Data Learning: Integrating Data Assimilation and Machine Learning

•We introduce Data Learning, a field that integrates Data Assimilation (DA) and Machine Learning (ML).•Data Learning overcomes limitations in applying DA and ML fields to real-world data.•We present the equations for a number of Data Learning methods.•We show results for some test cases, though the...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational science Vol. 58; p. 101525
Main Authors Buizza, Caterina, Quilodrán Casas, César, Nadler, Philip, Mack, Julian, Marrone, Stefano, Titus, Zainab, Le Cornec, Clémence, Heylen, Evelyn, Dur, Tolga, Baca Ruiz, Luis, Heaney, Claire, Díaz Lopez, Julio Amador, Kumar, K.S. Sesh, Arcucci, Rossella
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We introduce Data Learning, a field that integrates Data Assimilation (DA) and Machine Learning (ML).•Data Learning overcomes limitations in applying DA and ML fields to real-world data.•We present the equations for a number of Data Learning methods.•We show results for some test cases, though the equations are general and can be applied elsewhere. Data Assimilation (DA) is the approximation of the true state of some physical system by combining observations with a dynamic model. DA incorporates observational data into a prediction model to improve forecasted results. These models have increased in sophistication to better fit application requirements and circumvent implementation issues. Nevertheless, these approaches are incapable of fully overcoming their unrealistic assumptions. Machine Learning (ML) shows great capability in approximating nonlinear systems and extracting meaningful features from high-dimensional data. ML algorithms are capable of assisting or replacing traditional forecasting methods. However, the data used during training in any Machine Learning (ML) algorithm include numerical, approximation and round off errors, which are trained into the forecasting model. Integration of ML with DA increases the reliability of prediction by including information with a physical meaning. This work provides an introduction to Data Learning, a field that integrates Data Assimilation and Machine Learning to overcome limitations in applying these fields to real-world data. The fundamental equations of DA and ML are presented and developed to show how they can be combined into Data Learning. We present a number of Data Learning methods and results for some test cases, though the equations are general and can easily be applied elsewhere.
AbstractList •We introduce Data Learning, a field that integrates Data Assimilation (DA) and Machine Learning (ML).•Data Learning overcomes limitations in applying DA and ML fields to real-world data.•We present the equations for a number of Data Learning methods.•We show results for some test cases, though the equations are general and can be applied elsewhere. Data Assimilation (DA) is the approximation of the true state of some physical system by combining observations with a dynamic model. DA incorporates observational data into a prediction model to improve forecasted results. These models have increased in sophistication to better fit application requirements and circumvent implementation issues. Nevertheless, these approaches are incapable of fully overcoming their unrealistic assumptions. Machine Learning (ML) shows great capability in approximating nonlinear systems and extracting meaningful features from high-dimensional data. ML algorithms are capable of assisting or replacing traditional forecasting methods. However, the data used during training in any Machine Learning (ML) algorithm include numerical, approximation and round off errors, which are trained into the forecasting model. Integration of ML with DA increases the reliability of prediction by including information with a physical meaning. This work provides an introduction to Data Learning, a field that integrates Data Assimilation and Machine Learning to overcome limitations in applying these fields to real-world data. The fundamental equations of DA and ML are presented and developed to show how they can be combined into Data Learning. We present a number of Data Learning methods and results for some test cases, though the equations are general and can easily be applied elsewhere.
ArticleNumber 101525
Author Kumar, K.S. Sesh
Arcucci, Rossella
Nadler, Philip
Díaz Lopez, Julio Amador
Quilodrán Casas, César
Buizza, Caterina
Heylen, Evelyn
Le Cornec, Clémence
Baca Ruiz, Luis
Mack, Julian
Marrone, Stefano
Dur, Tolga
Titus, Zainab
Heaney, Claire
Author_xml – sequence: 1
  givenname: Caterina
  surname: Buizza
  fullname: Buizza, Caterina
  organization: Personal Robotics Lab, Department of EEE, Imperial College London, UK
– sequence: 2
  givenname: César
  surname: Quilodrán Casas
  fullname: Quilodrán Casas, César
  organization: Data Science Institute, Imperial College London, UK
– sequence: 3
  givenname: Philip
  surname: Nadler
  fullname: Nadler, Philip
  organization: Data Science Institute, Imperial College London, UK
– sequence: 4
  givenname: Julian
  surname: Mack
  fullname: Mack, Julian
  organization: Data Science Institute, Imperial College London, UK
– sequence: 5
  givenname: Stefano
  surname: Marrone
  fullname: Marrone, Stefano
  organization: Data Science Institute, Imperial College London, UK
– sequence: 6
  givenname: Zainab
  surname: Titus
  fullname: Titus, Zainab
  organization: Department of Earth Science and Engineering, Imperial College London, UK
– sequence: 7
  givenname: Clémence
  surname: Le Cornec
  fullname: Le Cornec, Clémence
  organization: Department of Civil and Environmental Engineering, Imperial College London, UK
– sequence: 8
  givenname: Evelyn
  surname: Heylen
  fullname: Heylen, Evelyn
  organization: Control and Power Group, Department of EEE, Imperial College London, UK
– sequence: 9
  givenname: Tolga
  surname: Dur
  fullname: Dur, Tolga
  organization: Data Science Institute, Imperial College London, UK
– sequence: 10
  givenname: Luis
  surname: Baca Ruiz
  fullname: Baca Ruiz, Luis
  organization: Data Science Institute, Imperial College London, UK
– sequence: 11
  givenname: Claire
  surname: Heaney
  fullname: Heaney, Claire
  organization: Department of Earth Science and Engineering, Imperial College London, UK
– sequence: 12
  givenname: Julio Amador
  surname: Díaz Lopez
  fullname: Díaz Lopez, Julio Amador
  organization: Data Science Institute, Imperial College London, UK
– sequence: 13
  givenname: K.S. Sesh
  surname: Kumar
  fullname: Kumar, K.S. Sesh
  organization: Data Science Institute, Imperial College London, UK
– sequence: 14
  givenname: Rossella
  surname: Arcucci
  fullname: Arcucci, Rossella
  email: r.arcucci@imperial.ac.uk
  organization: Data Science Institute, Imperial College London, UK
BookMark eNp9kE1OwzAQhS1UJErpBVjlAikeJ24cxKYqFCoVsYG1NfFPcdQ6yLaQuD1Ji7pg0dnMzBt9I713TUa-84aQW6AzoDC_a2dtp-KMUQaDwBm_IGMQVZVXHGB0mmlxRaYxtrSvQogaijFZPGLCbGMweOe399naJ7MNmPolO5wWMbq92_VK5zP0OntF9em8OTE35NLiLprpX5-Qj9XT-_Il37w9r5eLTa4KSlNe0xIbbQ3XDaW2qUHPea2s4KDmGpng3EJR2xK5qbQtgQEtOSu1UNCgQCgmhB3_qtDFGIyVX8HtMfxIoHLIQbZyyEEOOchjDj0k_kHKpYOXFNDtzqMPR9T0pr6dCTIqZ7wy2gWjktSdO4f_AuAUekM
CitedBy_id crossref_primary_10_2166_hydro_2025_289
crossref_primary_10_3390_rs15225361
crossref_primary_10_1038_s41612_022_00269_z
crossref_primary_10_1016_j_psep_2024_03_101
crossref_primary_10_1016_j_jocs_2024_102421
crossref_primary_10_1063_5_0155039
crossref_primary_10_1016_j_segan_2022_100869
crossref_primary_10_3390_atmos14010058
crossref_primary_10_1016_j_cpc_2024_109302
crossref_primary_10_1016_j_cpc_2024_109464
crossref_primary_10_1029_2023MS004178
crossref_primary_10_1109_TAP_2024_3516324
crossref_primary_10_1109_JAS_2023_123537
crossref_primary_10_3390_w16152199
crossref_primary_10_3103_S1068373924040010
crossref_primary_10_5194_hess_27_1583_2023
crossref_primary_10_1016_j_physa_2024_129783
crossref_primary_10_3389_fpls_2024_1519200
crossref_primary_10_1016_j_compfluid_2023_105862
crossref_primary_10_1016_j_eja_2024_127498
crossref_primary_10_1063_5_0256658
crossref_primary_10_1016_j_scitotenv_2025_179140
crossref_primary_10_5194_gmd_17_2427_2024
crossref_primary_10_5194_os_20_689_2024
crossref_primary_10_3390_math11204296
crossref_primary_10_1089_big_2023_0004
crossref_primary_10_3390_agronomy14091920
crossref_primary_10_5194_acp_24_1673_2024
crossref_primary_10_1016_j_phrs_2023_106706
crossref_primary_10_1016_j_ijggc_2024_104190
crossref_primary_10_1155_2024_6446405
crossref_primary_10_1016_j_physa_2023_128564
crossref_primary_10_1016_j_envsoft_2024_106051
crossref_primary_10_3390_risks11030060
crossref_primary_10_1016_j_infgeo_2025_100001
crossref_primary_10_1016_j_jcp_2023_112581
crossref_primary_10_1016_j_physd_2023_133711
crossref_primary_10_1029_2022MS003170
crossref_primary_10_1016_j_physa_2022_128327
crossref_primary_10_1109_ACCESS_2023_3321320
crossref_primary_10_1016_j_ocemod_2023_102286
crossref_primary_10_1029_2022RG000801
crossref_primary_10_3390_rs16183394
crossref_primary_10_1016_j_buildenv_2023_111063
crossref_primary_10_1002_qj_4743
crossref_primary_10_3934_mbe_2023606
crossref_primary_10_1080_07421222_2024_2376383
crossref_primary_10_1016_j_jcp_2024_113224
crossref_primary_10_1038_s43017_023_00409_w
crossref_primary_10_5194_os_20_417_2024
crossref_primary_10_1038_s42256_024_00867_x
crossref_primary_10_1016_j_jocs_2024_102230
crossref_primary_10_1016_j_oceaneng_2023_116464
crossref_primary_10_1038_s41561_024_01527_w
crossref_primary_10_1016_j_jocs_2024_102355
crossref_primary_10_1016_j_atech_2024_100604
crossref_primary_10_1016_j_anucene_2022_109431
crossref_primary_10_1007_s42452_024_05846_w
crossref_primary_10_2514_1_A35710
crossref_primary_10_1080_00295639_2024_2406641
Cites_doi 10.1098/rspa.2016.0751
10.1016/j.scitotenv.2020.139625
10.26599/BDMA.2018.9020033
10.1175/JPO-D-19-0149.1
10.1016/j.jcp.2017.01.034
10.3390/make1010020
10.1016/j.compfluid.2018.07.021
10.1007/s10236-009-0205-6
10.1016/j.dynatmoce.2008.10.004
10.1145/279232.279236
10.3934/fods.2020004
10.1016/j.physd.2020.132615
10.1002/qj.49712051912
10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
10.1016/j.buildenv.2018.10.035
10.1175/BAMS-D-18-0324.1
10.1016/j.cma.2018.10.029
10.2151/jmsj1965.75.1B_339
10.1007/s10596-018-9745-5
10.1109/TPAMI.2006.79
10.1007/s40304-017-0103-z
10.1115/1.3662552
10.1016/j.jcp.2018.10.045
10.5194/gmd-11-3999-2018
10.1016/j.jcp.2018.10.042
10.1016/j.jcp.2018.02.037
10.1002/j.1538-7305.1948.tb01338.x
10.1016/j.jedc.2008.05.010
10.1016/j.cageo.2019.04.006
10.1098/rsta.2020.0089
10.3390/app11031114
10.1016/j.cma.2020.113291
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jocs.2021.101525
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
ExternalDocumentID 10_1016_j_jocs_2021_101525
S1877750321001861
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-904abdfe5db00fb91d659cf851c6da2855f139f4a5e7df412104524d8c1ba8a13
IEDL.DBID .~1
ISSN 1877-7503
IngestDate Thu Apr 24 22:56:41 EDT 2025
Tue Jul 01 03:46:10 EDT 2025
Fri Feb 23 02:40:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Machine Learning
Data Learning
Data Assimilation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-904abdfe5db00fb91d659cf851c6da2855f139f4a5e7df412104524d8c1ba8a13
ParticipantIDs crossref_primary_10_1016_j_jocs_2021_101525
crossref_citationtrail_10_1016_j_jocs_2021_101525
elsevier_sciencedirect_doi_10_1016_j_jocs_2021_101525
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Chen, Tai, Weinan (bib0210) 2017; 18
Cacuci, Ionescu-Bujor, Navon (bib0075) 2005
Walter (bib0340) 2000
Zhu, Hu, Arcucci, Xu, Zhu, Guo (bib0375) 2019; 2
Düben, Modigliani, Geer, Siemen, Pappenberger, Bauer, Brown, Palkovic, Raoult, Wedi (bib0125) 2021
Chao, Luo, Ding (bib0100) 2019; 1
Titsias (bib0325) 2009
Mosser, Dubrule, Blunt (bib0240) 2019
Skitka, Marston, Fox-Kemper (bib0310) 2020; 50
Lin, Jin, Herik (bib0215) 2019
Raissi, Perdikaris, Karniadakis (bib0290) 2019; 378
Goodfellow, Bengio, Courville (bib0160) 2016
Kalnay (bib0190) 2003
Canchumuni, Emerick, Pacheco (bib0085) 2019; 128
Khandelwal, Nadler, Arcucci, Knottenbelt, Guo (bib0195) 2020
Asch, Bocquet, Nodet (bib0030) 2016
Courtier (bib0120) 1994; 120
Dueben, Bauer (bib0130) 2018; 11
Guo, Hesthaven (bib0165) 2019; 345
Andriluka, Iqbal, Ensafutdinov, Pishchulin, Milan, Gall (bib0005) 2018
Buizza, Fischer, Demiris (bib0070) 2020
Quilodrán Casas (bib0270) 2018
Quilodrán Casas, Arcucci, Wu, Pain, Guo (bib0275) 2020; 412
Frolov, Baptista, Leen, Lu, van der Merwe (bib0145) 2009; 48
Rasheed, San, Kvamsdal (bib0295) 2019
Krause, Singh, Guestrin (bib0200) 2008; 9
Hesthaven, Ubbiali (bib0180) 2018; 363
Tofts, Brix, Buckley, Evelhoch, Henderson, Knopp, Larsson, Lee, Mayr, Parker, Others (bib0330) 1999; 10
Arcucci, D’Amore, Pistoia, Toumi, Murli (bib0010) 2017; 335
Vinyals, Blundell, Lillicrap, Wierstra (bib0335) 2016; 29
Perdikaris, Raissi, Damianou, Lawrence, Karniadakis (bib0265) 2017; 473
Arcucci, Mottet, Pain, Guo (bib0015) 2019; 379
Fei-Fei, Fergus, Perona (bib0140) 2006; 28
Raissi, Perdikaris, Karniadakis (bib0285) 2016
Geer (bib0155) 2020
Costa, Tanajura (bib0115) 2015; 8
Boukabara, Krasnopolsky, Stewart, Maddy, Shahroudi, Hoffman (bib0055) 2019
Geer (bib0150) 2021; 379
Van der Wilk, Rasmussen, Hensman (bib0350) 2017
Emerick (bib0135) 2018; 22
Nadler, Arcucci, Guo (bib0245) 2020
Mack, Arcucci, Molina-Solana, Guo (bib0230) 2020; 372
Weinan (bib0345) 2017; 5
Xiao, Heaney, Mottet, Fang, Lin, Navon, Guo, Matar, Robins, Pain (bib0360) 2019; 148
Bocquet, Brajard, Carrassi, Bertino (bib0040) 2020; 2
Brajard, Carrassi, Bocquet, Bertino (bib0065) 2020
Coskun, Achilles, Dipietro, Navab, Tombari (bib0110) 2017
Yu, Tian, Li (bib0365) 2020
Arcucci, Moutiq, Guo (bib0020) 2020
Le Cornec, Molden, van Reeuwijk, Stettler (bib0205) 2020; 737
Swischuk, Mainini, Peherstorfer, Willcox (bib0320) 2019; 179
Nichols (bib0255) 2010
Bonavita, Arcucci, Carrassi, Dueben, Geer, Le Saux, Longepe, Mathieu, Raynaud (bib0045) 2020
Cao, Simon, Wei, Sheikh (bib0095) 2017
Shannon (bib0305) 1948; 27
Chen, Rubanova, Bettencourt, Duvenaud (bib0105) 2018
Bonavita, Massart, Laloyaux, Chrust (bib0050) 2014
Zhu, Byrd, Lu, Nocedal (bib0370) 1997; 23
Heaney, Salinas, Fang, Pain, Navon (bib0175) 2018
Ning, Huang (bib0260) 2019
Rasmussen, Williams (bib0300) 2005
Canchumuni, Emerick, Pacheco (bib0080) 2017
Bishop (bib0035) 2006
Marrone, Piantadosi, Sansone, Sansone (bib0235) 2017
Arcucci, Zhu, Hu, Guo (bib0025) 2021; 11
Canova, Gambetti (bib0090) 2009; 33
Brajard, Carrassi, Bocquet, Bertino (bib0060) 2019
Nadler, Arcucci, Guo (bib0250) 2019
Williams, Rowley, Mezic, Kevrekidis (bib0355) 2014
Hatfield, Chantry, Dueben, Lopez, Geer, Palmer (bib0170) 2021
Kalman (bib0185) 1960; 82
Smith, Dance, Baines, Nichols, Scott (bib0315) 2009; 59
Lorenc (bib0220) 1997; 75
Raaj, Idrees, Hidalgo, Sheikh (bib0280) 2019
Ma, Wojtowytsch, Wu (bib0225) 2020
Skitka (10.1016/j.jocs.2021.101525_bib0310) 2020; 50
Courtier (10.1016/j.jocs.2021.101525_bib0120) 1994; 120
Costa (10.1016/j.jocs.2021.101525_bib0115) 2015; 8
Walter (10.1016/j.jocs.2021.101525_bib0340) 2000
Tofts (10.1016/j.jocs.2021.101525_bib0330) 1999; 10
Kalnay (10.1016/j.jocs.2021.101525_bib0190) 2003
Raissi (10.1016/j.jocs.2021.101525_bib0290) 2019; 378
Quilodrán Casas (10.1016/j.jocs.2021.101525_bib0275) 2020; 412
Andriluka (10.1016/j.jocs.2021.101525_bib0005) 2018
Düben (10.1016/j.jocs.2021.101525_bib0125) 2021
Geer (10.1016/j.jocs.2021.101525_bib0150) 2021; 379
Emerick (10.1016/j.jocs.2021.101525_bib0135) 2018; 22
Williams (10.1016/j.jocs.2021.101525_bib0355) 2014
Goodfellow (10.1016/j.jocs.2021.101525_bib0160) 2016
Canchumuni (10.1016/j.jocs.2021.101525_bib0080) 2017
Guo (10.1016/j.jocs.2021.101525_bib0165) 2019; 345
Lin (10.1016/j.jocs.2021.101525_bib0215) 2019
Geer (10.1016/j.jocs.2021.101525_bib0155) 2020
Nadler (10.1016/j.jocs.2021.101525_bib0250) 2019
Buizza (10.1016/j.jocs.2021.101525_bib0070) 2020
Khandelwal (10.1016/j.jocs.2021.101525_bib0195) 2020
Arcucci (10.1016/j.jocs.2021.101525_bib0015) 2019; 379
Bocquet (10.1016/j.jocs.2021.101525_bib0040) 2020; 2
Heaney (10.1016/j.jocs.2021.101525_bib0175) 2018
Krause (10.1016/j.jocs.2021.101525_bib0200) 2008; 9
Quilodrán Casas (10.1016/j.jocs.2021.101525_bib0270) 2018
Fei-Fei (10.1016/j.jocs.2021.101525_bib0140) 2006; 28
Hesthaven (10.1016/j.jocs.2021.101525_bib0180) 2018; 363
Kalman (10.1016/j.jocs.2021.101525_bib0185) 1960; 82
Arcucci (10.1016/j.jocs.2021.101525_bib0010) 2017; 335
Ning (10.1016/j.jocs.2021.101525_bib0260) 2019
Dueben (10.1016/j.jocs.2021.101525_bib0130) 2018; 11
Raaj (10.1016/j.jocs.2021.101525_bib0280) 2019
Arcucci (10.1016/j.jocs.2021.101525_bib0020) 2020
Boukabara (10.1016/j.jocs.2021.101525_bib0055) 2019
Arcucci (10.1016/j.jocs.2021.101525_bib0025) 2021; 11
Chao (10.1016/j.jocs.2021.101525_bib0100) 2019; 1
Rasmussen (10.1016/j.jocs.2021.101525_bib0300) 2005
Brajard (10.1016/j.jocs.2021.101525_bib0065) 2020
Bonavita (10.1016/j.jocs.2021.101525_bib0050) 2014
Weinan (10.1016/j.jocs.2021.101525_bib0345) 2017; 5
Canova (10.1016/j.jocs.2021.101525_bib0090) 2009; 33
Zhu (10.1016/j.jocs.2021.101525_bib0375) 2019; 2
Brajard (10.1016/j.jocs.2021.101525_bib0060) 2019
Mack (10.1016/j.jocs.2021.101525_bib0230) 2020; 372
Lorenc (10.1016/j.jocs.2021.101525_bib0220) 1997; 75
Frolov (10.1016/j.jocs.2021.101525_bib0145) 2009; 48
Le Cornec (10.1016/j.jocs.2021.101525_bib0205) 2020; 737
Raissi (10.1016/j.jocs.2021.101525_bib0285) 2016
Li (10.1016/j.jocs.2021.101525_bib0210) 2017; 18
Asch (10.1016/j.jocs.2021.101525_bib0030) 2016
Mosser (10.1016/j.jocs.2021.101525_bib0240) 2019
Swischuk (10.1016/j.jocs.2021.101525_bib0320) 2019; 179
Coskun (10.1016/j.jocs.2021.101525_bib0110) 2017
Smith (10.1016/j.jocs.2021.101525_bib0315) 2009; 59
Hatfield (10.1016/j.jocs.2021.101525_bib0170) 2021
Perdikaris (10.1016/j.jocs.2021.101525_bib0265) 2017; 473
Bonavita (10.1016/j.jocs.2021.101525_bib0045) 2020
Van der Wilk (10.1016/j.jocs.2021.101525_bib0350) 2017
Nichols (10.1016/j.jocs.2021.101525_bib0255) 2010
Yu (10.1016/j.jocs.2021.101525_bib0365) 2020
Zhu (10.1016/j.jocs.2021.101525_bib0370) 1997; 23
Xiao (10.1016/j.jocs.2021.101525_bib0360) 2019; 148
Cacuci (10.1016/j.jocs.2021.101525_bib0075) 2005
Nadler (10.1016/j.jocs.2021.101525_bib0245) 2020
Rasheed (10.1016/j.jocs.2021.101525_bib0295) 2019
Ma (10.1016/j.jocs.2021.101525_bib0225) 2020
Vinyals (10.1016/j.jocs.2021.101525_bib0335) 2016; 29
Bishop (10.1016/j.jocs.2021.101525_bib0035) 2006
Canchumuni (10.1016/j.jocs.2021.101525_bib0085) 2019; 128
Marrone (10.1016/j.jocs.2021.101525_bib0235) 2017
Cao (10.1016/j.jocs.2021.101525_bib0095) 2017
Shannon (10.1016/j.jocs.2021.101525_bib0305) 1948; 27
Titsias (10.1016/j.jocs.2021.101525_bib0325) 2009
Chen (10.1016/j.jocs.2021.101525_bib0105) 2018
References_xml – volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: bib0305
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Techn. J.
– volume: 75
  start-page: 339
  year: 1997
  end-page: 346
  ident: bib0220
  article-title: Development of an operational variational assimilation scheme
  publication-title: J. Meteorol. Soc. Jpn.
– start-page: 567
  year: 2009
  end-page: 574
  ident: bib0325
  article-title: Variational learning of inducing variables in sparse gaussian processes
  publication-title: Artificial Intelligence and Statistics
– start-page: 1
  year: 2020
  end-page: 13
  ident: bib0045
  article-title: Machine learning for earth system observation and prediction
  publication-title: Bull. Am. Meteorol. Soc.
– year: 2019
  ident: bib0055
  article-title: Leveraging modern artificial intelligence for remote sensing and nwp: benefits and challenges
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 28
  start-page: 594
  year: 2006
  end-page: 611
  ident: bib0140
  article-title: One-shot learning of object categories
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 128
  start-page: 87
  year: 2019
  end-page: 102
  ident: bib0085
  article-title: Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother
  publication-title: Comput. Geosci.
– year: 2016
  ident: bib0030
  article-title: Data Assimilation: Methods, Algorithms, and Applications
– volume: 363
  start-page: 55
  year: 2018
  end-page: 78
  ident: bib0180
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
– year: 2020
  ident: bib0225
  article-title: Towards A Mathematical Understanding of Neural Network-Based Machine Learning: What We Know and What We Don’t
– volume: 737
  start-page: 139625
  year: 2020
  ident: bib0205
  article-title: Modelling of instantaneous emissions from diesel vehicles with a special focus on nox: insights from machine learning techniques
  publication-title: Sci. Total Environ.
– year: 2020
  ident: bib0065
  article-title: Combining Data Assimilation and Machine Learning to Infer Unresolved Scale Parametrisation
– year: 2021
  ident: bib0125
  article-title: Machine Learning at ECMWF: A Roadmap for the Next 10 Years. ECMWF Technical Memoranda
– volume: 473
  start-page: 20160751
  year: 2017
  ident: bib0265
  article-title: Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
– start-page: 4620
  year: 2019
  end-page: 4628
  ident: bib0280
  article-title: Efficient online multi-person 2d pose tracking with recurrent spatio-temporal affinity fields
  publication-title: IEEE Conference on Computer Vision & Pattern Recognition
– volume: 23
  start-page: 550
  year: 1997
  end-page: 560
  ident: bib0370
  article-title: Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw.
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib0070
  article-title: Real-time multi-person pose tracking using data assimilation
  publication-title: IEEE Winter Conference on Applications of Computer Vision
– start-page: 1
  year: 2017
  end-page: 13
  ident: bib0080
  article-title: Integration of ensemble data assimilation and deep learning for history matching facies models
  publication-title: Offshore Technology Conference, Offshore Technology Conference
– volume: 179
  start-page: 704
  year: 2019
  end-page: 717
  ident: bib0320
  article-title: Projection-based model reduction: formulations for physics-based machine learning
  publication-title: Comput. Fluids
– start-page: 7291
  year: 2017
  end-page: 7299
  ident: bib0095
  article-title: Realtime multi-person 2d pose estimation using part affinity fields
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 11
  start-page: 1114
  year: 2021
  ident: bib0025
  article-title: Deep data assimilation: integrating deep learning with data assimilation
  publication-title: Appl. Sci.
– year: 2016
  ident: bib0160
  article-title: Deep Learning
– year: 2020
  ident: bib0195
  article-title: A scalable inference method for large dynamic economic systems
  publication-title: NeuRIPS ML for Economic Policy Workshop
– start-page: 254
  year: 2020
  end-page: 266
  ident: bib0245
  article-title: A neural sir model for global forecasting
  publication-title: Machine Learning for Health
– year: 2018
  ident: bib0270
  article-title: Fast Ocean Data Assimilation and Forecasting Using A Neural-Network Reduced-Space Regional Ocean Model of the North Brazil Current (Ph.D. thesis)
– volume: 379
  year: 2021
  ident: bib0150
  article-title: Learning earth system models from observations: machine learning or data assimilation?
  publication-title: Philos. Trans. R. Soc. A
– volume: 2
  start-page: 83
  year: 2019
  end-page: 91
  ident: bib0375
  article-title: Model error correction in data assimilation by integrating neural networks
  publication-title: Big Data Mining Anal.
– volume: 412
  start-page: 132615
  year: 2020
  ident: bib0275
  article-title: A reduced order deep data assimilation model
  publication-title: Phys. D: Nonlinear Phenom.
– start-page: 109
  year: 2014
  ident: bib0355
  article-title: Data fusion via intrinsic dynamic variables: an application of data-driven koopman spectral analysis
  publication-title: EPL (Europhys. Lett.)
– volume: 120
  start-page: 1367
  year: 1994
  end-page: 1387
  ident: bib0120
  article-title: A strategy for operational implementation of 4d-var, using an incremental approach
  publication-title: Q. J. R. Meteorol. Soc.
– start-page: 1
  year: 2019
  end-page: 21
  ident: bib0060
  article-title: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model
  publication-title: Geosci. Model Dev. Discuss.
– year: 2018
  ident: bib0175
  article-title: Goal-Based Sensitivity Maps Using Time Windows And Ensemble Perturbations
– volume: 22
  start-page: 1175
  year: 2018
  end-page: 1186
  ident: bib0135
  article-title: Deterministic ensemble smoother with multiple data assimilation as an alternative for history-matching seismic data
  publication-title: Comput. Geosci.
– year: 2020
  ident: bib0365
  article-title: Onsagernet: Learning Stable and Interpretable Dynamics Using A Generalized Onsager Principle
– volume: 18
  start-page: 5998
  year: 2017
  end-page: 6026
  ident: bib0210
  article-title: Maximum principle based algorithms for deep learning
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 477
  year: 2009
  end-page: 490
  ident: bib0090
  article-title: Structural changes in the us economy: is there a role for monetary policy?
  publication-title: J. Econ. Dyn. Control
– start-page: 49
  year: 2017
  end-page: 57
  ident: bib0235
  article-title: Look-up tables for efficient non-linear parameters estimation
  publication-title: International Conference on Optimization and Decision Science
– volume: 379
  start-page: 51
  year: 2019
  end-page: 69
  ident: bib0015
  article-title: Optimal reduced space for variational data assimilation
  publication-title: J. Comput. Phys.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: bib0290
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 372
  start-page: 113291
  year: 2020
  ident: bib0230
  article-title: Attention-based convolutional autoencoders for 3d-variational data assimilation
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 6571
  year: 2018
  end-page: 6583
  ident: bib0105
  article-title: Neural ordinary differential equations
  publication-title: Advances in Neural Information Processing Systems
– volume: 10
  start-page: 223
  year: 1999
  end-page: 232
  ident: bib0330
  article-title: Estimating kinetic parameters from dynamic contrast-enhanced t 1-weighted mri of a diffusable tracer: standardized quantities and symbols
  publication-title: J. Magn. Reson. Imaging
– volume: 8
  start-page: 52
  year: 2015
  end-page: 62
  ident: bib0115
  article-title: Assimilation of sea-level anomalies and Argo data into HYCOM and its impact on the 24 hour forecasts in the western tropical and South Atlantic
  publication-title: J. Oper. Oceanogr.
– year: 2021
  ident: bib0170
  article-title: Building tangent-linear and adjoint models for data assimilation with neural networks
  publication-title: Earth Space Sci. Open Arch.
– year: 2010
  ident: bib0255
  article-title: Data Assimilation – Chapter Mathematical Concepts in Data Assimilation
– year: 2019
  ident: bib0240
  article-title: Deepflow: History Matching in the Space of Deep Generative Models
– year: 2017
  ident: bib0350
  article-title: Convolutional Gaussian Processes
– volume: 9
  start-page: 235
  year: 2008
  end-page: 284
  ident: bib0200
  article-title: Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies
  publication-title: J. Mach. Learn. Res.
– start-page: 5167
  year: 2018
  end-page: 5176
  ident: bib0005
  article-title: PoseTrack: a benchmark for human pose estimation and tracking
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– year: 2014
  ident: bib0050
  article-title: Data Assimilation and Machine Learning Science at ECMWF
– volume: 48
  start-page: 16
  year: 2009
  end-page: 45
  ident: bib0145
  article-title: Fast data assimilation using a nonlinear Kalman filter and a model surrogate: an application to the Columbia River estuary
  publication-title: Dyn. Atmos. Oceans
– start-page: 59
  year: 2019
  end-page: 68
  ident: bib0250
  article-title: A scalable approach to econometric inference
  publication-title: PARCO
– year: 2005
  ident: bib0075
  article-title: Sensitivity and Uncertainty Analysis, vol. II: Applications to Large-Scale Systems
– volume: 1
  start-page: 341
  year: 2019
  end-page: 358
  ident: bib0100
  article-title: Recent advances in supervised dimension reduction: a survey
  publication-title: Mach. Learn. Knowl. Extract.
– start-page: 787
  year: 2019
  end-page: 793
  ident: bib0215
  article-title: Air quality forecast through integrated data assimilation and machine learning
  publication-title: International Conference on Agents and Artificial Intelligence
– volume: 345
  start-page: 75
  year: 2019
  end-page: 99
  ident: bib0165
  article-title: Data-driven reduced order modeling for time-dependent problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2005
  ident: bib0300
  article-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
– year: 2006
  ident: bib0035
  article-title: Pattern Recognition and Machine Learning
– year: 2020
  ident: bib0155
  article-title: Learning Earth System Models From Observations: Machine Learning or Data Assimilation? Technical Report 863
– volume: 50
  start-page: 537
  year: 2020
  end-page: 558
  ident: bib0310
  article-title: Reduced-order quasilinear model of ocean boundary-layer turbulence
  publication-title: J. Phys. Oceanogr.
– volume: 148
  start-page: 323
  year: 2019
  end-page: 337
  ident: bib0360
  article-title: A reduced order model for turbulent flows in the urban environment using machine learning
  publication-title: Build. Environ.
– volume: 29
  start-page: 3630
  year: 2016
  end-page: 3638
  ident: bib0335
  article-title: Matching networks for one shot learning
  publication-title: Adv. Neural Inform. Process. Syst.
– year: 2019
  ident: bib0260
  article-title: Lighttrack: A Generic Framework for Online Top-Down Human Pose Tracking
– year: 2000
  ident: bib0340
  article-title: The efficient market hypothesis, the gaussian assumption, and the investment management industry
  publication-title: EFMA 2001 Lugano Meetings
– volume: 335
  start-page: 311
  year: 2017
  end-page: 326
  ident: bib0010
  article-title: On the variational data assimilation problem solving and sensitivity analysis
  publication-title: J. Comput. Phys.
– volume: 5
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0345
  article-title: A proposal on machine learning via dynamical systems
  publication-title: Commun. Math. Stat.
– start-page: 5525
  year: 2017
  end-page: 5533
  ident: bib0110
  article-title: Long short-term memory Kalman filters: recurrent neural estimators for pose regularization
  publication-title: IEEE International Conference on Computer Vision
– year: 2003
  ident: bib0190
  article-title: Atmospheric Modeling. Data Assimilation and Predictability
– volume: 59
  start-page: 697
  year: 2009
  ident: bib0315
  article-title: Variational data assimilation for parameter estimation: application to a simple morphodynamic model
  publication-title: Ocean Dyn.
– start-page: 335
  year: 2016
  ident: bib0285
  article-title: Inferring solutions of differential equations using noisy multi-fidelity data
  publication-title: J. Comput. Phys.
– volume: 11
  start-page: 3999
  year: 2018
  end-page: 4009
  ident: bib0130
  article-title: Challenges and design choices for global weather and climate models based on machine learning
  publication-title: Geosci. Model Dev.
– start-page: 155
  year: 2020
  end-page: 168
  ident: bib0020
  article-title: Neural assimilation
  publication-title: International Conference on Computational Science
– volume: 82
  start-page: 35
  year: 1960
  end-page: 45
  ident: bib0185
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
– volume: 2
  start-page: 55
  year: 2020
  end-page: 80
  ident: bib0040
  article-title: Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization
  publication-title: Found. Data Sci.
– year: 2019
  ident: bib0295
  article-title: Digital Twin: Values, Challenges and Enablers
– volume: 9
  start-page: 235
  year: 2008
  ident: 10.1016/j.jocs.2021.101525_bib0200
  article-title: Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies
  publication-title: J. Mach. Learn. Res.
– volume: 473
  start-page: 20160751
  year: 2017
  ident: 10.1016/j.jocs.2021.101525_bib0265
  article-title: Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2016.0751
– volume: 737
  start-page: 139625
  year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0205
  article-title: Modelling of instantaneous emissions from diesel vehicles with a special focus on nox: insights from machine learning techniques
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139625
– volume: 2
  start-page: 83
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0375
  article-title: Model error correction in data assimilation by integrating neural networks
  publication-title: Big Data Mining Anal.
  doi: 10.26599/BDMA.2018.9020033
– year: 2017
  ident: 10.1016/j.jocs.2021.101525_bib0350
– volume: 50
  start-page: 537
  year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0310
  article-title: Reduced-order quasilinear model of ocean boundary-layer turbulence
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/JPO-D-19-0149.1
– start-page: 254
  year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0245
  article-title: A neural sir model for global forecasting
  publication-title: Machine Learning for Health
– start-page: 5525
  year: 2017
  ident: 10.1016/j.jocs.2021.101525_bib0110
  article-title: Long short-term memory Kalman filters: recurrent neural estimators for pose regularization
  publication-title: IEEE International Conference on Computer Vision
– volume: 335
  start-page: 311
  year: 2017
  ident: 10.1016/j.jocs.2021.101525_bib0010
  article-title: On the variational data assimilation problem solving and sensitivity analysis
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.01.034
– volume: 1
  start-page: 341
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0100
  article-title: Recent advances in supervised dimension reduction: a survey
  publication-title: Mach. Learn. Knowl. Extract.
  doi: 10.3390/make1010020
– volume: 179
  start-page: 704
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0320
  article-title: Projection-based model reduction: formulations for physics-based machine learning
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.07.021
– start-page: 567
  year: 2009
  ident: 10.1016/j.jocs.2021.101525_bib0325
  article-title: Variational learning of inducing variables in sparse gaussian processes
  publication-title: Artificial Intelligence and Statistics
– start-page: 1
  year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0070
  article-title: Real-time multi-person pose tracking using data assimilation
  publication-title: IEEE Winter Conference on Applications of Computer Vision
– year: 2016
  ident: 10.1016/j.jocs.2021.101525_bib0030
– volume: 59
  start-page: 697
  year: 2009
  ident: 10.1016/j.jocs.2021.101525_bib0315
  article-title: Variational data assimilation for parameter estimation: application to a simple morphodynamic model
  publication-title: Ocean Dyn.
  doi: 10.1007/s10236-009-0205-6
– volume: 48
  start-page: 16
  year: 2009
  ident: 10.1016/j.jocs.2021.101525_bib0145
  article-title: Fast data assimilation using a nonlinear Kalman filter and a model surrogate: an application to the Columbia River estuary
  publication-title: Dyn. Atmos. Oceans
  doi: 10.1016/j.dynatmoce.2008.10.004
– start-page: 59
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0250
  article-title: A scalable approach to econometric inference
  publication-title: PARCO
– start-page: 335
  year: 2016
  ident: 10.1016/j.jocs.2021.101525_bib0285
  article-title: Inferring solutions of differential equations using noisy multi-fidelity data
  publication-title: J. Comput. Phys.
– start-page: 1
  year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0045
  article-title: Machine learning for earth system observation and prediction
  publication-title: Bull. Am. Meteorol. Soc.
– year: 2016
  ident: 10.1016/j.jocs.2021.101525_bib0160
– volume: 18
  start-page: 5998
  year: 2017
  ident: 10.1016/j.jocs.2021.101525_bib0210
  article-title: Maximum principle based algorithms for deep learning
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 550
  year: 1997
  ident: 10.1016/j.jocs.2021.101525_bib0370
  article-title: Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/279232.279236
– year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0260
– start-page: 1
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0060
  article-title: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model
  publication-title: Geosci. Model Dev. Discuss.
– start-page: 49
  year: 2017
  ident: 10.1016/j.jocs.2021.101525_bib0235
  article-title: Look-up tables for efficient non-linear parameters estimation
  publication-title: International Conference on Optimization and Decision Science
– volume: 2
  start-page: 55
  year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0040
  article-title: Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization
  publication-title: Found. Data Sci.
  doi: 10.3934/fods.2020004
– year: 2003
  ident: 10.1016/j.jocs.2021.101525_bib0190
– volume: 412
  start-page: 132615
  year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0275
  article-title: A reduced order deep data assimilation model
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/j.physd.2020.132615
– start-page: 5167
  year: 2018
  ident: 10.1016/j.jocs.2021.101525_bib0005
  article-title: PoseTrack: a benchmark for human pose estimation and tracking
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 120
  start-page: 1367
  year: 1994
  ident: 10.1016/j.jocs.2021.101525_bib0120
  article-title: A strategy for operational implementation of 4d-var, using an incremental approach
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49712051912
– volume: 10
  start-page: 223
  year: 1999
  ident: 10.1016/j.jocs.2021.101525_bib0330
  article-title: Estimating kinetic parameters from dynamic contrast-enhanced t 1-weighted mri of a diffusable tracer: standardized quantities and symbols
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
– volume: 8
  start-page: 52
  year: 2015
  ident: 10.1016/j.jocs.2021.101525_bib0115
  article-title: Assimilation of sea-level anomalies and Argo data into HYCOM and its impact on the 24 hour forecasts in the western tropical and South Atlantic
  publication-title: J. Oper. Oceanogr.
– volume: 148
  start-page: 323
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0360
  article-title: A reduced order model for turbulent flows in the urban environment using machine learning
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.10.035
– year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0055
  article-title: Leveraging modern artificial intelligence for remote sensing and nwp: benefits and challenges
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-18-0324.1
– year: 2005
  ident: 10.1016/j.jocs.2021.101525_bib0075
– volume: 345
  start-page: 75
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0165
  article-title: Data-driven reduced order modeling for time-dependent problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.10.029
– volume: 75
  start-page: 339
  year: 1997
  ident: 10.1016/j.jocs.2021.101525_bib0220
  article-title: Development of an operational variational assimilation scheme
  publication-title: J. Meteorol. Soc. Jpn.
  doi: 10.2151/jmsj1965.75.1B_339
– year: 2018
  ident: 10.1016/j.jocs.2021.101525_bib0270
– volume: 22
  start-page: 1175
  year: 2018
  ident: 10.1016/j.jocs.2021.101525_bib0135
  article-title: Deterministic ensemble smoother with multiple data assimilation as an alternative for history-matching seismic data
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-018-9745-5
– year: 2000
  ident: 10.1016/j.jocs.2021.101525_bib0340
  article-title: The efficient market hypothesis, the gaussian assumption, and the investment management industry
  publication-title: EFMA 2001 Lugano Meetings
– start-page: 155
  year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0020
  article-title: Neural assimilation
  publication-title: International Conference on Computational Science
– volume: 28
  start-page: 594
  year: 2006
  ident: 10.1016/j.jocs.2021.101525_bib0140
  article-title: One-shot learning of object categories
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.79
– volume: 5
  start-page: 1
  year: 2017
  ident: 10.1016/j.jocs.2021.101525_bib0345
  article-title: A proposal on machine learning via dynamical systems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-017-0103-z
– year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0240
– year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0225
– year: 2021
  ident: 10.1016/j.jocs.2021.101525_bib0125
– volume: 82
  start-page: 35
  year: 1960
  ident: 10.1016/j.jocs.2021.101525_bib0185
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0195
  article-title: A scalable inference method for large dynamic economic systems
  publication-title: NeuRIPS ML for Economic Policy Workshop
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0290
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 11
  start-page: 3999
  year: 2018
  ident: 10.1016/j.jocs.2021.101525_bib0130
  article-title: Challenges and design choices for global weather and climate models based on machine learning
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-11-3999-2018
– volume: 29
  start-page: 3630
  year: 2016
  ident: 10.1016/j.jocs.2021.101525_bib0335
  article-title: Matching networks for one shot learning
  publication-title: Adv. Neural Inform. Process. Syst.
– year: 2014
  ident: 10.1016/j.jocs.2021.101525_bib0050
– start-page: 787
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0215
  article-title: Air quality forecast through integrated data assimilation and machine learning
  publication-title: International Conference on Agents and Artificial Intelligence
– volume: 379
  start-page: 51
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0015
  article-title: Optimal reduced space for variational data assimilation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.042
– volume: 363
  start-page: 55
  year: 2018
  ident: 10.1016/j.jocs.2021.101525_bib0180
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.02.037
– start-page: 4620
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0280
  article-title: Efficient online multi-person 2d pose tracking with recurrent spatio-temporal affinity fields
  publication-title: IEEE Conference on Computer Vision & Pattern Recognition
– start-page: 6571
  year: 2018
  ident: 10.1016/j.jocs.2021.101525_bib0105
  article-title: Neural ordinary differential equations
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2017
  ident: 10.1016/j.jocs.2021.101525_bib0080
  article-title: Integration of ensemble data assimilation and deep learning for history matching facies models
  publication-title: Offshore Technology Conference, Offshore Technology Conference
– year: 2018
  ident: 10.1016/j.jocs.2021.101525_bib0175
– year: 2021
  ident: 10.1016/j.jocs.2021.101525_bib0170
  article-title: Building tangent-linear and adjoint models for data assimilation with neural networks
  publication-title: Earth Space Sci. Open Arch.
– year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0155
– volume: 27
  start-page: 379
  year: 1948
  ident: 10.1016/j.jocs.2021.101525_bib0305
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Techn. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– year: 2006
  ident: 10.1016/j.jocs.2021.101525_bib0035
– volume: 33
  start-page: 477
  year: 2009
  ident: 10.1016/j.jocs.2021.101525_bib0090
  article-title: Structural changes in the us economy: is there a role for monetary policy?
  publication-title: J. Econ. Dyn. Control
  doi: 10.1016/j.jedc.2008.05.010
– volume: 128
  start-page: 87
  year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0085
  article-title: Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.04.006
– start-page: 7291
  year: 2017
  ident: 10.1016/j.jocs.2021.101525_bib0095
  article-title: Realtime multi-person 2d pose estimation using part affinity fields
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– year: 2005
  ident: 10.1016/j.jocs.2021.101525_bib0300
– year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0365
– volume: 379
  year: 2021
  ident: 10.1016/j.jocs.2021.101525_bib0150
  article-title: Learning earth system models from observations: machine learning or data assimilation?
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0089
– year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0065
– year: 2010
  ident: 10.1016/j.jocs.2021.101525_bib0255
– volume: 11
  start-page: 1114
  year: 2021
  ident: 10.1016/j.jocs.2021.101525_bib0025
  article-title: Deep data assimilation: integrating deep learning with data assimilation
  publication-title: Appl. Sci.
  doi: 10.3390/app11031114
– year: 2019
  ident: 10.1016/j.jocs.2021.101525_bib0295
– start-page: 109
  year: 2014
  ident: 10.1016/j.jocs.2021.101525_bib0355
  article-title: Data fusion via intrinsic dynamic variables: an application of data-driven koopman spectral analysis
  publication-title: EPL (Europhys. Lett.)
– volume: 372
  start-page: 113291
  year: 2020
  ident: 10.1016/j.jocs.2021.101525_bib0230
  article-title: Attention-based convolutional autoencoders for 3d-variational data assimilation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113291
SSID ssj0000388913
Score 2.5396917
Snippet •We introduce Data Learning, a field that integrates Data Assimilation (DA) and Machine Learning (ML).•Data Learning overcomes limitations in applying DA and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101525
SubjectTerms Data Assimilation
Data Learning
Machine Learning
Title Data Learning: Integrating Data Assimilation and Machine Learning
URI https://dx.doi.org/10.1016/j.jocs.2021.101525
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DQbyIm4rzx8jBgyJ1TZt0rbcxHZuyXXSwW8lP6dBuaL36t5vXpkNBdvDYNA_Kl7yXl_K97yF0QeHa46vYk9o6OTVB5AkbIL3EF6ERMpJxBMXJk2k0mtGHOZs30KCuhQFapYv9VUwvo7Ub6To0u6ss6z4RkLJjPhSh-CQur0CU9mCX33yR9X8WUDtJyi7JMN8DA1c7U9G8FksJqt0BgQEGHbP_Op9-nDnDfbTnkkXcr76niRo6b6GdmqveQk3nmR_40slHXx2g_h0vOHa6qS-3eOwEIewDLl_ZFcnesooDh3mu8KQkVOq1zSGaDe-fByPPNUrwZOj7hQWWcqGMZso6kREJURFLpLHJlIwUD2LGjE30DOVM95ShoBlGWUBVLIngMSfhEdrKl7k-Rjjk1ucNIcIeU1Tau7OWxo8CSDQCoWLeRqSGJ5VORRyaWbymNV1skQKkKUCaVpC20fXaZlVpaGyczWrU0187IbVBfoPdyT_tTtFuACUNJRP7DG0V75_63CYaheiUO6mDtvvjx9H0G8SWzv8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC50A9GL-Ehw4yN9iKDIZKd7uyezggfxwW50vUTB26SfsqLrEjeEXPxT_kGrZnoWBfEgeJxHDc03NVXVw1dfAXyTtO1JXZ5Yjx-5DCJLDAbIpJOadjA2s3lGzcn906x7Ln9eqIspeKh7YYhWGWN_FdPLaB3PtCKardFg0PrFScpOpdSEkvI845FZeez__8N9291u7wBf8oYQR4dn-90kjhZIbDtNx7gUqY0LXjl0u2A63GWqYwOWHzZzWuRKBSyNgtTK_3BBksqWVEK63HKjc83b-Nxp-CAxXNDYhO_3fPJjh-RVOuVYZlpgQiuMzToVr-zq1pJMuOB0QtGI7pcS4pMkdzQPc7E6ZXsVAAsw5YeL8LEmxy_CQgwFd2wz6lVvLcHegR5rFoVaL3dYLypQ4AErL6ELDG4GFemO6aFj_ZLB6Sc2n-D8XeD7DI3h7dAvA2trDDKBc4N5UVrcrHsb0kxQZSOMy3UTeA1PYaNsOU3PuC5qftpVQZAWBGlRQdqE7YnNqBLtePVuVaNePHO9ArPKK3Zf3mj3FWa6Z_2T4qR3erwCs4L6KUoa-Co0xn_--jWscsZmvfQqBr_f240fATvRCww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Learning%3A+Integrating+Data+Assimilation+and+Machine+Learning&rft.jtitle=Journal+of+computational+science&rft.au=Buizza%2C+Caterina&rft.au=Quilodr%C3%A1n+Casas%2C+C%C3%A9sar&rft.au=Nadler%2C+Philip&rft.au=Mack%2C+Julian&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=58&rft_id=info:doi/10.1016%2Fj.jocs.2021.101525&rft.externalDocID=S1877750321001861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon