Calibration free meta learning based approach for subject independent EEG emotion recognition
•Proposed a few-shot adaptation for EEG based Emotion Recognition which limits the number of samples required for calibration samples to a minimum.•Devised and demonstrated the efficacy of three sampling strategies for support sets during our training for scenarios when reference samples from the su...
Saved in:
Published in | Biomedical signal processing and control Vol. 72; p. 103289 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Proposed a few-shot adaptation for EEG based Emotion Recognition which limits the number of samples required for calibration samples to a minimum.•Devised and demonstrated the efficacy of three sampling strategies for support sets during our training for scenarios when reference samples from the subject under consideration may or may not be present, which is novel.•Employed a 1-D EEG signal transformation into a 3-D matrix representation such that the spatial correlation among adjacent EEG electrodes is also learnt in addition to high-level features of individual electrodes.•Proposed a 3-D convolutional recurrent embedding architecture to extract the temporal relations from the spatially convolved features of individual electrodes, which is also novel.•The combination of our best sampling strategies in subject dependent and subject independent setups outperforms existing approaches using a cross-subject evaluation setup.
Brain Computer Interfaces (BCI) detect changes in the electrical activity of brain which could be applied in use-cases like environmental control, neuro-rehabilitation etc. Prior to the actual usage, the subject has to undergo a lengthy calibration phase and hence prohibits an optimal plug-and-play experience. To quantify the minimum number of samples required for calibration, we propose a few-shot adaptation to the task of recognizing emotion from Electroencephalography (EEG) signals, without requiring any fine-tuning of the pre-trained classification models for every user. Our experiments illustrate the usefulness of various sampling strategies based on the presence or absence of subject dependent and subject independent reference samples during training. In comparison with the existing state-of-the-art model, which is trained in a supervised manner, our approach with only 20 reference samples from subjects under consideration (unseen during training) shows an absolute improvement of 8.56% and 7.53% in accuracy on emotion classification in valence and arousal space, respectively, without any re-training using the samples from the unseen subjects. Moreover, when tested in a zero calibration setup (when reference samples are taken from subjects other than the subject under consideration), our system improves the accuracy over the supervised model by 2.02% and 0.61% for emotion classification in valence and arousal space, respectively. |
---|---|
AbstractList | •Proposed a few-shot adaptation for EEG based Emotion Recognition which limits the number of samples required for calibration samples to a minimum.•Devised and demonstrated the efficacy of three sampling strategies for support sets during our training for scenarios when reference samples from the subject under consideration may or may not be present, which is novel.•Employed a 1-D EEG signal transformation into a 3-D matrix representation such that the spatial correlation among adjacent EEG electrodes is also learnt in addition to high-level features of individual electrodes.•Proposed a 3-D convolutional recurrent embedding architecture to extract the temporal relations from the spatially convolved features of individual electrodes, which is also novel.•The combination of our best sampling strategies in subject dependent and subject independent setups outperforms existing approaches using a cross-subject evaluation setup.
Brain Computer Interfaces (BCI) detect changes in the electrical activity of brain which could be applied in use-cases like environmental control, neuro-rehabilitation etc. Prior to the actual usage, the subject has to undergo a lengthy calibration phase and hence prohibits an optimal plug-and-play experience. To quantify the minimum number of samples required for calibration, we propose a few-shot adaptation to the task of recognizing emotion from Electroencephalography (EEG) signals, without requiring any fine-tuning of the pre-trained classification models for every user. Our experiments illustrate the usefulness of various sampling strategies based on the presence or absence of subject dependent and subject independent reference samples during training. In comparison with the existing state-of-the-art model, which is trained in a supervised manner, our approach with only 20 reference samples from subjects under consideration (unseen during training) shows an absolute improvement of 8.56% and 7.53% in accuracy on emotion classification in valence and arousal space, respectively, without any re-training using the samples from the unseen subjects. Moreover, when tested in a zero calibration setup (when reference samples are taken from subjects other than the subject under consideration), our system improves the accuracy over the supervised model by 2.02% and 0.61% for emotion classification in valence and arousal space, respectively. |
ArticleNumber | 103289 |
Author | Chakraborty, Rupayan Bhosale, Swapnil Kopparapu, Sunil Kumar |
Author_xml | – sequence: 1 givenname: Swapnil surname: Bhosale fullname: Bhosale, Swapnil email: bhosale.swapnil2@tcs.com organization: TCS Research – Mumbai, India – sequence: 2 givenname: Rupayan surname: Chakraborty fullname: Chakraborty, Rupayan email: rupayan.chakraborty@tcs.com organization: TCS Research – Mumbai, India – sequence: 3 givenname: Sunil Kumar surname: Kopparapu fullname: Kopparapu, Sunil Kumar email: sunilkumar.kopparapu@tcs.com organization: TCS Research – Mumbai, India |
BookMark | eNp9kEFLAzEQhYNUsK3-AU_5A1uT3XSbBS9SahUKXvQoYTY7qVm2yZJEwX_vbqsXD73MvBn4Hrw3IxPnHRJyy9mCM17etYs69nqRs5wPjyKX1QWZ8pUoM8mZnPxpVokrMouxZUzIFRdT8r6GztYBkvWOmoBID5iAdgjBWbenNURsKPR98KA_qPGBxs-6RZ2odQ32OAyX6GazpXjwR5eA2u-dHfU1uTTQRbz53XPy9rh5XT9lu5ft8_phl-mCsZRVrGkElKwGMGWpsQKQXFe1wVxXBoQQJl8tm5zVw1lxNEsjy7IYtdFFoYs5kSdfHXyMAY3SNh0zpQC2U5ypsSbVqrEmNdakTjUNaP4P7YM9QPg-D92fIBxCfVkMKmqLTmNjh_RJNd6ew38A9UWFyg |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3322294 crossref_primary_10_1007_s12652_023_04746_y crossref_primary_10_1109_TIM_2023_3276515 crossref_primary_10_1016_j_eswa_2024_123972 crossref_primary_10_1155_2024_6091523 crossref_primary_10_1016_j_knosys_2023_110756 crossref_primary_10_1145_3524499 crossref_primary_10_1109_ACCESS_2023_3276244 crossref_primary_10_1109_JBHI_2023_3335854 crossref_primary_10_1007_s11831_023_09927_8 crossref_primary_10_1109_JBHI_2024_3384816 crossref_primary_10_1109_ACCESS_2024_3384303 crossref_primary_10_1016_j_cmpb_2023_107380 crossref_primary_10_1145_3712259 crossref_primary_10_1080_10255842_2023_2286918 crossref_primary_10_1007_s11571_024_10215_9 crossref_primary_10_1016_j_neunet_2023_03_039 crossref_primary_10_1016_j_measurement_2024_115940 crossref_primary_10_1109_ACCESS_2023_3275565 crossref_primary_10_1109_JSEN_2024_3369062 crossref_primary_10_1007_s13534_023_00316_5 crossref_primary_10_1016_j_bspc_2023_104998 crossref_primary_10_1016_j_neunet_2024_106108 crossref_primary_10_4018_IJSWIS_337286 crossref_primary_10_1109_TNSRE_2022_3228216 crossref_primary_10_1109_RBME_2024_3492381 crossref_primary_10_1016_j_eswa_2023_121986 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_1007_s13755_023_00226_x crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1016_j_neunet_2024_106643 |
Cites_doi | 10.1038/nature04968 10.1016/j.neuroimage.2007.01.051 10.1609/aaai.v31i2.19105 10.1145/3386252 10.3389/fnhum.2021.643386 10.3390/s18051383 10.3390/s20123491 10.1109/ICASSP.2016.7471789 10.1109/EMBC.2018.8512865 10.3390/s20072034 10.1109/TNNLS.2015.2476656 10.1371/journal.pone.0002967 10.3390/s19092212 10.1109/79.911197 10.1109/TAFFC.2015.2436926 10.1109/ACCESS.2019.2936817 10.1109/T-AFFC.2011.15 10.1016/j.bspc.2016.09.005 10.1109/ICASSP.2018.8462243 10.1016/j.ipm.2019.102185 10.14569/IJACSA.2018.090843 10.1109/ICASSP.2010.5495183 10.1109/TAFFC.2018.2817622 10.1109/ICASSP.2018.8462518 10.1007/s00521-015-2149-8 10.1007/s00779-017-1072-7 10.1109/ICASSP40776.2020.9053340 10.1016/j.compbiomed.2020.103927 10.1109/ICASSP.2018.8461315 10.1016/j.compbiomed.2016.10.019 10.1109/JPROC.2015.2404941 10.1007/s12559-017-9517-x 10.1016/j.neucom.2012.02.032 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2021.103289 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2021_103289 S1746809421008867 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-90dd4a60baaf66ce9aa81c9bfe2c9fa444f275d20bc9f91ef5f86639f91fc33c3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:12 EDT 2025 Thu Apr 24 22:55:58 EDT 2025 Fri Feb 23 02:41:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | EEG emotion detection Support sampling Zero calibration setup Few-shot learning Episodic training |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-90dd4a60baaf66ce9aa81c9bfe2c9fa444f275d20bc9f91ef5f86639f91fc33c3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2021_103289 crossref_primary_10_1016_j_bspc_2021_103289 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Blankertz, Dornhege, Krauledat, Müller, Curio (b0095) 2007; 37 Wang, Yao, Kwok, Ni (b0070) 2020; 53 Lotte (b0030) 2015; 103 Santhanam, Ryu, Byron, Afshar, Shenoy (b0005) 2006; 442 Li, Bao, Li, Zhao (b0170) 2020; 57 S. Tripathi, S. Acharya, R.D. Sharma, S. Mittal, S. Bhattacharya, Using Deep and Convolutional Neural Networks for accurate Emotion Classification on DEAP Dataset, in: AAAI, 2017, pp. 4746–4752. Sanakoyeu, Tschernezki, Buchler, Ommer (b0205) 2019 Krauledat, Tangermann, Blankertz, Müller (b0225) 2008; 3 Mohammadi, Frounchi, Amiri (b0240) 2017; 28 Dalhoumi, Dray, Montmain (b0040) 2014 Soleymani, Asghari-Esfeden, Fu, Pantic (b0190) 2015; 7 Yang, Wu, Qiu, Wang, Chen (b0175) 2018 Y. Luo, B.-L. Lu, EEG data augmentation for Emotion Recognition using a Conditional Wasserstein GAN, in: IEEE EMBC, 2018, pp. 2535–2538. Liu, Ding, Li, Cheng, Song, Wan, Chen (b0060) 2020; 123 S. Bhosale, R. Chakraborty, S.K. Kopparapu, Semi supervised learning for few-shot audio classification by episodic triplet mining, arXiv preprint arXiv:2102.08074. Cimtay, Ekmekcioglu (b0160) 2020; 20 Doborjeh, Doborjeh, Kasabov (b0125) 2018; 10 G. Krishna, C. Tran, Y. Han, M. Carnahan, A.H. Tewfik, Speech synthesis using EEG, in: IEEE ICASSP, 2020, pp. 1235–1238. F. Lotte, C. Guan, Learning from other subjects helps reducing Brain Computer Interface calibration time, in: IEEE ICASSP, 2010, pp. 614–617. S. Borhani, R. Abiri, X. Zhao, Y. Jiang, A transfer learning approach towards zero-training BCI for EEG-based two dimensional cursor control, in: Society for Neuroscience 2017 Meeting (SfN2017). Salama, El-Khoribi, Shoman, Shalaby (b0145) 2018; 9 S. Kuanar, V. Athitsos, N. Pradhan, A. Mishra, K.R. Rao, Cognitive analysis of working memory load from EEG, by a deep recurrent neural network, in: IEEE ICASSP, 2018, pp. 2576–2580. Jadhav, Manthalkar, Joshi (b0105) 2017 Kwon, Shin, Kim (b0140) 2018; 18 J. Snell, K. Swersky, R.S. Zemel, Prototypical networks for few-shot learning, arXiv preprint arXiv:1703.05175. Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b0115) 2011; 3 Alhagry, Fahmy, El-Khoribi (b0080) 2017; 8 S. Issa, Q. Peng, X. You, Emotion classification using EEG brain signals and the broad learning system, IEEE Transactions on Systems, Man, and Cybernetics: Systems. F. Lotte, Generating artificial eeg signals to reduce bci calibration time, in: 5th International Brain-Computer Interface Workshop, 2011, pp. 176–179. Sung, Yang, Zhang, Xiang, Torr, Hospedales (b0215) 2018 Zhang, Zhou, Jin, Zhao, Wang, Cichocki (b0010) 2015; 27 Yang, Wu, Fu, Chen (b0055) 2018 N. Liu, Y. Fang, L. Li, L. Hou, F. Yang, Y. Guo, Multiple feature fusion for Automatic Emotion Recognition using EEG signals, in: IEEE ICASSP, 2018, pp. 896–900. Song, Zheng, Song, Cui (b0200) 2018; 11 B. Blankertz, BCI Competition IV, URL:http://www.bbci.de/competition/iv/ (2008). He, Zhang, Ren, Sun (b0135) 2016 Chao, Dong, Liu, Lu (b0090) 2019; 19 Y. Zhang, Q. Zhao, G. Zhou, J. Jin, X. Wang, A. Cichocki, Removal of EEG artifacts for BCI applications using fully Bayesian Tensor Completion, in: IEEE ICASSP, 2016, pp. 819–823. H. Yang, S. Sakhavi, K.K. Ang, C. Guan, On the use of Convolutional Neural Networks and augmented CSP features for multi-class motor imagery of EEG signals classification, in: IEEE EMBC, 2015, pp. 2620–2623. Jrad, Congedo (b0245) 2012; 90 Cho, Hwang (b0180) 2020; 20 Cowie, Douglas-Cowie, Tsapatsoulis, Votsis, Kollias, Fellenz, Taylor (b0075) 2001; 18 Menezes, Samara, Galway, SantAnna, Verikas, Alonso-Fernandez, Wang, Bond (b0120) 2017; 21 W. Ko, E. Jeon, S. Jeong, J. Phyo, H.-I. Suk, A survey on deep learning-based short/zero-calibration approaches for eeg-based brain–computer interfaces, Frontiers in Human Neuroscience 15. Chen, Jiang, Zhang (b0185) 2019; 7 S.-E. Moon, S. Jang, J.-S. Lee, Convolutional Neural Network approach for EEG-based Emotion Recognition using Brain connectivity and its spatial information, in: IEEE ICASSP, 2018, pp. 2556–2560. Minguillon, Lopez-Gordo, Pelayo (b0020) 2017 Chai, Wang, Zhao, Liu, Bai, Li (b0150) 2016; 79 P. Pandey, K. Seeja, Subject independent Emotion Recognition from EEG using VMD and Deep Learning, Journal of King Saud University-Computer and Information Sciences. Li, Sun, Dong, Ren (b0235) 2019 Kwon (10.1016/j.bspc.2021.103289_b0140) 2018; 18 Cho (10.1016/j.bspc.2021.103289_b0180) 2020; 20 10.1016/j.bspc.2021.103289_b0230 10.1016/j.bspc.2021.103289_b0110 10.1016/j.bspc.2021.103289_b0155 10.1016/j.bspc.2021.103289_b0035 Alhagry (10.1016/j.bspc.2021.103289_b0080) 2017; 8 Chen (10.1016/j.bspc.2021.103289_b0185) 2019; 7 10.1016/j.bspc.2021.103289_b0195 Yang (10.1016/j.bspc.2021.103289_b0055) 2018 Blankertz (10.1016/j.bspc.2021.103289_b0095) 2007; 37 Cowie (10.1016/j.bspc.2021.103289_b0075) 2001; 18 Song (10.1016/j.bspc.2021.103289_b0200) 2018; 11 Sanakoyeu (10.1016/j.bspc.2021.103289_b0205) 2019 Salama (10.1016/j.bspc.2021.103289_b0145) 2018; 9 Soleymani (10.1016/j.bspc.2021.103289_b0190) 2015; 7 Menezes (10.1016/j.bspc.2021.103289_b0120) 2017; 21 10.1016/j.bspc.2021.103289_b0165 10.1016/j.bspc.2021.103289_b0045 10.1016/j.bspc.2021.103289_b0085 Lotte (10.1016/j.bspc.2021.103289_b0030) 2015; 103 Jadhav (10.1016/j.bspc.2021.103289_b0105) 2017 Liu (10.1016/j.bspc.2021.103289_b0060) 2020; 123 Chao (10.1016/j.bspc.2021.103289_b0090) 2019; 19 Santhanam (10.1016/j.bspc.2021.103289_b0005) 2006; 442 Krauledat (10.1016/j.bspc.2021.103289_b0225) 2008; 3 Sung (10.1016/j.bspc.2021.103289_b0215) 2018 10.1016/j.bspc.2021.103289_b0015 10.1016/j.bspc.2021.103289_b0210 Koelstra (10.1016/j.bspc.2021.103289_b0115) 2011; 3 Yang (10.1016/j.bspc.2021.103289_b0175) 2018 10.1016/j.bspc.2021.103289_b0050 He (10.1016/j.bspc.2021.103289_b0135) 2016 10.1016/j.bspc.2021.103289_b0250 10.1016/j.bspc.2021.103289_b0130 Li (10.1016/j.bspc.2021.103289_b0170) 2020; 57 Zhang (10.1016/j.bspc.2021.103289_b0010) 2015; 27 Wang (10.1016/j.bspc.2021.103289_b0070) 2020; 53 Li (10.1016/j.bspc.2021.103289_b0235) 2019 Doborjeh (10.1016/j.bspc.2021.103289_b0125) 2018; 10 Minguillon (10.1016/j.bspc.2021.103289_b0020) 2017 Chai (10.1016/j.bspc.2021.103289_b0150) 2016; 79 10.1016/j.bspc.2021.103289_b0025 10.1016/j.bspc.2021.103289_b0065 Mohammadi (10.1016/j.bspc.2021.103289_b0240) 2017; 28 10.1016/j.bspc.2021.103289_b0220 Dalhoumi (10.1016/j.bspc.2021.103289_b0040) 2014 10.1016/j.bspc.2021.103289_b0100 Cimtay (10.1016/j.bspc.2021.103289_b0160) 2020; 20 Jrad (10.1016/j.bspc.2021.103289_b0245) 2012; 90 |
References_xml | – volume: 123 year: 2020 ident: b0060 article-title: Multi-channel EEG-based Emotion Recognition via a Multi-level features guided Capsule Network publication-title: Computers in Biology and Medicine – volume: 9 start-page: 329 year: 2018 end-page: 337 ident: b0145 article-title: EEG-based Emotion Recognition using 3D Convolutional Neural Networks publication-title: International Journal of Advanced Computer Science Applications – volume: 7 start-page: 17 year: 2015 end-page: 28 ident: b0190 article-title: Analysis of EEG signals and facial expressions for Continuous Emotion Detection publication-title: IEEE Transactions on Affective Computing – reference: W. Ko, E. Jeon, S. Jeong, J. Phyo, H.-I. Suk, A survey on deep learning-based short/zero-calibration approaches for eeg-based brain–computer interfaces, Frontiers in Human Neuroscience 15. – volume: 18 start-page: 1383 year: 2018 ident: b0140 article-title: Electroencephalography based fusion two-dimensional (2D)-Convolution Neural Networks (CNN) model for Emotion Recognition system publication-title: Sensors – start-page: 148 year: 2019 end-page: 158 ident: b0235 article-title: Convolutional Neural Networks on EEG-Based Emotion Recognition publication-title: CCF Conference on Big Data – volume: 90 start-page: 66 year: 2012 end-page: 71 ident: b0245 article-title: Identification of spatial and temporal features of eeg publication-title: Neurocomputing – reference: F. Lotte, C. Guan, Learning from other subjects helps reducing Brain Computer Interface calibration time, in: IEEE ICASSP, 2010, pp. 614–617. – volume: 18 start-page: 32 year: 2001 end-page: 80 ident: b0075 article-title: Emotion Recognition in Human-Computer Interaction publication-title: IEEE Signal Processing Magazine – start-page: 770 year: 2016 end-page: 778 ident: b0135 article-title: Deep Residual learning for Image Recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1199 year: 2018 end-page: 1208 ident: b0215 article-title: Learning to compare: Relation network for few-shot learning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: N. Liu, Y. Fang, L. Li, L. Hou, F. Yang, Y. Guo, Multiple feature fusion for Automatic Emotion Recognition using EEG signals, in: IEEE ICASSP, 2018, pp. 896–900. – reference: Y. Luo, B.-L. Lu, EEG data augmentation for Emotion Recognition using a Conditional Wasserstein GAN, in: IEEE EMBC, 2018, pp. 2535–2538. – volume: 20 start-page: 2034 year: 2020 ident: b0160 article-title: Investigating the use of pretrained Convolutional Neural Network on cross-subject and cross-dataset EEG Emotion Recognition publication-title: Sensors – volume: 8 start-page: 355 year: 2017 end-page: 358 ident: b0080 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: International Journal of Advanced Computer Science and Applications (IJACSA) – volume: 79 start-page: 205 year: 2016 end-page: 214 ident: b0150 article-title: Unsupervised Domain adaptation techniques based on Auto-encoder for non-stationary EEG-based Emotion Recognition publication-title: Computers in Biology and Medicine – reference: S. Borhani, R. Abiri, X. Zhao, Y. Jiang, A transfer learning approach towards zero-training BCI for EEG-based two dimensional cursor control, in: Society for Neuroscience 2017 Meeting (SfN2017). – volume: 11 start-page: 532 year: 2018 end-page: 541 ident: b0200 article-title: EEG Emotion Recognition using Dynamical Graph Convolutional Neural Networks publication-title: IEEE Transactions on Affective Computing – start-page: 1 year: 2018 end-page: 7 ident: b0175 article-title: Emotion Recognition from Multi-channel EEG through Parallel Convolutional Recurrent Neural Network publication-title: International Joint Conference on Neural Networks – volume: 442 start-page: 195 year: 2006 end-page: 198 ident: b0005 article-title: A high-performance Brain Computer Interface publication-title: Nature – volume: 27 start-page: 2256 year: 2015 end-page: 2267 ident: b0010 article-title: Sparse Bayesian classification of EEG for Brain Computer Interface publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 19 start-page: 2212 year: 2019 ident: b0090 article-title: Emotion recognition from Multiband EEG signals using Capsnet publication-title: Sensors – reference: B. Blankertz, BCI Competition IV, URL:http://www.bbci.de/competition/iv/ (2008). – volume: 103 start-page: 871 year: 2015 end-page: 890 ident: b0030 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces publication-title: Proceedings of the IEEE – start-page: 407 year: 2017 end-page: 418 ident: b0020 article-title: Trends in EEG-BCI for daily-life: Requirements for artifact removal publication-title: Biomedical Signal Processing and Control – reference: S. Kuanar, V. Athitsos, N. Pradhan, A. Mishra, K.R. Rao, Cognitive analysis of working memory load from EEG, by a deep recurrent neural network, in: IEEE ICASSP, 2018, pp. 2576–2580. – reference: J. Snell, K. Swersky, R.S. Zemel, Prototypical networks for few-shot learning, arXiv preprint arXiv:1703.05175. – volume: 57 year: 2020 ident: b0170 article-title: Exploring Temporal Representations by leveraging Attention-based Bidirectional LSTM-RNNs for Multi-modal Emotion Recognition publication-title: Information Processing & Management – reference: S. Bhosale, R. Chakraborty, S.K. Kopparapu, Semi supervised learning for few-shot audio classification by episodic triplet mining, arXiv preprint arXiv:2102.08074. – volume: 3 year: 2008 ident: b0225 article-title: Towards zero training for Brain-Computer Interfacing publication-title: PloS one – start-page: 634 year: 2014 end-page: 639 ident: b0040 article-title: Knowledge transfer for reducing calibration time in Brain-Computer Interfacing publication-title: International Conference on Tools with Artificial Intelligence – start-page: 335 year: 2017 end-page: 343 ident: b0105 article-title: Electroencephalography-based Emotion Recognition using gray-level co-occurrence matrix features publication-title: International Conference on Computer Vision and Image Processing – reference: G. Krishna, C. Tran, Y. Han, M. Carnahan, A.H. Tewfik, Speech synthesis using EEG, in: IEEE ICASSP, 2020, pp. 1235–1238. – start-page: 433 year: 2018 end-page: 443 ident: b0055 article-title: Continuous Convolutional Neural Network with 3D input for EEG-based Emotion Recognition publication-title: International Conference on Neural Information Processing – reference: Y. Zhang, Q. Zhao, G. Zhou, J. Jin, X. Wang, A. Cichocki, Removal of EEG artifacts for BCI applications using fully Bayesian Tensor Completion, in: IEEE ICASSP, 2016, pp. 819–823. – reference: S. Tripathi, S. Acharya, R.D. Sharma, S. Mittal, S. Bhattacharya, Using Deep and Convolutional Neural Networks for accurate Emotion Classification on DEAP Dataset, in: AAAI, 2017, pp. 4746–4752. – volume: 53 start-page: 1 year: 2020 end-page: 34 ident: b0070 article-title: Generalizing from a few examples: A survey on few-shot learning publication-title: ACM Computing Surveys (CSUR) – volume: 37 start-page: 539 year: 2007 end-page: 550 ident: b0095 article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects publication-title: NeuroImage – volume: 7 start-page: 118530 year: 2019 end-page: 118540 ident: b0185 article-title: A Hierarchical Bidirectional GRU model with Attention for EEG-based Emotion Classification publication-title: IEEE Access – volume: 3 start-page: 18 year: 2011 end-page: 31 ident: b0115 article-title: Deap: A database for Emotion Analysis; using physiological signals publication-title: IEEE Transactions on Affective Computing – volume: 20 start-page: 3491 year: 2020 ident: b0180 article-title: Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network publication-title: Sensors – volume: 28 start-page: 1985 year: 2017 end-page: 1990 ident: b0240 article-title: Wavelet-based Emotion Recognition system using EEG signal publication-title: Neural Computing and Applications – reference: S.-E. Moon, S. Jang, J.-S. Lee, Convolutional Neural Network approach for EEG-based Emotion Recognition using Brain connectivity and its spatial information, in: IEEE ICASSP, 2018, pp. 2556–2560. – reference: F. Lotte, Generating artificial eeg signals to reduce bci calibration time, in: 5th International Brain-Computer Interface Workshop, 2011, pp. 176–179. – reference: P. Pandey, K. Seeja, Subject independent Emotion Recognition from EEG using VMD and Deep Learning, Journal of King Saud University-Computer and Information Sciences. – volume: 21 start-page: 1003 year: 2017 end-page: 1013 ident: b0120 article-title: Towards Emotion Recognition for virtual environments: an Evaluation of EEG features on benchmark dataset publication-title: Personal and Ubiquitous Computing – start-page: 471 year: 2019 end-page: 480 ident: b0205 article-title: Divide and conquer the embedding space for metric learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 10 start-page: 35 year: 2018 end-page: 48 ident: b0125 article-title: Attentional bias pattern recognition in spiking Neural Networks from spatio-temporal EEG data publication-title: Cognitive Computation – reference: S. Issa, Q. Peng, X. You, Emotion classification using EEG brain signals and the broad learning system, IEEE Transactions on Systems, Man, and Cybernetics: Systems. – reference: H. Yang, S. Sakhavi, K.K. Ang, C. Guan, On the use of Convolutional Neural Networks and augmented CSP features for multi-class motor imagery of EEG signals classification, in: IEEE EMBC, 2015, pp. 2620–2623. – volume: 442 start-page: 195 issue: 7099 year: 2006 ident: 10.1016/j.bspc.2021.103289_b0005 article-title: A high-performance Brain Computer Interface publication-title: Nature doi: 10.1038/nature04968 – start-page: 471 year: 2019 ident: 10.1016/j.bspc.2021.103289_b0205 article-title: Divide and conquer the embedding space for metric learning – volume: 37 start-page: 539 issue: 2 year: 2007 ident: 10.1016/j.bspc.2021.103289_b0095 article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.01.051 – ident: 10.1016/j.bspc.2021.103289_b0195 doi: 10.1609/aaai.v31i2.19105 – volume: 53 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.bspc.2021.103289_b0070 article-title: Generalizing from a few examples: A survey on few-shot learning publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3386252 – ident: 10.1016/j.bspc.2021.103289_b0065 doi: 10.3389/fnhum.2021.643386 – volume: 18 start-page: 1383 issue: 5 year: 2018 ident: 10.1016/j.bspc.2021.103289_b0140 article-title: Electroencephalography based fusion two-dimensional (2D)-Convolution Neural Networks (CNN) model for Emotion Recognition system publication-title: Sensors doi: 10.3390/s18051383 – ident: 10.1016/j.bspc.2021.103289_b0110 – volume: 20 start-page: 3491 issue: 12 year: 2020 ident: 10.1016/j.bspc.2021.103289_b0180 article-title: Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network publication-title: Sensors doi: 10.3390/s20123491 – ident: 10.1016/j.bspc.2021.103289_b0015 doi: 10.1109/ICASSP.2016.7471789 – ident: 10.1016/j.bspc.2021.103289_b0155 doi: 10.1109/EMBC.2018.8512865 – volume: 20 start-page: 2034 issue: 7 year: 2020 ident: 10.1016/j.bspc.2021.103289_b0160 article-title: Investigating the use of pretrained Convolutional Neural Network on cross-subject and cross-dataset EEG Emotion Recognition publication-title: Sensors doi: 10.3390/s20072034 – volume: 27 start-page: 2256 issue: 11 year: 2015 ident: 10.1016/j.bspc.2021.103289_b0010 article-title: Sparse Bayesian classification of EEG for Brain Computer Interface publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2476656 – volume: 3 issue: 8 year: 2008 ident: 10.1016/j.bspc.2021.103289_b0225 article-title: Towards zero training for Brain-Computer Interfacing publication-title: PloS one doi: 10.1371/journal.pone.0002967 – start-page: 1199 year: 2018 ident: 10.1016/j.bspc.2021.103289_b0215 article-title: Learning to compare: Relation network for few-shot learning – volume: 19 start-page: 2212 issue: 9 year: 2019 ident: 10.1016/j.bspc.2021.103289_b0090 article-title: Emotion recognition from Multiband EEG signals using Capsnet publication-title: Sensors doi: 10.3390/s19092212 – volume: 18 start-page: 32 issue: 1 year: 2001 ident: 10.1016/j.bspc.2021.103289_b0075 article-title: Emotion Recognition in Human-Computer Interaction publication-title: IEEE Signal Processing Magazine doi: 10.1109/79.911197 – ident: 10.1016/j.bspc.2021.103289_b0165 – volume: 7 start-page: 17 issue: 1 year: 2015 ident: 10.1016/j.bspc.2021.103289_b0190 article-title: Analysis of EEG signals and facial expressions for Continuous Emotion Detection publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2015.2436926 – volume: 7 start-page: 118530 year: 2019 ident: 10.1016/j.bspc.2021.103289_b0185 article-title: A Hierarchical Bidirectional GRU model with Attention for EEG-based Emotion Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936817 – start-page: 335 year: 2017 ident: 10.1016/j.bspc.2021.103289_b0105 article-title: Electroencephalography-based Emotion Recognition using gray-level co-occurrence matrix features – volume: 3 start-page: 18 issue: 1 year: 2011 ident: 10.1016/j.bspc.2021.103289_b0115 article-title: Deap: A database for Emotion Analysis; using physiological signals publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2011.15 – start-page: 407 year: 2017 ident: 10.1016/j.bspc.2021.103289_b0020 article-title: Trends in EEG-BCI for daily-life: Requirements for artifact removal publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2016.09.005 – ident: 10.1016/j.bspc.2021.103289_b0250 doi: 10.1109/ICASSP.2018.8462243 – ident: 10.1016/j.bspc.2021.103289_b0045 – start-page: 634 year: 2014 ident: 10.1016/j.bspc.2021.103289_b0040 article-title: Knowledge transfer for reducing calibration time in Brain-Computer Interfacing – volume: 57 issue: 3 year: 2020 ident: 10.1016/j.bspc.2021.103289_b0170 article-title: Exploring Temporal Representations by leveraging Attention-based Bidirectional LSTM-RNNs for Multi-modal Emotion Recognition publication-title: Information Processing & Management doi: 10.1016/j.ipm.2019.102185 – volume: 9 start-page: 329 issue: 8 year: 2018 ident: 10.1016/j.bspc.2021.103289_b0145 article-title: EEG-based Emotion Recognition using 3D Convolutional Neural Networks publication-title: International Journal of Advanced Computer Science Applications doi: 10.14569/IJACSA.2018.090843 – volume: 8 start-page: 355 issue: 10 year: 2017 ident: 10.1016/j.bspc.2021.103289_b0080 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: International Journal of Advanced Computer Science and Applications (IJACSA) – ident: 10.1016/j.bspc.2021.103289_b0035 doi: 10.1109/ICASSP.2010.5495183 – start-page: 770 year: 2016 ident: 10.1016/j.bspc.2021.103289_b0135 article-title: Deep Residual learning for Image Recognition – start-page: 433 year: 2018 ident: 10.1016/j.bspc.2021.103289_b0055 article-title: Continuous Convolutional Neural Network with 3D input for EEG-based Emotion Recognition – ident: 10.1016/j.bspc.2021.103289_b0210 – volume: 11 start-page: 532 issue: 3 year: 2018 ident: 10.1016/j.bspc.2021.103289_b0200 article-title: EEG Emotion Recognition using Dynamical Graph Convolutional Neural Networks publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2018.2817622 – ident: 10.1016/j.bspc.2021.103289_b0130 doi: 10.1109/ICASSP.2018.8462518 – volume: 28 start-page: 1985 issue: 8 year: 2017 ident: 10.1016/j.bspc.2021.103289_b0240 article-title: Wavelet-based Emotion Recognition system using EEG signal publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-2149-8 – volume: 21 start-page: 1003 issue: 6 year: 2017 ident: 10.1016/j.bspc.2021.103289_b0120 article-title: Towards Emotion Recognition for virtual environments: an Evaluation of EEG features on benchmark dataset publication-title: Personal and Ubiquitous Computing doi: 10.1007/s00779-017-1072-7 – start-page: 148 year: 2019 ident: 10.1016/j.bspc.2021.103289_b0235 article-title: Convolutional Neural Networks on EEG-Based Emotion Recognition – ident: 10.1016/j.bspc.2021.103289_b0220 – ident: 10.1016/j.bspc.2021.103289_b0025 doi: 10.1109/ICASSP40776.2020.9053340 – volume: 123 year: 2020 ident: 10.1016/j.bspc.2021.103289_b0060 article-title: Multi-channel EEG-based Emotion Recognition via a Multi-level features guided Capsule Network publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.103927 – ident: 10.1016/j.bspc.2021.103289_b0050 doi: 10.1109/ICASSP.2018.8461315 – volume: 79 start-page: 205 year: 2016 ident: 10.1016/j.bspc.2021.103289_b0150 article-title: Unsupervised Domain adaptation techniques based on Auto-encoder for non-stationary EEG-based Emotion Recognition publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2016.10.019 – ident: 10.1016/j.bspc.2021.103289_b0230 – volume: 103 start-page: 871 issue: 6 year: 2015 ident: 10.1016/j.bspc.2021.103289_b0030 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2015.2404941 – volume: 10 start-page: 35 issue: 1 year: 2018 ident: 10.1016/j.bspc.2021.103289_b0125 article-title: Attentional bias pattern recognition in spiking Neural Networks from spatio-temporal EEG data publication-title: Cognitive Computation doi: 10.1007/s12559-017-9517-x – ident: 10.1016/j.bspc.2021.103289_b0085 – volume: 90 start-page: 66 year: 2012 ident: 10.1016/j.bspc.2021.103289_b0245 article-title: Identification of spatial and temporal features of eeg publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.032 – ident: 10.1016/j.bspc.2021.103289_b0100 – start-page: 1 year: 2018 ident: 10.1016/j.bspc.2021.103289_b0175 article-title: Emotion Recognition from Multi-channel EEG through Parallel Convolutional Recurrent Neural Network |
SSID | ssj0048714 |
Score | 2.4386349 |
Snippet | •Proposed a few-shot adaptation for EEG based Emotion Recognition which limits the number of samples required for calibration samples to a minimum.•Devised and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103289 |
SubjectTerms | EEG emotion detection Episodic training Few-shot learning Support sampling Zero calibration setup |
Title | Calibration free meta learning based approach for subject independent EEG emotion recognition |
URI | https://dx.doi.org/10.1016/j.bspc.2021.103289 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4inGY8qBG-rWtEnWHqdpY4DYBSbtgqqkSdAQdNPWXfntxG1aDQntwK2tbKmyLftran9G6NYQEaahlF7MAuFRzhVwQBJPSF_DkVuPFLsInid8PKWPMzZroEE1CwNtlS73lzm9yNbuSddZs7ucz7svFkvzyH6dBMBPE3GYKKe0B1He-a7bPCweL_i9QdgDaTc4U_Z4yfUSaAwD0il45eK_i9NWwRkdoUOHFHG_fJlj1NDZCTrY4g88RW8wWSVLH2Kz0hp_6VxgtwniHUOJUriiDccWn-L1RsLJC57X629zPBzeY12u88F1Q9EiO0PT0fB1MPbcvgQvDX0_92JfKSq4L4UwnKc6FiIiaSyNDtLYCEqpCXpMBb60tzHRhpnIAg64NmloXXaOmtki0xcIS6mjUJmQUa4osc5kkitmwRsr_sRFLUQqQyWpIxOHnRafSdU19pGAcRMwblIat4Xuap1lSaWxU5pV9k9-BURic_0Ovct_6l2h_QAmG4qG7GvUzFcbfWPxRi7bRUC10V7_4Wk8-QFlvNUz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DPizx68mcG6tWU7GgKiAhch4WKadm0NRgeBcfVvt926BRPjwdu2tMnyXvfet_a97wPgViMeJqEQXkwC7mFKpeWARB4XvrJbbm2UaxEMR7Q_wU9TMq2BTtkLY8sqXewvYnoerd2TlrNmazGbtV4MlqaR-TsJLD9NRNtbYBubz9fKGDS_qjoPA8hzgm872rPDXedMUeQlVgvLYxigZk4sF_-enTYyTu8A7DuoCO-LtzkENZUegb0NAsFj8Gpbq0ThRKiXSsFPlXHopCDeoM1REpa84dAAVLhaC7v1AmeV_m0Gu90HqAo9H1hVFM3TEzDpdcedvucEE7wk9P3Mi30pMae-4FxTmqiY8wglsdAqSGLNMcY6aBMZ-MLcxkhpoiODOOy1TkLjs1NQT-epOgNQCBWFUocEU4mR8SYRVBKD3kh-FBc1ACoNxRLHJm5FLT5YWTb2zqxxmTUuK4zbAHfVnEXBpfHnaFLan_1YEcwE-z_mnf9z3g3Y6Y-HAzZ4HD1fgN3Atjnk1dmXoJ4t1-rKgI9MXOeL6xtrydbB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibration+free+meta+learning+based+approach+for+subject+independent+EEG+emotion+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Bhosale%2C+Swapnil&rft.au=Chakraborty%2C+Rupayan&rft.au=Kopparapu%2C+Sunil+Kumar&rft.date=2022-02-01&rft.issn=1746-8094&rft.volume=72&rft.spage=103289&rft_id=info:doi/10.1016%2Fj.bspc.2021.103289&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_103289 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |