start-page: 5812 year: 2009 ident: 10.1016/j.spmi.2018.08.026_bib53 – volume: 39 start-page: 49 year: 2006 ident: 10.1016/j.spmi.2018.08.026_bib49 article-title: Zinc Oxide Nanowires in Chemical bath on seeded substrates: role of hexamine publication-title: J. Sol. Gel Sci. Technol. doi: 10.1007/s10971-006-6969-y – volume: 5 start-page: 8359 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib32 article-title: Synergistic effect of dual interfacial modifications with room-temperature-grown epitaxial ZnO and adsorbed indoline dye for ZnO nanorod array/P3HT hybrid solar cell publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402265v – volume: 134 start-page: A713 year: 1964 ident: 10.1016/j.spmi.2018.08.026_bib64 article-title: Fermi level position at metal-semiconductor interfaces publication-title: Physiol. Rev. doi: 10.1103/PhysRev.134.A713 – volume: 12 start-page: 231 year: 2015 ident: 10.1016/j.spmi.2018.08.026_bib28 article-title: Au nanoparticle sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.12.037 – volume: 40 start-page: 4307 year: 2011 ident: 10.1016/j.spmi.2018.08.026_bib39 article-title: A molecular approach to Cu doped ZnO nanorods with tunable dopant content publication-title: Dalton Trans. doi: 10.1039/c0dt01567a – volume: 181 start-page: 46 year: 2008 ident: 10.1016/j.spmi.2018.08.026_bib60 article-title: Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.10.082 – volume: 110 start-page: 15186 year: 2006 ident: 10.1016/j.spmi.2018.08.026_bib45 article-title: Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates publication-title: J. Phys. Chem. B doi: 10.1021/jp062299z – volume: 6 start-page: 7485 year: 2016 ident: 10.1016/j.spmi.2018.08.026_bib4 article-title: Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels publication-title: ACS Catal. doi: 10.1021/acscatal.6b02089 – volume: 6 start-page: 10 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib22 article-title: Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.02.008 – volume: 198/199 start-page: 1230 year: 1999 ident: 10.1016/j.spmi.2018.08.026_bib18 article-title: Electrochromic behavior in CVD grown tungsten oxide films publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(98)01051-3 – volume: 83 start-page: 1875 year: 2003 ident: 10.1016/j.spmi.2018.08.026_bib19 article-title: Aluminum-doped zinc oxide films as transparent conductive electrode for orangic light-emitting devices publication-title: Appl. Phys. Lett. doi: 10.1063/1.1605805 – volume: 315 start-page: 152 year: 2016 ident: 10.1016/j.spmi.2018.08.026_bib63 article-title: Plasmonic layer enhanced photoelectrochemical response of Fe2O3 photoanodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.004 – volume: 258 start-page: 8192 year: 2012 ident: 10.1016/j.spmi.2018.08.026_bib55 article-title: Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.05.021 – start-page: 1 year: 2016 ident: 10.1016/j.spmi.2018.08.026_bib61 article-title: Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water publication-title: J. Solid State Electrochem. – volume: 247 start-page: 807 year: 2017 ident: 10.1016/j.spmi.2018.08.026_bib13 article-title: Facile fabrication of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.03.105 – volume: 118 start-page: 16842 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib59 article-title: Improvement of hematite as photocatalyst by doping with tantalum publication-title: J. Phys. Chem. C doi: 10.1021/jp500395a – volume: 24 start-page: 4427 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib23 article-title: The effects of solvents on the highly oriented ZnO films prepared using sol-gel method publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-013-1420-y – volume: 117 start-page: 18502 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib36 article-title: Thermal/Electrochemical growth and characterization of one-dimensional ZnO/TiO2 hybrid nanoelectrodes for solar fuel production publication-title: J. Phys. Chem. C doi: 10.1021/jp405515v – volume: 7 start-page: 114 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib37 article-title: Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.04.010 – volume: 18 start-page: 32735 year: 2016 ident: 10.1016/j.spmi.2018.08.026_bib43 article-title: Gradient doping-a case study of Ti-Fe2O3 towards improved photoelectrochemical response publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05515J – volume: 515 start-page: 8579 year: 2007 ident: 10.1016/j.spmi.2018.08.026_bib46 article-title: The kinetics of the hydrothermal growth of ZnO nanostructures publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.03.122 – volume: 258 start-page: 9604 year: 2012 ident: 10.1016/j.spmi.2018.08.026_bib24 article-title: Effects of annealing temperature on ZnO and AZO films prepared by sol-gel technique publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.05.156 – volume: 112 start-page: 191 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib66 article-title: Photoelectrochemical activity of NiWO4/WO3heterojunctionphotoanode under visible light irradiation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.08.146 – volume: 6 start-page: 210 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib16 article-title: The structure and photoelectrochemistry of Al, Ti co-doped zinc oxide thin films prepared by sol–gel dip-coating process publication-title: Nanosci. Nanotechnol. Lett. doi: 10.1166/nnl.2014.1754 – volume: 42 start-page: 9638 year: 2007 ident: 10.1016/j.spmi.2018.08.026_bib29 article-title: Growth of highly oriented ZnO films by the two-step electrodeposition technique publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-1970-6 – volume: 3 start-page: 3482 year: 2012 ident: 10.1016/j.spmi.2018.08.026_bib69 article-title: Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting publication-title: Chem. Sci. doi: 10.1039/c2sc20874a – volume: 96 start-page: 133303 year: 2010 ident: 10.1016/j.spmi.2018.08.026_bib65 article-title: Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces publication-title: Appl. Phys. Lett. doi: 10.1063/1.3374333 – volume: 12 start-page: 231 year: 2015 ident: 10.1016/j.spmi.2018.08.026_bib14 article-title: Au nanoparticles sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.12.037 – volume: 4 start-page: 7027 year: 2012 ident: 10.1016/j.spmi.2018.08.026_bib12 article-title: Hematoporphyrin–ZnO nanohybrids: twin applications in efficient visible-light photocatalysis and dye-sensitized solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302288m – volume: 7 start-page: 14157 year: 2015 ident: 10.1016/j.spmi.2018.08.026_bib34 article-title: Novel ZnO/Fe2O3 core-shell nanowires for photoelectrochemical water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03921 – volume: 42 start-page: 2294 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib1 article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35266D – volume: 537 start-page: 119 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib44 article-title: Effect of the electrochemical technique on nanocrystalline ZnO electrodeposition, its structural, morphological and photoelectrochemical properties publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.04.024 – volume: 483 start-page: 146 year: 2016 ident: 10.1016/j.spmi.2018.08.026_bib7 article-title: Synthesis of novel Au Pd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.08.022 – volume: 114 start-page: 1 year: 2018 ident: 10.1016/j.spmi.2018.08.026_bib54 article-title: Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2017.07.019 – volume: 1 start-page: 32 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib21 article-title: Synthesis of ZnO nanostructures and their photocatalytic activity publication-title: J. Appl. Ind. Sci. – volume: 13 start-page: 14 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib8 article-title: Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting publication-title: Nano Lett. doi: 10.1021/nl3029202 – volume: 130 start-page: 581 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib38 article-title: Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2014.03.089 – volume: 94 start-page: 142502 year: 2009 ident: 10.1016/j.spmi.2018.08.026_bib58 article-title: Magnetism and band gap narrowing in Cu-doped ZnO publication-title: Appl. Phys. Lett. doi: 10.1063/1.3112603 – volume: 9 start-page: 282 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib9 article-title: Highly oriented Ge-doped hematite nanosheet arrays for photoelectrochemical water oxidation publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.08.005 – volume: 47 start-page: 516 year: 2008 ident: 10.1016/j.spmi.2018.08.026_bib20 article-title: Organic solar cells with hydrogenated In-doped ZnO replacing Sn-doped In2O3 as transparent electrode publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.47.516 – volume: 257 start-page: 5563 year: 2011 ident: 10.1016/j.spmi.2018.08.026_bib27 article-title: Hydrothermal synthesis and characterization of ZnO films with different nanostructures publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.01.039 – volume: 79 start-page: 507 year: 2003 ident: 10.1016/j.spmi.2018.08.026_bib41 article-title: Effect of interface recombination on solar cell parameters publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(03)00101-6 – volume: 57 start-page: 2275 year: 1985 ident: 10.1016/j.spmi.2018.08.026_bib40 article-title: Interface charging and solar-cell characteristics - CuInSe2/CdS publication-title: J. Appl. Phys. doi: 10.1063/1.334375 – volume: 359 start-page: 122 year: 2012 ident: 10.1016/j.spmi.2018.08.026_bib25 article-title: Morphology transitions in ZnO nanorods grown by MOCVD publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2012.08.038 – volume: 1 start-page: 91 year: 2012 ident: 10.1016/j.spmi.2018.08.026_bib31 article-title: Recent progress of one-dimensional ZnO nanostructured solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2011.10.005 – volume: 110 start-page: 386 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib57 article-title: UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method publication-title: Sol. Energy doi: 10.1016/j.solener.2014.09.026 – volume: 98 start-page: 041301 year: 2005 ident: 10.1016/j.spmi.2018.08.026_bib10 article-title: A comprehensive review of ZnO materials and devices publication-title: J. Appl. Phys. doi: 10.1063/1.1992666 – volume: 22 start-page: 6162 year: 2010 ident: 10.1016/j.spmi.2018.08.026_bib47 article-title: In situ X-ray absorption near-edge structure spectroscopy of ZnO nanowire growth during chemical bath deposition publication-title: Chem. Mater. doi: 10.1021/cm102155m – volume: 80 start-page: 4403 year: 1984 ident: 10.1016/j.spmi.2018.08.026_bib68 article-title: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state publication-title: J. Chem. Phys. doi: 10.1063/1.447218 – volume: 62 start-page: 1164 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib26 article-title: Two-step growth of ZnO nanorods by using MOCVD and control of their diameters and surface densities publication-title: J. Kor. Phys. Soc. doi: 10.3938/jkps.62.1164 – volume: 5 start-page: 1 year: 2015 ident: 10.1016/j.spmi.2018.08.026_bib51 article-title: Sh. Shen, N doping to ZnO nanorods for photoelectrochemical water splitting under visible light : engineered impurity distribution and terraced band structure publication-title: Sci. Rep. – volume: 74 start-page: 73 year: 2012 ident: 10.1016/j.spmi.2018.08.026_bib52 article-title: Enhanced photoelectrochemical properties of ternary Zn1−xCuxO nanorods with tunable band gaps for solar water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.165 – volume: 27 start-page: 3672 year: 2011 ident: 10.1016/j.spmi.2018.08.026_bib48 article-title: Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth publication-title: Langmuir doi: 10.1021/la105147u – volume: 6 start-page: 480 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib67 article-title: A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells publication-title: Appl. Mater. Interfaces doi: 10.1021/am404527q – volume: 118 start-page: 2306 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib6 article-title: Hydrogen evolution from Pt nanoparticles covered p-type CdS: Cu photocathode in scavenger-free electrolyte publication-title: J. Phys. Chem. C doi: 10.1021/jp410242e – volume: 4 year: 2014 ident: 10.1016/j.spmi.2018.08.026_bib35 article-title: 1D Co-Pi modified BiVO4/ZnO junction cascade for efficient photoelectrochemical water cleavage publication-title: Adv. Energy Mater doi: 10.1002/aenm.201301590 – volume: 9 start-page: 2926 year: 2013 ident: 10.1016/j.spmi.2018.08.026_bib15 article-title: D.P.Tsai, ZnO/Ag embedded plasmonics as collecting layers for photo-generating electrons in solar hydrogen generation photoelectrode publication-title: Small doi: 10.1002/smll.201202547 |
SSID | ssj0009417 |
Score | 2.0672605 |
Snippet | New and improved electrochemical synthetic approaches have been developed to improve the photoelectrochemical performance of ZnO nanorods by homogenous and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 177 |
SubjectTerms | Charge separation Electrodeposition Gradient doping ZnO nanorods |
Title | Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting |
URI | https://dx.doi.org/10.1016/j.spmi.2018.08.026 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWVAguVVlAbHloDtxQ2GxiJ_ERrYBtK-DQIqFeIjueiEWQRLupKi79C_3LjB0HqIQ4NKc8ZqzIHs2MrW--YeywDBXKLJSBQR4FlIFngeK6tLbMldJay9JuFC8uk9k1_3ojbgZs2tfCWFil9_2dT3fe2r8Z-9kcN_P5-DsFP0q_44SMcpJQJLMV7Dy1Vn785wXmIbnrumuFAyvtC2c6jNeyeZhbeFfmaDwtwcJbwelVwDn7xD76TBFOup_ZYAOshmxt2jdoG7JVh94slpvs7_nCIbdaMK7-CeoSirppcAHzCn5WV1CpqiZXCc1t3dZ0bxD0I_geOAZ76BZQCgtY3TpYADgWJYQldvzg9JlGcyN4xcKzDcBvylgXsKSE1sGot9j12emP6SzwnRaCIg7DNpAZp1nQFM5wkqgoVtrEtJNAmUiMEyHtlXGNWYqRLtMo1kaQtDCpSmUWqXibrVR1hTsMUlViwWVUSBNzISKtU8NVKBRPC5VxMWKTforzwtOQ224Y93mPN7vL7bLkdlly2yIzSkbs6Fmn6Ug43pUW_crl_5hSTlHiHb3P_6m3y9bpSXbnMntspV38wn3KVFp94EzxgH04-fJtdvkE79nrjw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrVB7qaCAKBSYAzcUbTaxk_hYrdpuabscaKWKS2THE3URJNFuKsSv4C8zdhw-JNQDOUWxx4rs0cyz9fwG4G0da1JFrCJLIokYgReRFqZ2viy0Nsao2m0UL5fZ4lq8v5E3WzAf78I4WmWI_UNM99E6fJmG2Zx2q9X0Iyc_ht9pxk45yziTPYBtp04lJ7B9dHa-WP7W3hW-8K7rHzmDcHdmoHltuq8rx_AqvJKn01j4V376I-ecPIK9ABbxaPifx7BFzT7szMcabfvw0BM4q80T-HG69uStHq2_AoVtjVXbdbTGVYOfmg_Y6KblaIndbdu3_G4JzXcMZXAsjewtZBSL1Nx6ZgB6ISXCDQ0S4dzMo_kRgmEVBAfwG4PWNW4Y03om9VO4Pjm-mi-iUGwhqtI47iNVCJ4FwxmNZplOUm1sypsJUpmiNJPKPYUwVOSUmDpPUmMl95Y217kqEp0-g0nTNvQcMNc1VUIllbKpkDIxJrdCx1KLvNKFkAcwG6e4rIISuSuI8aUcKWefS7cspVuW0lXJTLIDePfLpht0OO7tLceVK__yppITxT12L_7T7g3sLK4uL8qLs-X5S9jlFjUc0xzCpF_f0SsGLr15HRzzJwAU7kA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+doping+of+copper+in+ZnO+nanorod+photoanode+by+electrodeposition+for+enhanced+charge+separation+in+photoelectrochemical+water+splitting&rft.jtitle=Superlattices+and+microstructures&rft.au=Rasouli%2C+Fatemeh&rft.au=Rouhollahi%2C+Ahmad&rft.au=Ghahramanifard%2C+Fazel&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=125&rft.spage=177&rft.epage=189&rft_id=info:doi/10.1016%2Fj.spmi.2018.08.026&rft.externalDocID=S0749603618316082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |