Numerical simulation on the effect of current intensity on electrical contact performance of electrical connectors subject to micro-slip wear

This article aims to develop a wear simulation method considering thermal-electrical- mechanical coupling to obtain the evolutions of contact variables and electrical resistance. Then, the influence mechanism of current intensity on the electrical contact performance subject to micro-slip wear is re...

Full description

Saved in:
Bibliographic Details
Published inWear Vol. 542-543; p. 205270
Main Authors He, Wenxin, Feng, Yu, Wu, Shaolei, Wu, Kai, Ye, Jiaxin, Wang, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article aims to develop a wear simulation method considering thermal-electrical- mechanical coupling to obtain the evolutions of contact variables and electrical resistance. Then, the influence mechanism of current intensity on the electrical contact performance subject to micro-slip wear is revealed. The maximum wear depth exhibits an increasing and then decreasing trend with the electric current, and the wear profile shows a W-shape at the start and then evolves into a U-shape under 15 A/mm. Meanwhile, a greater contact half-width is observed under a larger current condition to maintain a stable and low electrical resistance. Furthermore, experimental results are obtained confirming the potential of this numerical approach to simulate the wear of electrical contact. •A novel wear simulation method of electrical contact is developed.•The key parameters of the numerical model are optimized.•The effect of current intensity on the electrical contact performance subject to micro-slip wear is revealed.
AbstractList This article aims to develop a wear simulation method considering thermal-electrical- mechanical coupling to obtain the evolutions of contact variables and electrical resistance. Then, the influence mechanism of current intensity on the electrical contact performance subject to micro-slip wear is revealed. The maximum wear depth exhibits an increasing and then decreasing trend with the electric current, and the wear profile shows a W-shape at the start and then evolves into a U-shape under 15 A/mm. Meanwhile, a greater contact half-width is observed under a larger current condition to maintain a stable and low electrical resistance. Furthermore, experimental results are obtained confirming the potential of this numerical approach to simulate the wear of electrical contact. •A novel wear simulation method of electrical contact is developed.•The key parameters of the numerical model are optimized.•The effect of current intensity on the electrical contact performance subject to micro-slip wear is revealed.
ArticleNumber 205270
Author Wu, Shaolei
Wu, Kai
Feng, Yu
Ye, Jiaxin
Wang, Wei
He, Wenxin
Author_xml – sequence: 1
  givenname: Wenxin
  surname: He
  fullname: He, Wenxin
  organization: School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, China
– sequence: 2
  givenname: Yu
  surname: Feng
  fullname: Feng, Yu
  email: zandyu@163.com
  organization: School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, China
– sequence: 3
  givenname: Shaolei
  surname: Wu
  fullname: Wu, Shaolei
  organization: State Grid Anhui Electric Power Co. Ltd. Electric Power Research Institute, Hefei, 230601, China
– sequence: 4
  givenname: Kai
  surname: Wu
  fullname: Wu, Kai
  organization: State Grid Anhui Electric Power Co. Ltd. Electric Power Research Institute, Hefei, 230601, China
– sequence: 5
  givenname: Jiaxin
  surname: Ye
  fullname: Ye, Jiaxin
  organization: School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, China
– sequence: 6
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: weiwang@hfut.edu.cn
  organization: School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, China
BookMark eNp9kMtKAzEUhoMo2FZfwFVeYGpucwM3UrxB0Y2uQ5qeYIaZpCSp0ofwnc04bnRRCCeE838n5__n6NR5BwhdUbKkhFbX3fITVFgywkQuJavJCZrRpuYFK-v6FM0IEbyglWjO0TzGjhBC27Kaoa_n_QDBatXjaId9r5L1DueT3gGDMaAT9gbrfQjgErYugYs2HUYJ9Lk7sdq7pLJ0B8H4MCinYcT-Klx--BBx3G-6cW7yeLA6-CL2dodHAxfozKg-wuXvvUBv93evq8di_fLwtLpdF5oTkopWCKhLwqmpgBhtaKsYNJtS8W1b8VpU2eyGlQ0oZcBQBm2T28IQ0vCWGcEXqJnm5t9jDGCktunHegrK9pISOcYqOzluJcdY5RRrRtk_dBfsoMLhOHQzQZBNfVgIMmoLOaStDTkJufX2GP4NvGSXVQ
CitedBy_id crossref_primary_10_3390_ma18020370
crossref_primary_10_1115_1_4067373
crossref_primary_10_1016_j_triboint_2024_110178
crossref_primary_10_1007_s40430_025_05513_0
crossref_primary_10_3390_coatings14121587
Cites_doi 10.1179/174329305X29483
10.1016/j.triboint.2013.09.024
10.1016/j.wear.2004.12.014
10.1016/j.wear.2018.07.018
10.1243/030932405X7836
10.1115/1.3000596
10.1016/j.wear.2017.02.036
10.1016/j.wear.2014.12.006
10.1016/j.wear.2018.12.010
10.1063/1.1721448
10.1016/j.triboint.2021.107077
10.1016/j.wear.2023.204943
10.1016/j.triboint.2018.01.016
10.1088/1361-6463/aab30d
10.1016/j.surfcoat.2018.07.109
10.1016/j.triboint.2008.09.004
10.1007/s10765-006-0144-0
10.1016/j.triboint.2022.107493
10.1007/s11249-013-0271-2
10.1016/j.triboint.2009.10.011
10.1016/j.wear.2012.04.018
10.1007/s40544-018-0230-x
10.1016/j.ijthermalsci.2022.107835
10.1016/j.triboint.2019.106019
10.1016/j.triboint.2015.11.027
10.1016/j.wear.2015.02.022
10.1016/j.energy.2021.121788
10.1016/S0043-1648(03)00117-0
10.1016/j.wear.2015.04.003
10.1109/TCHMT.1985.1136462
10.1016/j.wear.2011.01.058
10.1016/j.triboint.2014.11.001
10.1016/j.ijheatmasstransfer.2015.05.086
10.1109/TDEI.2022.3224889
10.1016/j.ijheatmasstransfer.2021.121243
10.1016/0043-1648(85)90101-2
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.wear.2024.205270
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2577
ExternalDocumentID 10_1016_j_wear_2024_205270
S0043164824000358
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSZ
T5K
ZMT
~02
~G-
29R
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
LY7
M24
M41
R2-
RIG
SET
SSH
WUQ
ID FETCH-LOGICAL-c300t-944e75031f6e0fcf19a2e8b5a3d963746043b258eaafef12e98e8b4f008392f43
IEDL.DBID .~1
ISSN 0043-1648
IngestDate Tue Jul 01 03:16:37 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Sat Feb 17 16:08:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrical contact resistance (ECR)
Thermal-electrical-mechanical coupling (TEMC)
Fretting wear
Electrical contact
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-944e75031f6e0fcf19a2e8b5a3d963746043b258eaafef12e98e8b4f008392f43
ParticipantIDs crossref_citationtrail_10_1016_j_wear_2024_205270
crossref_primary_10_1016_j_wear_2024_205270
elsevier_sciencedirect_doi_10_1016_j_wear_2024_205270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Wear
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiang, Pan, Shao, Huang, Hong, Zhou (bib23) 2018; 7
Holm (bib27) 1981
Long, Khanna (bib30) 2013; 10
Gallego, Fulleringer, Deyber, Nélias (bib22) 2010; 43
Pompanon, Laporte, Fouvry, Alquier (bib10) 2019; 426
Dai, Ren, Wang, Xiao, Tao (bib3) 2021; 173
Sung, Kim, Noh, Jang (bib9) 2016; 95
Rowe, Erickson, Sawyer, Krick (bib20) 2014; 54
Sun, Hu, Liu, Gai, Zhou, Chen, Li (bib36) 2023; 52
Rajasekaran, Nowell (bib38) 2005; 40
Fouvry, Jedrzejczyk, Chalandon (bib16) 2011; 271
Yang, Tao (bib28) 2006
Jin, Shipway, Sun (bib39) 2015; 330–331
Mi, Wang, Xiong, Qian, Tang, Xie (bib41) 2015; 328–329
Arnaud, Fouvry (bib44) 2018; 412–413
Qin, Jin, Kirk, Shipway, Sun (bib42) 2018; 120
Park, Bapu, Lee (bib14) 2009; 42
Fouvry, Liskiewicz, Kapsa, Hannel, Sauger (bib35) 2003; 255
Zhang, Shen, Ke (bib24) 2023
Ren, Wang, Fu, Pan, Song (bib13) 2015; 83
Wang, Zhang, Sun, Cui, Mo (bib18) 2023; 526–527
He, Feng, Wu, Wang (bib2) 2023; 30
Kim, Won, Burris, Holtkamp, Gessel, Swanson (bib19) 2005; 258
Liu, Cai, He, Peng, Zhu (bib8) 2017; 376
Dreano, Fouvry, Guillonneau (bib40) 2020; 452–453
Antler (bib5) 1985; 106
Brandt, Neuer (bib33) 2007; 28
Laporte, Perrinet, Fouvry (bib1) 2015; 330
Li, Huang, Bi (bib29) 2004
Antler (bib4) 1985; 8
Garcin, Baydoun, Arnaud, Fouvry (bib21) 2022; 170
Rogeon, Raoelison, Carre, Dechalotte (bib32) 2009; 131
Arnaud, Baydoun, Fouvry (bib43) 2021; 161
Liu, Cai, Cui, Liu, Xu, Zhu (bib11) 2018; 51
Archard (bib34) 1953; 24
Ren, Wang, Song, Zhai (bib15) 2014; 70
He, Feng, Wu, Wu, Wang (bib26) 2023; 183
Liskiewicz, Kubiak, Mann, Mathia (bib6) 2020; 143
Amanov, Karimbaev, Li, Wahab (bib7) 2023
Cruzado, Urchegui, Gómez (bib37) 2012; 289
Liu, Cai, Liu, Peng, Zhu (bib17) 2018; 28
Jia, Lin, Su, Wang, Yang (bib25) 2022; 239
Pompanon, Fouvry, Alquier (bib12) 2018; 354
Wang, Wang, Lu, Carlson, Sigler (bib31) 2015; 89
Jin (10.1016/j.wear.2024.205270_bib39) 2015; 330–331
Kim (10.1016/j.wear.2024.205270_bib19) 2005; 258
Brandt (10.1016/j.wear.2024.205270_bib33) 2007; 28
Mi (10.1016/j.wear.2024.205270_bib41) 2015; 328–329
Ren (10.1016/j.wear.2024.205270_bib15) 2014; 70
Zhang (10.1016/j.wear.2024.205270_bib24) 2023
Amanov (10.1016/j.wear.2024.205270_bib7) 2023
Antler (10.1016/j.wear.2024.205270_bib4) 1985; 8
Cruzado (10.1016/j.wear.2024.205270_bib37) 2012; 289
Liu (10.1016/j.wear.2024.205270_bib17) 2018; 28
Rajasekaran (10.1016/j.wear.2024.205270_bib38) 2005; 40
Dai (10.1016/j.wear.2024.205270_bib3) 2021; 173
He (10.1016/j.wear.2024.205270_bib26) 2023; 183
Long (10.1016/j.wear.2024.205270_bib30) 2013; 10
Arnaud (10.1016/j.wear.2024.205270_bib43) 2021; 161
Wang (10.1016/j.wear.2024.205270_bib18) 2023; 526–527
Liu (10.1016/j.wear.2024.205270_bib11) 2018; 51
Pompanon (10.1016/j.wear.2024.205270_bib12) 2018; 354
Holm (10.1016/j.wear.2024.205270_bib27) 1981
Rowe (10.1016/j.wear.2024.205270_bib20) 2014; 54
Garcin (10.1016/j.wear.2024.205270_bib21) 2022; 170
Archard (10.1016/j.wear.2024.205270_bib34) 1953; 24
Ren (10.1016/j.wear.2024.205270_bib13) 2015; 83
Fouvry (10.1016/j.wear.2024.205270_bib35) 2003; 255
Liu (10.1016/j.wear.2024.205270_bib8) 2017; 376
Dreano (10.1016/j.wear.2024.205270_bib40) 2020; 452–453
Arnaud (10.1016/j.wear.2024.205270_bib44) 2018; 412–413
Jiang (10.1016/j.wear.2024.205270_bib23) 2018; 7
Liskiewicz (10.1016/j.wear.2024.205270_bib6) 2020; 143
Wang (10.1016/j.wear.2024.205270_bib31) 2015; 89
Fouvry (10.1016/j.wear.2024.205270_bib16) 2011; 271
Li (10.1016/j.wear.2024.205270_bib29) 2004
Rogeon (10.1016/j.wear.2024.205270_bib32) 2009; 131
Jia (10.1016/j.wear.2024.205270_bib25) 2022; 239
Gallego (10.1016/j.wear.2024.205270_bib22) 2010; 43
Yang (10.1016/j.wear.2024.205270_bib28) 2006
Sung (10.1016/j.wear.2024.205270_bib9) 2016; 95
Antler (10.1016/j.wear.2024.205270_bib5) 1985; 106
Qin (10.1016/j.wear.2024.205270_bib42) 2018; 120
Park (10.1016/j.wear.2024.205270_bib14) 2009; 42
Sun (10.1016/j.wear.2024.205270_bib36) 2023; 52
Pompanon (10.1016/j.wear.2024.205270_bib10) 2019; 426
Laporte (10.1016/j.wear.2024.205270_bib1) 2015; 330
He (10.1016/j.wear.2024.205270_bib2) 2023; 30
References_xml – volume: 7
  start-page: 537
  year: 2018
  end-page: 550
  ident: bib23
  article-title: Prediction of electrical contact endurance subject to micro-slip wear using friction energy dissipation approach
  publication-title: Friction
– volume: 239
  start-page: 1
  year: 2022
  end-page: 15
  ident: bib25
  article-title: Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer
  publication-title: Energy
– volume: 106
  start-page: 5
  year: 1985
  end-page: 33
  ident: bib5
  article-title: Electrical effects of fretting connector contact materials: a review
  publication-title: Wear
– volume: 28
  start-page: 944
  year: 2018
  end-page: 954
  ident: bib17
  article-title: Effect of elevated temperature on fretting wear of nickel and copper under electric contact
  publication-title: Chin. J. Nonferrous Metals
– volume: 289
  start-page: 26
  year: 2012
  end-page: 38
  ident: bib37
  article-title: Finite element modeling and experimental validation of fretting wear scars in thin steel wires
  publication-title: Wear
– volume: 83
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib13
  article-title: Effects of temperature on fretting corrosion behaviors of gold-plated copper alloy electrical contacts
  publication-title: Tribol. Int.
– start-page: 530
  year: 2023
  end-page: 531
  ident: bib24
  article-title: Electrical contact resistance endurance of AgNi10 alloy under fretting wear: experiment and numerical prediction
  publication-title: Wear
– volume: 426
  start-page: 652
  year: 2019
  end-page: 661
  ident: bib10
  article-title: Normal force and displacement amplitude influences on silver-plated electrical contacts subjected to fretting wear: a basic friction energy - contact compliance formulation
  publication-title: Wear
– year: 2006
  ident: bib28
  article-title: Heat Transfer
– volume: 376
  start-page: 643
  year: 2017
  end-page: 655
  ident: bib8
  article-title: Effect of elevated temperature on fretting wear under electric contact
  publication-title: Wear
– volume: 330–331
  start-page: 103
  year: 2015
  end-page: 111
  ident: bib39
  article-title: The role of frictional power dissipation (as a function of frequency) and test temperature on contact temperature and the subsequent wear behaviour in a stainless steel contact in fretting
  publication-title: Wear
– volume: 328–329
  start-page: 582
  year: 2015
  end-page: 590
  ident: bib41
  article-title: Investigation of fretting wear behavior of Inconel 690 alloy in tube/plate contact configuration
  publication-title: Wear
– volume: 173
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib3
  article-title: Effect of thermal expansion on thermal contact resistance prediction based on the dual-iterative thermal–mechanical coupling method
  publication-title: Int. J. Heat Mass Tran.
– volume: 30
  start-page: 11
  year: 2023
  end-page: 19
  ident: bib2
  article-title: Effect of elastoplastic thermal softening on electrical contact resistance based on the dual-iterative coupling method
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 170
  year: 2022
  ident: bib21
  article-title: Fretting wear modeling of 3D and 2D Hertzian contacts with a third-body layer using a Winkler elastic foundation model
  publication-title: Tribol. Int.
– volume: 40
  start-page: 95
  year: 2005
  end-page: 106
  ident: bib38
  article-title: On the finite element analysis of contacting bodies using submodelling
  publication-title: J. Strain Anal. Eng. Des.
– volume: 8
  start-page: 87
  year: 1985
  end-page: 104
  ident: bib4
  article-title: Survey of contact fretting in electrical connectors
  publication-title: IEEE Transactions on Components, Hybrids, and Manufacturing Technology
– volume: 54
  start-page: 249
  year: 2014
  end-page: 255
  ident: bib20
  article-title: Evolution in surfaces: interaction of topography with contact pressure during wear of composites including dinosaur dentition
  publication-title: Tribol. Lett.
– volume: 183
  start-page: 1
  year: 2023
  end-page: 15
  ident: bib26
  article-title: Effect of elastoplastic thermal softening on thermal contact resistance based on the dual-load transfer coupling method
  publication-title: Int. J. Therm. Sci.
– volume: 143
  year: 2020
  ident: bib6
  article-title: Analysis of surface roughness morphology with TRIZ methodology in automotive electrical contacts: design against third body fretting-corrosion
  publication-title: Tribol. Int.
– volume: 89
  start-page: 1061
  year: 2015
  end-page: 1072
  ident: bib31
  article-title: Analysis of Al-steel resistance spot welding process by developing a fully coupled multi-physics simulation model
  publication-title: Int. J. Heat Mass Tran.
– volume: 258
  start-page: 1787
  year: 2005
  end-page: 1793
  ident: bib19
  article-title: Finite element analysis and experiments of metal/metal wear in oscillatory contacts
  publication-title: Wear
– year: 2004
  ident: bib29
  article-title: Theory and Application of Thermal Stress
– volume: 161
  year: 2021
  ident: bib43
  article-title: Modeling adhesive and abrasive wear phenomena in fretting interfaces: a multiphysics approach coupling friction energy, third body and contact oxygenation concepts
  publication-title: Tribol. Int.
– volume: 10
  start-page: 88
  year: 2013
  end-page: 94
  ident: bib30
  article-title: Residual stresses in spot welded new generation aluminium alloys Part B – finite element simulation of residual stresses in a spot weld in 5754 aluminium alloy
  publication-title: Sci. Technol. Weld. Join.
– volume: 526–527
  start-page: 204943
  year: 2023
  ident: bib18
  article-title: Performance improvement strategy of the TBM disc cutter ring material and evaluation of impact-sliding friction and wear performance
  publication-title: Wear
– volume: 51
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib11
  article-title: Effect of different atmospheres on the electrical contact performance of electronic components under fretting wear
  publication-title: J. Phys. Appl. Phys.
– volume: 452–453
  year: 2020
  ident: bib40
  article-title: Understanding and formalization of the fretting-wear behavior of a cobalt-based alloy at high temperature
  publication-title: Wear
– volume: 52
  start-page: 381
  year: 2023
  end-page: 393
  ident: bib36
  article-title: Effect of shot peening on fretting fatigue resistance of 2024 aluminum alloy/titanium alloy riveted joint
  publication-title: Surf. Technol.
– volume: 120
  start-page: 350
  year: 2018
  end-page: 357
  ident: bib42
  article-title: Effects of surface roughness on local friction and temperature distributions in a steel-on-steel fretting contact
  publication-title: Tribol. Int.
– start-page: 454
  year: 2023
  ident: bib7
  article-title: Effect of surface modification technology on mechanical properties and dry fretting wear behavior of Inconel 718 alloy fabricated by laser powder-based direct energy deposition
  publication-title: Surf. Coating. Technol.
– volume: 42
  start-page: 682
  year: 2009
  end-page: 689
  ident: bib14
  article-title: The influence of current load on fretting of electrical contacts
  publication-title: Tribol. Int.
– volume: 95
  start-page: 256
  year: 2016
  end-page: 261
  ident: bib9
  article-title: Effect of displacement and humidity on contact resistance of copper electrical contacts
  publication-title: Tribol. Int.
– year: 1981
  ident: bib27
  article-title: Electric Contacts: Theory and Application
– volume: 28
  start-page: 1429
  year: 2007
  end-page: 1446
  ident: bib33
  article-title: Electrical resistivity and thermal conductivity of pure aluminum and aluminum alloys up to and above the melting temperature
  publication-title: Int. J. Thermophys.
– volume: 24
  start-page: 981
  year: 1953
  end-page: 988
  ident: bib34
  article-title: Contact and rubbing of flat surfaces
  publication-title: J. Appl. Phys.
– volume: 412–413
  start-page: 92
  year: 2018
  end-page: 108
  ident: bib44
  article-title: A dynamical FEA fretting wear modeling taking into account the evolution of debris layer
  publication-title: Wear
– volume: 330
  start-page: 170
  year: 2015
  end-page: 181
  ident: bib1
  article-title: Prediction of the electrical contact resistance endurance of silver-plated coatings subject to fretting wear, using a friction energy density approach
  publication-title: Wear
– volume: 131
  year: 2009
  ident: bib32
  article-title: A microscopic approach to determine electrothermal contact conditions during resistance spot welding process
  publication-title: J. Heat Tran.
– volume: 354
  start-page: 246
  year: 2018
  end-page: 256
  ident: bib12
  article-title: Influence of humidity on the endurance of silver-plated electrical contacts subjected to fretting wear
  publication-title: Surf. Coating. Technol.
– volume: 271
  start-page: 1524
  year: 2011
  end-page: 1534
  ident: bib16
  article-title: Introduction of an exponential formulation to quantify the electrical endurance of micro-contacts enduring fretting wear: application to Sn, Ag and Au coatings
  publication-title: Wear
– volume: 70
  start-page: 75
  year: 2014
  end-page: 82
  ident: bib15
  article-title: Effects of current load on wear and fretting corrosion of gold-plated electrical contacts
  publication-title: Tribol. Int.
– volume: 43
  start-page: 708
  year: 2010
  end-page: 718
  ident: bib22
  article-title: Multiscale computation of fretting wear at the blade/disk interface
  publication-title: Tribol. Int.
– volume: 255
  start-page: 287
  year: 2003
  end-page: 298
  ident: bib35
  article-title: An energy description of wear mechanisms and its applications to oscillating sliding contacts
  publication-title: Wear
– volume: 10
  start-page: 88
  year: 2013
  ident: 10.1016/j.wear.2024.205270_bib30
  article-title: Residual stresses in spot welded new generation aluminium alloys Part B – finite element simulation of residual stresses in a spot weld in 5754 aluminium alloy
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/174329305X29483
– volume: 70
  start-page: 75
  year: 2014
  ident: 10.1016/j.wear.2024.205270_bib15
  article-title: Effects of current load on wear and fretting corrosion of gold-plated electrical contacts
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2013.09.024
– volume: 258
  start-page: 1787
  year: 2005
  ident: 10.1016/j.wear.2024.205270_bib19
  article-title: Finite element analysis and experiments of metal/metal wear in oscillatory contacts
  publication-title: Wear
  doi: 10.1016/j.wear.2004.12.014
– volume: 412–413
  start-page: 92
  year: 2018
  ident: 10.1016/j.wear.2024.205270_bib44
  article-title: A dynamical FEA fretting wear modeling taking into account the evolution of debris layer
  publication-title: Wear
  doi: 10.1016/j.wear.2018.07.018
– volume: 40
  start-page: 95
  year: 2005
  ident: 10.1016/j.wear.2024.205270_bib38
  article-title: On the finite element analysis of contacting bodies using submodelling
  publication-title: J. Strain Anal. Eng. Des.
  doi: 10.1243/030932405X7836
– year: 2004
  ident: 10.1016/j.wear.2024.205270_bib29
– volume: 28
  start-page: 944
  year: 2018
  ident: 10.1016/j.wear.2024.205270_bib17
  article-title: Effect of elevated temperature on fretting wear of nickel and copper under electric contact
  publication-title: Chin. J. Nonferrous Metals
– volume: 131
  year: 2009
  ident: 10.1016/j.wear.2024.205270_bib32
  article-title: A microscopic approach to determine electrothermal contact conditions during resistance spot welding process
  publication-title: J. Heat Tran.
  doi: 10.1115/1.3000596
– volume: 376
  start-page: 643
  year: 2017
  ident: 10.1016/j.wear.2024.205270_bib8
  article-title: Effect of elevated temperature on fretting wear under electric contact
  publication-title: Wear
  doi: 10.1016/j.wear.2017.02.036
– year: 2006
  ident: 10.1016/j.wear.2024.205270_bib28
– volume: 330
  start-page: 170
  year: 2015
  ident: 10.1016/j.wear.2024.205270_bib1
  article-title: Prediction of the electrical contact resistance endurance of silver-plated coatings subject to fretting wear, using a friction energy density approach
  publication-title: Wear
  doi: 10.1016/j.wear.2014.12.006
– volume: 426
  start-page: 652
  year: 2019
  ident: 10.1016/j.wear.2024.205270_bib10
  article-title: Normal force and displacement amplitude influences on silver-plated electrical contacts subjected to fretting wear: a basic friction energy - contact compliance formulation
  publication-title: Wear
  doi: 10.1016/j.wear.2018.12.010
– volume: 24
  start-page: 981
  year: 1953
  ident: 10.1016/j.wear.2024.205270_bib34
  article-title: Contact and rubbing of flat surfaces
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1721448
– volume: 161
  year: 2021
  ident: 10.1016/j.wear.2024.205270_bib43
  article-title: Modeling adhesive and abrasive wear phenomena in fretting interfaces: a multiphysics approach coupling friction energy, third body and contact oxygenation concepts
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2021.107077
– volume: 526–527
  start-page: 204943
  year: 2023
  ident: 10.1016/j.wear.2024.205270_bib18
  article-title: Performance improvement strategy of the TBM disc cutter ring material and evaluation of impact-sliding friction and wear performance
  publication-title: Wear
  doi: 10.1016/j.wear.2023.204943
– volume: 120
  start-page: 350
  year: 2018
  ident: 10.1016/j.wear.2024.205270_bib42
  article-title: Effects of surface roughness on local friction and temperature distributions in a steel-on-steel fretting contact
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2018.01.016
– volume: 51
  start-page: 1
  year: 2018
  ident: 10.1016/j.wear.2024.205270_bib11
  article-title: Effect of different atmospheres on the electrical contact performance of electronic components under fretting wear
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/1361-6463/aab30d
– volume: 452–453
  year: 2020
  ident: 10.1016/j.wear.2024.205270_bib40
  article-title: Understanding and formalization of the fretting-wear behavior of a cobalt-based alloy at high temperature
  publication-title: Wear
– volume: 354
  start-page: 246
  year: 2018
  ident: 10.1016/j.wear.2024.205270_bib12
  article-title: Influence of humidity on the endurance of silver-plated electrical contacts subjected to fretting wear
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2018.07.109
– volume: 42
  start-page: 682
  year: 2009
  ident: 10.1016/j.wear.2024.205270_bib14
  article-title: The influence of current load on fretting of electrical contacts
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2008.09.004
– volume: 28
  start-page: 1429
  year: 2007
  ident: 10.1016/j.wear.2024.205270_bib33
  article-title: Electrical resistivity and thermal conductivity of pure aluminum and aluminum alloys up to and above the melting temperature
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-006-0144-0
– volume: 170
  year: 2022
  ident: 10.1016/j.wear.2024.205270_bib21
  article-title: Fretting wear modeling of 3D and 2D Hertzian contacts with a third-body layer using a Winkler elastic foundation model
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2022.107493
– volume: 54
  start-page: 249
  year: 2014
  ident: 10.1016/j.wear.2024.205270_bib20
  article-title: Evolution in surfaces: interaction of topography with contact pressure during wear of composites including dinosaur dentition
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-013-0271-2
– volume: 43
  start-page: 708
  year: 2010
  ident: 10.1016/j.wear.2024.205270_bib22
  article-title: Multiscale computation of fretting wear at the blade/disk interface
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2009.10.011
– volume: 52
  start-page: 381
  year: 2023
  ident: 10.1016/j.wear.2024.205270_bib36
  article-title: Effect of shot peening on fretting fatigue resistance of 2024 aluminum alloy/titanium alloy riveted joint
  publication-title: Surf. Technol.
– volume: 289
  start-page: 26
  year: 2012
  ident: 10.1016/j.wear.2024.205270_bib37
  article-title: Finite element modeling and experimental validation of fretting wear scars in thin steel wires
  publication-title: Wear
  doi: 10.1016/j.wear.2012.04.018
– volume: 7
  start-page: 537
  issue: 6
  year: 2018
  ident: 10.1016/j.wear.2024.205270_bib23
  article-title: Prediction of electrical contact endurance subject to micro-slip wear using friction energy dissipation approach
  publication-title: Friction
  doi: 10.1007/s40544-018-0230-x
– volume: 183
  start-page: 1
  year: 2023
  ident: 10.1016/j.wear.2024.205270_bib26
  article-title: Effect of elastoplastic thermal softening on thermal contact resistance based on the dual-load transfer coupling method
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2022.107835
– volume: 143
  year: 2020
  ident: 10.1016/j.wear.2024.205270_bib6
  article-title: Analysis of surface roughness morphology with TRIZ methodology in automotive electrical contacts: design against third body fretting-corrosion
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2019.106019
– volume: 95
  start-page: 256
  year: 2016
  ident: 10.1016/j.wear.2024.205270_bib9
  article-title: Effect of displacement and humidity on contact resistance of copper electrical contacts
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2015.11.027
– year: 1981
  ident: 10.1016/j.wear.2024.205270_bib27
– volume: 330–331
  start-page: 103
  year: 2015
  ident: 10.1016/j.wear.2024.205270_bib39
  article-title: The role of frictional power dissipation (as a function of frequency) and test temperature on contact temperature and the subsequent wear behaviour in a stainless steel contact in fretting
  publication-title: Wear
  doi: 10.1016/j.wear.2015.02.022
– start-page: 454
  year: 2023
  ident: 10.1016/j.wear.2024.205270_bib7
  article-title: Effect of surface modification technology on mechanical properties and dry fretting wear behavior of Inconel 718 alloy fabricated by laser powder-based direct energy deposition
  publication-title: Surf. Coating. Technol.
– volume: 239
  start-page: 1
  year: 2022
  ident: 10.1016/j.wear.2024.205270_bib25
  article-title: Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121788
– volume: 255
  start-page: 287
  year: 2003
  ident: 10.1016/j.wear.2024.205270_bib35
  article-title: An energy description of wear mechanisms and its applications to oscillating sliding contacts
  publication-title: Wear
  doi: 10.1016/S0043-1648(03)00117-0
– volume: 328–329
  start-page: 582
  year: 2015
  ident: 10.1016/j.wear.2024.205270_bib41
  article-title: Investigation of fretting wear behavior of Inconel 690 alloy in tube/plate contact configuration
  publication-title: Wear
  doi: 10.1016/j.wear.2015.04.003
– start-page: 530
  year: 2023
  ident: 10.1016/j.wear.2024.205270_bib24
  article-title: Electrical contact resistance endurance of AgNi10 alloy under fretting wear: experiment and numerical prediction
  publication-title: Wear
– volume: 8
  start-page: 87
  year: 1985
  ident: 10.1016/j.wear.2024.205270_bib4
  article-title: Survey of contact fretting in electrical connectors
  publication-title: IEEE Transactions on Components, Hybrids, and Manufacturing Technology
  doi: 10.1109/TCHMT.1985.1136462
– volume: 271
  start-page: 1524
  year: 2011
  ident: 10.1016/j.wear.2024.205270_bib16
  article-title: Introduction of an exponential formulation to quantify the electrical endurance of micro-contacts enduring fretting wear: application to Sn, Ag and Au coatings
  publication-title: Wear
  doi: 10.1016/j.wear.2011.01.058
– volume: 83
  start-page: 1
  year: 2015
  ident: 10.1016/j.wear.2024.205270_bib13
  article-title: Effects of temperature on fretting corrosion behaviors of gold-plated copper alloy electrical contacts
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2014.11.001
– volume: 89
  start-page: 1061
  year: 2015
  ident: 10.1016/j.wear.2024.205270_bib31
  article-title: Analysis of Al-steel resistance spot welding process by developing a fully coupled multi-physics simulation model
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2015.05.086
– volume: 30
  start-page: 11
  year: 2023
  ident: 10.1016/j.wear.2024.205270_bib2
  article-title: Effect of elastoplastic thermal softening on electrical contact resistance based on the dual-iterative coupling method
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2022.3224889
– volume: 173
  start-page: 1
  year: 2021
  ident: 10.1016/j.wear.2024.205270_bib3
  article-title: Effect of thermal expansion on thermal contact resistance prediction based on the dual-iterative thermal–mechanical coupling method
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2021.121243
– volume: 106
  start-page: 5
  year: 1985
  ident: 10.1016/j.wear.2024.205270_bib5
  article-title: Electrical effects of fretting connector contact materials: a review
  publication-title: Wear
  doi: 10.1016/0043-1648(85)90101-2
SSID ssj0001956
Score 2.490514
Snippet This article aims to develop a wear simulation method considering thermal-electrical- mechanical coupling to obtain the evolutions of contact variables and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 205270
SubjectTerms Electrical contact
Electrical contact resistance (ECR)
Fretting wear
Thermal-electrical-mechanical coupling (TEMC)
Title Numerical simulation on the effect of current intensity on electrical contact performance of electrical connectors subject to micro-slip wear
URI https://dx.doi.org/10.1016/j.wear.2024.205270
Volume 542-543
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywodAktht7rCqqAqITlbpFTmpLQW0a0VSIhX_Af8YXO7SVUAekLEnuIsc-2-e77-4QujVH5JSkifBUoMBaJcyUkhHzfGm2c6GmjFfugpdRdzimTxM2aaB-HQsDsEq39ts1vVqt3ZOO681OkWUQ4wth3JQDCtInDAJ-KY1Ayu-_1jAPiIervcxA7QJnLMbrw0iTOSOGYFxhIRQs_mtz2thwBkfo0GmKuGcbc4waKj9BBxv5A0_R92hlHS4zvMzmrhAXNpfR6rBFauCFxqnNwYQzC1cvP4HE1r-peAGuLg1psQ4iALZtirwy7y_xcpWA6QaXCzwHMJ9nFNUCwy-eofHg4bU_9Fx9BS8lvl96glIFbsxAd5WvUx0IGSqeMEmmZlpGtGv6LAkZV1JqpYNQCW5eUw1qmwg1JeeomS9ydYGwklxQSVgC-egV10lEGImCUHJJzddJCwV1x8apSz4ONTBmcY0ye4uhpTEMRmwHo4XufnkKm3pjJzWrxyveEqDY7A07-C7_yXeF9uEOHEsBu0bN8n2lbox-UibtSgDbaK_3-Dwc_QAUQea3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDLYYHLYdpj019sxht6mibRJIjwgNwXicQOJWpSWRmHhpFE37EfvPi0nKhjRxmNRTY1dpHo5jf7YBnswVOaVpEnkqUGitisyWkjXu-dIc55Eac7FxF_T61daQvY74qACNPBYGYZVO9luZvpHW7k3FjWZlOZlgjC-GcTOBKEifcnEAJcxOxYtQqrc7rf5WIGNIXO5oRgYXO2NhXh9mQZlrYoj2FR5izeK_zqdfZ07zFE6cskjqtj9nUFDzczj-lULwAr76a-tzmZLVZOZqcRHzGMWOWLAGWWiS2jRMZGIR69knktgSOBteRKxLQ7r8iSNAtl2K-cbCvyKrdYLWG5ItyAzxfJ7RVZcEf_EShs2XQaPluRILXkp9P_MixhR6MgNdVb5OdRDJUImESzo2O7PGqmbMkpALJaVWOghVJEwz06i5RaFm9AqK88VcXQNRUkRMUp5gSnoldFKjnNaCUArJzNdpGYJ8YOPU5R_HMhjTOAeavcXY0xgnI7aTUYbnLc_SZt_YS83z-Yp31lBsjoc9fDf_5HuEw9ag14277X7nFo6wBf1MAb-DYva-VvdGXcmSB7ccvwH8q-lo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+on+the+effect+of+current+intensity+on+electrical+contact+performance+of+electrical+connectors+subject+to+micro-slip+wear&rft.jtitle=Wear&rft.au=He%2C+Wenxin&rft.au=Feng%2C+Yu&rft.au=Wu%2C+Shaolei&rft.au=Wu%2C+Kai&rft.date=2024-04-15&rft.pub=Elsevier+B.V&rft.issn=0043-1648&rft.eissn=1873-2577&rft.volume=542-543&rft_id=info:doi/10.1016%2Fj.wear.2024.205270&rft.externalDocID=S0043164824000358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1648&client=summon