Calibration free meta learning based approach for subject independent EEG emotion recognition

•Proposed a few-shot adaptation for EEG based Emotion Recognition which limits the number of samples required for calibration samples to a minimum.•Devised and demonstrated the efficacy of three sampling strategies for support sets during our training for scenarios when reference samples from the su...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 72; p. 103289
Main Authors Bhosale, Swapnil, Chakraborty, Rupayan, Kopparapu, Sunil Kumar
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Proposed a few-shot adaptation for EEG based Emotion Recognition which limits the number of samples required for calibration samples to a minimum.•Devised and demonstrated the efficacy of three sampling strategies for support sets during our training for scenarios when reference samples from the subject under consideration may or may not be present, which is novel.•Employed a 1-D EEG signal transformation into a 3-D matrix representation such that the spatial correlation among adjacent EEG electrodes is also learnt in addition to high-level features of individual electrodes.•Proposed a 3-D convolutional recurrent embedding architecture to extract the temporal relations from the spatially convolved features of individual electrodes, which is also novel.•The combination of our best sampling strategies in subject dependent and subject independent setups outperforms existing approaches using a cross-subject evaluation setup. Brain Computer Interfaces (BCI) detect changes in the electrical activity of brain which could be applied in use-cases like environmental control, neuro-rehabilitation etc. Prior to the actual usage, the subject has to undergo a lengthy calibration phase and hence prohibits an optimal plug-and-play experience. To quantify the minimum number of samples required for calibration, we propose a few-shot adaptation to the task of recognizing emotion from Electroencephalography (EEG) signals, without requiring any fine-tuning of the pre-trained classification models for every user. Our experiments illustrate the usefulness of various sampling strategies based on the presence or absence of subject dependent and subject independent reference samples during training. In comparison with the existing state-of-the-art model, which is trained in a supervised manner, our approach with only 20 reference samples from subjects under consideration (unseen during training) shows an absolute improvement of 8.56% and 7.53% in accuracy on emotion classification in valence and arousal space, respectively, without any re-training using the samples from the unseen subjects. Moreover, when tested in a zero calibration setup (when reference samples are taken from subjects other than the subject under consideration), our system improves the accuracy over the supervised model by 2.02% and 0.61% for emotion classification in valence and arousal space, respectively.
AbstractList •Proposed a few-shot adaptation for EEG based Emotion Recognition which limits the number of samples required for calibration samples to a minimum.•Devised and demonstrated the efficacy of three sampling strategies for support sets during our training for scenarios when reference samples from the subject under consideration may or may not be present, which is novel.•Employed a 1-D EEG signal transformation into a 3-D matrix representation such that the spatial correlation among adjacent EEG electrodes is also learnt in addition to high-level features of individual electrodes.•Proposed a 3-D convolutional recurrent embedding architecture to extract the temporal relations from the spatially convolved features of individual electrodes, which is also novel.•The combination of our best sampling strategies in subject dependent and subject independent setups outperforms existing approaches using a cross-subject evaluation setup. Brain Computer Interfaces (BCI) detect changes in the electrical activity of brain which could be applied in use-cases like environmental control, neuro-rehabilitation etc. Prior to the actual usage, the subject has to undergo a lengthy calibration phase and hence prohibits an optimal plug-and-play experience. To quantify the minimum number of samples required for calibration, we propose a few-shot adaptation to the task of recognizing emotion from Electroencephalography (EEG) signals, without requiring any fine-tuning of the pre-trained classification models for every user. Our experiments illustrate the usefulness of various sampling strategies based on the presence or absence of subject dependent and subject independent reference samples during training. In comparison with the existing state-of-the-art model, which is trained in a supervised manner, our approach with only 20 reference samples from subjects under consideration (unseen during training) shows an absolute improvement of 8.56% and 7.53% in accuracy on emotion classification in valence and arousal space, respectively, without any re-training using the samples from the unseen subjects. Moreover, when tested in a zero calibration setup (when reference samples are taken from subjects other than the subject under consideration), our system improves the accuracy over the supervised model by 2.02% and 0.61% for emotion classification in valence and arousal space, respectively.
ArticleNumber 103289
Author Chakraborty, Rupayan
Bhosale, Swapnil
Kopparapu, Sunil Kumar
Author_xml – sequence: 1
  givenname: Swapnil
  surname: Bhosale
  fullname: Bhosale, Swapnil
  email: bhosale.swapnil2@tcs.com
  organization: TCS Research – Mumbai, India
– sequence: 2
  givenname: Rupayan
  surname: Chakraborty
  fullname: Chakraborty, Rupayan
  email: rupayan.chakraborty@tcs.com
  organization: TCS Research – Mumbai, India
– sequence: 3
  givenname: Sunil Kumar
  surname: Kopparapu
  fullname: Kopparapu, Sunil Kumar
  email: sunilkumar.kopparapu@tcs.com
  organization: TCS Research – Mumbai, India
BookMark eNp9kEFLAzEQhYNUsK3-AU_5A1uT3XSbBS9SahUKXvQoYTY7qVm2yZJEwX_vbqsXD73MvBn4Hrw3IxPnHRJyy9mCM17etYs69nqRs5wPjyKX1QWZ8pUoM8mZnPxpVokrMouxZUzIFRdT8r6GztYBkvWOmoBID5iAdgjBWbenNURsKPR98KA_qPGBxs-6RZ2odQ32OAyX6GazpXjwR5eA2u-dHfU1uTTQRbz53XPy9rh5XT9lu5ft8_phl-mCsZRVrGkElKwGMGWpsQKQXFe1wVxXBoQQJl8tm5zVw1lxNEsjy7IYtdFFoYs5kSdfHXyMAY3SNh0zpQC2U5ypsSbVqrEmNdakTjUNaP4P7YM9QPg-D92fIBxCfVkMKmqLTmNjh_RJNd6ew38A9UWFyg
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3322294
crossref_primary_10_1007_s12652_023_04746_y
crossref_primary_10_1109_TIM_2023_3276515
crossref_primary_10_1016_j_eswa_2024_123972
crossref_primary_10_1155_2024_6091523
crossref_primary_10_1016_j_knosys_2023_110756
crossref_primary_10_1145_3524499
crossref_primary_10_1109_ACCESS_2023_3276244
crossref_primary_10_1109_JBHI_2023_3335854
crossref_primary_10_1007_s11831_023_09927_8
crossref_primary_10_1109_JBHI_2024_3384816
crossref_primary_10_1109_ACCESS_2024_3384303
crossref_primary_10_1016_j_cmpb_2023_107380
crossref_primary_10_1145_3712259
crossref_primary_10_1080_10255842_2023_2286918
crossref_primary_10_1007_s11571_024_10215_9
crossref_primary_10_1016_j_neunet_2023_03_039
crossref_primary_10_1016_j_measurement_2024_115940
crossref_primary_10_1109_ACCESS_2023_3275565
crossref_primary_10_1109_JSEN_2024_3369062
crossref_primary_10_1007_s13534_023_00316_5
crossref_primary_10_1016_j_bspc_2023_104998
crossref_primary_10_1016_j_neunet_2024_106108
crossref_primary_10_4018_IJSWIS_337286
crossref_primary_10_1109_TNSRE_2022_3228216
crossref_primary_10_1109_RBME_2024_3492381
crossref_primary_10_1016_j_eswa_2023_121986
crossref_primary_10_1016_j_heliyon_2024_e31485
crossref_primary_10_1007_s13755_023_00226_x
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1016_j_neunet_2024_106643
Cites_doi 10.1038/nature04968
10.1016/j.neuroimage.2007.01.051
10.1609/aaai.v31i2.19105
10.1145/3386252
10.3389/fnhum.2021.643386
10.3390/s18051383
10.3390/s20123491
10.1109/ICASSP.2016.7471789
10.1109/EMBC.2018.8512865
10.3390/s20072034
10.1109/TNNLS.2015.2476656
10.1371/journal.pone.0002967
10.3390/s19092212
10.1109/79.911197
10.1109/TAFFC.2015.2436926
10.1109/ACCESS.2019.2936817
10.1109/T-AFFC.2011.15
10.1016/j.bspc.2016.09.005
10.1109/ICASSP.2018.8462243
10.1016/j.ipm.2019.102185
10.14569/IJACSA.2018.090843
10.1109/ICASSP.2010.5495183
10.1109/TAFFC.2018.2817622
10.1109/ICASSP.2018.8462518
10.1007/s00521-015-2149-8
10.1007/s00779-017-1072-7
10.1109/ICASSP40776.2020.9053340
10.1016/j.compbiomed.2020.103927
10.1109/ICASSP.2018.8461315
10.1016/j.compbiomed.2016.10.019
10.1109/JPROC.2015.2404941
10.1007/s12559-017-9517-x
10.1016/j.neucom.2012.02.032
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.103289
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_103289
S1746809421008867
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-90dd4a60baaf66ce9aa81c9bfe2c9fa444f275d20bc9f91ef5f86639f91fc33c3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:12 EDT 2025
Thu Apr 24 22:55:58 EDT 2025
Fri Feb 23 02:41:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords EEG emotion detection
Support sampling
Zero calibration setup
Few-shot learning
Episodic training
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-90dd4a60baaf66ce9aa81c9bfe2c9fa444f275d20bc9f91ef5f86639f91fc33c3
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2021_103289
crossref_primary_10_1016_j_bspc_2021_103289
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Blankertz, Dornhege, Krauledat, Müller, Curio (b0095) 2007; 37
Wang, Yao, Kwok, Ni (b0070) 2020; 53
Lotte (b0030) 2015; 103
Santhanam, Ryu, Byron, Afshar, Shenoy (b0005) 2006; 442
Li, Bao, Li, Zhao (b0170) 2020; 57
S. Tripathi, S. Acharya, R.D. Sharma, S. Mittal, S. Bhattacharya, Using Deep and Convolutional Neural Networks for accurate Emotion Classification on DEAP Dataset, in: AAAI, 2017, pp. 4746–4752.
Sanakoyeu, Tschernezki, Buchler, Ommer (b0205) 2019
Krauledat, Tangermann, Blankertz, Müller (b0225) 2008; 3
Mohammadi, Frounchi, Amiri (b0240) 2017; 28
Dalhoumi, Dray, Montmain (b0040) 2014
Soleymani, Asghari-Esfeden, Fu, Pantic (b0190) 2015; 7
Yang, Wu, Qiu, Wang, Chen (b0175) 2018
Y. Luo, B.-L. Lu, EEG data augmentation for Emotion Recognition using a Conditional Wasserstein GAN, in: IEEE EMBC, 2018, pp. 2535–2538.
Liu, Ding, Li, Cheng, Song, Wan, Chen (b0060) 2020; 123
S. Bhosale, R. Chakraborty, S.K. Kopparapu, Semi supervised learning for few-shot audio classification by episodic triplet mining, arXiv preprint arXiv:2102.08074.
Cimtay, Ekmekcioglu (b0160) 2020; 20
Doborjeh, Doborjeh, Kasabov (b0125) 2018; 10
G. Krishna, C. Tran, Y. Han, M. Carnahan, A.H. Tewfik, Speech synthesis using EEG, in: IEEE ICASSP, 2020, pp. 1235–1238.
F. Lotte, C. Guan, Learning from other subjects helps reducing Brain Computer Interface calibration time, in: IEEE ICASSP, 2010, pp. 614–617.
S. Borhani, R. Abiri, X. Zhao, Y. Jiang, A transfer learning approach towards zero-training BCI for EEG-based two dimensional cursor control, in: Society for Neuroscience 2017 Meeting (SfN2017).
Salama, El-Khoribi, Shoman, Shalaby (b0145) 2018; 9
S. Kuanar, V. Athitsos, N. Pradhan, A. Mishra, K.R. Rao, Cognitive analysis of working memory load from EEG, by a deep recurrent neural network, in: IEEE ICASSP, 2018, pp. 2576–2580.
Jadhav, Manthalkar, Joshi (b0105) 2017
Kwon, Shin, Kim (b0140) 2018; 18
J. Snell, K. Swersky, R.S. Zemel, Prototypical networks for few-shot learning, arXiv preprint arXiv:1703.05175.
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b0115) 2011; 3
Alhagry, Fahmy, El-Khoribi (b0080) 2017; 8
S. Issa, Q. Peng, X. You, Emotion classification using EEG brain signals and the broad learning system, IEEE Transactions on Systems, Man, and Cybernetics: Systems.
F. Lotte, Generating artificial eeg signals to reduce bci calibration time, in: 5th International Brain-Computer Interface Workshop, 2011, pp. 176–179.
Sung, Yang, Zhang, Xiang, Torr, Hospedales (b0215) 2018
Zhang, Zhou, Jin, Zhao, Wang, Cichocki (b0010) 2015; 27
Yang, Wu, Fu, Chen (b0055) 2018
N. Liu, Y. Fang, L. Li, L. Hou, F. Yang, Y. Guo, Multiple feature fusion for Automatic Emotion Recognition using EEG signals, in: IEEE ICASSP, 2018, pp. 896–900.
Song, Zheng, Song, Cui (b0200) 2018; 11
B. Blankertz, BCI Competition IV, URL:http://www.bbci.de/competition/iv/ (2008).
He, Zhang, Ren, Sun (b0135) 2016
Chao, Dong, Liu, Lu (b0090) 2019; 19
Y. Zhang, Q. Zhao, G. Zhou, J. Jin, X. Wang, A. Cichocki, Removal of EEG artifacts for BCI applications using fully Bayesian Tensor Completion, in: IEEE ICASSP, 2016, pp. 819–823.
H. Yang, S. Sakhavi, K.K. Ang, C. Guan, On the use of Convolutional Neural Networks and augmented CSP features for multi-class motor imagery of EEG signals classification, in: IEEE EMBC, 2015, pp. 2620–2623.
Jrad, Congedo (b0245) 2012; 90
Cho, Hwang (b0180) 2020; 20
Cowie, Douglas-Cowie, Tsapatsoulis, Votsis, Kollias, Fellenz, Taylor (b0075) 2001; 18
Menezes, Samara, Galway, SantAnna, Verikas, Alonso-Fernandez, Wang, Bond (b0120) 2017; 21
W. Ko, E. Jeon, S. Jeong, J. Phyo, H.-I. Suk, A survey on deep learning-based short/zero-calibration approaches for eeg-based brain–computer interfaces, Frontiers in Human Neuroscience 15.
Chen, Jiang, Zhang (b0185) 2019; 7
S.-E. Moon, S. Jang, J.-S. Lee, Convolutional Neural Network approach for EEG-based Emotion Recognition using Brain connectivity and its spatial information, in: IEEE ICASSP, 2018, pp. 2556–2560.
Minguillon, Lopez-Gordo, Pelayo (b0020) 2017
Chai, Wang, Zhao, Liu, Bai, Li (b0150) 2016; 79
P. Pandey, K. Seeja, Subject independent Emotion Recognition from EEG using VMD and Deep Learning, Journal of King Saud University-Computer and Information Sciences.
Li, Sun, Dong, Ren (b0235) 2019
Kwon (10.1016/j.bspc.2021.103289_b0140) 2018; 18
Cho (10.1016/j.bspc.2021.103289_b0180) 2020; 20
10.1016/j.bspc.2021.103289_b0230
10.1016/j.bspc.2021.103289_b0110
10.1016/j.bspc.2021.103289_b0155
10.1016/j.bspc.2021.103289_b0035
Alhagry (10.1016/j.bspc.2021.103289_b0080) 2017; 8
Chen (10.1016/j.bspc.2021.103289_b0185) 2019; 7
10.1016/j.bspc.2021.103289_b0195
Yang (10.1016/j.bspc.2021.103289_b0055) 2018
Blankertz (10.1016/j.bspc.2021.103289_b0095) 2007; 37
Cowie (10.1016/j.bspc.2021.103289_b0075) 2001; 18
Song (10.1016/j.bspc.2021.103289_b0200) 2018; 11
Sanakoyeu (10.1016/j.bspc.2021.103289_b0205) 2019
Salama (10.1016/j.bspc.2021.103289_b0145) 2018; 9
Soleymani (10.1016/j.bspc.2021.103289_b0190) 2015; 7
Menezes (10.1016/j.bspc.2021.103289_b0120) 2017; 21
10.1016/j.bspc.2021.103289_b0165
10.1016/j.bspc.2021.103289_b0045
10.1016/j.bspc.2021.103289_b0085
Lotte (10.1016/j.bspc.2021.103289_b0030) 2015; 103
Jadhav (10.1016/j.bspc.2021.103289_b0105) 2017
Liu (10.1016/j.bspc.2021.103289_b0060) 2020; 123
Chao (10.1016/j.bspc.2021.103289_b0090) 2019; 19
Santhanam (10.1016/j.bspc.2021.103289_b0005) 2006; 442
Krauledat (10.1016/j.bspc.2021.103289_b0225) 2008; 3
Sung (10.1016/j.bspc.2021.103289_b0215) 2018
10.1016/j.bspc.2021.103289_b0015
10.1016/j.bspc.2021.103289_b0210
Koelstra (10.1016/j.bspc.2021.103289_b0115) 2011; 3
Yang (10.1016/j.bspc.2021.103289_b0175) 2018
10.1016/j.bspc.2021.103289_b0050
He (10.1016/j.bspc.2021.103289_b0135) 2016
10.1016/j.bspc.2021.103289_b0250
10.1016/j.bspc.2021.103289_b0130
Li (10.1016/j.bspc.2021.103289_b0170) 2020; 57
Zhang (10.1016/j.bspc.2021.103289_b0010) 2015; 27
Wang (10.1016/j.bspc.2021.103289_b0070) 2020; 53
Li (10.1016/j.bspc.2021.103289_b0235) 2019
Doborjeh (10.1016/j.bspc.2021.103289_b0125) 2018; 10
Minguillon (10.1016/j.bspc.2021.103289_b0020) 2017
Chai (10.1016/j.bspc.2021.103289_b0150) 2016; 79
10.1016/j.bspc.2021.103289_b0025
10.1016/j.bspc.2021.103289_b0065
Mohammadi (10.1016/j.bspc.2021.103289_b0240) 2017; 28
10.1016/j.bspc.2021.103289_b0220
Dalhoumi (10.1016/j.bspc.2021.103289_b0040) 2014
10.1016/j.bspc.2021.103289_b0100
Cimtay (10.1016/j.bspc.2021.103289_b0160) 2020; 20
Jrad (10.1016/j.bspc.2021.103289_b0245) 2012; 90
References_xml – volume: 123
  year: 2020
  ident: b0060
  article-title: Multi-channel EEG-based Emotion Recognition via a Multi-level features guided Capsule Network
  publication-title: Computers in Biology and Medicine
– volume: 9
  start-page: 329
  year: 2018
  end-page: 337
  ident: b0145
  article-title: EEG-based Emotion Recognition using 3D Convolutional Neural Networks
  publication-title: International Journal of Advanced Computer Science Applications
– volume: 7
  start-page: 17
  year: 2015
  end-page: 28
  ident: b0190
  article-title: Analysis of EEG signals and facial expressions for Continuous Emotion Detection
  publication-title: IEEE Transactions on Affective Computing
– reference: W. Ko, E. Jeon, S. Jeong, J. Phyo, H.-I. Suk, A survey on deep learning-based short/zero-calibration approaches for eeg-based brain–computer interfaces, Frontiers in Human Neuroscience 15.
– volume: 18
  start-page: 1383
  year: 2018
  ident: b0140
  article-title: Electroencephalography based fusion two-dimensional (2D)-Convolution Neural Networks (CNN) model for Emotion Recognition system
  publication-title: Sensors
– start-page: 148
  year: 2019
  end-page: 158
  ident: b0235
  article-title: Convolutional Neural Networks on EEG-Based Emotion Recognition
  publication-title: CCF Conference on Big Data
– volume: 90
  start-page: 66
  year: 2012
  end-page: 71
  ident: b0245
  article-title: Identification of spatial and temporal features of eeg
  publication-title: Neurocomputing
– reference: F. Lotte, C. Guan, Learning from other subjects helps reducing Brain Computer Interface calibration time, in: IEEE ICASSP, 2010, pp. 614–617.
– volume: 18
  start-page: 32
  year: 2001
  end-page: 80
  ident: b0075
  article-title: Emotion Recognition in Human-Computer Interaction
  publication-title: IEEE Signal Processing Magazine
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0135
  article-title: Deep Residual learning for Image Recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1199
  year: 2018
  end-page: 1208
  ident: b0215
  article-title: Learning to compare: Relation network for few-shot learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: N. Liu, Y. Fang, L. Li, L. Hou, F. Yang, Y. Guo, Multiple feature fusion for Automatic Emotion Recognition using EEG signals, in: IEEE ICASSP, 2018, pp. 896–900.
– reference: Y. Luo, B.-L. Lu, EEG data augmentation for Emotion Recognition using a Conditional Wasserstein GAN, in: IEEE EMBC, 2018, pp. 2535–2538.
– volume: 20
  start-page: 2034
  year: 2020
  ident: b0160
  article-title: Investigating the use of pretrained Convolutional Neural Network on cross-subject and cross-dataset EEG Emotion Recognition
  publication-title: Sensors
– volume: 8
  start-page: 355
  year: 2017
  end-page: 358
  ident: b0080
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: International Journal of Advanced Computer Science and Applications (IJACSA)
– volume: 79
  start-page: 205
  year: 2016
  end-page: 214
  ident: b0150
  article-title: Unsupervised Domain adaptation techniques based on Auto-encoder for non-stationary EEG-based Emotion Recognition
  publication-title: Computers in Biology and Medicine
– reference: S. Borhani, R. Abiri, X. Zhao, Y. Jiang, A transfer learning approach towards zero-training BCI for EEG-based two dimensional cursor control, in: Society for Neuroscience 2017 Meeting (SfN2017).
– volume: 11
  start-page: 532
  year: 2018
  end-page: 541
  ident: b0200
  article-title: EEG Emotion Recognition using Dynamical Graph Convolutional Neural Networks
  publication-title: IEEE Transactions on Affective Computing
– start-page: 1
  year: 2018
  end-page: 7
  ident: b0175
  article-title: Emotion Recognition from Multi-channel EEG through Parallel Convolutional Recurrent Neural Network
  publication-title: International Joint Conference on Neural Networks
– volume: 442
  start-page: 195
  year: 2006
  end-page: 198
  ident: b0005
  article-title: A high-performance Brain Computer Interface
  publication-title: Nature
– volume: 27
  start-page: 2256
  year: 2015
  end-page: 2267
  ident: b0010
  article-title: Sparse Bayesian classification of EEG for Brain Computer Interface
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 19
  start-page: 2212
  year: 2019
  ident: b0090
  article-title: Emotion recognition from Multiband EEG signals using Capsnet
  publication-title: Sensors
– reference: B. Blankertz, BCI Competition IV, URL:http://www.bbci.de/competition/iv/ (2008).
– volume: 103
  start-page: 871
  year: 2015
  end-page: 890
  ident: b0030
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces
  publication-title: Proceedings of the IEEE
– start-page: 407
  year: 2017
  end-page: 418
  ident: b0020
  article-title: Trends in EEG-BCI for daily-life: Requirements for artifact removal
  publication-title: Biomedical Signal Processing and Control
– reference: S. Kuanar, V. Athitsos, N. Pradhan, A. Mishra, K.R. Rao, Cognitive analysis of working memory load from EEG, by a deep recurrent neural network, in: IEEE ICASSP, 2018, pp. 2576–2580.
– reference: J. Snell, K. Swersky, R.S. Zemel, Prototypical networks for few-shot learning, arXiv preprint arXiv:1703.05175.
– volume: 57
  year: 2020
  ident: b0170
  article-title: Exploring Temporal Representations by leveraging Attention-based Bidirectional LSTM-RNNs for Multi-modal Emotion Recognition
  publication-title: Information Processing & Management
– reference: S. Bhosale, R. Chakraborty, S.K. Kopparapu, Semi supervised learning for few-shot audio classification by episodic triplet mining, arXiv preprint arXiv:2102.08074.
– volume: 3
  year: 2008
  ident: b0225
  article-title: Towards zero training for Brain-Computer Interfacing
  publication-title: PloS one
– start-page: 634
  year: 2014
  end-page: 639
  ident: b0040
  article-title: Knowledge transfer for reducing calibration time in Brain-Computer Interfacing
  publication-title: International Conference on Tools with Artificial Intelligence
– start-page: 335
  year: 2017
  end-page: 343
  ident: b0105
  article-title: Electroencephalography-based Emotion Recognition using gray-level co-occurrence matrix features
  publication-title: International Conference on Computer Vision and Image Processing
– reference: G. Krishna, C. Tran, Y. Han, M. Carnahan, A.H. Tewfik, Speech synthesis using EEG, in: IEEE ICASSP, 2020, pp. 1235–1238.
– start-page: 433
  year: 2018
  end-page: 443
  ident: b0055
  article-title: Continuous Convolutional Neural Network with 3D input for EEG-based Emotion Recognition
  publication-title: International Conference on Neural Information Processing
– reference: Y. Zhang, Q. Zhao, G. Zhou, J. Jin, X. Wang, A. Cichocki, Removal of EEG artifacts for BCI applications using fully Bayesian Tensor Completion, in: IEEE ICASSP, 2016, pp. 819–823.
– reference: S. Tripathi, S. Acharya, R.D. Sharma, S. Mittal, S. Bhattacharya, Using Deep and Convolutional Neural Networks for accurate Emotion Classification on DEAP Dataset, in: AAAI, 2017, pp. 4746–4752.
– volume: 53
  start-page: 1
  year: 2020
  end-page: 34
  ident: b0070
  article-title: Generalizing from a few examples: A survey on few-shot learning
  publication-title: ACM Computing Surveys (CSUR)
– volume: 37
  start-page: 539
  year: 2007
  end-page: 550
  ident: b0095
  article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects
  publication-title: NeuroImage
– volume: 7
  start-page: 118530
  year: 2019
  end-page: 118540
  ident: b0185
  article-title: A Hierarchical Bidirectional GRU model with Attention for EEG-based Emotion Classification
  publication-title: IEEE Access
– volume: 3
  start-page: 18
  year: 2011
  end-page: 31
  ident: b0115
  article-title: Deap: A database for Emotion Analysis; using physiological signals
  publication-title: IEEE Transactions on Affective Computing
– volume: 20
  start-page: 3491
  year: 2020
  ident: b0180
  article-title: Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network
  publication-title: Sensors
– volume: 28
  start-page: 1985
  year: 2017
  end-page: 1990
  ident: b0240
  article-title: Wavelet-based Emotion Recognition system using EEG signal
  publication-title: Neural Computing and Applications
– reference: S.-E. Moon, S. Jang, J.-S. Lee, Convolutional Neural Network approach for EEG-based Emotion Recognition using Brain connectivity and its spatial information, in: IEEE ICASSP, 2018, pp. 2556–2560.
– reference: F. Lotte, Generating artificial eeg signals to reduce bci calibration time, in: 5th International Brain-Computer Interface Workshop, 2011, pp. 176–179.
– reference: P. Pandey, K. Seeja, Subject independent Emotion Recognition from EEG using VMD and Deep Learning, Journal of King Saud University-Computer and Information Sciences.
– volume: 21
  start-page: 1003
  year: 2017
  end-page: 1013
  ident: b0120
  article-title: Towards Emotion Recognition for virtual environments: an Evaluation of EEG features on benchmark dataset
  publication-title: Personal and Ubiquitous Computing
– start-page: 471
  year: 2019
  end-page: 480
  ident: b0205
  article-title: Divide and conquer the embedding space for metric learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 10
  start-page: 35
  year: 2018
  end-page: 48
  ident: b0125
  article-title: Attentional bias pattern recognition in spiking Neural Networks from spatio-temporal EEG data
  publication-title: Cognitive Computation
– reference: S. Issa, Q. Peng, X. You, Emotion classification using EEG brain signals and the broad learning system, IEEE Transactions on Systems, Man, and Cybernetics: Systems.
– reference: H. Yang, S. Sakhavi, K.K. Ang, C. Guan, On the use of Convolutional Neural Networks and augmented CSP features for multi-class motor imagery of EEG signals classification, in: IEEE EMBC, 2015, pp. 2620–2623.
– volume: 442
  start-page: 195
  issue: 7099
  year: 2006
  ident: 10.1016/j.bspc.2021.103289_b0005
  article-title: A high-performance Brain Computer Interface
  publication-title: Nature
  doi: 10.1038/nature04968
– start-page: 471
  year: 2019
  ident: 10.1016/j.bspc.2021.103289_b0205
  article-title: Divide and conquer the embedding space for metric learning
– volume: 37
  start-page: 539
  issue: 2
  year: 2007
  ident: 10.1016/j.bspc.2021.103289_b0095
  article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.01.051
– ident: 10.1016/j.bspc.2021.103289_b0195
  doi: 10.1609/aaai.v31i2.19105
– volume: 53
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2021.103289_b0070
  article-title: Generalizing from a few examples: A survey on few-shot learning
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3386252
– ident: 10.1016/j.bspc.2021.103289_b0065
  doi: 10.3389/fnhum.2021.643386
– volume: 18
  start-page: 1383
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2021.103289_b0140
  article-title: Electroencephalography based fusion two-dimensional (2D)-Convolution Neural Networks (CNN) model for Emotion Recognition system
  publication-title: Sensors
  doi: 10.3390/s18051383
– ident: 10.1016/j.bspc.2021.103289_b0110
– volume: 20
  start-page: 3491
  issue: 12
  year: 2020
  ident: 10.1016/j.bspc.2021.103289_b0180
  article-title: Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network
  publication-title: Sensors
  doi: 10.3390/s20123491
– ident: 10.1016/j.bspc.2021.103289_b0015
  doi: 10.1109/ICASSP.2016.7471789
– ident: 10.1016/j.bspc.2021.103289_b0155
  doi: 10.1109/EMBC.2018.8512865
– volume: 20
  start-page: 2034
  issue: 7
  year: 2020
  ident: 10.1016/j.bspc.2021.103289_b0160
  article-title: Investigating the use of pretrained Convolutional Neural Network on cross-subject and cross-dataset EEG Emotion Recognition
  publication-title: Sensors
  doi: 10.3390/s20072034
– volume: 27
  start-page: 2256
  issue: 11
  year: 2015
  ident: 10.1016/j.bspc.2021.103289_b0010
  article-title: Sparse Bayesian classification of EEG for Brain Computer Interface
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2476656
– volume: 3
  issue: 8
  year: 2008
  ident: 10.1016/j.bspc.2021.103289_b0225
  article-title: Towards zero training for Brain-Computer Interfacing
  publication-title: PloS one
  doi: 10.1371/journal.pone.0002967
– start-page: 1199
  year: 2018
  ident: 10.1016/j.bspc.2021.103289_b0215
  article-title: Learning to compare: Relation network for few-shot learning
– volume: 19
  start-page: 2212
  issue: 9
  year: 2019
  ident: 10.1016/j.bspc.2021.103289_b0090
  article-title: Emotion recognition from Multiband EEG signals using Capsnet
  publication-title: Sensors
  doi: 10.3390/s19092212
– volume: 18
  start-page: 32
  issue: 1
  year: 2001
  ident: 10.1016/j.bspc.2021.103289_b0075
  article-title: Emotion Recognition in Human-Computer Interaction
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/79.911197
– ident: 10.1016/j.bspc.2021.103289_b0165
– volume: 7
  start-page: 17
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.103289_b0190
  article-title: Analysis of EEG signals and facial expressions for Continuous Emotion Detection
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2015.2436926
– volume: 7
  start-page: 118530
  year: 2019
  ident: 10.1016/j.bspc.2021.103289_b0185
  article-title: A Hierarchical Bidirectional GRU model with Attention for EEG-based Emotion Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936817
– start-page: 335
  year: 2017
  ident: 10.1016/j.bspc.2021.103289_b0105
  article-title: Electroencephalography-based Emotion Recognition using gray-level co-occurrence matrix features
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.1016/j.bspc.2021.103289_b0115
  article-title: Deap: A database for Emotion Analysis; using physiological signals
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2011.15
– start-page: 407
  year: 2017
  ident: 10.1016/j.bspc.2021.103289_b0020
  article-title: Trends in EEG-BCI for daily-life: Requirements for artifact removal
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2016.09.005
– ident: 10.1016/j.bspc.2021.103289_b0250
  doi: 10.1109/ICASSP.2018.8462243
– ident: 10.1016/j.bspc.2021.103289_b0045
– start-page: 634
  year: 2014
  ident: 10.1016/j.bspc.2021.103289_b0040
  article-title: Knowledge transfer for reducing calibration time in Brain-Computer Interfacing
– volume: 57
  issue: 3
  year: 2020
  ident: 10.1016/j.bspc.2021.103289_b0170
  article-title: Exploring Temporal Representations by leveraging Attention-based Bidirectional LSTM-RNNs for Multi-modal Emotion Recognition
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2019.102185
– volume: 9
  start-page: 329
  issue: 8
  year: 2018
  ident: 10.1016/j.bspc.2021.103289_b0145
  article-title: EEG-based Emotion Recognition using 3D Convolutional Neural Networks
  publication-title: International Journal of Advanced Computer Science Applications
  doi: 10.14569/IJACSA.2018.090843
– volume: 8
  start-page: 355
  issue: 10
  year: 2017
  ident: 10.1016/j.bspc.2021.103289_b0080
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: International Journal of Advanced Computer Science and Applications (IJACSA)
– ident: 10.1016/j.bspc.2021.103289_b0035
  doi: 10.1109/ICASSP.2010.5495183
– start-page: 770
  year: 2016
  ident: 10.1016/j.bspc.2021.103289_b0135
  article-title: Deep Residual learning for Image Recognition
– start-page: 433
  year: 2018
  ident: 10.1016/j.bspc.2021.103289_b0055
  article-title: Continuous Convolutional Neural Network with 3D input for EEG-based Emotion Recognition
– ident: 10.1016/j.bspc.2021.103289_b0210
– volume: 11
  start-page: 532
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2021.103289_b0200
  article-title: EEG Emotion Recognition using Dynamical Graph Convolutional Neural Networks
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2018.2817622
– ident: 10.1016/j.bspc.2021.103289_b0130
  doi: 10.1109/ICASSP.2018.8462518
– volume: 28
  start-page: 1985
  issue: 8
  year: 2017
  ident: 10.1016/j.bspc.2021.103289_b0240
  article-title: Wavelet-based Emotion Recognition system using EEG signal
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-2149-8
– volume: 21
  start-page: 1003
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2021.103289_b0120
  article-title: Towards Emotion Recognition for virtual environments: an Evaluation of EEG features on benchmark dataset
  publication-title: Personal and Ubiquitous Computing
  doi: 10.1007/s00779-017-1072-7
– start-page: 148
  year: 2019
  ident: 10.1016/j.bspc.2021.103289_b0235
  article-title: Convolutional Neural Networks on EEG-Based Emotion Recognition
– ident: 10.1016/j.bspc.2021.103289_b0220
– ident: 10.1016/j.bspc.2021.103289_b0025
  doi: 10.1109/ICASSP40776.2020.9053340
– volume: 123
  year: 2020
  ident: 10.1016/j.bspc.2021.103289_b0060
  article-title: Multi-channel EEG-based Emotion Recognition via a Multi-level features guided Capsule Network
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103927
– ident: 10.1016/j.bspc.2021.103289_b0050
  doi: 10.1109/ICASSP.2018.8461315
– volume: 79
  start-page: 205
  year: 2016
  ident: 10.1016/j.bspc.2021.103289_b0150
  article-title: Unsupervised Domain adaptation techniques based on Auto-encoder for non-stationary EEG-based Emotion Recognition
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2016.10.019
– ident: 10.1016/j.bspc.2021.103289_b0230
– volume: 103
  start-page: 871
  issue: 6
  year: 2015
  ident: 10.1016/j.bspc.2021.103289_b0030
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2015.2404941
– volume: 10
  start-page: 35
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2021.103289_b0125
  article-title: Attentional bias pattern recognition in spiking Neural Networks from spatio-temporal EEG data
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-017-9517-x
– ident: 10.1016/j.bspc.2021.103289_b0085
– volume: 90
  start-page: 66
  year: 2012
  ident: 10.1016/j.bspc.2021.103289_b0245
  article-title: Identification of spatial and temporal features of eeg
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.032
– ident: 10.1016/j.bspc.2021.103289_b0100
– start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2021.103289_b0175
  article-title: Emotion Recognition from Multi-channel EEG through Parallel Convolutional Recurrent Neural Network
SSID ssj0048714
Score 2.4386349
Snippet •Proposed a few-shot adaptation for EEG based Emotion Recognition which limits the number of samples required for calibration samples to a minimum.•Devised and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103289
SubjectTerms EEG emotion detection
Episodic training
Few-shot learning
Support sampling
Zero calibration setup
Title Calibration free meta learning based approach for subject independent EEG emotion recognition
URI https://dx.doi.org/10.1016/j.bspc.2021.103289
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4inGY8qBG-rWtEnWHqdpY4DYBSbtgqqkSdAQdNPWXfntxG1aDQntwK2tbKmyLftran9G6NYQEaahlF7MAuFRzhVwQBJPSF_DkVuPFLsInid8PKWPMzZroEE1CwNtlS73lzm9yNbuSddZs7ucz7svFkvzyH6dBMBPE3GYKKe0B1He-a7bPCweL_i9QdgDaTc4U_Z4yfUSaAwD0il45eK_i9NWwRkdoUOHFHG_fJlj1NDZCTrY4g88RW8wWSVLH2Kz0hp_6VxgtwniHUOJUriiDccWn-L1RsLJC57X629zPBzeY12u88F1Q9EiO0PT0fB1MPbcvgQvDX0_92JfKSq4L4UwnKc6FiIiaSyNDtLYCEqpCXpMBb60tzHRhpnIAg64NmloXXaOmtki0xcIS6mjUJmQUa4osc5kkitmwRsr_sRFLUQqQyWpIxOHnRafSdU19pGAcRMwblIat4Xuap1lSaWxU5pV9k9-BURic_0Ovct_6l2h_QAmG4qG7GvUzFcbfWPxRi7bRUC10V7_4Wk8-QFlvNUz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DPizx68mcG6tWU7GgKiAhch4WKadm0NRgeBcfVvt926BRPjwdu2tMnyXvfet_a97wPgViMeJqEQXkwC7mFKpeWARB4XvrJbbm2UaxEMR7Q_wU9TMq2BTtkLY8sqXewvYnoerd2TlrNmazGbtV4MlqaR-TsJLD9NRNtbYBubz9fKGDS_qjoPA8hzgm872rPDXedMUeQlVgvLYxigZk4sF_-enTYyTu8A7DuoCO-LtzkENZUegb0NAsFj8Gpbq0ThRKiXSsFPlXHopCDeoM1REpa84dAAVLhaC7v1AmeV_m0Gu90HqAo9H1hVFM3TEzDpdcedvucEE7wk9P3Mi30pMae-4FxTmqiY8wglsdAqSGLNMcY6aBMZ-MLcxkhpoiODOOy1TkLjs1NQT-epOgNQCBWFUocEU4mR8SYRVBKD3kh-FBc1ACoNxRLHJm5FLT5YWTb2zqxxmTUuK4zbAHfVnEXBpfHnaFLan_1YEcwE-z_mnf9z3g3Y6Y-HAzZ4HD1fgN3Atjnk1dmXoJ4t1-rKgI9MXOeL6xtrydbB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibration+free+meta+learning+based+approach+for+subject+independent+EEG+emotion+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Bhosale%2C+Swapnil&rft.au=Chakraborty%2C+Rupayan&rft.au=Kopparapu%2C+Sunil+Kumar&rft.date=2022-02-01&rft.issn=1746-8094&rft.volume=72&rft.spage=103289&rft_id=info:doi/10.1016%2Fj.bspc.2021.103289&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_103289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon