Data Learning: Integrating Data Assimilation and Machine Learning
•We introduce Data Learning, a field that integrates Data Assimilation (DA) and Machine Learning (ML).•Data Learning overcomes limitations in applying DA and ML fields to real-world data.•We present the equations for a number of Data Learning methods.•We show results for some test cases, though the...
Saved in:
Published in | Journal of computational science Vol. 58; p. 101525 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We introduce Data Learning, a field that integrates Data Assimilation (DA) and Machine Learning (ML).•Data Learning overcomes limitations in applying DA and ML fields to real-world data.•We present the equations for a number of Data Learning methods.•We show results for some test cases, though the equations are general and can be applied elsewhere.
Data Assimilation (DA) is the approximation of the true state of some physical system by combining observations with a dynamic model. DA incorporates observational data into a prediction model to improve forecasted results. These models have increased in sophistication to better fit application requirements and circumvent implementation issues. Nevertheless, these approaches are incapable of fully overcoming their unrealistic assumptions. Machine Learning (ML) shows great capability in approximating nonlinear systems and extracting meaningful features from high-dimensional data. ML algorithms are capable of assisting or replacing traditional forecasting methods. However, the data used during training in any Machine Learning (ML) algorithm include numerical, approximation and round off errors, which are trained into the forecasting model. Integration of ML with DA increases the reliability of prediction by including information with a physical meaning. This work provides an introduction to Data Learning, a field that integrates Data Assimilation and Machine Learning to overcome limitations in applying these fields to real-world data. The fundamental equations of DA and ML are presented and developed to show how they can be combined into Data Learning. We present a number of Data Learning methods and results for some test cases, though the equations are general and can easily be applied elsewhere. |
---|---|
AbstractList | •We introduce Data Learning, a field that integrates Data Assimilation (DA) and Machine Learning (ML).•Data Learning overcomes limitations in applying DA and ML fields to real-world data.•We present the equations for a number of Data Learning methods.•We show results for some test cases, though the equations are general and can be applied elsewhere.
Data Assimilation (DA) is the approximation of the true state of some physical system by combining observations with a dynamic model. DA incorporates observational data into a prediction model to improve forecasted results. These models have increased in sophistication to better fit application requirements and circumvent implementation issues. Nevertheless, these approaches are incapable of fully overcoming their unrealistic assumptions. Machine Learning (ML) shows great capability in approximating nonlinear systems and extracting meaningful features from high-dimensional data. ML algorithms are capable of assisting or replacing traditional forecasting methods. However, the data used during training in any Machine Learning (ML) algorithm include numerical, approximation and round off errors, which are trained into the forecasting model. Integration of ML with DA increases the reliability of prediction by including information with a physical meaning. This work provides an introduction to Data Learning, a field that integrates Data Assimilation and Machine Learning to overcome limitations in applying these fields to real-world data. The fundamental equations of DA and ML are presented and developed to show how they can be combined into Data Learning. We present a number of Data Learning methods and results for some test cases, though the equations are general and can easily be applied elsewhere. |
ArticleNumber | 101525 |
Author | Kumar, K.S. Sesh Arcucci, Rossella Nadler, Philip Díaz Lopez, Julio Amador Quilodrán Casas, César Buizza, Caterina Heylen, Evelyn Le Cornec, Clémence Baca Ruiz, Luis Mack, Julian Marrone, Stefano Dur, Tolga Titus, Zainab Heaney, Claire |
Author_xml | – sequence: 1 givenname: Caterina surname: Buizza fullname: Buizza, Caterina organization: Personal Robotics Lab, Department of EEE, Imperial College London, UK – sequence: 2 givenname: César surname: Quilodrán Casas fullname: Quilodrán Casas, César organization: Data Science Institute, Imperial College London, UK – sequence: 3 givenname: Philip surname: Nadler fullname: Nadler, Philip organization: Data Science Institute, Imperial College London, UK – sequence: 4 givenname: Julian surname: Mack fullname: Mack, Julian organization: Data Science Institute, Imperial College London, UK – sequence: 5 givenname: Stefano surname: Marrone fullname: Marrone, Stefano organization: Data Science Institute, Imperial College London, UK – sequence: 6 givenname: Zainab surname: Titus fullname: Titus, Zainab organization: Department of Earth Science and Engineering, Imperial College London, UK – sequence: 7 givenname: Clémence surname: Le Cornec fullname: Le Cornec, Clémence organization: Department of Civil and Environmental Engineering, Imperial College London, UK – sequence: 8 givenname: Evelyn surname: Heylen fullname: Heylen, Evelyn organization: Control and Power Group, Department of EEE, Imperial College London, UK – sequence: 9 givenname: Tolga surname: Dur fullname: Dur, Tolga organization: Data Science Institute, Imperial College London, UK – sequence: 10 givenname: Luis surname: Baca Ruiz fullname: Baca Ruiz, Luis organization: Data Science Institute, Imperial College London, UK – sequence: 11 givenname: Claire surname: Heaney fullname: Heaney, Claire organization: Department of Earth Science and Engineering, Imperial College London, UK – sequence: 12 givenname: Julio Amador surname: Díaz Lopez fullname: Díaz Lopez, Julio Amador organization: Data Science Institute, Imperial College London, UK – sequence: 13 givenname: K.S. Sesh surname: Kumar fullname: Kumar, K.S. Sesh organization: Data Science Institute, Imperial College London, UK – sequence: 14 givenname: Rossella surname: Arcucci fullname: Arcucci, Rossella email: r.arcucci@imperial.ac.uk organization: Data Science Institute, Imperial College London, UK |
BookMark | eNp9kE1OwzAQhS1UJErpBVjlAikeJ24cxKYqFCoVsYG1NfFPcdQ6yLaQuD1Ji7pg0dnMzBt9I713TUa-84aQW6AzoDC_a2dtp-KMUQaDwBm_IGMQVZVXHGB0mmlxRaYxtrSvQogaijFZPGLCbGMweOe399naJ7MNmPolO5wWMbq92_VK5zP0OntF9em8OTE35NLiLprpX5-Qj9XT-_Il37w9r5eLTa4KSlNe0xIbbQ3XDaW2qUHPea2s4KDmGpng3EJR2xK5qbQtgQEtOSu1UNCgQCgmhB3_qtDFGIyVX8HtMfxIoHLIQbZyyEEOOchjDj0k_kHKpYOXFNDtzqMPR9T0pr6dCTIqZ7wy2gWjktSdO4f_AuAUekM |
CitedBy_id | crossref_primary_10_2166_hydro_2025_289 crossref_primary_10_3390_rs15225361 crossref_primary_10_1038_s41612_022_00269_z crossref_primary_10_1016_j_psep_2024_03_101 crossref_primary_10_1016_j_jocs_2024_102421 crossref_primary_10_1063_5_0155039 crossref_primary_10_1016_j_segan_2022_100869 crossref_primary_10_3390_atmos14010058 crossref_primary_10_1016_j_cpc_2024_109302 crossref_primary_10_1016_j_cpc_2024_109464 crossref_primary_10_1029_2023MS004178 crossref_primary_10_1109_TAP_2024_3516324 crossref_primary_10_1109_JAS_2023_123537 crossref_primary_10_3390_w16152199 crossref_primary_10_3103_S1068373924040010 crossref_primary_10_5194_hess_27_1583_2023 crossref_primary_10_1016_j_physa_2024_129783 crossref_primary_10_3389_fpls_2024_1519200 crossref_primary_10_1016_j_compfluid_2023_105862 crossref_primary_10_1016_j_eja_2024_127498 crossref_primary_10_1063_5_0256658 crossref_primary_10_1016_j_scitotenv_2025_179140 crossref_primary_10_5194_gmd_17_2427_2024 crossref_primary_10_5194_os_20_689_2024 crossref_primary_10_3390_math11204296 crossref_primary_10_1089_big_2023_0004 crossref_primary_10_3390_agronomy14091920 crossref_primary_10_5194_acp_24_1673_2024 crossref_primary_10_1016_j_phrs_2023_106706 crossref_primary_10_1016_j_ijggc_2024_104190 crossref_primary_10_1155_2024_6446405 crossref_primary_10_1016_j_physa_2023_128564 crossref_primary_10_1016_j_envsoft_2024_106051 crossref_primary_10_3390_risks11030060 crossref_primary_10_1016_j_infgeo_2025_100001 crossref_primary_10_1016_j_jcp_2023_112581 crossref_primary_10_1016_j_physd_2023_133711 crossref_primary_10_1029_2022MS003170 crossref_primary_10_1016_j_physa_2022_128327 crossref_primary_10_1109_ACCESS_2023_3321320 crossref_primary_10_1016_j_ocemod_2023_102286 crossref_primary_10_1029_2022RG000801 crossref_primary_10_3390_rs16183394 crossref_primary_10_1016_j_buildenv_2023_111063 crossref_primary_10_1002_qj_4743 crossref_primary_10_3934_mbe_2023606 crossref_primary_10_1080_07421222_2024_2376383 crossref_primary_10_1016_j_jcp_2024_113224 crossref_primary_10_1038_s43017_023_00409_w crossref_primary_10_5194_os_20_417_2024 crossref_primary_10_1038_s42256_024_00867_x crossref_primary_10_1016_j_jocs_2024_102230 crossref_primary_10_1016_j_oceaneng_2023_116464 crossref_primary_10_1038_s41561_024_01527_w crossref_primary_10_1016_j_jocs_2024_102355 crossref_primary_10_1016_j_atech_2024_100604 crossref_primary_10_1016_j_anucene_2022_109431 crossref_primary_10_1007_s42452_024_05846_w crossref_primary_10_2514_1_A35710 crossref_primary_10_1080_00295639_2024_2406641 |
Cites_doi | 10.1098/rspa.2016.0751 10.1016/j.scitotenv.2020.139625 10.26599/BDMA.2018.9020033 10.1175/JPO-D-19-0149.1 10.1016/j.jcp.2017.01.034 10.3390/make1010020 10.1016/j.compfluid.2018.07.021 10.1007/s10236-009-0205-6 10.1016/j.dynatmoce.2008.10.004 10.1145/279232.279236 10.3934/fods.2020004 10.1016/j.physd.2020.132615 10.1002/qj.49712051912 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S 10.1016/j.buildenv.2018.10.035 10.1175/BAMS-D-18-0324.1 10.1016/j.cma.2018.10.029 10.2151/jmsj1965.75.1B_339 10.1007/s10596-018-9745-5 10.1109/TPAMI.2006.79 10.1007/s40304-017-0103-z 10.1115/1.3662552 10.1016/j.jcp.2018.10.045 10.5194/gmd-11-3999-2018 10.1016/j.jcp.2018.10.042 10.1016/j.jcp.2018.02.037 10.1002/j.1538-7305.1948.tb01338.x 10.1016/j.jedc.2008.05.010 10.1016/j.cageo.2019.04.006 10.1098/rsta.2020.0089 10.3390/app11031114 10.1016/j.cma.2020.113291 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jocs.2021.101525 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Business |
EISSN | 1877-7511 |
ExternalDocumentID | 10_1016_j_jocs_2021_101525 S1877750321001861 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-904abdfe5db00fb91d659cf851c6da2855f139f4a5e7df412104524d8c1ba8a13 |
IEDL.DBID | .~1 |
ISSN | 1877-7503 |
IngestDate | Thu Apr 24 22:56:41 EDT 2025 Tue Jul 01 03:46:10 EDT 2025 Fri Feb 23 02:40:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Machine Learning Data Learning Data Assimilation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-904abdfe5db00fb91d659cf851c6da2855f139f4a5e7df412104524d8c1ba8a13 |
ParticipantIDs | crossref_primary_10_1016_j_jocs_2021_101525 crossref_citationtrail_10_1016_j_jocs_2021_101525 elsevier_sciencedirect_doi_10_1016_j_jocs_2021_101525 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational science |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Chen, Tai, Weinan (bib0210) 2017; 18 Cacuci, Ionescu-Bujor, Navon (bib0075) 2005 Walter (bib0340) 2000 Zhu, Hu, Arcucci, Xu, Zhu, Guo (bib0375) 2019; 2 Düben, Modigliani, Geer, Siemen, Pappenberger, Bauer, Brown, Palkovic, Raoult, Wedi (bib0125) 2021 Chao, Luo, Ding (bib0100) 2019; 1 Titsias (bib0325) 2009 Mosser, Dubrule, Blunt (bib0240) 2019 Skitka, Marston, Fox-Kemper (bib0310) 2020; 50 Lin, Jin, Herik (bib0215) 2019 Raissi, Perdikaris, Karniadakis (bib0290) 2019; 378 Goodfellow, Bengio, Courville (bib0160) 2016 Kalnay (bib0190) 2003 Canchumuni, Emerick, Pacheco (bib0085) 2019; 128 Khandelwal, Nadler, Arcucci, Knottenbelt, Guo (bib0195) 2020 Asch, Bocquet, Nodet (bib0030) 2016 Courtier (bib0120) 1994; 120 Dueben, Bauer (bib0130) 2018; 11 Guo, Hesthaven (bib0165) 2019; 345 Andriluka, Iqbal, Ensafutdinov, Pishchulin, Milan, Gall (bib0005) 2018 Buizza, Fischer, Demiris (bib0070) 2020 Quilodrán Casas (bib0270) 2018 Quilodrán Casas, Arcucci, Wu, Pain, Guo (bib0275) 2020; 412 Frolov, Baptista, Leen, Lu, van der Merwe (bib0145) 2009; 48 Rasheed, San, Kvamsdal (bib0295) 2019 Krause, Singh, Guestrin (bib0200) 2008; 9 Hesthaven, Ubbiali (bib0180) 2018; 363 Tofts, Brix, Buckley, Evelhoch, Henderson, Knopp, Larsson, Lee, Mayr, Parker, Others (bib0330) 1999; 10 Arcucci, D’Amore, Pistoia, Toumi, Murli (bib0010) 2017; 335 Vinyals, Blundell, Lillicrap, Wierstra (bib0335) 2016; 29 Perdikaris, Raissi, Damianou, Lawrence, Karniadakis (bib0265) 2017; 473 Arcucci, Mottet, Pain, Guo (bib0015) 2019; 379 Fei-Fei, Fergus, Perona (bib0140) 2006; 28 Raissi, Perdikaris, Karniadakis (bib0285) 2016 Geer (bib0155) 2020 Costa, Tanajura (bib0115) 2015; 8 Boukabara, Krasnopolsky, Stewart, Maddy, Shahroudi, Hoffman (bib0055) 2019 Geer (bib0150) 2021; 379 Van der Wilk, Rasmussen, Hensman (bib0350) 2017 Emerick (bib0135) 2018; 22 Nadler, Arcucci, Guo (bib0245) 2020 Mack, Arcucci, Molina-Solana, Guo (bib0230) 2020; 372 Weinan (bib0345) 2017; 5 Xiao, Heaney, Mottet, Fang, Lin, Navon, Guo, Matar, Robins, Pain (bib0360) 2019; 148 Bocquet, Brajard, Carrassi, Bertino (bib0040) 2020; 2 Brajard, Carrassi, Bocquet, Bertino (bib0065) 2020 Coskun, Achilles, Dipietro, Navab, Tombari (bib0110) 2017 Yu, Tian, Li (bib0365) 2020 Arcucci, Moutiq, Guo (bib0020) 2020 Le Cornec, Molden, van Reeuwijk, Stettler (bib0205) 2020; 737 Swischuk, Mainini, Peherstorfer, Willcox (bib0320) 2019; 179 Nichols (bib0255) 2010 Bonavita, Arcucci, Carrassi, Dueben, Geer, Le Saux, Longepe, Mathieu, Raynaud (bib0045) 2020 Cao, Simon, Wei, Sheikh (bib0095) 2017 Shannon (bib0305) 1948; 27 Chen, Rubanova, Bettencourt, Duvenaud (bib0105) 2018 Bonavita, Massart, Laloyaux, Chrust (bib0050) 2014 Zhu, Byrd, Lu, Nocedal (bib0370) 1997; 23 Heaney, Salinas, Fang, Pain, Navon (bib0175) 2018 Ning, Huang (bib0260) 2019 Rasmussen, Williams (bib0300) 2005 Canchumuni, Emerick, Pacheco (bib0080) 2017 Bishop (bib0035) 2006 Marrone, Piantadosi, Sansone, Sansone (bib0235) 2017 Arcucci, Zhu, Hu, Guo (bib0025) 2021; 11 Canova, Gambetti (bib0090) 2009; 33 Brajard, Carrassi, Bocquet, Bertino (bib0060) 2019 Nadler, Arcucci, Guo (bib0250) 2019 Williams, Rowley, Mezic, Kevrekidis (bib0355) 2014 Hatfield, Chantry, Dueben, Lopez, Geer, Palmer (bib0170) 2021 Kalman (bib0185) 1960; 82 Smith, Dance, Baines, Nichols, Scott (bib0315) 2009; 59 Lorenc (bib0220) 1997; 75 Raaj, Idrees, Hidalgo, Sheikh (bib0280) 2019 Ma, Wojtowytsch, Wu (bib0225) 2020 Skitka (10.1016/j.jocs.2021.101525_bib0310) 2020; 50 Courtier (10.1016/j.jocs.2021.101525_bib0120) 1994; 120 Costa (10.1016/j.jocs.2021.101525_bib0115) 2015; 8 Walter (10.1016/j.jocs.2021.101525_bib0340) 2000 Tofts (10.1016/j.jocs.2021.101525_bib0330) 1999; 10 Kalnay (10.1016/j.jocs.2021.101525_bib0190) 2003 Raissi (10.1016/j.jocs.2021.101525_bib0290) 2019; 378 Quilodrán Casas (10.1016/j.jocs.2021.101525_bib0275) 2020; 412 Andriluka (10.1016/j.jocs.2021.101525_bib0005) 2018 Düben (10.1016/j.jocs.2021.101525_bib0125) 2021 Geer (10.1016/j.jocs.2021.101525_bib0150) 2021; 379 Emerick (10.1016/j.jocs.2021.101525_bib0135) 2018; 22 Williams (10.1016/j.jocs.2021.101525_bib0355) 2014 Goodfellow (10.1016/j.jocs.2021.101525_bib0160) 2016 Canchumuni (10.1016/j.jocs.2021.101525_bib0080) 2017 Guo (10.1016/j.jocs.2021.101525_bib0165) 2019; 345 Lin (10.1016/j.jocs.2021.101525_bib0215) 2019 Geer (10.1016/j.jocs.2021.101525_bib0155) 2020 Nadler (10.1016/j.jocs.2021.101525_bib0250) 2019 Buizza (10.1016/j.jocs.2021.101525_bib0070) 2020 Khandelwal (10.1016/j.jocs.2021.101525_bib0195) 2020 Arcucci (10.1016/j.jocs.2021.101525_bib0015) 2019; 379 Bocquet (10.1016/j.jocs.2021.101525_bib0040) 2020; 2 Heaney (10.1016/j.jocs.2021.101525_bib0175) 2018 Krause (10.1016/j.jocs.2021.101525_bib0200) 2008; 9 Quilodrán Casas (10.1016/j.jocs.2021.101525_bib0270) 2018 Fei-Fei (10.1016/j.jocs.2021.101525_bib0140) 2006; 28 Hesthaven (10.1016/j.jocs.2021.101525_bib0180) 2018; 363 Kalman (10.1016/j.jocs.2021.101525_bib0185) 1960; 82 Arcucci (10.1016/j.jocs.2021.101525_bib0010) 2017; 335 Ning (10.1016/j.jocs.2021.101525_bib0260) 2019 Dueben (10.1016/j.jocs.2021.101525_bib0130) 2018; 11 Raaj (10.1016/j.jocs.2021.101525_bib0280) 2019 Arcucci (10.1016/j.jocs.2021.101525_bib0020) 2020 Boukabara (10.1016/j.jocs.2021.101525_bib0055) 2019 Arcucci (10.1016/j.jocs.2021.101525_bib0025) 2021; 11 Chao (10.1016/j.jocs.2021.101525_bib0100) 2019; 1 Rasmussen (10.1016/j.jocs.2021.101525_bib0300) 2005 Brajard (10.1016/j.jocs.2021.101525_bib0065) 2020 Bonavita (10.1016/j.jocs.2021.101525_bib0050) 2014 Weinan (10.1016/j.jocs.2021.101525_bib0345) 2017; 5 Canova (10.1016/j.jocs.2021.101525_bib0090) 2009; 33 Zhu (10.1016/j.jocs.2021.101525_bib0375) 2019; 2 Brajard (10.1016/j.jocs.2021.101525_bib0060) 2019 Mack (10.1016/j.jocs.2021.101525_bib0230) 2020; 372 Lorenc (10.1016/j.jocs.2021.101525_bib0220) 1997; 75 Frolov (10.1016/j.jocs.2021.101525_bib0145) 2009; 48 Le Cornec (10.1016/j.jocs.2021.101525_bib0205) 2020; 737 Raissi (10.1016/j.jocs.2021.101525_bib0285) 2016 Li (10.1016/j.jocs.2021.101525_bib0210) 2017; 18 Asch (10.1016/j.jocs.2021.101525_bib0030) 2016 Mosser (10.1016/j.jocs.2021.101525_bib0240) 2019 Swischuk (10.1016/j.jocs.2021.101525_bib0320) 2019; 179 Coskun (10.1016/j.jocs.2021.101525_bib0110) 2017 Smith (10.1016/j.jocs.2021.101525_bib0315) 2009; 59 Hatfield (10.1016/j.jocs.2021.101525_bib0170) 2021 Perdikaris (10.1016/j.jocs.2021.101525_bib0265) 2017; 473 Bonavita (10.1016/j.jocs.2021.101525_bib0045) 2020 Van der Wilk (10.1016/j.jocs.2021.101525_bib0350) 2017 Nichols (10.1016/j.jocs.2021.101525_bib0255) 2010 Yu (10.1016/j.jocs.2021.101525_bib0365) 2020 Zhu (10.1016/j.jocs.2021.101525_bib0370) 1997; 23 Xiao (10.1016/j.jocs.2021.101525_bib0360) 2019; 148 Cacuci (10.1016/j.jocs.2021.101525_bib0075) 2005 Nadler (10.1016/j.jocs.2021.101525_bib0245) 2020 Rasheed (10.1016/j.jocs.2021.101525_bib0295) 2019 Ma (10.1016/j.jocs.2021.101525_bib0225) 2020 Vinyals (10.1016/j.jocs.2021.101525_bib0335) 2016; 29 Bishop (10.1016/j.jocs.2021.101525_bib0035) 2006 Canchumuni (10.1016/j.jocs.2021.101525_bib0085) 2019; 128 Marrone (10.1016/j.jocs.2021.101525_bib0235) 2017 Cao (10.1016/j.jocs.2021.101525_bib0095) 2017 Shannon (10.1016/j.jocs.2021.101525_bib0305) 1948; 27 Titsias (10.1016/j.jocs.2021.101525_bib0325) 2009 Chen (10.1016/j.jocs.2021.101525_bib0105) 2018 |
References_xml | – volume: 27 start-page: 379 year: 1948 end-page: 423 ident: bib0305 article-title: A mathematical theory of communication publication-title: Bell Syst. Techn. J. – volume: 75 start-page: 339 year: 1997 end-page: 346 ident: bib0220 article-title: Development of an operational variational assimilation scheme publication-title: J. Meteorol. Soc. Jpn. – start-page: 567 year: 2009 end-page: 574 ident: bib0325 article-title: Variational learning of inducing variables in sparse gaussian processes publication-title: Artificial Intelligence and Statistics – start-page: 1 year: 2020 end-page: 13 ident: bib0045 article-title: Machine learning for earth system observation and prediction publication-title: Bull. Am. Meteorol. Soc. – year: 2019 ident: bib0055 article-title: Leveraging modern artificial intelligence for remote sensing and nwp: benefits and challenges publication-title: Bull. Am. Meteorol. Soc. – volume: 28 start-page: 594 year: 2006 end-page: 611 ident: bib0140 article-title: One-shot learning of object categories publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 128 start-page: 87 year: 2019 end-page: 102 ident: bib0085 article-title: Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother publication-title: Comput. Geosci. – year: 2016 ident: bib0030 article-title: Data Assimilation: Methods, Algorithms, and Applications – volume: 363 start-page: 55 year: 2018 end-page: 78 ident: bib0180 article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks publication-title: J. Comput. Phys. – year: 2020 ident: bib0225 article-title: Towards A Mathematical Understanding of Neural Network-Based Machine Learning: What We Know and What We Don’t – volume: 737 start-page: 139625 year: 2020 ident: bib0205 article-title: Modelling of instantaneous emissions from diesel vehicles with a special focus on nox: insights from machine learning techniques publication-title: Sci. Total Environ. – year: 2020 ident: bib0065 article-title: Combining Data Assimilation and Machine Learning to Infer Unresolved Scale Parametrisation – year: 2021 ident: bib0125 article-title: Machine Learning at ECMWF: A Roadmap for the Next 10 Years. ECMWF Technical Memoranda – volume: 473 start-page: 20160751 year: 2017 ident: bib0265 article-title: Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci. – start-page: 4620 year: 2019 end-page: 4628 ident: bib0280 article-title: Efficient online multi-person 2d pose tracking with recurrent spatio-temporal affinity fields publication-title: IEEE Conference on Computer Vision & Pattern Recognition – volume: 23 start-page: 550 year: 1997 end-page: 560 ident: bib0370 article-title: Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. – start-page: 1 year: 2020 end-page: 8 ident: bib0070 article-title: Real-time multi-person pose tracking using data assimilation publication-title: IEEE Winter Conference on Applications of Computer Vision – start-page: 1 year: 2017 end-page: 13 ident: bib0080 article-title: Integration of ensemble data assimilation and deep learning for history matching facies models publication-title: Offshore Technology Conference, Offshore Technology Conference – volume: 179 start-page: 704 year: 2019 end-page: 717 ident: bib0320 article-title: Projection-based model reduction: formulations for physics-based machine learning publication-title: Comput. Fluids – start-page: 7291 year: 2017 end-page: 7299 ident: bib0095 article-title: Realtime multi-person 2d pose estimation using part affinity fields publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 11 start-page: 1114 year: 2021 ident: bib0025 article-title: Deep data assimilation: integrating deep learning with data assimilation publication-title: Appl. Sci. – year: 2016 ident: bib0160 article-title: Deep Learning – year: 2020 ident: bib0195 article-title: A scalable inference method for large dynamic economic systems publication-title: NeuRIPS ML for Economic Policy Workshop – start-page: 254 year: 2020 end-page: 266 ident: bib0245 article-title: A neural sir model for global forecasting publication-title: Machine Learning for Health – year: 2018 ident: bib0270 article-title: Fast Ocean Data Assimilation and Forecasting Using A Neural-Network Reduced-Space Regional Ocean Model of the North Brazil Current (Ph.D. thesis) – volume: 379 year: 2021 ident: bib0150 article-title: Learning earth system models from observations: machine learning or data assimilation? publication-title: Philos. Trans. R. Soc. A – volume: 2 start-page: 83 year: 2019 end-page: 91 ident: bib0375 article-title: Model error correction in data assimilation by integrating neural networks publication-title: Big Data Mining Anal. – volume: 412 start-page: 132615 year: 2020 ident: bib0275 article-title: A reduced order deep data assimilation model publication-title: Phys. D: Nonlinear Phenom. – start-page: 109 year: 2014 ident: bib0355 article-title: Data fusion via intrinsic dynamic variables: an application of data-driven koopman spectral analysis publication-title: EPL (Europhys. Lett.) – volume: 120 start-page: 1367 year: 1994 end-page: 1387 ident: bib0120 article-title: A strategy for operational implementation of 4d-var, using an incremental approach publication-title: Q. J. R. Meteorol. Soc. – start-page: 1 year: 2019 end-page: 21 ident: bib0060 article-title: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model publication-title: Geosci. Model Dev. Discuss. – year: 2018 ident: bib0175 article-title: Goal-Based Sensitivity Maps Using Time Windows And Ensemble Perturbations – volume: 22 start-page: 1175 year: 2018 end-page: 1186 ident: bib0135 article-title: Deterministic ensemble smoother with multiple data assimilation as an alternative for history-matching seismic data publication-title: Comput. Geosci. – year: 2020 ident: bib0365 article-title: Onsagernet: Learning Stable and Interpretable Dynamics Using A Generalized Onsager Principle – volume: 18 start-page: 5998 year: 2017 end-page: 6026 ident: bib0210 article-title: Maximum principle based algorithms for deep learning publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 477 year: 2009 end-page: 490 ident: bib0090 article-title: Structural changes in the us economy: is there a role for monetary policy? publication-title: J. Econ. Dyn. Control – start-page: 49 year: 2017 end-page: 57 ident: bib0235 article-title: Look-up tables for efficient non-linear parameters estimation publication-title: International Conference on Optimization and Decision Science – volume: 379 start-page: 51 year: 2019 end-page: 69 ident: bib0015 article-title: Optimal reduced space for variational data assimilation publication-title: J. Comput. Phys. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: bib0290 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 372 start-page: 113291 year: 2020 ident: bib0230 article-title: Attention-based convolutional autoencoders for 3d-variational data assimilation publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 6571 year: 2018 end-page: 6583 ident: bib0105 article-title: Neural ordinary differential equations publication-title: Advances in Neural Information Processing Systems – volume: 10 start-page: 223 year: 1999 end-page: 232 ident: bib0330 article-title: Estimating kinetic parameters from dynamic contrast-enhanced t 1-weighted mri of a diffusable tracer: standardized quantities and symbols publication-title: J. Magn. Reson. Imaging – volume: 8 start-page: 52 year: 2015 end-page: 62 ident: bib0115 article-title: Assimilation of sea-level anomalies and Argo data into HYCOM and its impact on the 24 hour forecasts in the western tropical and South Atlantic publication-title: J. Oper. Oceanogr. – year: 2021 ident: bib0170 article-title: Building tangent-linear and adjoint models for data assimilation with neural networks publication-title: Earth Space Sci. Open Arch. – year: 2010 ident: bib0255 article-title: Data Assimilation – Chapter Mathematical Concepts in Data Assimilation – year: 2019 ident: bib0240 article-title: Deepflow: History Matching in the Space of Deep Generative Models – year: 2017 ident: bib0350 article-title: Convolutional Gaussian Processes – volume: 9 start-page: 235 year: 2008 end-page: 284 ident: bib0200 article-title: Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies publication-title: J. Mach. Learn. Res. – start-page: 5167 year: 2018 end-page: 5176 ident: bib0005 article-title: PoseTrack: a benchmark for human pose estimation and tracking publication-title: IEEE Conference on Computer Vision and Pattern Recognition – year: 2014 ident: bib0050 article-title: Data Assimilation and Machine Learning Science at ECMWF – volume: 48 start-page: 16 year: 2009 end-page: 45 ident: bib0145 article-title: Fast data assimilation using a nonlinear Kalman filter and a model surrogate: an application to the Columbia River estuary publication-title: Dyn. Atmos. Oceans – start-page: 59 year: 2019 end-page: 68 ident: bib0250 article-title: A scalable approach to econometric inference publication-title: PARCO – year: 2005 ident: bib0075 article-title: Sensitivity and Uncertainty Analysis, vol. II: Applications to Large-Scale Systems – volume: 1 start-page: 341 year: 2019 end-page: 358 ident: bib0100 article-title: Recent advances in supervised dimension reduction: a survey publication-title: Mach. Learn. Knowl. Extract. – start-page: 787 year: 2019 end-page: 793 ident: bib0215 article-title: Air quality forecast through integrated data assimilation and machine learning publication-title: International Conference on Agents and Artificial Intelligence – volume: 345 start-page: 75 year: 2019 end-page: 99 ident: bib0165 article-title: Data-driven reduced order modeling for time-dependent problems publication-title: Comput. Methods Appl. Mech. Eng. – year: 2005 ident: bib0300 article-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) – year: 2006 ident: bib0035 article-title: Pattern Recognition and Machine Learning – year: 2020 ident: bib0155 article-title: Learning Earth System Models From Observations: Machine Learning or Data Assimilation? Technical Report 863 – volume: 50 start-page: 537 year: 2020 end-page: 558 ident: bib0310 article-title: Reduced-order quasilinear model of ocean boundary-layer turbulence publication-title: J. Phys. Oceanogr. – volume: 148 start-page: 323 year: 2019 end-page: 337 ident: bib0360 article-title: A reduced order model for turbulent flows in the urban environment using machine learning publication-title: Build. Environ. – volume: 29 start-page: 3630 year: 2016 end-page: 3638 ident: bib0335 article-title: Matching networks for one shot learning publication-title: Adv. Neural Inform. Process. Syst. – year: 2019 ident: bib0260 article-title: Lighttrack: A Generic Framework for Online Top-Down Human Pose Tracking – year: 2000 ident: bib0340 article-title: The efficient market hypothesis, the gaussian assumption, and the investment management industry publication-title: EFMA 2001 Lugano Meetings – volume: 335 start-page: 311 year: 2017 end-page: 326 ident: bib0010 article-title: On the variational data assimilation problem solving and sensitivity analysis publication-title: J. Comput. Phys. – volume: 5 start-page: 1 year: 2017 end-page: 11 ident: bib0345 article-title: A proposal on machine learning via dynamical systems publication-title: Commun. Math. Stat. – start-page: 5525 year: 2017 end-page: 5533 ident: bib0110 article-title: Long short-term memory Kalman filters: recurrent neural estimators for pose regularization publication-title: IEEE International Conference on Computer Vision – year: 2003 ident: bib0190 article-title: Atmospheric Modeling. Data Assimilation and Predictability – volume: 59 start-page: 697 year: 2009 ident: bib0315 article-title: Variational data assimilation for parameter estimation: application to a simple morphodynamic model publication-title: Ocean Dyn. – start-page: 335 year: 2016 ident: bib0285 article-title: Inferring solutions of differential equations using noisy multi-fidelity data publication-title: J. Comput. Phys. – volume: 11 start-page: 3999 year: 2018 end-page: 4009 ident: bib0130 article-title: Challenges and design choices for global weather and climate models based on machine learning publication-title: Geosci. Model Dev. – start-page: 155 year: 2020 end-page: 168 ident: bib0020 article-title: Neural assimilation publication-title: International Conference on Computational Science – volume: 82 start-page: 35 year: 1960 end-page: 45 ident: bib0185 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. – volume: 2 start-page: 55 year: 2020 end-page: 80 ident: bib0040 article-title: Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization publication-title: Found. Data Sci. – year: 2019 ident: bib0295 article-title: Digital Twin: Values, Challenges and Enablers – volume: 9 start-page: 235 year: 2008 ident: 10.1016/j.jocs.2021.101525_bib0200 article-title: Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies publication-title: J. Mach. Learn. Res. – volume: 473 start-page: 20160751 year: 2017 ident: 10.1016/j.jocs.2021.101525_bib0265 article-title: Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci. doi: 10.1098/rspa.2016.0751 – volume: 737 start-page: 139625 year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0205 article-title: Modelling of instantaneous emissions from diesel vehicles with a special focus on nox: insights from machine learning techniques publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139625 – volume: 2 start-page: 83 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0375 article-title: Model error correction in data assimilation by integrating neural networks publication-title: Big Data Mining Anal. doi: 10.26599/BDMA.2018.9020033 – year: 2017 ident: 10.1016/j.jocs.2021.101525_bib0350 – volume: 50 start-page: 537 year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0310 article-title: Reduced-order quasilinear model of ocean boundary-layer turbulence publication-title: J. Phys. Oceanogr. doi: 10.1175/JPO-D-19-0149.1 – start-page: 254 year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0245 article-title: A neural sir model for global forecasting publication-title: Machine Learning for Health – start-page: 5525 year: 2017 ident: 10.1016/j.jocs.2021.101525_bib0110 article-title: Long short-term memory Kalman filters: recurrent neural estimators for pose regularization publication-title: IEEE International Conference on Computer Vision – volume: 335 start-page: 311 year: 2017 ident: 10.1016/j.jocs.2021.101525_bib0010 article-title: On the variational data assimilation problem solving and sensitivity analysis publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.01.034 – volume: 1 start-page: 341 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0100 article-title: Recent advances in supervised dimension reduction: a survey publication-title: Mach. Learn. Knowl. Extract. doi: 10.3390/make1010020 – volume: 179 start-page: 704 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0320 article-title: Projection-based model reduction: formulations for physics-based machine learning publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.07.021 – start-page: 567 year: 2009 ident: 10.1016/j.jocs.2021.101525_bib0325 article-title: Variational learning of inducing variables in sparse gaussian processes publication-title: Artificial Intelligence and Statistics – start-page: 1 year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0070 article-title: Real-time multi-person pose tracking using data assimilation publication-title: IEEE Winter Conference on Applications of Computer Vision – year: 2016 ident: 10.1016/j.jocs.2021.101525_bib0030 – volume: 59 start-page: 697 year: 2009 ident: 10.1016/j.jocs.2021.101525_bib0315 article-title: Variational data assimilation for parameter estimation: application to a simple morphodynamic model publication-title: Ocean Dyn. doi: 10.1007/s10236-009-0205-6 – volume: 48 start-page: 16 year: 2009 ident: 10.1016/j.jocs.2021.101525_bib0145 article-title: Fast data assimilation using a nonlinear Kalman filter and a model surrogate: an application to the Columbia River estuary publication-title: Dyn. Atmos. Oceans doi: 10.1016/j.dynatmoce.2008.10.004 – start-page: 59 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0250 article-title: A scalable approach to econometric inference publication-title: PARCO – start-page: 335 year: 2016 ident: 10.1016/j.jocs.2021.101525_bib0285 article-title: Inferring solutions of differential equations using noisy multi-fidelity data publication-title: J. Comput. Phys. – start-page: 1 year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0045 article-title: Machine learning for earth system observation and prediction publication-title: Bull. Am. Meteorol. Soc. – year: 2016 ident: 10.1016/j.jocs.2021.101525_bib0160 – volume: 18 start-page: 5998 year: 2017 ident: 10.1016/j.jocs.2021.101525_bib0210 article-title: Maximum principle based algorithms for deep learning publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 550 year: 1997 ident: 10.1016/j.jocs.2021.101525_bib0370 article-title: Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. doi: 10.1145/279232.279236 – year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0260 – start-page: 1 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0060 article-title: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model publication-title: Geosci. Model Dev. Discuss. – start-page: 49 year: 2017 ident: 10.1016/j.jocs.2021.101525_bib0235 article-title: Look-up tables for efficient non-linear parameters estimation publication-title: International Conference on Optimization and Decision Science – volume: 2 start-page: 55 year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0040 article-title: Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization publication-title: Found. Data Sci. doi: 10.3934/fods.2020004 – year: 2003 ident: 10.1016/j.jocs.2021.101525_bib0190 – volume: 412 start-page: 132615 year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0275 article-title: A reduced order deep data assimilation model publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/j.physd.2020.132615 – start-page: 5167 year: 2018 ident: 10.1016/j.jocs.2021.101525_bib0005 article-title: PoseTrack: a benchmark for human pose estimation and tracking publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 120 start-page: 1367 year: 1994 ident: 10.1016/j.jocs.2021.101525_bib0120 article-title: A strategy for operational implementation of 4d-var, using an incremental approach publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49712051912 – volume: 10 start-page: 223 year: 1999 ident: 10.1016/j.jocs.2021.101525_bib0330 article-title: Estimating kinetic parameters from dynamic contrast-enhanced t 1-weighted mri of a diffusable tracer: standardized quantities and symbols publication-title: J. Magn. Reson. Imaging doi: 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S – volume: 8 start-page: 52 year: 2015 ident: 10.1016/j.jocs.2021.101525_bib0115 article-title: Assimilation of sea-level anomalies and Argo data into HYCOM and its impact on the 24 hour forecasts in the western tropical and South Atlantic publication-title: J. Oper. Oceanogr. – volume: 148 start-page: 323 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0360 article-title: A reduced order model for turbulent flows in the urban environment using machine learning publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.10.035 – year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0055 article-title: Leveraging modern artificial intelligence for remote sensing and nwp: benefits and challenges publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-18-0324.1 – year: 2005 ident: 10.1016/j.jocs.2021.101525_bib0075 – volume: 345 start-page: 75 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0165 article-title: Data-driven reduced order modeling for time-dependent problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.10.029 – volume: 75 start-page: 339 year: 1997 ident: 10.1016/j.jocs.2021.101525_bib0220 article-title: Development of an operational variational assimilation scheme publication-title: J. Meteorol. Soc. Jpn. doi: 10.2151/jmsj1965.75.1B_339 – year: 2018 ident: 10.1016/j.jocs.2021.101525_bib0270 – volume: 22 start-page: 1175 year: 2018 ident: 10.1016/j.jocs.2021.101525_bib0135 article-title: Deterministic ensemble smoother with multiple data assimilation as an alternative for history-matching seismic data publication-title: Comput. Geosci. doi: 10.1007/s10596-018-9745-5 – year: 2000 ident: 10.1016/j.jocs.2021.101525_bib0340 article-title: The efficient market hypothesis, the gaussian assumption, and the investment management industry publication-title: EFMA 2001 Lugano Meetings – start-page: 155 year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0020 article-title: Neural assimilation publication-title: International Conference on Computational Science – volume: 28 start-page: 594 year: 2006 ident: 10.1016/j.jocs.2021.101525_bib0140 article-title: One-shot learning of object categories publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.79 – volume: 5 start-page: 1 year: 2017 ident: 10.1016/j.jocs.2021.101525_bib0345 article-title: A proposal on machine learning via dynamical systems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-017-0103-z – year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0240 – year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0225 – year: 2021 ident: 10.1016/j.jocs.2021.101525_bib0125 – volume: 82 start-page: 35 year: 1960 ident: 10.1016/j.jocs.2021.101525_bib0185 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0195 article-title: A scalable inference method for large dynamic economic systems publication-title: NeuRIPS ML for Economic Policy Workshop – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0290 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 11 start-page: 3999 year: 2018 ident: 10.1016/j.jocs.2021.101525_bib0130 article-title: Challenges and design choices for global weather and climate models based on machine learning publication-title: Geosci. Model Dev. doi: 10.5194/gmd-11-3999-2018 – volume: 29 start-page: 3630 year: 2016 ident: 10.1016/j.jocs.2021.101525_bib0335 article-title: Matching networks for one shot learning publication-title: Adv. Neural Inform. Process. Syst. – year: 2014 ident: 10.1016/j.jocs.2021.101525_bib0050 – start-page: 787 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0215 article-title: Air quality forecast through integrated data assimilation and machine learning publication-title: International Conference on Agents and Artificial Intelligence – volume: 379 start-page: 51 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0015 article-title: Optimal reduced space for variational data assimilation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.042 – volume: 363 start-page: 55 year: 2018 ident: 10.1016/j.jocs.2021.101525_bib0180 article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.02.037 – start-page: 4620 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0280 article-title: Efficient online multi-person 2d pose tracking with recurrent spatio-temporal affinity fields publication-title: IEEE Conference on Computer Vision & Pattern Recognition – start-page: 6571 year: 2018 ident: 10.1016/j.jocs.2021.101525_bib0105 article-title: Neural ordinary differential equations publication-title: Advances in Neural Information Processing Systems – start-page: 1 year: 2017 ident: 10.1016/j.jocs.2021.101525_bib0080 article-title: Integration of ensemble data assimilation and deep learning for history matching facies models publication-title: Offshore Technology Conference, Offshore Technology Conference – year: 2018 ident: 10.1016/j.jocs.2021.101525_bib0175 – year: 2021 ident: 10.1016/j.jocs.2021.101525_bib0170 article-title: Building tangent-linear and adjoint models for data assimilation with neural networks publication-title: Earth Space Sci. Open Arch. – year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0155 – volume: 27 start-page: 379 year: 1948 ident: 10.1016/j.jocs.2021.101525_bib0305 article-title: A mathematical theory of communication publication-title: Bell Syst. Techn. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – year: 2006 ident: 10.1016/j.jocs.2021.101525_bib0035 – volume: 33 start-page: 477 year: 2009 ident: 10.1016/j.jocs.2021.101525_bib0090 article-title: Structural changes in the us economy: is there a role for monetary policy? publication-title: J. Econ. Dyn. Control doi: 10.1016/j.jedc.2008.05.010 – volume: 128 start-page: 87 year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0085 article-title: Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.04.006 – start-page: 7291 year: 2017 ident: 10.1016/j.jocs.2021.101525_bib0095 article-title: Realtime multi-person 2d pose estimation using part affinity fields publication-title: IEEE Conference on Computer Vision and Pattern Recognition – year: 2005 ident: 10.1016/j.jocs.2021.101525_bib0300 – year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0365 – volume: 379 year: 2021 ident: 10.1016/j.jocs.2021.101525_bib0150 article-title: Learning earth system models from observations: machine learning or data assimilation? publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2020.0089 – year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0065 – year: 2010 ident: 10.1016/j.jocs.2021.101525_bib0255 – volume: 11 start-page: 1114 year: 2021 ident: 10.1016/j.jocs.2021.101525_bib0025 article-title: Deep data assimilation: integrating deep learning with data assimilation publication-title: Appl. Sci. doi: 10.3390/app11031114 – year: 2019 ident: 10.1016/j.jocs.2021.101525_bib0295 – start-page: 109 year: 2014 ident: 10.1016/j.jocs.2021.101525_bib0355 article-title: Data fusion via intrinsic dynamic variables: an application of data-driven koopman spectral analysis publication-title: EPL (Europhys. Lett.) – volume: 372 start-page: 113291 year: 2020 ident: 10.1016/j.jocs.2021.101525_bib0230 article-title: Attention-based convolutional autoencoders for 3d-variational data assimilation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113291 |
SSID | ssj0000388913 |
Score | 2.5396917 |
Snippet | •We introduce Data Learning, a field that integrates Data Assimilation (DA) and Machine Learning (ML).•Data Learning overcomes limitations in applying DA and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101525 |
SubjectTerms | Data Assimilation Data Learning Machine Learning |
Title | Data Learning: Integrating Data Assimilation and Machine Learning |
URI | https://dx.doi.org/10.1016/j.jocs.2021.101525 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DQbyIm4rzx8jBgyJ1TZt0rbcxHZuyXXSwW8lP6dBuaL36t5vXpkNBdvDYNA_Kl7yXl_K97yF0QeHa46vYk9o6OTVB5AkbIL3EF6ERMpJxBMXJk2k0mtGHOZs30KCuhQFapYv9VUwvo7Ub6To0u6ss6z4RkLJjPhSh-CQur0CU9mCX33yR9X8WUDtJyi7JMN8DA1c7U9G8FksJqt0BgQEGHbP_Op9-nDnDfbTnkkXcr76niRo6b6GdmqveQk3nmR_40slHXx2g_h0vOHa6qS-3eOwEIewDLl_ZFcnesooDh3mu8KQkVOq1zSGaDe-fByPPNUrwZOj7hQWWcqGMZso6kREJURFLpLHJlIwUD2LGjE30DOVM95ShoBlGWUBVLIngMSfhEdrKl7k-Rjjk1ucNIcIeU1Tau7OWxo8CSDQCoWLeRqSGJ5VORRyaWbymNV1skQKkKUCaVpC20fXaZlVpaGyczWrU0187IbVBfoPdyT_tTtFuACUNJRP7DG0V75_63CYaheiUO6mDtvvjx9H0G8SWzv8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC50A9GL-Ehw4yN9iKDIZKd7uyezggfxwW50vUTB26SfsqLrEjeEXPxT_kGrZnoWBfEgeJxHDc03NVXVw1dfAXyTtO1JXZ5Yjx-5DCJLDAbIpJOadjA2s3lGzcn906x7Ln9eqIspeKh7YYhWGWN_FdPLaB3PtCKardFg0PrFScpOpdSEkvI845FZeez__8N9291u7wBf8oYQR4dn-90kjhZIbDtNx7gUqY0LXjl0u2A63GWqYwOWHzZzWuRKBSyNgtTK_3BBksqWVEK63HKjc83b-Nxp-CAxXNDYhO_3fPJjh-RVOuVYZlpgQiuMzToVr-zq1pJMuOB0QtGI7pcS4pMkdzQPc7E6ZXsVAAsw5YeL8LEmxy_CQgwFd2wz6lVvLcHegR5rFoVaL3dYLypQ4AErL6ELDG4GFemO6aFj_ZLB6Sc2n-D8XeD7DI3h7dAvA2trDDKBc4N5UVrcrHsb0kxQZSOMy3UTeA1PYaNsOU3PuC5qftpVQZAWBGlRQdqE7YnNqBLtePVuVaNePHO9ArPKK3Zf3mj3FWa6Z_2T4qR3erwCs4L6KUoa-Co0xn_--jWscsZmvfQqBr_f240fATvRCww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Learning%3A+Integrating+Data+Assimilation+and+Machine+Learning&rft.jtitle=Journal+of+computational+science&rft.au=Buizza%2C+Caterina&rft.au=Quilodr%C3%A1n+Casas%2C+C%C3%A9sar&rft.au=Nadler%2C+Philip&rft.au=Mack%2C+Julian&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=58&rft_id=info:doi/10.1016%2Fj.jocs.2021.101525&rft.externalDocID=S1877750321001861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |